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Abstract. We present a complete solution to the Broy-Lamport speci-

�cation problem. Our speci�cations are written in TLA+, a formal lan-
guage based on TLA. We give the high levels of structured proofs and

sketch the lower levels, which will appear in full elsewhere.

Introduction

Broy and Lamport have proposed a speci�cation and veri�cation problem [5].

It calls for specifying simple memory and RPC (remote procedure call) compo-

nents, and proving the correctness of two simple implementations. We present a

complete solution to this problem using TLA, the temporal logic of actions [12].

We assume the reader is familiar with Broy and Lamport's problem statement.

Since the problem is so much simpler than the ones encountered in real

applications, any approach that claims to be both practical and formal should

allow a completely formal solution. Our speci�cations are written in TLA+,

a formal language based on TLA. Our proofs are completely formal, except

that some names are abbreviated for readability. We use a hierarchical proof

method [10] that is the most reliable way we know of to write hand proofs. Here,

we present only the higher levels of the proofs. Proofs carried down to the level

where each justi�cation involves instantiation of proof rules and simple predicate

logic will be available on a Web page [4]. Although our proofs are careful and

detailed, neither they nor the speci�cations have been checked mechanically;

minor errors undoubtedly remain.

Rigor entails a certain degree of tedium. A complete programming language

requires boring details like variable declarations that can be omitted in informal

pseudo-code. Writing speci�cations is harder with a formal language than with

an informal approach|even one based on a formalism. Formal proofs that are

detailed enough to be easy to check are long and boring. However, rigor has

its advantages. Informal speci�cations can be ambiguous. The short, interesting

proofs favored by mathematicians are notoriously error prone. Our speci�cations

and proofs are rigorous, hence somewhat laborious.

We assume no prior knowledge of TLA or TLA+. Concepts and notations

are explained as they are introduced; the index on page 65 can help the reader

�nd those explanations. TLA is described in detail in [12], and there are several

published examples of TLA+ speci�cations [11, 14]. Further information about

TLA and TLA+ can be found on the Web [9].
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The problem is not very challenging for TLA, TLA+, or our proof style.

With our experience, it was possible to grind out the requisite speci�cations and

proofs without much thought. More di�cult was choosing from among the many

possible ways of writing the speci�cations. We tried to make the speci�cations

as clear as possible without unduly complicating the correctness proofs. We

bene�ted from studying the many preliminary solutions presented at a Dagstuhl

workshop on the speci�cation problem. In particular, we emulated some of these

solutions by writing our speci�cations as the composition of individual process

speci�cations. We also bene�ted from comments by Ketil St�len.

We found no signi�cant ambiguities in the problem statement, perhaps be-

cause we had �rst-hand knowledge of the authors' intent. However, we did dis-

cover some anomalies in the lossy-RPC speci�cation, which we discuss in Sec-

tion 4. Our presentation parallels Broy and Lamport's problem statement. In

particular, our section numbering corresponds to theirs, with the addition of

lower-level sections.

1 The Procedure Interface

A TLA speci�cation is a temporal-logic formula. It expresses a predicate on

behaviors, where a behavior is an in�nite sequence of states and a state is an

assignment of values to variables. TLA+ is a formal language for writing TLA

speci�cations. It introduces precise conventions for de�nitions and a module

system with name scoping that is modeled after those of programming languages.

In this paper, we describe TLA and TLA+ as they are used.

TLA does not have any built-in communication primitives such as message

passing or data streams. One can use TLA to de�ne such primitives.3 We be-

gin by specifying a procedure-calling interface in which a multiprocess caller

component interacts with a multiprocess returner component. In this section,

we present a module named ProcedureInterface that is meant to help specify

systems that use the procedure-calling interface. As we explain below, a system

may have several such interfaces, described by di�erent \copies" of the module.

We describe a rather arbitrary, abstract procedure-calling interface. One

might want a speci�cation that describes an actual procedure-calling software

standard, complete with register-usage conventions. One might also want a dif-

ferent high-level abstraction. We can convert our speci�cations into ones with a

di�erent interface abstraction by using an interface re�nement, as described in

[3, page 518] and [7].

Our speci�cation makes precise one important detail that is not quite stated

in the informal speci�cation. We interpret the requirement:

[A]fter one process issues a call, other processes can issue calls to the

3 Like most logics, TLA uses variables. One could therefore say that TLA formulas

use shared variables as a communication primitive. In the same sense, one could say

that the equations x + y = 7 and x � y = 1 communicate via the shared variables x
and y.
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same component before the component issues a return from the �rst

call.

to imply that the same process cannot issue another call until the �rst one

returns.

1.1 The Module and its Parameters

Module ProcedureInterface is given in Figure 1 on this page. The module �rst

declares some parameters, which are the free symbols that may appear in the

expressions de�ned by the module. By replacing de�ned symbols with their def-

initions, all expressions de�ned in the module can be reduced to ones containing

only the parameters and the primitives of TLA+. The parameter ch is the vari-

module ProcedureInterface

parameters

PrIds;Args : constant

ch : variable

caller(p)
�

= hch[p]:arg ; ch[p]:cbiti
rtrner(p)

�

= hch[p]:res; ch[p]:rbit i
Calling(p)

�

= ch[p]:cbit 6= ch[p]:rbit

Call(p; v)
�

= ^ :Calling(p)
^ ch[p]:cbit 0 6= ch[p]:rbit

^ ch[p]:arg 0 = v

Return(p; v)
�

= ^ Calling(p)

^ ch[p]:rbit 0 = ch[p]:cbit

^ ch[p]:res0 = v

LegalCaller
�

= 8 p 2 PrIds : :Calling(p) ^ 2[9 a 2 Args : Call(p; a)]caller(p)

LegalReturner
�

= 8 p 2 PrIds : 2[9 v : Return(p; v)]rtrner(p)

Fig. 1. Module ProcedureInterface.

able representing the interface. A variable parameter can have a di�erent value

in di�erent states of a behavior. TLA is an untyped logic, so there are no type

constraints on the values a variable can have. A constant parameter is one

that has the same value in every state of a behavior. The constant parameter

PrIds is the set of all process identi�ers; for each p in PrIds, process p of the

caller component issues calls to the corresponding process p of the returner com-

ponent. The parameter Args is the set of all \syntactically correct" procedure

arguments.
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Suppose some moduleM has a set P of process identi�ers and two procedure-

calling interfaces, represented by the variables x and y , with syntactically correct

argument values in sets S x and Sy , respectively. Module M will include all the

de�nitions from module ProcedureInterface twice, with the following substitu-

tions for its parameters:

ch  x ; PrIds  P ; Args  S x

ch  y ; PrIds  P ; Args  Sy

It is conventional to follow the parameter declarations with a horizontal bar.

These bars have no semantic signi�cance.

1.2 State Functions, State Predicates, and Actions

To model the procedure-calling interface, we let ch[p] be a \channel" over which

process p of the caller component interacts with process p of the returner compo-

nent. Our model uses a standard two-phase handshake protocol [16] illustrated

in Figure 2 on this page. Channel ch[p] contains two \wires" controlled by the

initial
state

call
Read(23)

return
:333

call
Write(14; 3:5)

ch[p]:cbit : 0 1 1 0 . . .

ch[p]:arg : � h\Read"; 23i h\Read"; 23i h\Write"; 14; 3:5i . . .
ch[p]:rbit : 0 0 1 1 . . .

ch[p]:res: � � :333 :333 . . .

Fig. 2. The two-phase handshake protocol for the channel ch[p].

caller|a signaling wire ch[p]:cbit and an argument-passing wire ch[p]:arg|and

two wires controlled by the returner|a signaling wire ch[p]:rbit and a result-

returning wire ch[p]:res.

In the standard two-phase handshake protocol shown in Figure 2, the sig-

naling values ch[p]:cbit and ch[p]:rbit are bits. For simplicity, we allow them to

assume arbitrary values, since all that matters is whether or not they equal one

another.

The ProcedureInterface module de�nes the state function caller(p) to be the

pair hch[p]:arg ; ch[p]:cbiti composed of the process p caller's wires. A state func-

tion is an expression that may contain variables and constants. It is interpreted

semantically as a mapping from states to values. For example, ch[p]:arg is the

state function that assigns to any state the arg record component of the pth

array element of the value that the state assigns to the variable ch.4 The state

4 This value is unspeci�ed if the value assigned to ch by the state is not an array

whose pth element is a record with an arg component.
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function rtrner(p) is similarly de�ned to be the pair composed of the returner's

wires.

The module de�nes the state predicate Calling(p) to equal true i� (if and

only if) the values on the two signaling wires are unequal. A state predicate is

a boolean-valued expression that may contain variables and constants; it is in-

terpreted semantically as a mapping from states to booleans. For the handshake

protocol, Calling(p) equals true i� process p is in the middle of a procedure

call (the caller has issued a call and the returner has not yet returned).

Next comes the de�nition of the action Call(p; v). An action is a boolean-

valued expression that may contain variables and constants, and the operator 0

(prime), which may not be nested. Semantically, it is interpreted as a boolean-

valued function on steps, where a step is a pair of states. Unprimed expressions

refer to the �rst (old) state, and primed expressions refer to the second (new)

state. For example, the action (x + 1)0 = y is true of a step i� 1 plus the value

assigned to x by the new state equals the value assigned to y by the old state.

Action Call(p; v) describes the issuing of a call with argument v by the process

p caller. More precisely, a step represents this event i� it is a Call(p; v) step (one

for which Call(p; v) equals true). The �rst conjunct5 in the de�nition asserts

that a call on channel ch[p] is not in progress. The second conjunct asserts

that the new value of ch[p]:cbit is di�erent from the old value of ch[p]:rbit .

The �nal conjunct asserts that the new value of ch[p]:arg equals v . Readers

familiar with conventional programming languages or state-transition systems

can think of Call(p; v) as an atomic statement or transition that is enabled

when :Calling(p; v) is true, that nondeterministically sets ch[p]:rbit to any value

di�erent from ch[p]:cbit , and that sets ch[p]:arg to v .

Action Return(p; v) represents the issuing of a return with result v by the

process p returner. We do not distinguish in the interface description between

normal and exceptional returns|the distinction will be encoded in the result v .

1.3 Temporal Formulas

Module ProcedureInterface concludes by de�ning the two temporal formulas

LegalCaller and LegalReturner . Formula LegalCaller is de�ned in terms of for-

mulas of the form I ^2[N ]v where I is a state predicate, N is an action (called

the next-state action), and v is a state function. A temporal formula is true

or false on a behavior (an in�nite sequence of states). Viewed as a temporal

formula, a predicate I is true on a behavior i� I is true in the �rst state. The

formula 2[N ]v is true of a behavior i� the action [N ]v, which is de�ned to equal

N _ (v 0 = v), is true for every step (successive pair of states) in the behavior.

Thus, I ^ 2[N ]v asserts of a behavior that I is true in the �rst state and ev-

ery step is an N step or leaves the value of v unchanged. Formula LegalCaller

therefore asserts that, for every p in PrIds:

5 We let a list of formulas bulleted with ^ or _ denote the conjunction or disjunction
of the formulas, using indentation to eliminate parentheses. We also let) have lower

precedence than the other Boolean operators.
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{ The predicate :Calling(p) is true in the initial state. In other words, initially
there is no call in progress on channel ch[p].

{ Every step is either a Call(p; a) step, for some a in Args, or else leaves

caller(p) unchanged. In other words, every step that changes the caller's

part of the interface ch[p] is a Call(p; a) step with a legal argument a.

Formula LegalCaller speci�es what it means for a caller to obey the two-phase

handshake protocol. It speci�es the values of caller(p), for p in PrIds. More pre-

cisely, LegalCaller is a temporal formula whose semantic meaning is a predicate

on behaviors that depends only on the values assigned by the states of a behav-

ior to the state functions caller(p) and ch[p]:rbit . We interpret it as describing

the possible values of caller(p) as a function of the values of ch[p]:rbit . Since we

consider caller(p) to represent the part of an interface controlled by the caller

component, we consider LegalCaller to be the speci�cation of a caller. However,

the reader should not confuse this intuitive interpretation of LegalCaller with

its formal semantics as a predicate on behaviors.

