
327

Decomposing Specifications of Concurrent Systems∗

Mart́ın Abadi and Leslie Lamport

Systems Research Center, Digital Equipment Corporation
130 Lytton Avenue, Palo Alto, CA 94301, U.S.A.

We introduce a simple method for specifying individual components of a concurrent
system. The specification of the system is the conjunction of its components’ specifica-
tions. We show how to prove properties of the system by reasoning about its components.
Our approach is useful in substantial verification problems.

Keyword Codes: D.2.4; F.3.1
Keywords: Theory; Verification

1. INTRODUCTION

Large systems are built from smaller parts. We present a method for deducing prop-
erties of a system by reasoning about its components. We show how to represent an
individual component Πi by a formula Si so that the parallel composition usually denoted
cobegin Π1 ‖ . . . ‖Πn coend is represented by the formula S1 ∧ . . . ∧ Sn. Composition
is conjunction.
We reduce composition to conjunction not for the sake of elegance, but because it

is the best way we know to prove properties of composite systems. Rigorous reasoning
requires logic, and hence a language of logical formulas. It does not require a conventional
programming language for describing systems. We find it most convenient to regard
programs and circuit descriptions as low-level specifications, and to represent them in the
same logic used for higher-level specifications. The logic we use is TLA, the Temporal
Logic of Actions [14]. We do not discuss here the important problem of translating from
a low-level TLA specification to an implementation in a conventional language.
The idea of representing concurrent programs and their specifications as formulas in a

temporal logic was first proposed by Pnueli [17]. It was later observed that, if specifications
allow “stuttering” steps that leave the state unchanged, then Sl ⇒ Sh asserts that Sl

implements Sh [12]. Hence, proving that a lower-level specification implements a higher-
level one was reduced to proving a formula in the logic. Still later, it was noticed that the
formula ∃∃∃∃∃∃x : S specifies the same system as S except with the variable x hidden [1,13],
and variable hiding became logical quantification. The idea of composition as conjunction
has also been suggested [5,6,20], but our method for reducing composition to conjunction
is new.

∗This article was typeset using a LaTEX document style provided by Elsevier.



328

Composite specifications arise in two ways: by composing given parts to form a larger
system, and by decomposing a given system into smaller parts. These two situations call
for two methods of writing component specifications that differ in their treatment of the
component’s environment. This difference in turn leads to different proof rules. Here, we
consider only decomposition.
When decomposing a specification, the environment of each component is assumed to

be the other components, and is usually left implicit. To reason about a component,
we must state what we are assuming about its environment, and then prove that this
assumption is satisfied by the other components. The Decomposition Theorem of Section 5
provides the needed proof rule. It reduces the verification of a complex, low-level system to
proving properties of a higher-level specification and properties of one low-level component
at a time. Decomposing proofs in this way allows us to apply decision procedures to
verifications that hitherto required completely hand-guided proofs [11].
In the next section, we examine the issues that arise in decomposition. Our discussion

is informal, because we wish to show that these issues are fundamental, not artifacts of a
particular programming language or formalism. Section 3 covers the formal preliminaries,
Section 4 investigates a method of writing specifications of components, and Section 5
gives the Decomposition Theorem. Proofs appear in [4].

2. AN INFORMAL OVERVIEW

A complete system is one that is self-contained; it may be observed, but it does not
interact with the observer. A program is a complete system, provided we model inputs
as being generated nondeterministically by the program itself.
As a tiny example of a complete system, consider the following program, written in an

informal programming-language notation in which statements within angle brackets are
executed atomically.

Program GCD
var a initially 233344, b initially 233577899 ;
cobegin loop 〈 if a > b then a := a− b 〉 endloop

‖
loop 〈 if b > a then b := b− a 〉 endloop coend

Program GCD satisfies the correctness property that eventually a and b become and
remain equal to the gcd of 233344 and 233577899. We make no distinction between
programs and properties, writing them all as TLA formulas. If formula Mgcd represents
program GCD and formula Pgcd represents the correctness property, then the program
implements the property iff (if and only if)Mgcd implies Pgcd . Thus, correctness of program
GCD is verified by proving Mgcd ⇒ Pgcd .
In hierarchical development, one decomposes the specification of a system into specifi-

cations of its parts. As explained in Section 4, the specification Mgcd of program GCD can
be written as Ma ∧Mb, where Ma asserts that a initially equals 233344 and is repeatedly
decremented by the value of b whenever a > b, and where Mb is analogous. The formulas
Ma and Mb are the specifications of two processes Πa and Πb. We can write Πa and Πb

as



329

Process Πa Process Πb

output var a initially 233344 ; output var b initially 233577899 ;
input var b ; input var a ;
loop 〈 if a > b then a := a− b 〉 loop 〈 if b > a then b := b− a 〉
endloop endloop

