
Contents

1 Z 3
Jonathan P. BOWEN

1.1 Overview of the Z Notation . 3
1.1.1 The Process of Producing a Z Specification 4

1.2 Analysis and Specification of Case 1 5
1.3 Analysis and Specification of Case 2 13
1.4 Validation of the Specification . 16
1.5 The Natural Language Description of the Specifications 17
1.6 Conclusion . 18

1

2 Contents

Chapter 1

Z

Jonathan P. BOWEN

Oui, l’ouvre sort plus belle
D’une forme au travail
Rebelle,
Vers, marbre, onyx,́email.

[Yes, the work comes out more beautiful from a material that resists the process,
verse, marble, onyx, or enamel.]

– Théophile Gautier (1811–1872)L’Art

1.1 Overview of the Z Notation

Z (pronounced ‘zed’) is a formal specification notation based on set theory and first
order predicate logic. The mathematical notation is supported by a library of operators
known as the ‘Z toolkit’, which is largely formally defined within the Z notation itself
[ISO 02, SPI 01]. The operators have a large number of algebraic laws which aid in
the reasoning about Z specification. As well as the mathematical notation, there is a
‘schema’ notation to aid in the structuring of the mathematics for large specification
by packaging the mathematical notation into boxes that may be used and combined
subsequently.

There are many Z textbooks, some available online (see for example, [BOW 03,
JAC 97, LIG 00, WOO 96]). A widely used reference book is also accessible online
[SPI 01]. Z has subsequently undergone a lengthy international ISO standardization
process culminating in 2002 [ISO 02], which could help in the development of further
tools to support the notation. In particular, an open sourceCommunity Z Tools(CZT)
initiative is underway, based around XML [MAL 05]. Z has been extended in a num-
ber of ways, especially with object-orienting features (e.g., Object-Z [SMI 00]). The
theoretical basis of Z has been explored extensively (e.g., see [HEN 03]). A range of

3

4 Chapter 1. Z

case studies and a Z glossary may be found in [BOW 03].

1.1.1 The Process of Producing a Z Specification

Z is typically used in a modelling style [BOW 04] in which anabstract stateis in-
cluded, containing enough information to describe changes in state that may be per-
formed by a number ofoperationson the system. Each of the operations defines a
relationbetween abeforeandafter version of the state. The state may containinvari-
antswhich are predicates relating the various components in the abstract state which
should always apply regardless of the current state of the system.

An initial state is defined as a special case of the more general abstract state, with
the addition of extra constraining predicates. The description of the system is then
modelled by this initial state, followed by an arbitrary interleaving of the operations
in any order, only limited by anypreconditionsimposed by individual operations.

Often operations are designed to betotal (i.e., with a precondition oftrue) so that
they can be applied in any situation. This is especially useful in maintenance of the
implemented operations (which could typically be procedure calls, for example) since
preconditions are not explicitly obvious in a program implementation and a maintainer
unaware of such restrictions may be tempted to use the operation in an inappropriate
situation.

In the case of Z, a good place to start the specification is by positing a possible
abstract state to model the system. Inevitably this will have to be changed in the
course of producing the rest of the specification (except in trivial cases) but that is
part of the learning process by which knowledge and understanding of the system is
gained.

Next some operations which may be performed on the system should be consid-
ered. Initially only the result of successful operations which perform the desired result
with no problems should be formulated. The abstract state should be modified as re-
quired if some important aspect cannot be adequately modelled without it, always
checking for the possible effect on other operations.

As the specification evolves, given sets and useful axiomatic or generic definitions
can be assumed, then formally defined and added at the beginning of the specification.
Errors reports in the case of unsuccessful operations should be considered and added.
Some of these will normally be common across several operations in a specification
of any size.

In practical specifications, it will be found that parts of the specification are re-
peated across groups of operations. It is often worthwhile factoring out these parts,
presenting and explaining their purpose once, and then using them subsequently. This
will considerably reduce the size of most large specifications and make their assimi-
lation easier for the reader.

Total operations are normally formulated typically as a disjunction of the success-
ful and, if required, a number of error cases. An appropriate error indication, normally
as some form of output, is normally included depending on the requirements.

1.2. Analysis and Specification of Case 1 5

Finally (perhaps surprisingly) the initial state should be considered as a special
case of the abstract state. Often the contents of much of the state is most easily con-
sidered to be empty or to have some fixed value at the start of the life of the system,
but may be more loosely specified if the exact value is unimportant.