FormulaLegalReturner is similar to LegalCaller . It asserts that, for every pro-

cess p, every change to the returner's part of the interface ch[p] is a Return(p; v)

step for some value v . It is our speci�cation of what it means for a returner com-

ponent to obey the handshake protocol. Formula LegalReturner has no initial

predicate because we have arbitrarily assigned the initial condition on the chan-

nel to the caller's speci�cation.6 Unlike LegalCaller , which requires that the

arguments be elements of Args, formula LegalReturner does not place any re-

striction on the results returned. This asymmetry arises because the speci�cation

problem involves syntactic restrictions on arguments, but not on results. A more

realistic general-purpose interface speci�cation would include as an additional

parameter the set of legal results and would de�ne LegalReturner to assert that

results are in this set.

Composing a caller component and a returner component produces a system

in which the two components interact according to the protocol. In TLA, com-

position is conjunction [3]. A simple calculation, using predicate logic and the

fact that 2 distributes over ^ and 8 , shows that LegalCaller ^LegalReturner is

equivalent to

8 p 2 PrIds : ^ :Calling(p)

^ 2

2
664
_ ^ 9 a 2 Args : Call(p; a)

^ rtrner(p)0 = rtrner(p)

_ ^ 9 v : Return(p; v)
^ caller(p)0 = caller(p)

3
775

hcaller(p);rtrner(p)i

This formula asserts that, for each process p, initially p is not processing a pro-

cedure call, and every step is either7 (i) a Call(p; a) step, for a legal argument

6 Each component's speci�cation would have had an initial condition on its signaling
wire had we constrained the values of those wires|for example, by requiring signaling

values to be 0 or 1.
7 For any actions A and B , an A _B step is an A step or a B step.
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a, that leaves rtrner(p) unchanged, (ii) a Return(p; v) step that leaves caller(p)

unchanged, or (iii) a step that leaves both caller(p) and rtrner(p) unchanged.

The conjunction of the speci�cations of the two components therefore expresses

what we would expect to be the speci�cation of the complete handshake proto-

col. (The conjunction represents two components communicating over the same

channel because the speci�cations have the same free variable ch.)

We are using a noninterleaving representation [3], in which a single step can

represent operations performed by several processes. This approach seems more

convenient for this speci�cation problem than the more traditional interleaving

representation, in which each step represents an operation of at most one process.

TLA is not inherently biased towards either speci�cation style.

2 A Memory Component

In this section we give two speci�cations of the memory component described

in the problem statement. In both speci�cations, the memory component sup-

ports read and write operations. The two speci�cations di�er on whether the

memory component is reliable; the unreliable version can return memory-failure

exceptions, while the reliable version cannot.

2.1 The Parameters

For expository reasons, we split the speci�cations into two modules. The �rst

module, MemoryParameters, is given in Figure 3 on this page. It declares the

parameters of the memory speci�cation. The export statement is explained

below.

The parameters section declares the following parameters.

module MemoryParameters

export MemoryParameters, E

parameters

MemLocs;MemVals; InitVal ;Vals;PrIds : constant

memCh : variable

assumption

ParamAssump
�

= ^ MemLocs [MemVals � Vals

^ f\BadArg"; \MemFailure"g \MemVals = fg
^ InitVal 2MemVals

LegalArgs
�

= (f\Read"g �Vals) [ (f\Write"g � Vals �Vals)

include ProcedureInterface as E with ch  memCh;Args  LegalArgs

Fig. 3. Module MemoryParameters.
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memCh This variable represents the procedure-calling interface to the memory.

MemLocs, MemVals, InitVal As in the problem statement, MemLocs is a set

of memory locations, MemVals is a set of values that can be stored in those

locations, and InitVal is the initial value of all locations.

Vals This is the set of syntactically legal argument values mentioned in the prob-

lem statement. In particular, we assume that the procedure-calling mecha-

nism allows only read and write calls with arguments in Vals.

PrIds The same as for the ProcedureInterface module.

The module next asserts assumption ParamAssump about the constant pa-

rameters. The assumption's �rst conjunct states that MemLocs and MemVals

are subsets of Vals, so every semantically legal argument is also syntactically le-

gal. The second conjunct states that the strings \BadArg" and \MemFailure" are

not elements of MemVals. These strings are used to represent the correspond-

ing exceptions in the problem statement. For convenience, we let a successful

read operation return a memory value and represent an exception by returning

one of these strings. A successful write operation returns the string \OK". The

third conjunct of ParamAssump asserts that InitVal is an element of MemVals,

a condition implied by the problem statement.

The module de�nes LegalArgs to be the set of syntactically legal arguments

of procedure calls to the memory.

Finally, the include statement includes a copy of the ProcedureInterface

module, with each de�ned symbol X renamed as E :X , with memCh substituted

for the parameter ch, with LegalArgs substituted for the parameter Args, and

with PrIds (which is a parameter of the current module) implicitly substituted

for the parameter PrIds. For example, this statement includes the de�nitions:

E :caller(p)
�

= hmemCh[p]:arg ;memCh[p]:cbiti
E :LegalCaller

�

= 8 p 2 PrIds :

^ :E :Calling(p)

^ 2[9 a 2 LegalArgs : E :Call(p; a)]E:caller(p)

The E in the export statement asserts that all these included de�nitions are

exported. Exported symbols are the ones obtained by any other module that

includes theMemoryParameters module. TheMemoryParameters in the export

statement asserts that the symbols de�ned in the module itself|in this case,

ParamAssump and LegalArgs|are exported. Omitting an export statement in

a module M is equivalent to adding the statement export M .

2.2 The Memory Speci�cation

The speci�cations of the reliable and unreliable memories are contained in mod-

ule Memory of Figure 4 on the next page and Figure 5 on page 30. The module

begins by importing the MemoryParameters module. The import statement is
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module Memory

import MemoryParameters

export Memory, E

module Inner

parameters

mem; result : variable

NotAResult
�

= choose v :

v =2 f\OK"; \BadArg"; \MemFailure"g [MemVals

MInit(l)
�

= mem[l ] = InitVal

PInit(p)
�

= result [p] = NotAResult

Read(p)
�

= 9 l : ^ E :Calling(p)

^ memCh[p]:arg = h\Read"; l i
^ result 0[p] = if l 2MemLocs then mem[l ]

else \BadArg"

^ unchanged E :rtrner(p)

Write(p; l)
�

= 9 v : ^ E :Calling(p)

^ memCh[p]:arg = h\Write"; l ; v i
^ _ ^ (l 2MemLocs) ^ (v 2 MemVals)

^ mem0[l ] = v

^ result 0[p] = \OK"

_ ^ :((l 2MemLocs) ^ (v 2MemVals))

^ result 0[p] = \BadArg"

^ unchanged mem[l ]

^ unchanged E :rtrner(p)

Fail(p)
�

= ^ E :Calling(p)

^ result 0[p] = \MemFailure"

^ unchanged E :rtrner(p)

Return(p)
�

= ^ result [p] 6= NotAResult

^ result 0[p] = NotAResult

^ E :Return(p; result [p])

RNext(p)
�

= Read(p) _ (9 l : Write(p; l)) _Return(p)
UNext(p)

�

= RNext(p) _ Fail(p)
pvars(p)

�

= hE :rtrner(p); result [p]i
RPSpec(p)

�

= ^ PInit(p)

^ 2[RNext(p)]pvars(p)
^ WFpvars(p)(RNext(p)) ^ WFpvars(p)(Return(p))

Fig. 4. First part of module Memory .
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UPSpec(p)
�

= ^ PInit(p)

^ 2[UNext(p)]pvars(p)
^ WFpvars(p)(RNext(p)) ^ WFpvars(p)(Return(p))

MSpec(l)
�

= MInit(l) ^ 2[9 p 2 PrIds : Write(p; l)]mem [l ]

IRSpec
�

= (8 p 2 PrIds : RPSpec(p)) ^ (8 l 2MemLocs : MSpec(l))

IUSpec
�

= (8 p 2 PrIds : UPSpec(p)) ^ (8 l 2MemLocs : MSpec(l))

RSpec
�

= 999999mem; result : Inner :IRSpec

USpec
�

= 999999mem; result : Inner :IUSpec

Fig. 5. Second part of module Memory .

equivalent to simply copying the entire Memory module|its parameter declara-

tions, assumption, and de�nitions|into the current module. (However, imported

de�nitions are not automatically exported.) The export statement is needed be-

cause we want to use formula E :LegalCaller in asserting the correctness of an

implementation.

The reader should note the distinction between import and include. Im-

porting a module imports its de�nitions and parameters. Including a module

includes its de�nitions (with renaming), but its parameters are instantiated, not

included.

We now explain our speci�cation in a top-down fashion, starting with the �nal

de�nition. Our speci�cations of the reliable and unreliable memory components

are the formulasRSpec and USpec de�ned in Figure 5, at the end of the module.

The two speci�cations are almost identical, so we now discuss only RSpec, the

reliable-memory speci�cation. Afterwards, we explain how USpec di�ers from it.

FormulaRSpec is de�ned to equal 999999mem; result : Inner :IRSpec. Intuitively, it

asserts of a behavior that there exist assignments of values for the variablesmem

and result|possibly assigning di�erent values in each state of the behavior|for

which the behavior satis�es Inner :IRSpec. Formula 999999mem; result : Inner :IRSpec

asserts nothing about the actual values of the variables mem and result ; it

is the speci�cation obtained by \hiding" mem and result in the speci�cation

Inner :IRSpec.

Since mem and result are not free variables of the speci�cation, they should

not be parameters of module Memory . We therefore introduce a submodule

named Inner having these variables as its parameters.8 The symbol IRSpec de-

�ned in submodule Inner is named Inner :IRSpec when used outside the submod-

ule. The symbol Inner :IRSpec can appear only in a context in which mem and

result are declared|for example, in the scope of the quanti�er 999999mem; result .

8 Instead of introducing a submodule, we could have made mem and result explicit
parameters of all the de�nitions in which they now occur free.
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The bound variable mem represents the current contents of memory;mem[l ]

equals the contents of memory location l . The bound variable result records

the activity of the memory component processes. For each process p, result [p]

initially equals NotAResult , which is a value di�erent from any that a proce-

dure call can return.9 When process p is ready to return a result, that result is

result [p]. (Even though it is ready to return, the process can \change its mind"

and choose a di�erent result before actually returning.)

Formula IRSpec is the conjunction of two formulas, which describe two com-

ponents that constitute the memory component. The �rst component is responsi-

ble for communicating on the channel memCh and managing the variable result ;

the second component manages the variable mem.

The second conjunct is itself the conjunction10 of formulasMSpec(l), for each

memory location l . We view MSpec(l) as the speci�cation of a separate process

that manages mem[l ]. Formula MSpec(l) has the familiar form I ^ 2[N ]v . It

asserts that MInit(l) holds in the initial state, and that every step is either a

Write(p; l) step for some process p, or else leaves mem[l ] unchanged. The initial

predicate MInit(l) asserts that mem[l ] equals InitVal , the initial memory value.

Action Write(p; l), which we discuss below, is enabled only when the memory

component is processing a procedure call by process p to write some value v to

location l ; a Write(p; l) step sets the new value of mem[l ] to this v .

The �rst conjunct of IRSpec is the conjunction of formulas RPSpec(p) for

each process p in PrIds. We view RPSpec(p) as the speci�cation of a process

that manages the returner's part of the channel memCh[p] and the variable

result [p]. Formula RPSpec(p) has the form I ^ 2[N ]v ^ F . A formula 2[N ]v
asserts that every step that changes v is an N step, but it does not require any

such steps to occur. It allows a behavior in which v never changes. We require

that certain changes do occur by conjoining an additional condition F , which

constrains what must eventually happen but does not disallow any individual

step. We call I ^2[N ]v the safety condition of the speci�cation and F its fairness

or liveness condition. We now examine the safety condition of RPSpec(p); its

fairness condition is considered below.

A formula I ^ 2[N ]v describes how the state function v may change. For

RPSpec(p), the subscript v is the state function pvars(p), which is de�ned to be

the pair hE :rtrner(p); result [p]i. A pair changes i� one of its elements changes,

so RPSpec(p) describes changes to E :rtrner(p), the returner's part of the com-

munication channel memCh[p], and to result [p].

We explain RPSpec(p) with the help of the predicate-action diagram [13] of

Figure 6 on the next page. This diagram has the following meaning.

{ The small arrow indicates that initially, result [p] equals NotAResult .

9 The de�nition of NotAResult in submodule Inner uses the operator choose, which
is the TLA+ name for Hilbert's " [15]. We can de�ne NotAResult in this way because

the axioms of set theory imply that, for every set S , there exists a value not in S .
10 Informally, we often think of 8 x 2 S : F (x ) as the conjunction of the formulas F (x )

for all x in S .
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result [p] =

NotAResult

�

�

�

�
result [p] 6=

NotAResult

�

�

�

�
-

j

Y

Read(p) _

9 l :Write(p; l)

Return(p)

U

Read(p) _ 9 l :Write(p; l)

Fig. 6. A predicate-action diagram of pvars(p) for formula RPSpec(p) of the

Memory module.