One decomposes a specification in order to refine the components separately. We can
refine the GCD program, to remove simultaneous atomic accesses to both a and b, by
refining process Πa to

Process Πl
a

output var a initially 233344 ;
internal var ai ;
input var b ;
loop 〈 ai := b 〉 ; if 〈 a > ai 〉 then 〈 a := a− ai 〉 endloop

and refining Πb to the analogous process Πl
b.

The composition of processes Πl
a and Πl

b correctly implements program GCD. This is
expressed in TLA by the assertion that M l

a ∧M l
b implies Ma ∧Mb, where M

l
a and M l

b are
the formulas representing Πl

a and Πl
b.

We would like to decompose the proof of M l
a ∧M l

b ⇒ Ma ∧Mb into proofs of M l
a ⇒ Ma

and M l
b ⇒ Mb. These proofs would show that Πl

a implements Πa and Πl
b implements Πb.

Unfortunately, Πl
a does not implement Πa because, in the absence of assumptions about

when its input b can change, Πl
a can behave in ways that process Πa cannot. Process Πa

can decrement a only by the current value of b, but Πl
a can decrement a by a previous

value of b if b changes between the assignment to ai and the assignment to a. Similarly,
Πl

b does not implement Πb.
Process Πl

a does correctly implement process Πa in a context in which b does not change
when a > b. This is expressed in TLA by the formula Ea ∧M l

a ⇒ Ma, where Ea asserts
that b does not change when a > b. Similarly, Eb ∧M l

b ⇒ Mb holds, for the analogous Eb.
The Decomposition Theorem of Section 5 allows us to deduce M l

a ∧M l
b ⇒ Ma ∧Mb from

approximately the following hypotheses:

Ea ∧M l
a ⇒ Ma

Eb ∧M l
b ⇒ Mb

Ma ∧Mb ⇒ Ea ∧ Eb

(1)

The third hypothesis holds because the composition of processes Πa and Πb does not allow
a to change when b > a or b to change when a > b.
Observe that Ea asserts only the property of Π

l
b needed to guarantee that Πl

a implements
Πa. In a more complicated example, Ea will be significantly simpler than M l

b, the full
specification of Πl

b. Verifying these hypotheses will therefore be easier than proving M l
a ∧

M l
b ⇒ Ma∧Mb directly, since this proof requires reasoning about the specification M l

a∧M l
b

of the complete low-level program.
One cannot really deduce M l

a ∧M l
b ⇒ Ma ∧Mb from the hypotheses (1). For example,

(1) is trivially satisfied if Ea, Eb, Ma, and Mb all equal false; but we cannot deduce



330

M l
a ∧M l

b ⇒ false for arbitrary M l
a and M l

b. The precise hypotheses of the Decomposition
Theorem are more complicated, and we must develop a number of formal concepts in order
to state them. We also develop results that allow us to discharge these more complicated
hypotheses by proving conditions essentially as simple as (1).

3. PRELIMINARIES

3.1. TLA: a brief introduction
3.1.1. Review of the syntax and semantics
A state is an assignment of values to variables. (Technically, our variables are the

