The ordinary Euclid algorithm computes the GCD (greatest common divisor) of two numbers M and N by using two variables x and y, initialized with $x = M$ and $y = N$, and repeatedly subtracting the smaller of x and y from the larger until x and y are equal. At that point, x and y both equal the GCD of M and N.

There is an obvious generalization that computes the GCD of a set of numbers. Asked to write that algorithm, most programmers and computer scientists would use an array variable whose elements are initially equal to the given numbers. The algorithm would subtract smaller elements from larger elements until all elements of the array are equal, at which point they all equal the GCD. The code would probably use two nested loops looking for pairs of unequal array elements.

However, I wrote that the generalization computes the GCD of a set of numbers, not an array of numbers. The algorithm for computing the GCD of a set is much simpler and more elegant. This module presents a PlusCal version of this algorithm.

The following statement imports definitions from three standard modules. The Integers module defines the usual arithmetic operations on integers, the set Nat of natural numbers, and the operator where $i .. j$ is the set of integers from i through j.

The FiniteSets module defines the Cardinality operator and the operator IsFiniteSet, where IsFiniteSet(S) is true iff S is a finite set.

The TLAPS module defines some operators that are used when writing proofs to be checked by the TLAPS proof system.

EXTENDS Integers, FiniteSets, TLAPS

We now declare Input, which is the set of numbers whose GCD we want to find.

CONSTANT Input

**
Here is the PlusCal algorithm, which as you can see appears inside a comment. The variable statement declares S to be a variable with initial value Input. The algorithm loops forever, unless Input is a finite set, in which case it deadlocks when S contains a single element. At that point, S equals the GCD of Input.

--algorithm SetEuclid
{ variable S = Input ;
 while (TRUE)
 { with ($x \in S$, $y \in \{ n \in S : x > n \} $)
 { $S := (S \backslash \{x\}) \cup \{x - y\}$ }
 }
}
**

The translator put TLA+ translation of this algorithm below, between the BEGIN and END comments.

The important parts of the specification are the initial predicate Init, which specifies the initial state, and the next-state relation Next, which describes how the state can change—unprimed variables referring to their value in the old state and primed variables referring to their value in the new state.
The formula Spec is TLA+ description of the algorithm as a single temporal formula. The ability to write the algorithm as a mathematical formula permits properties of the algorithm to be expressed simply. However, for the invariance property that is proved of the algorithm, that isn’t important.

BEGIN TRANSLATION

VARIABLE S

$vars \triangleq \{S\}$

$Init \triangleq \text{Global variables}$

$S = \text{Input}$

$Next \triangleq \exists x \in S :$

$\exists y \in \{n \in S : x > n\} :$

$S' = ((S \setminus \{x\}) \cup \{x - y\})$

$Spec \triangleq Init \land \Box[Next]_{vars}$

END TRANSLATION

To assert and check the correctness of the algorithm, we must define the GCD of a set. The TLA+ definition is the simple mathematical one: the GCD of a set T is the largest divisor of all the elements of T. To define this, we first define Divides(m, n) to be true iff m divides n, assuming that m and n are natural numbers. A simple definition would be

$Divides(m, n) \triangleq n \% m = 0$

However, that definition is incorrect if m equals 0, since $n \% 0$ is meaningless. Anyway, I prefer the more direct definition in terms of multiplication.

$Divides(m, n) \triangleq \exists d \in \text{Nat} : n = m \ast d$

Next, we define $Max(T)$ to be the maximum element of T, assuming T is a finite set of integers.

$Max(T) \triangleq \text{choose } m \in T : \forall n \in T : m \geq n$

Here is the definition of GCD.

$GCD(T) \triangleq Max(\{d \in \text{Nat} : \forall n \in T : \text{Divides}(d, n)\})$

We now prove the correctness of the algorithm. Correctness means that, if S ever contains a single element, then that element is $GCD(\text{Input})$. In other words, it means that the following formula $CorrectTermination$ is an invariant of the algorithm—that is, a formula that is true for every state reached in any execution of the algorithm.

$CorrectTermination \triangleq (\text{Cardinality}(S) = 1) \Rightarrow (S = \{GCD(\text{Input})\})$

The invariance of $CorrectTermination$ depends on the assumption that Input is a finite, non-empty set of positive integers. This is asserted by the following assumption that we call $InputAssump$.

$assume InputAssump \triangleq \land Input \subseteq \text{Nat} \setminus \{0\}$

$\land Input \neq \{\}$

$\land IsFiniteSet(Input)$
The Invariance Proof

We now prove that CorrectTermination is an invariant, meaning that it is true of all states of every behavior. The standard way to prove this is to find an invariant Inv that satisfies the following three properties:

1. Inv is true in any initial state.
2. Executing one step of the algorithm in any state satisfying Inv yields a state satisfying Inv.
3. Any state satisfying Inv satisfies CorrectTermination

By induction, 1 and 2 implies that Inv is an invariant (true in any state of any behavior). Property 3 then implies that CorrectTermination is an invariant. An invariant satisfying 1 and 2 is called an inductive invariant.