{ When result [p] equals NotAResult , the pair pvars(p) can be changed only

by a Read(p) step or a Write(p; l) step, for some l . Such a step sets result [p]

unequal to NotAResult .

{ When result [p] is not equal to NotAResult , the pair pvars(p) can be changed

only by a Read(p) step, some Write(p; l) step, or a Return(p) step. A

Read(p) or Write(p; l) step leaves result [p] unequal to NotAResult , while

a Return(p) step sets it to NotAResult .

Predicate-action diagrams are de�ned formally in [13] to represent TLA for-

mulas. The assertion that Figure 6 is a diagram for RPSpec(p) means that

RPSpec(p) implies the formula represented by the diagram. In general, one can

draw many di�erent diagrams for the same formula. Proving that a diagram is

a predicate-action diagram for a speci�cation helps con�rm our understanding

of the speci�cation. The proof for Figure 6 is trivial. This diagram is actually

equivalent to the safety part of RPSpec(p).

To complete our understanding of the safety part of RPSpec(p), we must ex-

amine what steps are allowed by the actions Read(p),Write(p; l), andReturn(p).

Action Read(p) is enabled when E :Calling(p) is true and memCh[p]:arg equals

h\Read"; l i for some l , so the process p caller has called the read procedure with

argument l and the process p returner has not yet returned a result. If l is a

legal memory address, then a Read(p) step sets result [p] to mem[l ]; otherwise it

sets result [p] to the string \BadArg". The step leaves E :rtrner unchanged. (The

TLA+ action unchanged v is de�ned to equal v 0 = v , for any state function

v .) Action Write(p; l) is similar. It is enabled when there is a pending request

to write some value v in memory location l ; it sets result [p] to the appropriate

result and sets mem[l ] to v i� the request is valid.

Action Return(p) issues the return of result [p] and resets result [p] to equal

NotAResult . The action is enabled i� result [p] is unequal to NotAResult and

action E :Return(p) is enabled, which is the case i� E :Calling(p) equals true.

Looking at Figure 6 again, we now see that returner process p goes through

the following cycle. It waits (with result [p] equal to NotAResult) until a pro-

cedure call occurs. It then does one or more internal Read(p) or Write(p; l)
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steps, which choose result [p]. Finally, it returns result [p] and resets result [p] to

NotAResult . Allowing multiple Write(p; l) steps is important because mem[l ]

could be changed between those steps by Write(q ; l) steps for some q di�erent

from p. SuchWrite(q ; l) steps are allowed by Figure 6 (and byRPSpec(p)) if they

do not change pvars(p). It makes no di�erence to the �nal speci�cation RSpec

whether or not multiple Read(p) steps are allowed. The changes to memCh are

the same as if only the last one were performed, and memCh is the only free

variable of RSpec. Allowing multiple Read(p) steps simpli�es the speci�cation a

bit.

This completes our explanation of the safety condition of RPSpec(p). We now

consider the fairness condition. The safety condition of RPSpec(p) implies that

the steps described by Figure 6 are the only ones that are allowed to happen.

We want the fairness condition to assert that they must happen. In particular,

we want to assert the following two requirements: (L1) after a procedure call has

been issued, the transition out of the result [p] = NotAResult state eventually

occurs, and (L2) the transition back to that state eventually occurs.

These requirements are expressed with weak fairness formulas of the form

WFv (A). Such a formula asserts that if the action A^ (v 0 6= v) remains continu-

ally enabled, then an A^ (v 0 6= v) step must occur. In other words, if it remains

possible to take an A step that changes v , then such a step must eventually be

taken.

Condition L1 is implied by WFpvars(p)(RNext(p)). To see this, suppose that

result [p] equals NotAResult and a read or write call is issued. Then Read(p) or

some Write(p; l) action is enabled, so RNext(p) is enabled. Assuming that the

caller obeys the handshake protocol, action RNext(p) will remain enabled until

a Read(p) or Write(p; l) step occurs. Formula WFpvars(p)(RNext(p)) therefore

implies that a RNext(p) step does occur, and that step can only be the desired

Read(p) or Write(p; l) step.

Formula WFpvars(p)(RNext(p)) implies that, while result [p] 6= NotAResult

remains true, RNext(p) steps must keep occurring. However, those steps could be

Read(p) or Write(p; l) steps. (Read(p) steps can change pvars(p) if intervening

steps by other processes keep changingmem[l ].) FormulaWFpvars(p)(Return(p)),

the second conjunct of RPSpec(p)'s fairness condition, asserts that a Return(p)

step must eventually occur when result [p] 6= NotAResult holds.

There are other possible fairness conditions for RPSpec(p). Two other ob-

vious choices are obtained by replacing WFpvars(p)(RNext(p)) with one of the

following:

WFpvars(p)(Read(p)) ^ WFpvars(p)(9 l : Write(p; l))

WFpvars(p)(Read(p)) ^ (8 l : WFpvars(p)(Write(p; l)))

It is not hard to check that the conjunction of E :LegalCaller (the speci�ca-

tion that the caller obeys the handshake protocol) and the safety condition of

RPSpec(p) implies that both formulas are equivalent to WFpvars(p)(RNext(p)),

for any p in PrIds. We care what the memory component does only when the

caller obeys the protocol. Hence, any of these three choices of fairness conditions
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for RPSpec(p) yield essentially the same speci�cation. (The three fairness con-

ditions need not be equivalent on a behavior in which memCh[p]:arg changes

while the memory is processing a procedure call by process p.)

Weak fairness is a standard concept of concurrency [6, 17]. The reader who is

not already familiar with it may �nd fairness conditions di�cult to understand.

Fairness can be subtle, and it is not obvious why we express it in TLA with

WF formulas. For example, it might seem easier to express L1 by writing the

temporal-logic formula

(result [p] = NotAResult) ^ E :Calling(p); (result [p] 6= NotAResult)

which asserts that if result [p] ever equals NotAResult when E :Calling(p) is true,

then it must eventually become unequal to NotAResult . We have found that

the use of arbitrary temporal-logic formulas makes it easy to write incorrect

speci�cations, and using WF formulas helps us avoid errors.

Finally, let us consider the speci�cation USpec of the unreliable memory

component. It is identical to RSpec except it has action UNext(p) instead of

RNext(p) as its next-state action. Action UNext(p) di�ers from RNext(p) by

also allowing internal Fail(p) steps, which set result [p] to \MemFailure". Such

steps can occur instead of, before, after, or between Read(p) or Write(p; l)

steps. We could have replaced RNext(p) with UNext(p) in the fairness condition;

LegalCaller implies that the two de�nitions of USpec are equivalent. However,

it might seem odd to require the eventual occurrence of a step that may be a

failure step.

2.3 Solution to Problem 1

(a) Formulas RSpec and USpec are what we call component speci�cations. They

describe a system containing a properly operating (reliable or unreliable) mem-

ory component. Whether they constitute the speci�cations of a memory depends

on what the speci�cations are for.

Component speci�cations can be used to describe a complete system in which

all the components function properly, allowing us to prove properties of the

system. The simplest such complete-system speci�cation of a system containing

a reliable memory component is RSpec ^ E :LegalCaller , which asserts that the

memory component behaves properly and the rest of the system follows the

handshake protocol.

Another possible use of a memory speci�cation is to serve as a contract

between the user of the memory and its implementor. Such a speci�cation

should be satis�ed by precisely those behaviors that represent physical histo-

ries in which the memory ful�lls its obligations. Formula RSpec cannot serve as

such a speci�cation because it says nothing about the memory's environment.

A real memory that uses the two-phase handshake protocol will display com-

pletely unpredictable behavior if its environment does not correctly follow the

protocol. To be implementable, the speci�cation must assert only that RSpec is

satis�ed if the memory's environment satis�es the caller's part of the handshake
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protocol|in other words, if E :LegalCaller is satis�ed. We might therefore expect

the speci�cation of a reliable memory to be E :LegalCaller ) RSpec. However,

for reasons explained in [3], we instead write this speci�cation as the formula

E :LegalCaller
+�. RSpec. This formula means roughly that RSpec remains true

as long as E :LegalCaller does. Such a formula is called an assumption/guarantee

speci�cation [8]; the memory guarantees to satisfy its component-speci�cation

RSpec as long as the environment assumption E :LegalCaller is satis�ed.

When we present a component speci�cation as a solution to one of the spec-

i�cation problems, we indicate its environment assumption. Writing the corre-

sponding assumption/guarantee speci�cation is then trivial.

When we write a component speci�cation, we think of steps satisfying the

speci�cation's next-state action as representing operations performed by that

component. We could make this an explicit assumption by formally attributing

every step to either the component or its environment, as described in [3]. How-

ever, whether the component or its environment actually performs an operation

is a question of physical reality, and the connection between a mathematical

speci�cation and reality can never be made completely formal.

The assumption ParamAssump about the parameters is not part of our mem-

ory component speci�cations, since the formulas RSpec and USpec are not de-

�ned in terms of ParamAssump. We could weaken the speci�cations by adding

ParamAssump as an assumption and writing, for example, ParamAssump )
RSpec. We do not need to do so; as we will see below, putting the assumption

ParamAssump into the Memory module allows us to use it when proving the

correctness of an implementation of the memory component.

(b) In TLA, implementation is implication. To prove that a reliable memory im-

plements an unreliable one, it su�ces to prove the theorem RSpec ) USpec.

The proof is easy; expanding the de�nitions shows that it su�ces to prove

2[RNext(p)]pvars(p)) 2[UNext(p)]pvars(p), which is trivial since RNext(p) ob-

viously implies UNext(p).

In general, we would not expect such an implication to be valid. For exam-

ple, it would not have been valid had we written WFpvars(p)(UNext(p)) instead

of WFpvars(p)(RNext(p)) in the fairness condition of UPSpec(p). Component

speci�cations like RSpec and USpec describe how the component should be-

have when its environment behaves properly. They do not constrain the en-

vironment's behavior, and they may allow bizarre behaviors when the envi-

ronment behaves improperly. A priori, there is no reason why the particular

bizarre behaviors allowed by RSpec as the result of an incorrectly function-

ing environment should also be allowed by USpec. Hence, we would expect

RSpec ) USpec to be true only for those behaviors satisfying the memory's

environment speci�cation, E :LegalCaller . We would therefore expect to prove

only E :LegalCaller ) (RSpec ) USpec), which is equivalent to

E :LegalCaller ^RSpec ) USpec (1)

We can also phrase implementation in terms of assumption/guarantee speci�-

cations. Such speci�cations are satis�ed by precisely those behaviors in which
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the memory meets its obligation. We would expect the assumption/guarantee

speci�cation of the reliable memory to imply that of the unreliable memory:

(E :LegalCaller
+�. RSpec) ) (E :LegalCaller

+�. USpec) (2)

The relation between the two forms of implementation conditions exempli�ed by

(1) and (2) is investigated in [3]. Because our two memory-component speci�ca-

tions are so similar, we can prove RSpec ) USpec, which implies (1) and (2).

(c) If the memory is implemented with unreliable components that can fail

forever, then there is no way to guarantee that anything but \MemFailure" ex-

ceptions will ever occur. (For example, this will be the case if it is implemented

with an RPC component that always returns \RPCFailure" exceptions.)

We can easily de�ne a memory that guarantees eventual success. We do

so by requiring that if enough calls of some particular kind are issued, then

one of them eventually succeeds. Di�erent conditions are obtained by di�erent

choices of the kind of calls|for example, calls to a particular memory location,

or reads by a particular process. Such conditions can be expressed using strong

fairness formulas of the form SFv (A). This formula asserts that if A ^ (v 0 6= v)

is enabled often enough, then an A ^ (v 0 6= v) step must occur. (Strong fairness

is stronger than weak fairness because it requires a step to occur if the action is

enabled often enough, even if the action does not remain continuously enabled.)

For example, to strengthen the speci�cation to require that, if process p keeps

issuing calls, then it will eventually receive a result other than \MemFailure", we

simply replace the fairness condition of UPSpec(p) by:

^ SFpvars(p)(Read(p) _ (9 l : Write(p; l)))

^ SFpvars(p)(Return(p) ^ (result [p] 6= \MemFailure"))

To solve Problem 3 (proving the correctness of a memory implementation), we

would then need to add a corresponding liveness condition to the RPC compo-

nent.