During the production of the specification, questions will inevitably be raised.
These should be discussed within the design team, with other colleagues, or with the
customer as appropriate, normally in that order, to resolve the issues. In the next
section of this chapter, a Z specification is presented with some of these questions
interspersed with the formal Z specification. Informal description of the formal spec-
ification is also included. This should be designed to reinforce the concepts presented
in the Z specification, especially in relating it to the real world.

In a finished and polished Z specification, the informal annotation should normally
be about the same length as the formal description. As a rule of thumb, it is a good
idea to attempt to describe each line of predicate in Z schema boxes with a matching
sentence of text written in a natural style. Ideally the informal part of the specification
should be meaningful on its own, even if the formal part is removed. In fact this could
be useful if the description is to be presented to a customer who may be unable to
assimilate the Z specification itself.

1.2 Analysis and Specification of Case 1

Most specifications, formal or otherwise, are presented as afait accompliafter the
specification has been produced, normally with no hint as to how the specification
has been produced. There is some guidance on the use of formal methods in gen-
eral but in the case of specific notations, even most textbooks tend to concentrate on
finished specifications rather than the progress of specifications from initial concept
(requirements) to completion.

In practice, theprocessof producing the specification can be as important as or
even more important than the specification itself. The knowledge gained by the spec-
ifier in preparation before consideration of implementation details can be invaluable
in resolving errors before the detailed design and subsequent stages, making them
much cheaper to correct. In this section we consider typical questions posed during
the specification process when using the Z notation for the first case study.

Question 1: Whatgiven setsare needed for the specification?

Answer: Z, as a typed language, provides the facility of including a number of dis-
tinct sets (called ‘given sets’ or ‘ basic types’) for subsequent use in a specifica-
tion. The sets are potentially infinite unless limited to being finite later in the
specification. The set of integersZ is available in all Z specifications as part
of the standard mathematical ‘toolkit’ library. Other given sets are normally
discovered as a Z specification is formulated. Here we define sets of order iden-
tifiers and products which can potentially be held in stock:

[OrderId, Product]

6 Chapter 1. Z

The exact nature of the elements of these set is unimportant to the specification and is
thus not elaborated further. An implementor would chose a specific representation for
them in due course.

Question 2: What states can orders have?

Answer: The requirements mention two states, ‘pending’ and ‘invoiced’.

We define a setOrderStatewith just two elements in it to model the states of
pendingandinvoicedwhich an order can take as it progresses:

OrderState::= pending| invoiced

HereOrderStateis defined as a given set, but is limited to having two distinct elements,
pendingand invoiced, representing different possible states. Further states could be
added later if that proves to be necessary.

Question 3: Whatabstract stateis needed to model the system?

Answer: In Z, operations normally act on an abstract state, relating abefore stateto
anafter state. We need to model the state products in stock and orders including
their invoicing status.

The quantity of each of the products in stock needs to be recorded, so a bag (also
known as multiset) can be used to model this in avertical schemacalledStock:

Stock
stock: bagProduct

This includes a singlestate component, a bag calledstock drawn from the set of
bagProduct. In Z, as with many programming languages, the ‘:’ in declarations can
be read as ‘is a member of’ like ‘∈’ in predicates. Note that Z is case sensitive and
many Z specifications use this in standard ways to help the reader. For example, here
lower case names are used for state components and names starting with an upper case
letter are used for given sets and schema names.

In the Z toolkit, the set of bags is defined as: bagX == X 7→ N1, the set of partial
functions between some setX and the strictly positive integers (greater than zero).
This allows a record of the number of products in stock in theStockschema above.
For example, ifnutsandboltsare valid products, thenstock= {nuts 7→ 5, bolts 7→ 6}
would indicate that there are 5nutsand 6bolts in stock. a 7→ b is a graphicmaplet
notation used in Z to indicate theCartesian productpair (a, b).
Question 4: Is it really required that an order be limited to a single type of product

and an associated quantity or would a set of these be preferable?

Answer: The informal requirements indicate this, but it might be considered over-
restrictive. A user may wish to order several types of product at once and this
should be discussed with the customer. Here we assume that the customer de-
cides to allow orders of oneor moreproducts for extra flexibility, but not empty
orders (i.e., an order for no products).