“flexible” variables of temporal logic that correspond to the variables of programming
languages; they are distinct from the variables of first-order logic.) A behavior is an
infinite sequence of states. Semantically, a TLA formula F is true or false of a behavior;
we say that F is valid, and write |= F , iff it is true of every behavior. Syntactically,
TLA formulas are built up from state functions using Boolean operators (¬, ∧, ∨, ⇒
[implication], and = [equivalence]) and the operators ′, ✷, and ∃∃∃∃∃∃, as described below.
A state function is like an expression in a programming language. Semantically, it

assigns a value to each state—for example 3 + x assigns to state s three plus the value
of the variable x in s. A state predicate is a Boolean-valued state function. An action
is a Boolean-valued expression containing primed and unprimed variables. Semantically,
an action is true or false of a pair of states, with primed variables referring to the second
state—for example, x + 1 > y′ is true for 〈s, t〉 iff the value of x + 1 in s is greater than
the value of y in t. A pair of states satisfying action A is called an A step. We say that
A is enabled in state s iff there exists a state t such that 〈s, t〉 is an A step. We write f ′

for the expression obtained by priming all the variables of the state function f , and [A]f
for A ∨ (f ′ = f), so an [A]f step is either an A step or a step that leaves f unchanged.
As usual in temporal logic, if F is a formula then ✷F is a formula that means that F

is always true. Using ✷ and “enabled” predicates, we can define fairness operators WF
and SF. The weak fairness formula WFv(A) asserts of a behavior that either there are
infinitely many A steps that change v, or there are infinitely many states in which such
steps are not enabled. The strong fairness formula SFv(A) asserts that either there are
infinitely many A steps that change v, or there are only finitely many states in which
such steps are enabled.
The formula ∃∃∃∃∃∃x : F essentially means that there is some way of choosing a sequence of

values for x such that the temporal formula F holds. We think of ∃∃∃∃∃∃x : F as “F with x
hidden” and call x an internal variable of ∃∃∃∃∃∃x : F . If x is a tuple of variables 〈x1, . . . , xk〉,
we write ∃∃∃∃∃∃x : F for ∃∃∃∃∃∃x1 : . . .∃∃∃∃∃∃xk : F .
The standard way of specifying a system in TLA is with a formula in the “canonical

form” ∃∃∃∃∃∃x : Init ∧ ✷[N ]v ∧ L, where Init is a predicate and L a conjunction of fairness
conditions. This formula asserts that there exists a sequence of values for x such that Init
is true for the initial state, every step of the behavior is an N step or leaves the state
function v unchanged, and L holds. For example, the specification Mgcd of the complete
high-level GCD program is written in canonical form by taking1

1A list of formulas bulleted with ∧ or ∨ denotes the conjunction or disjunction of the formulas, using
indentation to eliminate parentheses; ⇒ has lower precedence than the other Boolean operators.



331

Init
∆
= (a = 233344) ∧ (b = 233577899)

N ∆
= ∨ (a > b) ∧ (a′ = a− b) ∧ (b′ = b)

∨ (b > a) ∧ (b′ = b− a) ∧ (a′ = a)

v
∆
= 〈a, b〉

L
∆
= WFv(N )

(2)

3.1.2. Implementation and composition
Intuitively, a variable represents some part of the universe and a behavior represents a

possible complete history of the universe. A system Π is represented by a TLA formula
M that is true for precisely those behaviors that represent histories in which Π is running.
We make no formal distinction between systems, specifications, and properties; they are
all represented by TLA formulas, which we usually call specifications.
A specification M l implies a specification M iff every behavior that satisfies M l also

satisfies M , hence proving M l ⇒ M shows that the system Πl represented by M l imple-
ments the system or property Π represented by M . The formula M l ⇒ M is proved by
applying a handful of simple rules [14]. When M has the form ∃∃∃∃∃∃x : M̂ , a key step in the
proof is finding a refinement mapping—a tuple of state functions x such that M l implies

M̂ , where M̂ is the formula obtained by substituting x for x in M̂ . Under reasonable
assumptions, such a refinement mapping exists when M l ⇒ ∃∃∃∃∃∃x : M̂ is valid [1].
Composing two systems means constructing a universe in which they are both running.

If formulas M1 and M2 represent the two systems, then M1 ∧M2 represents their compo-
sition, since a behavior represents a possible history of a universe containing both systems
iff it satisfies both M1 and M2. Thus, in principle, composition is conjunction. We show
in Section 4 that composition is conjunction in practice as well.