3 Implementing the Memory

The memory implementation is obtained by composing a memory clerk compo-

nent, an RPC component, and a reliable memory component. The memory clerk

translates memory calls into RPC calls, and optionally retries RPC calls when

they result in RPC failures. In this section we describe the RPC and the memory

clerk components, and then prove the correctness of the implementation.

3.1 The RPC Component

The RPC component connects a sender to a receiver. As with the memory com-

ponent, we split its speci�cation into two modules.
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The Parameters Module The speci�cation of the RPC component begins

with module RPCParameters in Figure 7 on this page; the module declares pa-

rameters and both makes and includes some de�nitions. The RPCParameters

module RPCParameters

export RPCParameters, Snd, Rcv

import Naturals, Sequences

parameters sndCh; rcvCh : variable

Procs;ArgNum;Vals;PrIds : constant

assumption ParamAssump
�

= ArgNum 2 [Procs ! Nat ]

LegalSndArgs
�

= f\RemoteCall"g � string� Seq(Vals)

LegalRcvArgs
�

=

fs 2 Seq(Procs [ Vals) : ^ Len(s) > 0

^ Head(s) 2 Procs
^ Tail(s) 2 Seq(Vals)
^ Len(s) = 1 +ArgNum[Head(s)] g

include ProcedureInterface as Snd with ch  sndCh;Args  LegalSndArgs

include ProcedureInterface as Rcv with ch  rcvCh;Args  LegalRcvArgs

Fig. 7. Module RPCParameters.

module imports the module Naturals, a prede�ned module that de�nes the nat-

ural numbers and the usual operators on them. It then imports the Sequences

module, which de�nes operators on �nite sequences. In TLA+, an n-tuple

hv1; : : : ; vn i is a function whose domain is the set f1; : : : ; ng of natural numbers,

where hv1; : : : ; vn i[i ] equals v i , for 1 � i � n.11 The Sequences module repre-

sents sequences as tuples. The module appeared in [14] (without the de�nition

of Seq , which was not needed there) and is given without further explanation

in Figure 8 on the next page. It de�nes the usual operators Head , Tail , � (con-
catenation), and Len (length) on sequences, as well as the operator Seq , where

Seq(S ) is the set of sequences of elements in S . (The values of Head(s) and

Tail(s) are not constrained when s is the empty sequence.)

The parameters declared in module RPCParameters have the following in-

terpretations:

sndCh The procedure-calling interface between the sender and the RPC com-

ponent.

11 TLA+ uses square brackets to denote function application. An \array variable" is

just a variable whose value is a function.
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rcvCh The procedure-calling interface between the RPC component and the

receiver.

Procs, ArgNum As in the problem statement, Procs is a set of legal procedure

names and ArgNum is a function that assigns to each legal procedure name

its number of arguments.

Vals The set of all possible syntactically valid arguments.

PrIds The same as for the ProcedureInterface module.

Assumption ParamAssump asserts that ArgNum is a function with domainProcs

and range a subset of the set Nat of natural numbers. (The de�nition of Nat

comes from the Naturals module.)

The module next de�nes LegalSndArgs to be the set of syntactically valid

arguments with which the RPC component can be called. Calls to the RPC

component take two arguments, the �rst of which is an element of string,

the set of all strings, and the second of which is a sequence of elements in

Vals. We use the same convention as in the memory speci�cation, that the

argument of a procedure call is a tuple consisting of the procedure name followed

by its arguments. The RPC component has a single procedure, whose name is

\RemoteCall".

The module de�nes LegalRcvArgs to be the set of syntactically valid argu-

ments with which the RPC component can call the receiver. These consist of all

tuples of the form hp; v1; : : : ; vn i with p in Procs, the v i in Vals, and n equal

to ArgNum[p].

Finally, the module includes two copies of the ProcedureInterface module,

one for each of the interfaces, with the appropriate instantiations. The export

statement (at the beginning of the module) exports these included de�nitions.

module Sequences

import Naturals

OneTo(n)
�

= fi 2 Nat : (1 � i) ^ (i � n)g
Seq(S )

�

= union f[OneTo(n)! S ] : n 2 Natg
Len(s)

�

= choose n : (n 2 Nat) ^ ((Domain s) = OneTo(n))

Head(s)
�

= s[1]

Tail(s)
�

= [i 2 OneTo(Len(s) � 1) 7! s[i + 1]]

(s) � (t) �

= [i 2 OneTo(Len(s) + Len(t)) 7! if i � Len(s)

then s[i ]

else t [i � Len(s)] ]

Fig. 8. Module Sequences.
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Problem 2: The RPC Component's Speci�cation The speci�cation of

the RPC component appears in module RPC of Figure 10 on page 40. It is the

formula 999999 rstate : Inner :ISpec, where ISpec is de�ned in a submodule named

Inner .

We explain the speci�cation ISpec with the aid of the diagram of Figure 9

on this page. This is a predicate-action diagram for ISpec of all changes to

^ :Snd :Calling(p)
^ :Rcv :Calling(p)

^ rstate[p] = \A"

'

&

$

%

^ Snd :Calling(p)
^ :Rcv :Calling(p)

^ rstate[p] = \A"

'

&

$

%
-

j

Y

Reject(p)_ Fail(p)

^ Snd :Calling(p)

^ :Rcv :Calling(p)

^ rstate[p] = \B"

'

&

$

%

^ Snd :Calling(p)

^ Rcv :Calling(p)

^ rstate[p] = \B"

'

&

$

%

6

Reply(p) _ Fail(p)

?

Forward(p)

�

Fig. 9. A predicate-action diagram of vars(p) for formula ISpec of module RPC ,

where p is an element of PrIds. (The dotted arrows are not formally part of the

diagram.)

vars(p), where p is any element of PrIds. The state function vars(p) is the

triple hrstate[p]; Snd :rtrner(p);Rcv :caller(p)i that forms the state of the RPC

component's process p. The dotted arrows are not formally part of the diagram.

The initial-condition arrow indicates obligations of both the RPC component

and its environment; the other dotted arrows represent state changes caused

by the environment that do not change the RPC component's state. (Recall

that : : :Calling(p) can be changed by either the caller changing : : :caller(p)

or the returner changing : : :rtrner(p).) The top dotted arrow represents the

sender's action of calling the RPC component, which makes Snd :Calling(p) true.

The bottom dotted arrow represents the receiver's return action, which makes

Rcv :Calling false.

The solid arrows (the real arrows of the predicate-action diagram) repre-

sent steps of process p of the RPC component. The Forward(p) action relays

the call to the receiver, making Rcv :Calling(p) true. The Fail(p) action returns

\RPCFailure". The Reject(p) action returns \BadCall" without relaying the re-

quest. The Reply(p) action returns to the sender the result returned by the

receiver. The variable rstate is needed to distinguish the upper right and lower-

left states. The values \A" and \B" are arbitrary; any two values can be used.

The speci�cation Spec of the RPC component appears in module RPC of
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Figure 10 on this page. It is similar enough to the memory speci�cation that it

module RPC

import RPCParameters, Naturals, Sequences

export RPC, Snd, Rcv

module Inner

parameters

rstate : variable

Init(p)
�

= (rstate[p] = \A") ^ :Rcv :Calling(p)
RelayArg(p)

�

= hsndCh[p]:arg [2]i � sndCh[p]:arg [3]
Forward(p)

�

= ^ Snd :Calling(p) ^ (rstate[p] = \A")

^ RelayArg(p) 2 LegalRcvArgs
^ Rcv :Call(p;RelayArg(p))

^ rstate 0[p] = \B"

^ unchanged Snd :rtrner(p)

Reject(p)
�

= ^ rstate[p] = \A"

^ RelayArg(p) =2 LegalRcvArgs
^ Snd :Return(p; \BadCall")

^ unchanged hrstate[p];Rcv :caller(p)i
Fail(p)

�

= ^ :Rcv :Calling(p)
^ Snd :Return(p; \RPCFailure")

^ rstate 0[p] = \A"

^ unchanged Rcv :caller(p)

Reply(p)
�

= ^ :Rcv :Calling(p)^ (rstate[p] = \B")

^ Snd :Return(p; rcvCh[p]:res)

^ rstate0[p] = \A"

^ unchanged Rcv :caller(p)

Next(p)
�

= Forward(p) _Reject(p) _ Fail(p) _Reply(p)
vars(p)

�

= hrstate[p]; Snd :rtrner(p);Rcv :caller(p)i
ISpec

�

= 8 p 2 PrIds : Init(p) ^ 2[Next(p)]vars(p) ^ WFvars(p)(Next(p))

Spec
�

= 999999 rstate : Inner :ISpec

Fig. 10. The speci�cation of the RPC component.

should require little additional explanation. The de�nition ofRelayArg makes use

of the way sequences are represented as tuples, and it may seem a little obscure.

When the sender's process p has called the RPC component, RelayArg(p) is the

argument with which the RPC component should call the receiver. For example,
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if the RPC component is called with argument h\RemoteCall"; \Write"; h17;p2ii,
then RelayArg(p) equals h\Write"; 17;

p
2i. In the de�nitions of the actions, we

have eliminated some redundant instances of the conjuncts Snd :Calling(p) and

:Rcv :Calling(p) that appear in the predicate-action diagram; Snd :Calling(p) is

implied by Snd :Return(p; : : :), and the diagram shows that :Rcv :Calling(p) is
implied by rstate[p] = \A" in every reachable state.

Formula Spec of the RPC module is the component speci�cation of the RPC

component. The component's environment speci�cation is Snd :LegalCaller ^
Rcv :LegalReturner . As described above, the conjunction of these two formulas

is the speci�cation of a complete system consisting of an RPC component and a

sender and receiver that obey the handshake protocol; combining the formulas

with the
+�. operator yields an assumption/guarantee speci�cation of the RPC

component.

3.2 The Implementation

The Memory Clerk We now present the speci�cation of the memory clerk,

which is quite similar to that of the RPC component. It begins with module

MemClerkParameters of Figure 11 on this page. The module declares the fol-

lowing parameters:

sndCh, rcvCh The procedure-calling interfaces between the clerk and the mem-

ory's caller, and between the clerk and the RPC component.

Vals, PrIds The same as for the MemoryParameters and ProcedureInterface

modules, respectively.

The de�nitions of LegalSndArgs and LegalRcvArgs and the inclusion of two copies

of the ProcedureInterface module serve the same purpose as they do in the

RPCParameters module.

module MemClerkParameters

export MemClerkParameters, Snd, Rcv

parameters sndCh; rcvCh : variable

PrIds;Vals : constant

LegalSndArgs
�

= (f\Read"g �Vals) [ (f\Write"g � Vals �Vals)

LegalRcvArgs
�

= f\RemoteCall"g � f\Read"; \Write"g � Seq(Vals)

include ProcedureInterface as Snd with ch  sndCh;Args  LegalSndArgs

include ProcedureInterface as Rcv with ch  rcvCh;Args  LegalRcvArgs

Fig. 11. Module MemClerkParameters.



42

The speci�cation of the memory clerk is a formula 999999 cstate : Inner :ISpec.

The formula ISpec is described by the predicate-action diagram of Figure 12

on this page, which is similar to that of Figure 9 (page 39). The Reply(p) and

^ :Snd :Calling(p)

^ :Rcv :Calling(p)

^ cstate[p] = \A"

'

&

$

%

^ Snd :Calling(p)

^ :Rcv :Calling(p)

^ cstate[p] = \A"

'

&

$

%
-

Retry(p)

j

Y

^ Snd :Calling(p)

^ :Rcv :Calling(p)

^ cstate[p] = \B"

'

&

$

%

^ Snd :Calling(p)

^ Rcv :Calling(p)

^ cstate[p] = \B"

'

&

$

%

6

Reply(p)

?

Forward(p)

-

Fig. 12. A predicate-action diagram of vars(p) for formula ISpec of module

MemClerk , where p is an element of PrIds. (The dotted arrows are not formally

part of the diagram.)

Forward(p) actions play the same role as in the RPC component's speci�cation.

Action Retry(p) retries an RPC call that has yielded an RPC failure.

The clerk's speci�cation Spec appears in Module MemClerk of Figure 13

on the next page. The safety part can be deduced from the predicate-action

diagram as we did for the RPC component. The liveness part is a bit trick-

ier. We want to require that the clerk eventually returns from a call, assuming

the RPC component eventually returns from each call. Weak fairness on the

Forward(p) action ensures progress from the upper-right to the lower-right state

of the predicate-action diagram. Strong fairness of Reply(p) is required to ensure

eventual progress from the lower-left to the upper-left state; weak fairness would

allow behaviors in which the clerk keeps performing Retry(p) steps without ever

performing a Reply(p) step.