1.2. Analysis and Specification of Case 1 7

Sincestockis defined as a bag of products, it is convenient to define an order as a
bag of products too. However, whereas the stock may be completely empty, an order
must consist of one (or more) products:

Order == {order : bagProduct| order 6= ∅}

In the above,Order is defined using anabbreviation definition(‘==’) and set com-
prehension(‘{. . . | . . .}’). Subsequently, any use ofOrder is the equivalent of using
the right hand side of this definition directly. This is useful for expressions that are
reused a number of times during a specification. The properties of the expression can
be introduced in one place informally; the expression can be given a name formally
and then used later as required. The constraint predicated after the ‘|’ in the set com-
prehension above (which can be read as ‘such that’) normally limits the declaration(s)
in some way (here to being non-empty).

The predicate constraintorder 6= ∅ could also have been equivalently written as
#order > 0 or #order ≥ 1 where ‘#’ indicates the cardinality (size) of a set. If it
was decided that only a single product is to be allowed we could write#order = 1.
This would allow us to easily change the specification subsequently if the customer
changes his/her mind. We could even allow empty orders (Order == bagProduct).
The rest of the specification can be left the same, whichever of these choices are made.

Continuing with the definition of the abstract model, the status of orders can be
modelled as a function from an identifyingOrderId to their state (pendingor invoiced).
State componentsorderStatusandordersare packaged into anOrderInvoicesschema
with appropriatetypeinformation:

OrderInvoices
orders: OrderId 7→ Order
orderStatus: OrderId 7→ OrderState

domorders= domorderStatus

Here,orderStatusandordersarepartial functionsfrom the setOrderId. The functions
are partial (i.e., their domains do not necessary cover the whole of theOrderId set in
this case) since only valid orders are mapped in this way.

All orders have a status associated with them. This type of general information that
must apply at all times (whatever the specific state of the system at any given time) is
presented as a stateinvariant predicate in most Z specifications (e.g., domorders =
domorderStatusabove, constraining the domains of both functions to always be the
same).
Question 5: Should order identifiers be unique for the entire lifetime of the system?

Answer: We could decide that new identifiers must never have been used previously
or that they just need to be unique at any given time. The state specification so
far assumes the former, which is easiest. However, if the latter is required, we
must augment the state with further information on fresh new references that
can be issued at any particular time.

8 Chapter 1. Z

The schemasStockandOrderInvoicescan be combined in a newStateschema
usingschema inclusion, together with a further state componentnewids. The inclusion
of StockandOrderInvoicesmeans all the declarations and associated predicates are
available.

State
Stock
OrderInvoices
newids: P OrderId

domorders∩ newids= ∅

Question 6: What initial state is required for the system?

Answer: The requirements do not make this clear; if not defined in Z, the system
could start in any valid state that satisfies any state invariants. Typically many
state components are most usefully initialized to empty sets or some predeter-
mined value. For example:

InitState
State′

stock′ = ∅
orders′ = ∅
newids′ = OrderId

The decoration ‘′’ added to theStateschema included above percolates through to
all the state components declared in the schema (stock′, etc.). Note that all the pred-
icates are combined using conjunction by default. The predicateorderStatus′ = ∅
is implied because of the state invariant domorders′ = domorderStatus′ from the
OrderInvoices′ schema and hence can be omitted. All possible identifiers are avail-
able for use initially.
Question 7: Are there any constraints that apply for all operations on the system?

Answer: If so, they may be specified using the ‘∆’ convention of Z:

∆State
State
State′

newids′ = newids\ domorders′

Here an undashedbefore state(State) and a matching dashedafter state(State′) are
included.

If any new identifiers are used for orders (and hence their status) these are no
longer available for use by any subsequent operation. Thus they are removed from the

1.2. Analysis and Specification of Case 1 9

set of new identifiers. Any operation including∆Stateneed not explicitly consider the
value ofnewids′ since it will automatically be handled by the predicate in the schema
above.

A change of state is specified using the∆Stateschema convention. This defines
a ‘before’ stateState(which includes the four state componentstock, orderStatus,
ordersandnewidsin this case) and an ‘after’ stateInvoices′ which includes matching
dashed state component (stock′, etc.).

Question 8: What operations are required?

Answer: Only a single operation to invoice an order seems to be required since many
aspects do not have to be taken into account.