3.2. Safety and closure
3.2.1. Definition of closure
A finite sequence of states is called a finite behavior. For any formula F and finite

behavior ρ, we say that ρ satisfies F iff ρ can be extended to an infinite behavior that
satisfies F . For convenience, we say that the empty sequence 〈 〉 satisfies every formula.
A safety property is a formula that is satisfied by an infinite behavior σ iff it is satisfied

by every prefix of σ [7]. For any predicate Init , action N , and state function v, the
formula Init ∧ ✷[N ]v is a safety property. It can be shown that, for any TLA formula
F , there is a TLA formula C(F ), called the closure of F , such that a behavior σ satisfies
C(F ) iff every prefix of σ satisfies F . Formula C(F ) is the strongest safety property such
that |= F ⇒ C(F ).
3.2.2. Machine closure
When writing a specification in the form Init ∧ ✷[N ]v ∧ L, we expect L to constrain

infinite behaviors, not finite ones. Formally, this means that the closure of Init∧✷[N ]v∧L
should be Init ∧✷[N ]v. A pair of properties (P, L) is called machine closed iff C(P ∧ L)
equals P [1]. (We often say informally that P ∧ L is machine closed.)
Proposition 1 below, which is proved in [2], shows that we can use fairness properties to

write machine-closed specifications. The proposition relies on the following definition: an
action A is a subaction of a safety property P iff for every finite behavior ρ = 〈r0, . . . , rn〉,
if ρ satisfies P and A is enabled in state rn, then there exists a state rn+1 such that



332

〈r0, . . . , rn+1〉 satisfies P and 〈rn, rn+1〉 is an A step. If A implies N , then A is a subaction
of Init ∧ ✷[N ]v.

Proposition 1 If P is a safety property and L is the conjunction of a countable number
of formulas of the form WFw(A) and/or SFw(A) such that A ∧ (w′ �= w) is a subaction
of P , then (P, L) is machine closed.

3.2.3. Closure and hiding
To apply the Decomposition Theorem, we must prove formulas of the form C(M1) ∧

. . .∧ C(Mn) ⇒ C(M). The obvious first step in proving such a formula is to compute the
closures C(M1), . . . , C(Mn), and C(M). We can use Proposition 1 to compute the closure
of a formula with no internal variables. When there are internal variables, the following
proposition allows us to reduce the proof of C(M1)∧ . . .∧C(Mn) ⇒ C(M) to the proof of
a formula in which the closures can be computed with Proposition 1.

Proposition 2 Let x, x1, . . . , xn be tuples of variables such that for each i, no variable
in xi occurs in M or in any Mj with i �= j.

If |=
n∧

i=1

C(Mi) ⇒ ∃∃∃∃∃∃ x : C(M), then |=
n∧

i=1

C(∃∃∃∃∃∃ xi : Mi) ⇒ C(∃∃∃∃∃∃x : M).

4. DECOMPOSITION

4.1. Interleaving and noninterleaving representations
When representing a history of the universe as a behavior, we can describe concurrent

changes to two objects ξ and ψ either by a single simultaneous change to the corresponding
variables x and y, or by separate changes to x and y in some order. If the changes to ξ
and ψ are directly linked, then it is usually most convenient to describe their concurrent
change by a single change to both x and y. However, if the changes are independent,
then we are free to choose whether or not to allow simultaneous changes to x and y. An
interleaving representation is one in which such simultaneous changes are disallowed.
When changes to ξ and ψ are directly linked, we often think of x and y as output

variables of a single component. An interleaving representation is then one in which si-
multaneous changes to output variables of different processes are disallowed. The absence
of such simultaneous changes can be expressed as a TLA formula. For a system with n
components in which vi is the tuple of output variables of component i, interleaving is
expressed by the formula

Disjoint(v1, . . . , vn)
∆
=

∧
i�=j

✷[(v′i = vi) ∨ (v′j = vj)]〈vi, vj〉

We have found that, in TLA, interleaving representations are usually easier to write
and to reason about. Moreover, an interleaving representation is adequate for reasoning
about a system if the system is modeled at a sufficiently fine grain of atomicity. How-
ever, TLA also works for noninterleaving representations. TLA does not mandate any
particular method for representing systems. Indeed, one can write specifications that are
intermediate between interleaving and noninterleaving representations.



333

4.2. Specifying a component
Let us consider how to write the specification M of one component of a larger system.

We assume that the free variables of the specification can be partitioned into tuples m of
output variables and e of input variables, where the component changes the values of the
variables of m only. (A more general situation is discussed below.) The specification of a
component has the same form ∃∃∃∃∃∃x : Init ∧ ✷[N ]v ∧ L as that of a complete system. For a
component specification:

v is the tuple 〈x, m, e〉.
Init describes the initial values of the component’s output variables m and internal vari-

ables x.