The Implementation Proof We now formally assert that the composition

of a memory clerk, an RPC component, and a reliable memory implements an

unreliable memory; and we describe the proof of that assertion.

Since implementation is implication, the assertion that every behavior al-

lowed by an implementation Imp satis�es a speci�cation Spec is expressed by

the formula Imp ) Spec. However, as discussed in Section 2.3, we expect to

prove the correctness of an implementation only under the assumption that the
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environment behaves correctly. If Env is the environment's speci�cation, then

we expect Imp ) Spec to be satis�ed only by behaviors that satisfy Env . Thus,

correctness of the implementation means that Env ^ Imp ) Spec is valid. Com-

position is conjunction, so validity of this formula asserts that every behavior

allowed by the composition of the environment and the implementation satis�es

the speci�cation.

The assertion that the composition of the clerk, RPC component, reliable

memory, and environment speci�cations implies the unreliable memory's spec-

i�cation is theorem Impl of module MemoryImplementation in Figure 14 on

the next page. The speci�cation of the unreliable memory's environment is for-

module MemClerk

import MemClerkParameters, Sequences

module Inner

parameters

cstate : variable

Init(p)
�

= (cstate[p] = \A") ^ :Rcv :Calling(p)
RelayArg(p)

�

= h\RemoteCall";Head(sndCh[p]:arg);Tail(sndCh[p]:arg)i
ReplyVal(p)

�

= if rcvCh[p]:res = \RPCFailure" then \MemFailure"

else rcvCh[p]:res

Forward(p)
�

= ^ Snd :Calling(p) ^ (cstate[p] = \A")

^ Rcv :Call(p;RelayArg(p))

^ cstate0[p] = \B"

^ unchanged Snd :rtrner(p)

Retry(p)
�

= ^ (cstate[p] = \B") ^ (rcvCh[p]:res = \RPCFailure")

^ Rcv :Call(p;RelayArg(p))

^ unchanged hcstate[p]; Snd :rtrner(p)i
Reply(p)

�

= ^ :Rcv :Calling(p) ^ (cstate[p] = \B")

^ Snd :Return(p;ReplyVal(p))

^ cstate0[p] = \A"

^ unchanged Rcv :caller(p)

Next(p)
�

= Forward(p)_Retry(p) _Reply(p)
vars(p)

�

= hcstate[p]; Snd :rtrner(p);Rcv :caller(p)i
ISpec

�

= 8 p 2 PrIds :

^ Init(p) ^ 2[Next(p)]vars(p)
^ WFvars(p)(Forward(p)) ^ SFvars(p)(Reply(p))

Spec
�

= 999999 cstate : Inner :ISpec

Fig. 13. The component speci�cation of the memory clerk.
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module MemoryImplementation

import MemoryParameters, Memory

parameters

crCh; rmCh : variable

assumption

FailureNotAValue
�

= \RPCFailure" =2MemVals

Procs
�

= f\Read"; \Write"g
ArgNum

�

= [i 2 Procs 7! case (i = \Read")! 1; (i = \Write")! 2]

include RPC as R with sndCh  crCh, rcvCh  rmCh

include MemClerk as C with sndCh  memCh, rcvCh  crCh

include Memory as M with memCh  rmCh

theorem

Impl
�

= E :LegalCaller ^C :Spec ^R:Spec ^M :RSpec ) USpec

Fig. 14. Module MemoryImplementation.

mula E :LegalCaller , included from module ProcedureInterface by the imported

module Memory . The composition is described schematically by the following

picture.

E :LegalCaller

Environment

C :Spec

Clerk

R:Spec

RPC Component

M :RSpec

Reliable Memory

-�memCh -� crCh -� rmCh

When composing two components by conjoining their speci�cations, the com-

ponents are \connected" by instantiating their corresponding interface variable

parameters with the same variable. The implementing module's speci�cations

have been included with renaming; the speci�cation USpec of the memory is

imported from the Memory module.

The theorem statement asserts that the formula named Impl is a conse-

quence of the assumptions FailureNotAValue12 and ParamAssump (imported

from module MemoryParameters), and the laws of TLA.

For convenience, we have gathered many of the de�nitions imported and

included by module MemoryImplementation in Figure 15 on page 46. In this

�gure and in our proof, we use the following naming conventions: (i) we eliminate

the \Inner :" from symbol names|for example, writing C :Retry(p) instead of

C :Inner :Retry(p), and (ii) if X is the name of a formula of the form 8 p 2 PrIds :
12 We believe the theorem to be correct without assumption FailureNotAValue, but our

proof uses the assumption.
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Y , then we let X (p) denote the formula Y|as in R:ISpec(p). The �gure also

de�nes the following additional symbols: pv , m, e, c, r , and E :Next .13

Theorem Impl has the form H ) 999999mem; result : G . In predicate logic, one

proves a formula 9 y :P(y) ) 9 x :Q(x ) by proving P(y)) Q(x ) for a suitable

instantiation x of x . In temporal logic, the instantiation is called a re�nement

mapping [1]. To prove Impl , we de�ne a pair of state functions mem and result

and prove F ) G , where F is the formula obtained by removing the existential

quanti�ers from H , and G is the formula obtained by substituting mem and

result for mem and result in G .

For our proof, we let mem equal mem (which comes from M :RSpec). To

de�ne result, we must introduce a history variable [1]. Intuitively, a history vari-

able a is one that is added to remember what happened in the past. Formally,

proving F ) G by \adding a history variable a" means choosing a variable a

that does not appear in F and G , �nding a formula Hist of a particular form

that guarantees that 999999a :Hist is valid, and proving F ^Hist ) G . Our history

variable rmhist is de�ned so that, for each p in PrIds, the value of rmhist [p] is

initially equal to \A". It is set to \B" when process p of the reliable memory

component returns to the RPC component or when process p of the RPC com-

ponent issues a failure return to the clerk. It is reset to \A" when process p of

the clerk returns to the caller. Formally, we de�ne:

h
�

= rmhist [p]

HNext(p)
�

= h0 = if M :Return(p) _R:Fail(p)
then \B"

else if C :Reply(p) then \A"

else h

Hist
�

= 8 p 2 PrIds : (h = \A") ^2[HNext(p)]hc;r;m;hi

It should be intuitively obvious that, for every p in PrIds, formula Hist implies

that the value of rmhist [p] at any time is determined by the values of c, r , andm

up to that time. A general theorem of TLA proves the validity of 999999 rmhist :Hist .

The High-Level Proof We describe a structured proof of theorem Impl , in the

style of [10]. We �rst present the high-level proof. It uses the state function result,

which we de�ne later (the high-level proof is independent of its de�nition), and

the temporal formula:

IPImp(p)
�

= E :LegalCaller(p)^C :ISpec(p) ^R:ISpec(p)
^M :RPSpec(p) ^ (8 l 2MemLocs :M :MSpec(l)) ^Hist(p)

For any formula F , we let F be the formula obtained by substituting result

for result in F . Note that all formulas in the proof are interpreted in the con-

13 We de�ne a number of operators with implicit parameters that are not parameters of

module MemoryImplementation|for example, the parameters p and result [p] that
appear in the de�nition of m. If we were being truly formal, such de�nitions would

occur in modules that made the parameters explicit, and these modules would then

be included in the proof in contexts where the parameters are declared.
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The Speci�cation

Unreliable Memory Component (imported from Memory)

pv
�

= pvars(p)

UNext(p)
�

= Read(p) _ (9 l : Write(p; l))_Return(p) _ Fail(p)
UPSpec(p)

�

= ^ PInit(p) ^2[UNext(p)]pv
^ WFpv(RNext(p)) ^WFpv(Return(p))

MSpec(l)
�

= MInit(l) ^2[9 p 2 PrIds : Write(p; l)]mem [l ]

IUSpec
�

= ^ 8 p 2 PrIds : UPSpec(p)

^ 8 l 2MemLocs : MSpec(l)

USpec
�

= 999999mem; result : IUSpec

The Implementation

The Environment (included from ProcedureInterface via import of Memory)

e
�

= E :caller(p)

E :Next(p)
�

= 9 a 2 LegalArgs : E :Call(p; a)

E :LegalCaller
�

= 8 p 2 PrIds : :E :Calling(p)^2[E :Next(p)]e

Clerk (included from MemClerk)

c
�

= C :vars(p)

C :Next(p)
�

= C :Forward(p)_C :Retry(p)_C :Reply(p)

C :ISpec(p)
�

= ^ C :Init(p) ^2[C :Next(p)]c
^ WFc(C :Forward(p))^ SFc(C :Reply(p))

C :Spec
�

= 999999 cstate : 8 p 2 PrIds : C :ISpec(p)

RPC Component (included from RPC )

r
�

= R:vars(p)

R:Next(p)
�

= R:Forward(p)_R:Reject(p)_R:Fail(p) _R:Reply(p)
R:ISpec(p)

�

= R:Init(p)^2[R:Next(p)]r ^WFr (R:Next(p))

R:Spec
�

= 999999 rstate : 8 p 2 PrIds : R:ISpec(p)

Reliable Memory Component (included from Memory)

m
�

= M :pvars(p)

M :RNext(p)
�

= M :Read(p) _ (9 l : M :Write(p; l))_M :Return(p)

M :RPSpec(p)
�

= ^ M :PInit(p) ^2[M :RNext(p)]m
^ WFm(M :RNext(p)) ^WFm(M :Return(p))

M :MSpec(l)
�

= M :MInit(l) ^2[9 p 2 PrIds : M :Write(p; l)]mem [l ]

M :IRSpec
�

= ^ 8 p 2 PrIds : M :RPSpec(p)

^ 8 l 2MemLocs : M :MSpec(l)

M :RSpec
�

= 999999mem; result : M :IRSpec

Fig. 15. Formulas de�ned in module MemoryImplementation, plus a few extra

de�nitions.
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text of the MemoryImplementation module. The variable declarations in the

Assume (including the implicit declaration of p in the assumption p 2 PrIds)

are necessary, otherwise the formulas in the Prove part would contain unde-

clared variables. The following high-level proof is a simple exercise in predicate-

logic reasoning with the operators 8 and 999999 , since these operators (applied to

temporal-logic formulas) obey the usual rules of �rst-order logic.

1. Assume: 1. cstate; rstate;mem; result ; rmhist : variable

2. p 2 PrIds
Prove: IPImp(p)) UPSpec(p)

Proof: Proved below.

2. Assume: 1. cstate; rstate;mem; result ; rmhist : variable

2. l 2MemLocs

Prove: (8 q 2 PrIds : IPImp(q)))MSpec(l)

Proof: Proved below.

3. Assume: cstate; rstate;mem; result ; rmhist : variable

Prove: E :LegalCaller ^C :ISpec ^R:ISpec ^M :IRSpec ^Hist ) IUSpec

Proof: By steps 1 and 2, since 8 distributes over ^, barring (which is just

substitution) distributes over 8 and ^, and we can deduce (8 u 2 U :P(u)) )
(8 u 2 U :Q(u)) by proving P(u) ) Q(u) for any u in U .

4. Assume: cstate; rstate;mem; result ; rmhist : variable

Prove: E :LegalCaller ^C :ISpec ^R:ISpec ^M :IRSpec ^Hist ) USpec

Proof: By step 3, since we can deduce F ) 999999 x :G(x ) by proving F ) G(x ),

for some state function x .

5. Q.E.D.

Proof: By step 4 and the validity of 999999 rmhist : Hist , since we can deduce

(999999 x :F (x ))) G by proving F (x )) G , assuming x does not occur in G , and

we can deduce the equivalence of 999999 x ; y :F (x )^G(y) and (999999 x :F (x ))^ (999999 y :
G(y)), assuming x does not occur in G(y) and y does not occur in F (x ).

The Lower-Level Proof At the heart of our argument lie the proofs of steps 1

and 2. They are based on the predicate-action diagram of Figure 16 on the next

page. We introduce the abbreviations T and F for true and false, and uc for

unchanged. The operator S is de�ned to assert that

{ For each of the three channels memCh, crCh, and rmCh, there is a call in

progress on that channel i� the corresponding one of the �rst three arguments

equals T.

{ The values of cstate[p], rstate[p], and rmhist [p] equal the last three argu-

ments, where \AB" indicates a value of either \A" or \B".

{ Certain relations hold among the other variables|for example, if the �rst

argument is T, then memCh[p]:arg is an element of LegalArgs.

{ mem[l ] is an element of MemVals, for all l in MemLocs.