Question 9: What inputs and/or outputs are needed by the operation?

Answer: An input id? is required to specify which invoice is to be updated. Note
that in Z, a trailing ‘?’ indicates an input and a trailing ‘!’ indicates an output by
convention.

Question 10: Whatpreconditionsapply?

Answer: In Z, preconditions are predicates in operations that apply only to before
states and inputs. Preconditions may be calculated by existentially quantifying
the after states and outputs, and then simplifying the resulting predicate. See
later for an example.

For an order to be successfully invoiced, there must be enough stock available to
fulfil the order and the status must be pending. These arepreconditionsthat must be
satisfied to change the order state toinvoiced.

Question 11: What is the effect of the operation?

Answer: The effect of the operation is a relation between the before state and in-
puts with the after state and outputs, proving apostconditionfor the operation.
Often, although not always, this can be specifiedexplicitly (e.g., in the form
stock′ = . . ., etc. for all after state components and outputs). Indeed, checking
for predicates in this form is a useful check to ensure that no important postcon-
ditions have been omitted. The lack of a predicate in this form for a particular
after state component or output is not necessarily an indication of an error in the
specification, but it is all too easy to omit a predicate of the formx′ = x when
no change of state is required.

All this information discussed above is included formally in anInvoiceOrderop-
eration as follows:

10 Chapter 1. Z

InvoiceOrder
∆State
id? : OrderId

orders(id?) v stock
orderStatus(id?) = pending
stock′ = stock∪– orders(id?)
orders′ = orders
orderStatus′ = orderStatus⊕ {id? 7→ invoiced}

v is the sub-bag relational operator from the Z toolkit. As used in the schema above,
this ensures a precondition that their are enough quantities of the required product(s)
in stock. For example,{nuts 7→ 3} v {nuts 7→ 5, bolts 7→ 6} is true.

Another precondition is that the status of the order must bepending. If the pre-
conditions are satisfied, the required product quantities are removed from the avail-
able stock using the bag difference operator (‘∪– ’, cf. the set difference operator ‘\’
for sets). Here for example,{nuts 7→ 5, bolts 7→ 6} ∪– {nuts 7→ 3} would result in
{nuts 7→ 2, bolts 7→ 6}.

The preconditionid? ∈ domorderscould be included if an explicit check forid?
being a valid existing order identifier is required. This is also equivalent toid? ∈
domorderStatusdue to the invariant domorders = domorderStatus. However this
precondition is implied by both the preconditions included in theInvoiceOrderim-
plicitly since id? is applied toordersandorderStatususingfunction application; this
is only valid if id? (in this case) is in the domain of the function. Here we decide
to omit an explicit check for simplicity of presentation. However, consideration of
this precondition as a separate case could affect the errors conditions returned by the
complete operation (see later) and this should be discussed with the customer.

The orders themselves are unaffected by the operation above, as specified by
orders′ = orders. The order status is updated toinvoicedusing theoverriding op-
erator (‘⊕’) from the Z toolkit. This operator is commonly used in Z specifications to
update a small part of state components that are binary relations (often functions) in
Z operation schema. Here the state of the mapletid? 7→ pendingis replaced by a new
mapletid? 7→ invoiced, leaving the status of all other orders unchanged.
Question 12: What about error conditions?

Answer: Normally successful operations, where the preconditions are satisfied and
the operation does what is required, are considered first in Z. The precondition
can be calculated and the error condition(s) must have a precondition which
handle the negation of this to eventually produce atotal operationwith a pre-
condition of true (i.e., it can be invoked safely at any time) by combining the
successful and error cases using disjunction.

Question 13: Are error reportsrequired?

Answer: Nothing is said in the requirements, but most customers would wish to know
if an operation was successful or not once it has been undertaken. They will

1.2. Analysis and Specification of Case 1 11

probably wish to know the nature of the error as will if more than one error is
possible in a particular operation. Thus we define a set of possible reports from
operations:

Report::= OK | order not pending| not enoughstock| no more ids

If further error reports prove necessary (e.g., if the system is upgraded later), they
could be added toReportabove as required subsequently. Above we define all error
reports used in this chapter.

For successful operations, a suitable report is normally required to inform the user.
Since this is a standard feature of successful operations, this can be separated out in a
separate schema production an output reportrep!:

Success
rep! : Report

rep! = OK

Question 14: What if the order state is not pending?