Properties 1 – 3 are expressed in TLA+ by the following formulas:

1. Init ⇒ Inv
2. Inv ∧ Next ⇒ Inv′
3. Inv ⇒ CorrectTermination

In property 2, the formula Inv′ is obtained from Inv by replacing each variable v in Inv by v′ (after completely expanding the definition of Inv). Thus Inv′ asserts that Inv is true in the next state.

In an untyped logic like TLA+, the invariant Inv almost always asserts type correctness—meaning that the value of each variable is an element of the proper set. This is expressed by the following formula TypeOK. It asserts that S is a nonempty finite subset of positive integers.

\[
\text{TypeOK} \triangleq \land \ S \subseteq \text{Nat} \setminus \{0\} \\
\land \ S \neq \{\} \\
\land \text{IsFiniteSet}(S)
\]

Here is the complete definition of the inductive invariant Inv. Its most interesting part is the second conjunct.

\[
\text{Inv} \triangleq \land \text{TypeOK} \\
\land \text{GCD}(S) = \text{GCD}(\text{Input}) \\
\land \text{CorrectTermination}
\]

Proving properties 1 – 3 is a good exercise. Property 3 is trivial. If you write a proof of property 1, you will discover that it requires showing that the GCD of a singleton set of numbers is the (sole) element of that set. To prove property 2, you will need to show that the change to S made by the assignment statement does not change GCD(S). These are two mathematical properties of the GCD, which are stated below as the theorems GCD1 and GCD2.

When we write a completely formal proof, we usually discover that their correctness depends on very simple mathematical facts that we take for granted. The proof of this algorithm depends on one such fact GCD3 about the gcd, and two trivial facts about finite sets—facts I've named CardThm and FiniteSetThm.

We hope eventually to have libraries of known mathematical results, including results about finite sets from which the latter two facts are easily proved. However, we are unlikely to have libraries of facts such as GCD1 – 3 that are particular to some particular application domain. We expect that algorithm writers will use without proof standard results of mathematics. This is what we will do for the five results that we need to prove the correctness of our algorithm.
However, assuming theorems without proof is dangerous. It’s easy to make a mistake when writing even such simple properties as these. In fact, I made several mistakes when I first wrote them down. And from a false assumption, one can prove anything.

Fortunately, we can use TLC to catch errors in the results we assume. I checked $GCD_1 - GCD_3$ by creating a model in which Nat was replaced by a finite set of natural numbers. I checked the other two assertions for finite sets of values of T and x. Using TLA+’s ability to name subexpressions of an expression, including the right-hand side of a definition, I could do this without having to rewrite any formulas. In practice, I have found that TLC can check the mathematical theorems assumed in my correctness proofs of algorithms well enough to convince me that they are correct.

Theorem GCD1 $\Delta \equiv \forall T \in \text{subset}(Nat \setminus \{0\}) : \text{IsFiniteSet}(T) \Rightarrow \forall x, y \in T : (x > y) \Rightarrow GCD(T) = GCD((T \setminus \{x\}) \cup \{x - y\})$

Proof Omitted

Theorem GCD2 $\Delta \equiv \forall x \in (Nat \setminus \{0\}) : GCD(\{x\}) = x$

Proof Omitted

Theorem GCD3 $\Delta \equiv \forall T \in \text{subset}(Nat \setminus \{0\}) : \text{IsFiniteSet}(T) \land (T \neq \{\}) \Rightarrow (GCD(T) \in Nat \setminus \{0\})$

Proof Omitted

Theorem CardThm $\Delta \equiv \forall T : \text{IsFiniteSet}(T) \Rightarrow$

- $\text{Cardinality}(T) \in Nat$
- $(\text{Cardinality}(T) = 0) \equiv (T = \{\})$
- $(\text{Cardinality}(T) = 1) \equiv (\exists x \in T : T = \{x\})$

Proof Omitted

Theorem FiniteSetThm $\Delta \equiv \forall T, x : \text{IsFiniteSet}(T) \Rightarrow \land \text{IsFiniteSet}(T \cup \{x\})$

Proof Omitted

The following are the proofs of the three properties that show the invariance of CorrectTermination. The pseudo-facts SMT and Z3 in the BY steps are defined in the TLAPS library module to invoke the SMT and Z3 back-end provers to check the step. SMT is the default SMT solver back-end, and Z3 is the Z3 proof checker. The TLAPS proof system has checked these proofs.