The formal de�nition of S appears in Figure 17 on page 49. It may help in
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S1 S2

S6 S3

S5 S4

S(F;F;F; \A"; \A"; \A") S(T;F;F; \A"; \A"; \A")

�

�

�

�

�

�

�

�

S(T;F;F; \B"; \A"; \B") S(T;T;F; \B"; \A"; \AB")

�

�

�

�

�

�

�

�

S(T;T;F; \B"; \B"; \B") S(T;T;T; \B"; \B"; \AB")

�

�

�

�

�

�

�

�

-

?

^ C :Forward(p)

^ uc he; r ;m; hi

^ R:Forward(p)

^ uc he; c;m;hi

?

^ C :Reply(p)

^ uc he; r ;mi

6

^ _ R:Reply(p)

_ R:Fail(p)

^ uc he;c;mi

6

^ M :Return(p)

^ uc he; c; ri�

^ E :Next(p)

^ uc hc; r ;mi -

^ C :Retry(p)

^ uc he; r ;m; hi

q

i

^ R:Fail(p)
^ uc he;c;mi

o

^ M :Read(p)_ 9 l :M :Write(p; l)

^ uc he; c; r ; hi

Fig. 16. A predicate-action diagram of he; c; r ;m; hi for IPImp(p), where p is

an element of PrIds.

understanding this de�nition to observe that:

E :Calling(p) � C :Snd :Calling(p)

C :Rcv :Calling(p) � R:Snd :Calling(p)

R:Rcv :Calling(p) � M :E :Calling(p)

We have labeled the state predicates in the predicate-action diagram S1, . . . ,

S6. We de�ne those labels to be synonymous with their respective predicates, so

S2 equals S (T;F;F; \A"; \A"; \A"). We de�ne the state function result so that

result[p] has the value given in Figure 17, for each p in PrIds.

The Proof of Step 1 Intuitively, the proof of step 1 is as follows.

1.1. The implementation's initial condition implies the initial condition S1 of

the predicate-action diagram.

1.2. The implementation's next-state action implies that the diagram describes

all possible state transitions. There are six conditions, one for each state

predicate in the diagram.

1.3. The initial condition S1 of the predicate-action diagram implies the initial

condition PInit(p) of UPSpec(p).

1.4. Each of the actions allowed by the predicate-action diagram implements

(implies) some disjunct of the next-state action UNext(p) of UPSpec(p), or

else leaves pv unchanged.
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S (ECalling ;CCalling ;RCalling ; cs; rs; rh)
�

=

^ ^ ECalling � E :Calling(p)

^ ECalling ) (memCh[p]:arg 2 LegalArgs)
^ ^ CCalling � R:Snd :Calling(p)

^ CCalling ) (crCh[p]:arg = C :RelayArg(p))

^ :CCalling ^ (cstate[p] = \B") )
crCh[p]:res 2 MemVals [ f\OK"; \BadArg"; \RPCFailure"g

^ ^ RCalling �M :E :Calling(p)

^ RCalling ) (rmCh[p]:arg = R:RelayArg(p))

^ :RCalling ) (result [p] = NotAResult)

^ :RCalling ^ (rstate[p] = \B") )
rmCh[p]:res 2 MemVals [ f\OK"; \BadArg"g

^ cs = cstate[p]

^ rs = rstate[p]

^ rmhist [p] 2 if rh = \AB" then f\A"; \B"g
else frhg

^ result [p] 2 MemVals [ fNotAResult ; \OK"; \BadArg"g
^ 8 l 2MemLocs : mem[l ] 2MemVals

result[p] =

case S1 _ S2 ! result [p] ;

S3 ! if h = \A" then result [p]

else \MemFailure" ;

S4 ! if (h = \B") ^ (result [p] = NotAResult)

then \MemFailure"

else result [p] ;

S5 ! rmCh[p]:res ;

S6 ! if crCh[p]:res = \RPCFailure" then \MemFailure"

else crCh[p]:res

Fig. 17. The formal de�nitions of S and result[p], for p in PrIds.

1.5. All the temporal reasoning, including the proof of the fairness properties,

is left for the �nal Q.E.D. step.

The formal proof is as follows.

1.1. :E :Calling(p)^ C :Init(p)^R:Init(p) ^M :PInit(p)

^ (8 l 2MemLocs : M :MInit(l)) ^ (h = \A") ) S1

1.2. Assume: 1. ^ [E :Next(p)]e
^ [C :Next(p)]c ^ [R:Next(p)]r ^ [M :RNext(p)]m
^ 8 l 2MemLocs : [9 q 2 PrIds :M :Write(q ; l)]mem [l ]

^ [HNext(p)]hc;r;m;hi

2. :unchanged he; c; r ;m; h i
Prove: 1. S1) S20 ^ E :Next(p) ^ uc hc; r ;m i

2. S2) S30 ^C :Forward(p)^ uc he; r ;m; h i
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3. S3) _ S40 ^R:Forward(p)^ uc he; c;m; h i
_ S60 ^R:Fail(p)^ uc he; c;m i

4. S4) _ S40 ^ (M :Read(p) _ 9 l : M :Write(p; l))

^ uc he; c; r ; h i
_ S50 ^M :Return(p) ^ uc he; c; r i

5. S5) S60 ^ (R:Reply(p) _R:Fail(p))^ uc he; c;m i
6. S6) _ S10 ^C :Reply(p)^ uc he; r ;m i

_ S30 ^C :Retry(p)^ uc he; r ;m; h i
1.3. S1) PInit(p)

1.4. 1. S1 ^ S20 ^ E :Next(p) ^ uc hc; r ;m i ) uc pv

2. S2 ^ S30 ^C :Forward(p)^ uc he; r ;m; h i ) uc pv

3. a. S3 ^ S40 ^R:Forward(p)^ uc he; c;m; h i ) uc pv

b. S3 ^ S60 ^R:Fail(p)^ uc he; c;m i ) Fail(p)

4. a. S4 ^ S40 ^M :Read(p) ^ uc he; c; r ; h i ) Read(p)

b.Assume: l : constant

Prove: S4 ^ S40 ^M :Write(p; l)^ uc he; c; r ; h i )Write(p; l)

c. S4 ^ S50 ^M :Return(p) ^ uc he; c; r i ) uc pv

5. a. S5 ^ S60 ^R:Reply(p) ^ uc he; c;m i ) uc pv

b. S5 ^ S60 ^R:Fail(p)^ uc he; c;m i ) Fail(p)

6. a. S6 ^ S10 ^C :Reply(p)^ uc he; r ;m i ) Return(p)

b. S6 ^ S30 ^C :Retry(p)^ uc he; r ;m; h i ) Fail(p)

7. uc he; c; r ;m; h i ) uc pv

1.5. Q.E.D.

The proofs of 1.1{1.4 are straightforward, tedious exercises. The part of the

proof that shows that the Clerk and RPC components relay their arguments

properly requires a bit of simple reasoning about sequences|for example, to

prove

(memCh[p]:arg 2 LegalArgs)) (C :RelayArg(p) 2 C :LegalRcvArgs)

The rest of the proof involves a fairly mindless expanding of de�nitions and

application of �rst-order logic.

The Proof of Step 1.5 We now give the high-level proof of step 1.5, which is the

only part of the proof of step 1 that involves temporal logic.

Let: Inv(p)
�

= S1 _ S2 _ S3 _ S4 _ S5 _ S6
1.5.1. IPImp(p)) 2Inv(p)

Proof: By 1.1, 1.2, and the laws of TLA, which allow us in general to

deduce P ^ (8 u 2 U : 2[N (u)]v(u)) ) 2I from P ) I together with

I ^ (8 u 2 U : [N (u)]v(u)) ) I 0. (Take U to be fu1; u2; u3g [MemLocs,

let N (u1) be E :Next(p), etc.)

1.5.2. IPImp(p) ^2Inv(p) ) PInit(p) ^2[UNext(p)]pv
Proof: 1.1{1.4 show that IPImp(p) implies PInit(p) and that

Inv(p) ^ [E :Next(p)]e ^ [C :Next(p)]c ^ [R:Next(p)]r ^ [M :RNext(p)]m
^ (8 l 2MemLocs : [9 q 2 PrIds :M :Write(q ; l)]mem [l ])

^ [HNext(p)]hc;r;m;hi
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implies [UNext(p)]pv . The result is now obtained from the laws of TLA,

which allow us in general to infer 2I ^ (8u 2 U :2[N (u)]v(u))) 2[M ]w
from I ^ I 0 ^ (8u 2 U : [N (u)]v(u))) [M ]w .

1.5.3. IPImp(p) ^2Inv(p) )WFpv(RNext(p)) ^WFpv(Return(p))

Proof: Described below.

1.5.4. Q.E.D.

Proof: Step 1.5 (which asserts step 1) follows from 1.5.1{1.5.3 by propo-

sitional logic.

The Proof of Step 1.5.3 To complete the proof of step 1, we must prove 1.5.3,

which shows that the speci�cation's fairness properties are satis�ed. We give an

intuitive sketch of the proof. To prove WFpv(RNext(p)), we must show that if

RNext(p) is continuously enabled, then a RNext(p) step must eventually occur.

To prove WFpv (Return(p)), we must show that if Return(p) is continuously en-

abled, then a Return(p) step must eventually occur. The two actions are disabled

in state S1. Therefore, to prove the two fairness properties, it su�ces to show

that, if any of S2{S6 ever holds, then S1 must eventually hold. It is clear from

the diagram that this follows from the two conditions: (i) none of the predicates

S2{S5 can hold forever and (ii) if S6 holds repeatedly, then S1 must eventually

hold. The following implementation fairness properties imply condition (i):

{ WFc(C :Forward(p)) implies that S2 cannot hold forever.

{ WFr (R:Next(p)) implies that S3 cannot hold forever.

{ WFm(M :RNext(p)) implies that if S4^ (result [p]=NotAResult) holds, then

S4 ^ (result [p] 6= NotAResult) eventually holds, and WFm(M :Return(p))

then implies that S5 eventually holds.

{ WFr (R:Next(p)) implies that S5 cannot hold forever.

Condition (ii) follows from SFc(C :Reply(p)), which implies that if S6 holds

repeatedly, then S1 eventually holds. The proof rules of TLA have been designed

expressly to formalize this style of informal reasoning. We omit the formal proof.

The Proof of Step 2 Finally, we must prove step 2. We now confess that, to

simplify the exposition, we have structured the proof incorrectly. The proof of

2 requires steps 1.1{1.4 and step 1.5.1, for an arbitrary p in PrIds. Those steps

should therefore be brought out either as a separate lemma, or as level-1 steps.

Here, we violate the rules of structured proofs and use those steps directly in

the proof of 2.

2.1. (8 q 2 PrIds : IPImp(q) ^2Inv(q)) )MInit(l)

Proof: By the assumption that l 2 MemLocs, since M :MInit(l) trivially

implies MInit(l) (the two formulas are the same).
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2.2. ^ [E :Next(p)]e
^ [C :Next(p)]c ^ [R:Next(p)]r ^ [M :RNext(p)]m
^ 8 l1 2 MemLocs : [9 q1 2 PrIds :M :Write(q1; l1)]mem [l1]

^ [HNext(p)]hc;r;m;hi

^ Inv(p) ^ Inv(p)0
^ [M :Write(q ; l)]mem [l ]

) [Write(q ; l)]
mem [l ]

Proof: Inv(p)^M :Write(p; l) implies S4, for any p. We consider two cases.

(i) If :unchanged he; c; r ;m; h i holds, then the result follows from part 4

of 1.2 and part 4b of 1.4. (ii) If unchanged he; c; r ;m; h i holds, then S4

and Inv(p)0 imply S40, and the result follows from part 4b of 1.4.

2.3. Q.E.D.

Proof: 2.1, 2.2, and the laws of TLA show that

(8 q 2 PrIds : IPImp(q) ^2Inv(q)) )MSpec(l)

The result then follows from 1.5.1.

4 Implementing the RPC Component

The problem statement introduces a lossy RPC component, which resembles

the RPC component but does not raise \RPCFailure" exceptions and may fail to

return. Much as with the memory implementation of Section 3, we specify the

lossy RPC and an RPC clerk, and prove that their composition implements the

RPC speci�cation.

The problem statement's informal description of the lossy RPC component

is problematic for reasons we now explain. The RPC component of Problem 2,

speci�ed in module RPC , is just as lossy as the \lossy" one|neither will return

to the sender if the receiver fails to return. The additional timing constraints

on the lossy RPC component, together with the description of the RPC imple-

mentation, suggest that a sender process should be able to issue a new call if a

previous one has not returned. However, issuing a second call without waiting

for a return violates the handshake protocol of the procedure-calling interface.