Answer: For error cases where the precondition does not hold, it is normal to assume
the state is not to change. We define an error schema with a precondition that is
the negation of one of the preconditions in theInvoiceOrderschema:

InvoiceError
ΞState
id? : OrderId
rep! : Report

orderStatus(id?) 6= pending
rep! = order not pending

ΞStateensures that all the dashed state components in the after state are the same as
the matching undashed state components in the before state; in this case,stock′ =
stock∧ . . . Thus, the entire state afterwards is the same as the state before in the case
of the error above.
Question 15: What if not enough stock is available for the order?

Answer: Here we return an alternative error report so the user can detect which error
has occurred:

StockError
ΞState
id? : OrderId
rep! : Report

¬ orders(id?) v stock
rep! = not enoughstock

12 Chapter 1. Z

Question 16: Should either error take priority if they both occur?

Answer: If so, an extra predicate giving the negation of the other error’s precondition
will be needed in one or other error schema above. If not, perhaps because the
customer has no preference, this can be left non-deterministic. The decision can
then be made by the implementor, depending on which is easiest, most efficient,
etc., in the final design. It is good practice to leave design decisions to after the
specification stage if they are not important at this point to give the design team
as much freedom as possible in the implementation.

An error schema covering the case ofid? 6∈ domordersexplicitly (i.e., the specified
id? is not a valid order in the system) could also be added if required by the customer,
but we have omitted this case here for brevity. Instead one or other of the two errors
that are included may be returned (non-deterministically) in this case.

A total operation for ordering where the precondition istruecan now be specified:

InvoiceOrderOp==

(InvoiceOrder∧ Success) ∨ InvoiceError∨ StockError

The above is ahorizontal schemadefinition for a new schemaInvoiceOrderOpin
terms of a number of existing schemas. These are combined using schema operators,
namely schema conjunction (‘∧’) and disjunction (‘∨’), based on the matching logical
connectives. Both operators merge the state components of the schemas involved. Any
components with the same name must be type-compatible (and are normally declared
in an identical manner to avoid confusion). The predicates in the schemas involved
are combined using logical conjunction or disjunction respectively.

Schema conjunction is normally used when building up a larger specification from
smaller specification parts. Schema disjunction is normally used when specifying
choice between two or more alternatives, typically successful and error operations.
Normally any preconditions are disjoint to avoid any unexpected consequences. In a
total operation, the disjunction of all the preconditions of the schema being combined
is true.

If we do not have to take new orders, cancellations and addition to the stock
into account, no other operations are required. However the precondition of the
InvoiceOrderoperation schema is such that the invoice must already bependingand
there must be enough stock available to fulfil the order. Other operations are needed
to make these true. Here we could assume that an arbitrary operation∆Statecan be
invoked at any time beforeInvoiceOrderOpoperations.

In Z, exactly which schemas represent the abstract state, initial state and allowed
operations is normally left informal and is just indicated in the accompanying text.
There is no syntactic feature to distinguish these in Z, although some tools (e.g., the
ZANS animator) have hidden directives to indicate these if required. In this particular
example, the allowed operations is an area that would certainly need further discussion
with the customer to avoid any misunderstanding.

1.3. Analysis and Specification of Case 2 13

1.3 Analysis and Specification of Case 2

Question 17: What extra operations are needed?

Answer: Assuming that Case 2 is an extension of Case 1, three further operations are
indicated from the requirements to handle new orders, cancellation of orders
and entries of quantities in the stock. However, these are not elaborated further.

Question 18: What inputs/outputs, preconditions and postconditions need to be in-
cluded for an operation to handle new orders?

Answer: An order must be provided as an input and a valid fresh identifier is output
by the operation. A new order leaves the stock unchanged but updates the orders
and their status appropriately.

NewOrder
∆State
order? : Order
id! : OrderId

id! ∈ newids
stock′ = stock
orders′ = orders∪ {id! 7→ order?}
orderStatus′ = orderStatus∪ {id! 7→ pending}

Note thatid! is not explicitly set and can be any convenient new identifier. Here we
assume that the status of the new order ispending; this should be discussed with the
customer to check that this is what is actually required.

Question 19: When cancelling an order, is information concerning the order to be
retained by the system?

Answer: We could either remove all information associated with the order from the
system completely, or retain this information for possible future use. Here we
assume that the information is no longer required, which is the simplest option,
but this should be discussed with the customer. Perhaps some sort of auditing
will be required of the system, including cancelled orders.