Theorem Init \Rightarrow Inv

By InputAssump, CardThm, GCD2, GCD3, SMT def Init, Inv, TypeOK, CorrectTermination

Theorem Inv \land Next \Rightarrow Inv’

\(\langle 1 \rangle \text{ SUFFICES ASSUME Inv} \land \text{Next} \)

PROVE Inv’

OBFVIOUS

\(\langle 1 \rangle 1. \text{TypeOK}’\)

\(\langle 2 \rangle 1. (S \subseteq Nat \setminus \{0\})’\)

By GCD3, CardThm, FiniteSetThm, Z3

DEF Inv, TypeOK, CorrectTermination, Next

\(\langle 2 \rangle 2. (S \neq \{\})’\)
BY GCD3, CardThm, FiniteSetThm, Z3
DEF Inv, TypeOK, CorrectTermination, Next
(2)3. IsFiniteSet(S)’
BY FiniteSetThm
DEF Inv, TypeOK, CorrectTermination, Next
(2)4. QED
BY (2)1, (2)2, (2)3 DEF TypeOK
(1)2. (GCD(S) = GCD(Input))’
(2)1. PICK x ∈ S :
 ∃ y ∈ {n ∈ S : x > n}:
 S’ = (S \ {x}) ∪ {x − y}
BY DEF Next
(2)2. PICK y ∈ {n ∈ S : x > n}:
 S’ = (S \ {x}) ∪ {x − y}
BY (2)1
(2)3. y ∈ S ∧ x > y
BY (2)2
(2)4. QED
BY (2)2, (2)3, GCD1 DEF Inv, TypeOK
(1)3. CorrectTermination’
BY CardThm, (1)1, (1)2, GCD2, SMT DEF TypeOK, CorrectTermination
(1)4. QED
BY (1)1, (1)2, (1)3 DEF Inv

THEOREM Inv ⇒ CorrectTermination
BY DEF Inv

* Modification History
* Last modified Mon Mar 04 14:29:32 PST 2013 by lamport
* Created Thu Feb 21 12:58:28 PST 2013 by lamport
The standard `Sequences` module defines operators on sequences such as `Head` and `Tail`. Those operators are used to encode the translation of procedure call and return. The standard `TLC` module defines the operator used by the `TLC` model checker to report a failed assertion.

EXTENDS `Integers`, `Sequences`, `TLC`

For simplicity, we sort an array whose index set is `1 .. N`, for some positive integer `N`.

CONSTANT `N`
ASSUME `N ∈ Nat \ {0}`

Our algorithm sorts an array `A`. Correctness of such a sorting algorithm requires that the final value of `A` is a sorted permutation of its initial value. To check this condition, we must define what a permutation of an array is.

We define `PermsOf` so that if `Arr` is an array, then `PermsOf(Arr)` is the set of all permutation of `Arr`. Asked to define `PermsOf(Arr)`, most computer scientists would try to write a recursive definition. I recommend trying to write such a definition. It’s not very easy. (The recursive definition can be expressed easily in TLA+.) Instead, we define `PermsOf(Arr)` the way a mathematician would.

An array `Arr` is a function from its domain (index set) to some set of values. The built-in TLA+ operator `domain` is defined so that if `f` is a function, then `domain f` is its domain.

A permutation of an array `Arr` is a function of the form `Arr ** g` where `g` is an automorphism of `domain Arr` and `**` denotes function composition. Function composition is not a built-in TLA+ primitive, so we have to define `**`.

An automorphism of a set `S` is a `1 − 1` correspondence of `S` with itself. We are interested only in finite sets `S`, for which any function from `S` onto itself is an automorphism. We therefore define `Automorphism(S)` to be the set of functions from `S` onto itself. The definition uses the TLA+ notation that `[S → T]` is the set of all functions with domain `S` and range a subset of `T`.

In the definition, the `LET / IN` clause makes the definitions of `Automorphism` and `**` local to the definition of `PermsOf`.

```
PermsOf(Arr) ≜  
LET Automorphism(S) ≜ \{ f ∈ [S → S] :  
∀ y ∈ S : ∃ x ∈ S : f[x] = y \}  
f ** g ≜ \{ x ∈ DOMAIN g : f[g[x]] \}  
IN \{ Arr ** f : f ∈ Automorphism(Domain Arr) \}
```