A physical component cannot act correctly without some form of synchro-

nization with its environment. If we eliminate the handshake protocol's require-

ment that the environment must wait for a return before issuing the next call,

we must introduce some other form of synchronization. The problem suggests a

new protocol in which a sender process can issue a call when either (a) there is

no outstanding call, or (b) some time � has elapsed since the previous call. For

such an interface to be useful, the sender needs to know for which call a result

is being returned. This requires either tagging the calls and returns or, more

conventionally, specifying that the lossy RPC component never reply to a call

more than time � after it was issued.

Although replacing the handshake protocol with a timed protocol would pro-

duce a more sophisticated example, it is a departure from the problem statement.

A literal reading of that statement requires the lossy RPC component to obey

the procedure-calling protocol, which forbids more than one outstanding call
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per process. We therefore adopt this requirement in the speci�cation of the lossy

RPC component in Section 4.1 below. This requirement a�ects our solution to

Problem 5, the implementation of an RPC component by composing an RPC

clerk with a lossy RPC component. If the lossy RPC component never returns

a call by process p and the clerk has returned an RPC failure for that call, then

the clerk must always return RPC failures to later calls by p.

4.1 A Lossy RPC

The only novelty in the speci�cation of the lossy RPC component is its use

of real-time constraints. We express these constraints as in [2], by introducing

a variable parameter now , whose value represents the current time, and de�n-

ing �ve temporal operators RT , VTimer , MaxTimer , MinTimer , and NonZeno

(called NZ in [2]). We brie
y review these operators.

{ The temporal formula RT (v) asserts that (a) now is a monotonically non-

decreasing real number and (b) steps that change now leave v unchanged.

Typically, v is a tuple of relevant variables other than now , so (b) essentially

means that changes to these variables are considered to be instantaneous.

{ If A is an action and v a state function such that any A step changes v , and

if t is a variable that does not occur in A or v , then the temporal formula

VTimer(t ;A; �; v)^MaxTimer(t) asserts that A cannot be enabled for more

than � time units before the next A step occurs.

{ If A is an action and v a state function such that any A step changes v , and

if t is a variable that does not occur in A or v , then the temporal formula

VTimer(t ;A; �; v)^MinTimer(t ;A; v) asserts that A must be continuously

enabled for at least � time units before the next A step occurs.

{ The temporal formula NonZeno asserts that now keeps increasing without

bound, so time marches on.

We de�ne these operators in module RealTime of Figure 18 on the next page.

This module has appeared before [11, 14], except that earlier versions did not

include NonZeno. It imports module Reals, which de�nes the set Real of real

numbers and some of the usual operators on them such as >.

The speci�cation of the lossy RPC component is given in module LossyRPC

of Figure 19 on page 55. The structure of this speci�cation is familiar.14 This

speci�cation is based on that of the RPC component. The initial condition and

next-state action are the same as for the ordinary RPC component, except for the

use of timing constraints and the absence of Fail(p) steps. The timing constraint

MaxProcess(s; p) asserts that a Forward(p) or aReject(p) step must occur within

14 We have not bothered to introduce a separate module containing the parameter
declarations. Names pre�xed by \Inner :" are de�ned in submodule Inner of the

imported RPC module. Module LossyRPC 's submodule is called LInner to avoid

name con
icts with the imported submodule.
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module RealTime

import Reals

parameters now : variable

1 : constant

assumption In�nityUnReal
�

= 1 =2 Real

RT (v)
�

= ^ now 2 Real
^ 2[(now 0 2 fr 2 Real : now < rg) ^ (v 0 = v)]now

VTimer(x ;A; �; v)
�

=

^ x = if Enabled hAiv then now + �

else 1
^ 2[x 0 = if (Enabled hAiv )0

then if hAiv _ :Enabled hAiv then now 0 + �

else x

else 1 ]hx ;v i

MaxTimer(x )
�

= 2[(x 6=1)) (now 0 � x )]now

MinTimer(x ;A; v)
�

= 2[A) (now � x )]v

NonZeno
�

= 8 t 2 Real : 3(now > t)

Fig. 18. Module RealTime.

� seconds15 of when it becomes enabled; the timing constraint MaxReturn(s; p)

asserts that a Return(p) step must occur within � seconds of when it becomes

enabled.

4.2 The RPC Implementation

The RPC Clerk The RPC clerk passes requests to the lossy RPC component.

According to the problem statement:

The RPC component is implemented with a Lossy RPC component by

passing the RemoteCall call through to the Lossy RPC, passing the

return back to the caller, and raising an exception if the corresponding

return has not been issued after 2� + � seconds.

Read literally, this requirement implies that, if the lossy RPC component returns

more than 2�+� seconds after it is called, then the clerk must raise an exception.

For example, if the RPC component returns a result 3� + � seconds after it is

15 Strictly speaking, it asserts that the step must occur before now increases by more

than �; we interpret such an increase to represent the passing of � seconds|rather
than the passing of � years or � kilometers.
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module LossyRPC

import RPC, RealTime, Reals

parameters � : constant

assumption

DeltaAssump
�

= (� 2 Real) ^ (� > 0)

module LInner

parameters

rstate : variable

LNext(p)
�

= Inner :Forward(p) _ Inner :Reject(p) _ Inner :Reply(p)
MaxProcess(s; p)

�

=

^ VTimer(s; Inner :Forward(p) _ Inner :Reject(p); �;
hInner :vars(p); Snd :caller(p)i)

^ MaxTimer(s)

MaxReturn(s; p)
�

=

^ VTimer(s; Inner :Reply(p); �; hInner :vars(p);Rcv :rtrner(p)i)
^ MaxTimer(s)

LISpec
�

=

8 p 2 PrIds : ^ Inner :Init(p) ^2[LNext(p)]Inner :vars(p)

^ RT (Inner :vars(p))

^ 999999 s : MaxProcess(s; p)

^ 999999 s : MaxReturn(s; p)

Spec
�

= 999999 rstate : LInner :LISpec

Fig. 19. Module LossyRPC .

called and the clerk has not yet raised an exception, then the clerk cannot return

the result; it must raise an exception. We �nd it convenient to adopt the more

sensible requirement that the clerk returns an exception only if it has not yet

received a result. Thus, if the RPC component returns a result 3� + � seconds

after it is called, and the clerk has not yet raised an exception, then the clerk

will return the result.

There is another aspect of the problem statement that is bizarre. In light

of the timing assumptions on the environment, one would expect the clerk to

have to return either a result or an exception within some �xed length of time.

However, the problem statement makes no such requirement, implying only that

the clerk must eventually return. We follow the problem statement in this re-

spect; the resulting mix of eventuality and real-time requirements yields a more

interesting example.
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Our RPC clerk is speci�ed in module RPCClerk of Figure 20 on the next

page. The speci�cation is similar to that of the memory clerk. The major di�er-

ences are that there are no Retry(p) steps, and that there is a Fail(p) timeout

action, which cannot be executed until it has been enabled for at least � sec-

onds. Correctness of the RPC component's implementation is proved under the

assumption that � is greater than 2� + �.

The Implementation Proof The correctness of the RPC implementation

is asserted in Module RPCImplementation in Figure 21 on page 58. The four

components of the implementation are pictured below, where the sender and

receiver form the environment.

Snd :LegalCaller

Sender

C :Spec

RPC Clerk

L:Spec

Lossy

RPC Component

Rcv :LegalReturner

Receiver

-�sndCh -� clCh -�rcvCh

Formula RcvTiming asserts the requirement that the receiver always return

within � seconds of when it is called. Theorem Impl asserts that the compo-

sition of the components' speci�cations, together with condition RcvTiming and

the assumption NonZeno that time keeps advancing, implies the speci�cation of

the RPC component.

The proof of theorem Impl has a structure similar to that of the proof of

the memory implementation in Section 3.2. As in that proof, we eliminate the

pre�xes \Inner :" and \LInner :" from symbol names. De�nitions from module

RPCImplementation along with some additional de�nitions appear in Figure 22

on page 59. We have overloaded symbols such as C :ISpec, using the convention

that X (a1; : : : ; an ) is de�ned to be X with quanti�cation over a1, . . . , an re-

moved. The \timing" de�nitions give names to actions and predicates that occur

in the RealTime module.

To de�ne the re�nement mapping rstate, we must again introduce a history

variable lrhist , where lrhist [p] equals \A" i� the lossy RPC component has per-

formed a Reject(p) action, but the RPC clerk component has not yet returned

the result to the sender. The formal de�nition is as follows:

h
�

= lrhist [p]

HNext(p)
�

= h0 = if L:Reject(p) then \A"

else if C :Reply(p) then \B"

else h

Hist
�

= 8 p 2 PrIds : (h = \B") ^ 2[HNext(p)]hc;l;h i

The validity of 999999 lrhist :Hist is again asserted by a general TLA theorem.
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module RPCClerk

import Sequences, Reals

parameters sndCh; rcvCh : variable

PrIds;Vals; � : constant

assumption

TauAssump
�

= (� 2 Real) ^ (� > 0)

LegalArgs
�

= f\RemoteCall"g � string� Seq(Vals)

include ProcedureInterface as Snd with ch  sndCh;Args  LegalArgs

include ProcedureInterface as Rcv with ch  rcvCh;Args  LegalArgs

module Inner

parameters

cstate : variable

Init(p)
�

= (cstate[p] = \A") ^ :Rcv :Calling(p)
Forward(p)

�

= ^ Snd :Calling(p) ^ (cstate[p] = \A")

^ Rcv :Call(p; sndCh[p]:arg)

^ cstate0[p] = \B"

^ unchanged Snd :rtrner(p)

Fail(p)
�

= ^ Rcv :Calling(p) ^ (cstate[p] = \B")

^ Snd :Return(p; \RPCFailure")

^ cstate0[p] = \A"

^ unchanged Rcv :caller(p)

Reply(p)
�

= ^ :Rcv :Calling(p) ^ (cstate[p] = \B")

^ Snd :Return(p; rcvCh[p]:res)

^ cstate0[p] = \A"

^ unchanged Rcv :caller(p)

Next(p)
�

= Forward(p)_ Fail(p) _Reply(p)
vars(p)

�

= hcstate[p]; Snd :rtrner(p);Rcv :caller(p)i

MinFail(s; p)
�

= ^ VTimer(s;Fail(p); �; vars(p))

^ MinTimer(s;Fail(p); vars(p))

ISpec
�

= 8 p 2 PrIds : ^ Init(p) ^ 2[Next(p)]vars(p)
^ RT (vars(p)) ^ 999999 s : MinFail(s; p)

^ WF vars(p)(Next(p))

Spec
�

= 999999 cstate : Inner :ISpec

Fig. 20. The component speci�cation of the RPC clerk.
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The High-Level Proof The high-level proof uses the state function rstate and the

temporal formula

IImp(p; et ; ct ; pt ; rt)
�

=

Snd :LegalCaller(p) ^ Rcv :LegalReturner(p) ^RcvT (p; et)

^C :ISpec(p; ct) ^ L:LISpec(p; pt ; rt)^Hist(p) ^NonZeno

We de�ne rstate later; the only property we use in the high-level proof is that

the timers et , ct , pt , and rt do not occur in its de�nition.

1. Assume: 1. cstate; rstate; et ; ct ; pt ; rt ; lrhist : variable

2. p 2 PrIds
Prove: IImp(p; et ; ct ; pt ; rt)) ISpec(p)

Proof: Proved below.