Question 20: What inputs/outputs, preconditions and postconditions are required for
an operation to handle cancellations of orders?

Answer: Cancelling an order completely removes an existing order (determined by a
valid order identifier inputid?) from the system:

14 Chapter 1. Z

CancelOrder
∆State
id? : OrderId

orderStatus(id?) = pending
stock′ = stock
orders′ = {id?} −C orders
orderStatus′ = {id?} −C orderStatus

The Z toolkit domain anti-restriction operator ‘−C’ used above removes part of a rela-
tion (often a function) where the domain overlaps with a specified set. In the above
example, a single element is removed in each case. We have assumed that the sta-
tus of the order to be cancelled ispendingas opposed toinvoicedsince this avoids
problems of re-adding stock; this should be discussed with the customer. As for the
InvoiceOrderoperation previously,id? ∈ domordersis implied.

Note that cancelled order identifiers can in fact be inferred asOrderId\(newsids∪
domorders) given the operation above. This could be useful if further requirements
are added in the future.

Question 21: Is the finiteness of stock quantities (or any other state component for
that matter) important?

Answer: Here natural numbers have been used for stock quantities and these are po-
tentially infinite and hence of unbounded size in any corresponding implemen-
tation. Practical implementations will require some limit on the maximum size
of stock, often determined by the system’s computer architecture. If this is to
be modelled in the specification, additional preconditions and error schemas
will be required. In the specification below we assume no such requirements,
but finiteness of state components is something that should always be discussed
with the customer in practice.

Question 22: What inputs/outputs, preconditions and postconditions are required for
an operation to handle entries of quantities in the stock?

Answer: Entering new stock can be effected using bag union:

EnterStock
∆State
newstock? : bagProduct

stock′ = stock] newstock?
orders′ = orders
orderStatus′ = orderStatus

The bag union operator (‘]’) takes two bags and forms a new bag consisting of the
sums of matching elements in these two bags (or just the elements in cases where there

1.3. Analysis and Specification of Case 2 15

is no match). For example,{nuts 7→ 5, bolts 7→ 6}]{nuts 7→ 3, washers7→ 1} would
result in{nuts 7→ 8, bolts 7→ 6, washers7→ 1}.

Here we assume that there is no limit on the amount of stock that can be held; in
practice there may be a limit; this should be discussed with the customer and added as
a precondition if appropriate.
Question 23: Are error reports required and to what level of detail?

Answer: Most customers will want operations to report errors and take appropriate
action in these cases (typically although not always leaving the system state
unchanged). The error report could simply be some status value or further in-
formation could be useful. Details of error handling are often omitted or glossed
over in requirements documents, but should be discussed in detail with the cus-
tomer before implementation. Producing a Z specification and calculating pre-
conditions of successful operation is a good way to determine what errors are
relevant to each operation. In Case 2, the following additional error reports are
needed.

In the NewOrderoperationid! ∈ newidsimplies thatnewids 6= ∅. This is an
example of animplicit precondition(i.e., a precondition that is not explicitly stated).
Such preconditions can be found by formally calculating the precondition. This in-
volves existentially quantifying the after states and outputs:

∃State′;id! : OrderId •
newids′ = newids\ domorders′ ∧
id! ∈ newids∧
stock′ = stock∧
orders′ = orders∪ {id! 7→ order?} ∧
orderStatus′ = orderStatus∪ {id! 7→ pending}

Theone-point ruleallows existentially quantified variables that occur once in the form
‘x = . . .’ to be eliminated, giving:

∃ id! : OrderId • id! ∈ newids

Since for an element to be a member of a set, the set must be non-empty, this simplifies
to:

newids6= ∅

Because of this implicit precondition, the (perhaps unlikely) event of running out of
new identifiers needs to be handled:

IdError
ΞState
rep! : Report

newids= ∅
rep! = no more ids

16 Chapter 1. Z

Notice that the value ofid! is not explicitly defined in the case of an error and thus
could take on any value.

The total operations with appropriate reports can now be specified:

NewOrderOp== (NewOrder∧ Success) ∨ IdError

CancelOrderOp== (CancelOrder∧ Success) ∨ InvoiceError

EnterStockOp== (EnterStock∧ Success)

Question 24: Are further operations such as status operations required?