N should allow two kinds of steps—ones that the component performs, and ones that its
environment performs. Steps performed by the component, which change its output
variables m, are described by an action Nm. In an interleaving representation, the
component’s inputs and outputs cannot change simultaneously, soNm implies e′ = e.
In a noninterleaving representation, Nm does not constrain the value of e′, so the
variables of e do not appear primed in Nm. In either case, we are specifying the
component but not its environment, so we let the environment do anything except
change the component’s output variables or internal variables. In other words,
the environment is allowed to perform any step in which 〈m, x〉′ equals 〈m, x〉.
(Below, we describe more general specifications in which an environment action can
change x.) Therefore, N should equal Nm ∨ (〈m, x〉′ = 〈m, x〉).

L is the conjunction of fairness conditions of the form WF〈m, x〉(A) and SF〈m, x〉(A). For
an interleaving representation, which by definition does not allow steps that change
both e and m, the subscripts 〈m, x〉 and 〈e, m, x〉 yield equivalent fairness condi-
tions.

This leads us to write M in the form

M
∆
= ∃∃∃∃∃∃x : Init ∧ ✷[Nm ∨ (〈m, x〉′ = 〈m, x〉)]〈e, m, x〉 ∧ L (3)

By simple logic, (3) is equivalent to

M
∆
= ∃∃∃∃∃∃x : Init ∧ ✷[Nm]〈m, x〉 ∧ L (4)

For the specification Ma of process Πa in the GCD example, x is the empty tuple (there
is no internal variable), the input variable e is b, the output variable m is a, and

Inita
∆
= a = 233344

Na
∆
= (a > b) ∧ (a′ = a− b) ∧ (b′ = b)

Ma
∆
= Inita ∧ ✷[Na]a ∧ WFa(Na)

(5)

For the specification M l
a of the low-level process Πl

a, the tuple x is 〈ai , pca〉, where pca is
an internal variable that tells whether control is at the beginning of the loop or after the
assignment to ai . The specification has the form

M l
a

∆
= ∃∃∃∃∃∃ ai , pca : Init l

a ∧ ✷[N l
a]〈a, ai , pca〉 ∧ WF〈a, ai , pca〉(N l

a) (6)



334

for appropriate initial condition Init l
a and next-state action N l

a. The specifications Mb

and M l
b are similar.

In describing the component’s next-state action N , we required that an environment
action not change the component’s internal variables. One can also write a specification
in which the component records environment actions by changing its own internal vari-
ables. In this case, N will not equal Nm ∨ (〈m, x〉′ = 〈m, x〉), but may just imply
(e′ = e) ∨ (m′ = m). The resulting formula will not be a pure interleaving specifica-
tion because environment actions can change the component’s variables, but no action
can change both the component’s and the environment’s output variables. We have not
explored this style of specification.
We have been assuming that the visible variables of the component’s specification can

be partitioned into tuples m of output variables and e of input variables. To see how to
handle a more general case, let µM be the action m′ �= m, let v equal 〈e, m〉, and observe
that [NM ]〈m, x〉 equals [NM ∨ (¬µM ∧ (x′ = x))]〈v, x〉. A µM step is one that is attributed
to the component, since it changes the component’s output variables. When the tuple v
of variables is not partitioned into input and output variables, we define an action µM

that specifies what steps are attributed to the component, and we write the component’s
next-state action in the form NM ∨ (¬µM ∧ (x′ = x)). All our results for separate input
and output variables can be generalized by writing the next-state action in this form.
However, for simplicity, we consider only the special case.

4.3. Conjoining components to form a complete system
A complete system is the composition of its components. For composition really to

be conjunction, the conjunction of the specifications of all components should equal the
expected specification of the complete system. The following proposition shows that this
is so for interleaving representations.