Here is the algorithm, which sorts the array `A`. For simplicity, we assume that `A` is an array of integers indexed by `1 .. N`. The variable `AInit` has been added for checking the correctness of the algorithm. Its initial value equals the initial value of `A`, and its value is never changed. Thus the final value of `A` is a permutation of its initial value iff it’s an element of `PermsOf(AInit)`.

```
--algorithm Quicksort  
{ variables A ∈ [1 .. N → Int], U = \{ ⟨1, N⟩ \}, top, bot, pivot,  
AInit = A ;
```
The Partition procedure sets pivot to a value in the interval \(lo \ldots (hi - 1)\) and permutes \(A[lo], \ldots, A[hi]\) so that \(A[i] \leq A[j]\) for all \(i\) in \(lo \ldots (lo - 1)\) and \(j\) in \(lo \ldots hi\). It sets pivot and \(A\) to any possible values satisfying those conditions. (Note that saying that the procedure permutes \(A[lo], \ldots, A[hi]\) means that it leaves other components of the array \(A\) unchanged—a condition that must be explicitly mentioned when expressed mathematically.)

```plaintext
procedure Partition( lo, hi ) {
    with ( piv ∈ lo . . . (hi - 1),
          NewA ∈ {B ∈ PermsOf(A) :
                    ∧ ∀i ∈ lo . . . piv, j ∈ (piv + 1) . . hi :
                        B[i] ≤ B[j]})
    {
        A := NewA;
        pivot := piv;
        return
    }
}
```

Here is the main body of the procedure, shown in the lecture.

```plaintext
{ while ( U ≠ {} )
    { with ( P ∈ U ) { bot := P[1];
                        top := P[2];
                        U := U \ {P}
                    };
    } if ( bot < top )
    { call Partition(bot, top);
      U := U \ {(bot, pivot), (pivot + 1, top)}
    }
}
```

The following assert statement checks that \(A\) has the correct value.

```plaintext
assert ∧ A ∈ PermsOf(AInit)
```

The TLA+ translation follows.

```plaintext
**** BEGIN TRANSLATION **
CONSTANT defaultInitValue
VARIABLES A, U, top, bot, pivot, AInit, pc, stack, lo, hi
vars Δ (A, U, top, bot, pivot, AInit, pc, stack, lo, hi)
Init Δ Global variables
   ∧ A ∈ [1 . . N → Int]
   ∧ U = {(1, N)}
   ∧ top = defaultInitValue
```
∧ bot = defaultInitValue
∧ pivot = defaultInitValue
∧ AInit = A

Procedure Partition
∧ lo = defaultInitValue
∧ hi = defaultInitValue
∧ stack = ⟨⟩
∧ pc = “Lbl_2”

$Lbl_1 \triangleq \begin{align*}
∧ pc &= “Lbl_1” \\
∧ \exists piv \in lo .. (hi - 1) : \\
\exists NewA \in \{ B \in PermsOf(A) : \\
\quad \forall i \in 1 .. (lo - 1) : B[i] = A[i] \\
\quad \forall i \in (hi + 1) .. Len(A) : B[i] = A[i] \\
\quad \forall i \in lo .. piv, j \in (piv + 1) .. hi : \\
\quad \quad B[i] \leq B[j] \} : \\
∧ A' = NewA \\
∧ pivot' = piv \\
∧ pc' = Head(stack),pc \\
∧ lo' = Head(stack),lo \\
∧ hi' = Head(stack),hi \\
∧ stack' = Tail(stack) \\
∧ \text{UNCHANGED} \langle U, top, bot, AInit \rangle
\end{align*}$

$Partition \triangleq Lbl_1$

$Lbl_2 \triangleq \begin{align*}
∧ pc &= “Lbl_2” \\
∧ \text{IF } U \neq \{ \} \\
∧ \text{THEN} \quad ∧ \exists P \in U : \\
\quad ∧ bot' = P[1] \\
\quad ∧ top' = P[2] \\
\quad ∧ U' = U \setminus \{ P \} \\
∧ \text{IF } bot' < top' \\
\quad \text{THEN} \quad ∧ hi' = top' \\
\quad ∧ lo' = bot' \\
\quad ∧ stack' = \langle \text{procedure} \mapsto \text{“Partition”}, \\
\quad \quad pc \mapsto \text{“Lbl_3”}, \\
\quad \quad lo \mapsto lo, \\
\quad \quad hi \mapsto hi \rangle \\
\quad \circ stack \\
∧ pc' = “Lbl_1” \\
\quad \text{ELSE} \quad ∧ pc' = “Lbl_2” \\
\quad \text{ELSE} \quad \text{Assert}(\\
\quad \quad ∧ A \in PermsOf(AInit) \\
\quad \quad ∧ \forall i \in 1 .. N : \forall j \in (i + 1) .. N : A[i] \leq A[j], \\
\quad \quad \text{“Failure of assertion at line 39, column 7.”})
\end{align*}$
The algorithm has been checked for models in which Int is replaced by a set of N integers. (Since the algorithm uses only the relative magnitude of different elements in the array, this effectively checks its correctness for all input arrays of length N.) Here are the results:

<table>
<thead>
<tr>
<th>N</th>
<th>Number of Reachable States</th>
<th>Execution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1500</td>
<td>1 second</td>
</tr>
<tr>
<td>4</td>
<td>73536</td>
<td>6 seconds</td>
</tr>
</tbody>
</table>