Answer: It is often useful to have operations which return part of the state while
leaving the system state unchanged. Once an abstract state for the modelling
of the system has been formulated, this can be inspected and potentially useful
status operations can be suggested to the customer. In this case, the state com-
ponents comprise oforderStatus, stockandorders, and information on any of
these could be returned.

1.4 Validation of the Specification

There are a number of checks that are worth performing on a Z specification once a
draft has been formulated to reduce the number of errors it contains. For example:

• Check that the change of state for all components of the abstract state has been
considered in every operation. It is easy to forget some parts of the state, in
which case the meaning of the specification is that the after state for that com-
ponent is totally unrelated to the before state and thus may take on any arbitrary
value in an implementation. This is rarely what the customer wants in practice.

• Check that preconditions of successful and error parts of operations are disjoint
in general. Otherwise there may be incompatibilities or potentially even afalse
specification otherwise.

• Check that preconditions of total operations aretrue. If they are not, there some
cases that are not specified and which may be problematic in the implementation
or subsequent maintenance.

• Check the specification type-checks using a mechanical type-checker. If the
specification is not type-correct it is meaningless in a formal sense, although of
course it can still impart some useful information to a human reader. A number
of both free and commercial Z type-checkers have been produced (e.g., CADiZ,
Formaliser,f UZZ and ZTC). It is recommended that all but the most trivial Z
specifications should be mechanically type-checked. The Z text presented in
this chapter has been type-checked using thef UZZ and ZTC tools.

• Attempt validation proofs to check the specification behaves as expected. If
provable, these help in confirming the correct understanding and intuition of
the specification; if they turn out to be false this may indicate a problem in the
specification, or at least in the understanding of it. Mechanical tool support for

1.5. The Natural Language Description of the Specifications 17

proofs in Z, such as Z/EVES, is available, but takes a significant amount of skill
to use effectively.

• Animate the specification (e.g., using the ZANS animator associated with the
ZTC type-checker). This can be useful to check the specification acts as ex-
pected, but will typically only work for ‘explicit’ and finite cases where the
after state and output are defined explicitly and deterministically in terms of the
before state and inputs. Normally a specification will need some adaptation to
allow it to be animated. Nevertheless, this may prove to be a useful exercise
in the removal of errors from the original specification. Indeed, ZANS reports
whether operations areexplicit (i.e., all the after state components and outputs
are deterministically defined in terms of the before state components and inputs)
and this is itself useful information for checking a specification.
An alternative approach is to rapid-prototype the specification in a high-level
programming paradigm, such as a logic or functional programming language.
Prolog is a popular choice for rapid-prototyping Z specifications.

Note that a Z specification cannot beverified formally in general since there is
(normally) no other mathematical description to verify it against. Typically require-
ments used to produce a formal specification are informal (e.g., natural language,
diagrams, etc.), and this is certainly true in this case.

However it is possible tovalidatea Z specification by posing challenge hypotheses
that are believed (and hoped) to be true for the intuition of the developer. Proving these
to be true increases the confidence in the correctness of the specification (i.e., that the
specification is what is required).

Checks on the consistency of the specification can also be formally undertaken as
proofs. For example, the existence of an initial state for the entire system, or a post-
state for each operation, can be checked. In general it is considered desirable in Z to
specify total operations where the precondition istrue (as demonstrated earlier in this
chapter). The precondition for each operation can be formally calculated to check this
(as done earlier for theNewOrderoperation in Section 1.3).

Animation (attempting to execute the specification directly) or rapid-prototyping
(producing an executable version of the specification with minimal development us-
ing a very high-level programming language, e.g., in the form of a logic program
or a functional program) are additional approaches that help in the validation of the
specification.

1.5 The Natural Language Description of the Specifications

The Z-style of specification dictates that the natural language description should ac-
company the formal Z text. This is what has been done in Sections 1.2 and 1.3 al-
though extra didactic material has also been included.

Typically the informal description is of approximately the same length as the for-
mal description, and certainly this is a good guideline to follow. It is a good aim to de-
scribe the system being specified in a form such that removal of the formal text would

18 Chapter 1. Z

still render an understandable informal document. Often it is found that producing a
formal Z document results in a better, clearer, less ambiguous informal description of
the system as well (e.g., for inclusion in a manual or for presentation to a customer).