2. Assume: 1. cstate; rstate; lrhist : variable

2. p 2 PrIds
Prove: (999999 et ; ct ; pt ; rt : Snd :LegalCaller(p) ^ Rcv :LegalReturner(p)

^RcvT (p; et)^C :ISpec(p; ct) ^ L:LISpec(p; pt ; rt)
^Hist(p)) ) ISpec(p)

Proof: By step 1 and TLA quanti�er rules, because et , ct , pt , and rt do

not occur in the de�nition of IPSpec(p) or rstate, so they do not occur in

ISpec(p).

module RPCImplementation

import RPC, RPCParameters, Reals, RealTime

parameters

�; �; � : constant

clCh : variable

assumption

TDEAssump
�

= ^ f�; �; �g � fr 2 Real : r > 0g
^ � > 2 � � + �

RcvTiming
�

= 8 p 2 PrIds :
999999 s : ^ RT (Rcv :rtrner(p))

^ VTimer(s; 9 v :Rcv :Return(p; v); �; rcvCh[p])
^ MaxTimer(s)

include LossyRPC as L with sndCh  clCh, rcvCh  rcvCh

include RPCClerk as C with sndCh  sndCh, rcvCh  clCh

theorem

Impl
�

= Snd :LegalCaller ^Rcv :LegalReturner ^RcvTiming
^ C :Spec ^ L:Spec ^NonZeno ) Spec

Fig. 21. Module RPCImplementation.
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The Speci�cation

RPC Component (imported from RPC )

v
�
= vars(p)

Init(p)
�
= (rstate[p] = \A") ^ :Rcv :Calling(p)

Next(p)
�

= Forward(p) _Reject(p)_ Fail(p) _Reply(p)

ISpec(p)
�
= Init(p)^2[Next(p)]v ^WFv(Next(p))

Spec
�
= 999999 rstate : 8 p 2 PrIds : ISpec(p)

The Implementation

The Sender (imported from RPC )

s
�
= Snd :caller(p)

Snd :Next(p)
�
= 9 a 2 LegalSndArgs : Snd :Call(p;a)

Snd :LegalCaller
�
= 8 p 2 PrIds : :Snd :Calling(p)^2[Snd :Next(p)]s

The Receiver (imported from RPC )

r
�

= Rcv :rtrner(p)

Rcv :Next(p)
�

= 9 v : Rcv :Return(p;v)

Rcv :LegalReturner
�
= 8 p 2 PrIds : 2[Rcv :Next(p)]r

RcvT (p; et)
�
= ^ RT (r) ^VTimer(et ;Rcv :Next(p);�; rcvCh[p])

^ MaxTimer(et)

RPC Clerk (included from RPCClerk)

c
�
= C :vars(p)

C :ISpec(p;ct)
�
= ^ C :Init(p) ^ 2[C :Next(p)]c ^ WF c(C :Next(p))

^ RT (c) ^ C :MinFail(ct ;p)

C :Spec
�
= 999999 cstate : 8 p 2 PrIds : C :ISpec(p)

Lossy RPC (included from LossyRPC )

l
�
= L:vars(p)

L:LISpec(p;pt ; rt)
�
= ^ L:Init(p)^2[L:LNext(p)]l

^ RT (l) ^ L:MaxProcess(pt ;p) ^ L:MaxReturn(rt ;p)

L:Spec
�
= 999999 rstate : 8 p 2 PrIds : L:LISpec(p)

Timing

TNext(x )
�
= (now 0

2 fr 2 Real : now < rg) ^ (x 0 = x )

VInit(t ;A; �; x )
�
= t = if Enabled hAix then now + � else 1

VNext(t ;A; �; x )
�
= t

0 = if (Enabled hAix )
0

then if hAix _ :Enabled hAix then now
0 + �

else t

else 1

MaxNext(t)
�
= (t 6=1)) (now 0

� t)

MinNext(t ;A)
�
= A) (now � t)

Fig. 22. De�nitions from module RPCImplementation, plus a few more.
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3. Assume: cstate; rstate; lrhist : variable

Prove: Snd :LegalCaller ^Rcv :LegalReturner ^ RcvTiming
^C :ISpec ^ L:LISpec ^Hist ) Spec

Proof: By step 2 and TLA quanti�er rules.

4. Q.E.D.

Proof: By step 3, the validity of 999999 lrhist :Hist , and TLA quanti�er rules.

The Proof of Step 1 The proof of step 1 is based on the predicate-action diagram

of Figure 23 on this page. In this diagram and in the rest of the proof, we assume

that � is de�ned so that r � s is false unless both r and s are elements of the

set Real of real numbers. We use notation similar to that in the proof of the

S1 S2

S(F;F;F; \A"; \A"; \B")

�

�

�

�

S6
S3

S5 S4

S(T;F;F; \A"; \A"; \B")

�

�

�

�

S(T;F;F; \B"; \A"; \AB")

�

�

�

�
^ S(T;T;F; \B"; \A"; \B")

^ ct = pt + � � �

^ pt � now

'

&

$

%

^ S(T;T;F; \B"; \B"; \B")

^ ct � rt + � � (2 � � + �)
^ rt � now

'

&

$

%

^ S(T;T;T; \B"; \B"; \B")

^ ct � et + � � (� + �)
^ et � now

'

&

$

%

-

?

C :Forward(p)

L:Forward(p)

?

C :Reply(p)

6

L:Reply(p)

6

9 v :
Rcv :Return(p;v)�

9 v 2 LegalSndArgs :

Snd :Call(p;v) -

L:Reject(p)�

Fig. 23. A predicate-action diagram of hs; r ; c; l ; hi for IImp(p; et ; ct ; pt ; rt).

memory implementation. The formal de�nition of S appears in Figure 24 on the

next page. Again, we de�ne the labels S1, . . . , S6 that appear in the predicate-

action diagram of Figure 23 to be synonymous with their respective predicates.

We de�ne the state function rstate so that:

rstate[p] = case S1 _ S2 _ S3 ! \A";

S4 _ S5 ! \B";

S6 ! lrhist [p]

Because we require that the timer variables not occur in rstate, we must replace

S3, S4, and S5 by just their S conjuncts in the actual de�nition of rstate[p].

The proof of the safety part of the RPC component's speci�cation involves

proving that Figure 23 is a correct predicate-action diagram for the formula
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S (ECalling ;CCalling ;LCalling ; cs; rs; lh)
�

=

^ ^ Snd :Calling(p) � ECalling

^ ECalling ) (sndCh[p]:arg 2 LegalSndArgs)
^ ^ C :Rcv :Calling(p) � CCalling

^ CCalling ) (clCh[p]:arg = sndCh[p]:arg)

^ L:Rcv :Calling(p) � LCalling

^ cstate[p] = cs

^ rstate[p] = rs

^ ^ lrhist [p] 2 if lh = \AB" then f\A"; \B"g
else flhg

^ (lrhist [p] = \A")) ^ L:RelayArg(p) =2 L:LegalRcvArgs
^ clCh[p]:res = \BadCall"

^ (lrhist [p] = \B") ^ (cs = \B") ^ :CCalling
) (clCh[p]:res = rcvCh[p]:res)

^ now 2 Real

Fig. 24. The formal de�nition of S , for p in PrIds.

IImp(p; et ; ct ; pt ; rt). The key step in this proof is showing that the clerk can

never take aC :Fail(p) step. The proof is essentially as follows. Because C :Fail(p)

is enabled only when C :Rcv :Calling(p) is true and cstate[p] equals \B", such

a step is possible only in states satisfying S3, S4, or S5. The equality and

inequalities in these state predicates, together with the assumptions on � , �, and

�, imply that ct is greater than now when S3, S4, or S5 holds. However, the

conjunct C :MinFail(ct ; p) in the clerk's speci�cation asserts that a C :Fail(p)

step can occur only when ct is less than or equal to now , so such a step is

impossible. This invariance reasoning about timer values is a direct formalization

of the intuitive argument that the lossy RPC component must return from a call

before the clerk can take a Fail(p) step. It is typical of assertional proofs of real-

time properties.

The formal proof of step 1 is analogous to the proof of step 1 of the mem-

ory implementation. Steps 1.1 and 1.2 assert that the predicate-action diagram

describes the initial state and transitions of formula IImp(p; et ; ct ; pt ; rt); steps

1.3 and 1.4 assert that the system described by the predicate-action implements

the initial condition and next-state relation of ISpec(p); and step 1.5 completes

the proof.

1.1. :Snd :Calling(p) ^C :Init(p)^ L:Init(p) ^ (h = \B") ^ (now 2 Real)
) S1
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1.2. Assume: ^ [Snd :Next(p)]s ^ [Rcv :Next(p)]r
^ [C :Next(p)]c ^ [L:LNext(p)]l ^ [HNext(p)]hc;l;h i

^ [TNext(r)]now ^ [TNext(c)]now ^ [TNext(l)]now
^ [VNext(et ;Rcv :Next(p); �; rcvCh[p])]het;rcvCh[p]i
^ [MaxNext(et)]now
^ [VNext(ct ;C :Fail(p); �; c)]hct ;ci
^ [MinNext(ct ;C :Fail(p))]c
^ [VNext(pt ;L:Forward(p)_ L:Reject(p); �;

hl ;C :Rcv :caller(p)i)]hpt;h l;C :Rcv :caller(p)ii

^ [MaxNext(pt)]now
^ [VNext(rt ;L:Reply(p); �;

hl ;Rcv :rtrner(p)i)]hrt;h l;Rcv:rtrner(p)ii

^ [MaxNext(rt)]now
Prove: 1. S1) _ S10 ^ uc hs; r ; c; l ; h i

_ S20 ^ Snd :Next(p) ^ uc hr ; c; l i
2. S2) _ S20 ^ uc hs; r ; c; l ; h i

_ S30 ^C :Forward(p)^ uc hs; r ; l i
3. S3) _ S30 ^ uc hs; r ; c; l ; h i

_ S40 ^ L:Forward(p)^ uc hs; r ; c i
_ S60 ^ L:Reject(p)^ (h0 = \A") ^ uc hs; r ; c i

4. S4) _ S40 ^ uc hs; r ; c; l ; h i
_ S50 ^Rcv :Next(p) ^ uc hs; c; l i

5. S5) _ S50 ^ uc hs; r ; c; l ; h i
_ S60 ^ L:Reply(p)^ uc hs; r ; c; h i

6. S6) _ S60 ^ uc hs; r ; c; l ; h i
_ S10 ^C :Reply(p)^ uc hs; r ; l i

1.3. S1) Init(p)

1.4. 1. S1 ^ S20 ^ Snd :Next(p) ^ uc hr ; c; l i ) uc v

2. S2 ^ S30 ^C :Forward(p)^ uc hs; r ; l i ) uc v

3. S3 ^ S40 ^ L:Forward(p)^ uc hs; r ; c i ) Forward(p)

4. S3 ^ S60 ^ L:Reject(p) ^ (h0 = \A") ^ uc hs; r ; c i ) uc v

5. S4 ^ S50 ^Rcv :Next(p) ^ uc hs; c; l i ) uc v

6. S5 ^ S60 ^ L:Reply(p) ^ uc hs; r ; c; h i ) uc v

7. S6 ^ S10 ^C :Reply(p)^ uc hs; r ; l i ) Reply(p) _Reject(p)
8. uc hs; r ; c; l ; h i ) uc v

1.5. Q.E.D.

The proofs of steps 1.1{1.4 use simple properties of real numbers and predi-

cate logic. They are omitted.

The Proof of Step 1.5 The high-level proof of step 1.5 is analogous to the proof

of step 1.5 of the memory implementation in Section 3.2.

Let: Inv(p)
�

= S1 _ S2 _ S3 _ S4 _ S5 _ S6
1.5.1. IImp(p; et ; ct ; pt ; rt)) 2Inv(p)



63

Proof: This follows from 1.1 and 1.2, using exactly the same reasoning

as in the corresponding step of the memory implementation proof.

1.5.2. IImp(p; et ; ct ; pt ; rt)^2Inv(p) ) Init(p) ^2[Next(p)]v
Proof: From 1.1, 1.3, and 1.4, using the TLA proof rules explained in

the memory implementation proof.

1.5.3. IImp(p; et ; ct ; pt ; rt)^2Inv(p) )WFv (Next(p))

Proof: Described below.

1.5.4. Q.E.D.

Proof: Step 1 follows from 1.5.1{1.5.3 by propositional logic.

The Proof of Step 1.5.3 It remains to prove step 1.5.3, which asserts that the

fairness property of the RPC speci�cation is satis�ed. We sketch the argument

intuitively. To prove WFv (Next(p)), it is enough to show that Next(p) cannot

be continuously enabled. The action is disabled in state S1. Therefore, it su�ces

to show that, if any of S2{S6 ever holds, then S1 must eventually hold. It is

clear from the predicate-action diagram of Figure 23 that this follows if we can

prove that none of the predicates S2{S6 can hold forever, which is established

as follows:

{ The implementation fairness property WFc(C :Next(p)) implies that neither

S2 nor S6 can hold forever.

{ To show that S3 cannot hold forever, observe that pt remains unchanged

while S3 holds. Since S3 asserts that pt is greater than or equal to now ,

and NonZeno implies that now increases without bound, S3 must eventu-

ally become false. Similar reasoning shows that neither S4 nor S5 can hold

forever.

Observe how NonZeno allows us to deduce eventual progress from invariance

properties. The RT , VTimer ,MinTimer , and MaxTimer formulas used to spec-

ify real-time system requirements are all safety properties. We infer liveness

properties from them by using the NonZeno assumption.
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