1.6 Conclusion

Z is mainly used at the specification level. Some data and operation refinement to-
wards an implementation is possible in Z [DER 01] but at some point a jump to code
must be made, typically informally. A program is considered correct with respect to a
Z specification operation if it can be run in more situations (the precondition is more
relaxed) or if it is more deterministic (the postcondition is more strict). However, many
Z operations already have a precondition oftrue (i.e., the operation is ‘total’ and can
be used in any situation) and are often ‘explicit’ (i.e., the operation is deterministic).
In the operations specified in this chapter, total operations have been provided. Most
of the operations are explicit apart from the allocation of identifiers for new orders.

If an operation is invoked in a state where it is not defined, then anything can hap-
pen. It is typically not desirable, and is the reason why total operations are normally
specified.

If significant formal development is required, it is normally better to use a notation
designed for this, such as the Abstract Machine Notation (AMN) of the B-Method.
However, many systems can cost-effectively benefit from formal specification alone,
to help in avoiding the introduction of errors at the specification stage. In this case,
Z is a very appropriate general purpose formal specification to use. Normally, for-
mal developmentis much more expensive than formalspecificationand may only be
worthwhile in very high-integrity systems [BOW 99].

The Z specification in this chapter was originally produced in less than a day.
Problems, inconsistencies and misunderstandings have been resolved by the author
alone on an ad hoc basis. A number of specific questions have been raised explicitly
and possible different specifications presented. The next step in practice would be
to discuss these with the customer to solve the issues; however this has not yet been
done. Thus the case study specification as presented is a specification in the course of
construction and perhaps has added interest for that reason.

For further online information on Z maintained by the author, see:

http://vl.zuser.org/

Bibliography

[BOW 03] Bowen J.P. Formal Specification and Documentation Using Z: A Case
Study Approach, 2003. Originally published by International Thomson Com-
puter Press, London, 1996. URL:http://www.zuser.org/zbook/

[BOW 99] Bowen J.P., Hinchey M.G. High-Integrity System Specification and De-
sign. Formal Approaches to Computing and Information Technology series

1.6. Conclusion 19

(FACIT). Springer-Verlag, London, 1999. URL:
http://vl.fmnet.info/hissd/

[BOW 04] Bowen J.P., Hinchey M.G. Formal models. In: Tucker, Jr. A.B. (Ed.)
Computer Science Handbook 2nd edition. Chapman & Hall / CRC, ACM, chap-
ter 106, 106-1–106-25, 2004.

[DER 01] Derrick J., Boiten E.A. Refinement in Z and Object-Z. Formal Ap-
proaches to Computing and Information Technology series (FACIT). Springer-
Verlag, London, 2001

[HEN 03] Henson M.C., Reeves S., Bowen J.P. Z logic and its consequences. CAI:
Computing and Informatics, 22(4):381–415, 2003

[ISO 02] ISO/IEC Information Technology – Z Formal Specification Notation – Syn-
tax, Type System and Semantics, ISO/IEC 13568:2002

[JAC 97] Jacky J. The Way of Z: Practical Programming with Formal Methods. Cam-
bridge University Press, Cambridge, 1997. URL:
http://staff.washington.edu/~jon/z-book/

[LIG 00] Lightfoot D. Formal Specification Using Z 2nd edition. Palgrave, Bas-
ingstoke, 2000

[MAL 05] Malik P., Utting M. CZT: A framework for Z tools. In Treharne H.,
King S., Henson M., Schneider S. (eds.) ZB 2005: Formal Specification and
Development in Z and B. Lecture Notes in Computer Science, volume 3455,
65–84. Springer-Verlag, Berlin, 2005

[SMI 00] Smith, G. The Object-Z Specification Language. Advances in Formal
Methods series. Kluwer Academic Publishers, 2000. URL:
http://www.itee.uq.edu.au/~smith/objectz.html

[SPI 01] Spivey J.M. The Z Notation: A Reference Manual, 2nd edition, 2001. Orig-
inally published by Prentice Hall International Series in Computer Science, Lon-
don, 1992. URL:http://spivey.oriel.ox.ac.uk/~mike/zrm/

[WOO 96] Woodcock J.C.P., Davies J. Using Z: Specification, Proof and Refinement.
Prentice Hall International Series in Computer Science, London, 1996. URL:
http://www.usingz.com/

20 Chapter 1. Z