Proposition 3 Let m1, . . . , mn, x1, . . . , xn be tuples of variables, and let

m
∆
= 〈m1, . . . , mn〉 x

∆
= 〈x1, . . . , xn〉

x̂i
∆
= 〈x1, . . . , xi−1, xi+1, . . . , xn〉

Mi
∆
= ∃∃∃∃∃∃ xi : Init i ∧ ✷[Ni]〈mi, xi〉 ∧ Li

If, for all i, j = 1, . . . , n with i �= j:

1. no variable of xj occurs free in xi or Mi.

2. m includes all free variables of Mi.

3. |= Ni ⇒ (m′
j = mj)

then

|=
n∧

i=1

Mi = ∃∃∃∃∃∃ x :
n∧

i=1

Init i ∧ ✷[
n∨

i=1

Ni ∧ (x̂′
i = x̂i)]〈m, x〉 ∧

n∧
i=1

Li

In this proposition, hypothesis 3 asserts that component i leaves the variables of other
components unchanged, so Mi is an interleaving representation of component i. Hence,



335

Mi implies Disjoint(mi, mj), for each j �= i, and
∧n

i=1 Mi implies Disjoint(m1, . . . , mn),
as expected for an interleaving representation of the complete system.
In the GCD example, we apply this proposition to the formula Ma of (5) and the

analogous formula Mb. We immediately get that Ma ∧Mb is equivalent to a formula that
is the same as Mgcd , defined by (2), except with WF〈a, b〉(Na) ∧ WF〈a, b〉(Nb) instead of
WF〈a, b〉(N ). It can be shown that these two fairness conditions are equivalent; hence,
Ma ∧Mb is equivalent to Mgcd.
Hypothesis 3 of Proposition 3 is satisfied only by interleaving representations. For

arbitrary representations, a straightforward calculation shows

|=
n∧

i=1

Mi = ∃∃∃∃∃∃x : ∧ ∧n
i=1 Init i

∧ ✷[
∧n

i=1(Ni ∨ 〈mi, xi〉′ = 〈mi, xi〉)]〈m, x〉
∧ ∧n

i=1 Li

(7)

assuming only the first hypothesis of the proposition. The right-hand side has the expected
form for a noninterleaving specification, since it allows Ni ∧ Nj steps for i �= j. Hence,
composition is conjunction for noninterleaving representations too.

5. THE DECOMPOSITION THEOREM

5.1. An additional temporal operator
The simplest statement of our decomposition theorem requires the introduction of one

more temporal construct: E+v asserts that, if the temporal formula E ever becomes false,
then the state function v stops changing. More precisely, a behavior σ satisfies E+v iff
either σ satisfies E, or there is some n such that E holds for the first n states of σ, and
v never changes from the (n+ 1)st state on.
Although we have defined it semantically, E+v can be expressed in terms of the primitive

TLA operations ′, ✷, and ∃∃∃∃∃∃. When E is a safety property in canonical form, it is easy to
write E+v explicitly:

Proposition 4 If x is a tuple of variables none of which occurs in v, and s is a variable
that does not occur in Init, N , w, v, or x, and

Înit
∆
= (Init ∧ (s = 0)) ∨ (¬Init ∧ (s = 1))

N̂ ∆
= ∨ (s = 0) ∧ ∨ (s′ = 0) ∧ (N ∨ (w′ = w))

∨ (s′ = 1) ∧ ¬(N ∨ (w′ = w))
∨ (s = 1) ∧ (s′ = 1) ∧ (v′ = v)

then |= (∃∃∃∃∃∃ x : Init ∧ ✷[N ]w)+v = ∃∃∃∃∃∃ x, s : Înit ∧ ✷[N̂ ]〈w, v, s〉.

We need to reason about + only to verify hypotheses of the form |= C(E)+v ∧ C(M l) ⇒
C(M) in our Decomposition Theorem. We can verify such a hypothesis by first applying
the observation that C(E)+v equals C(E+v) and using Proposition 4 to calculate E+v.
However, this approach is necessary only for noninterleaving specifications. The next
proposition provides a way of proving these hypotheses for interleaving specifications
without having to calculate E+v. The crucial third formula of the hypothesis is easy to
check when M l is an interleaving specification.



336

Proposition 5 Let v be a tuple of variables that includes all variables in M̂ ,
|= C(Ê) = InitE ∧ ✷[NE ]〈x, e〉,

|= C(M̂) = InitM ∧ ✷[NM ]〈y, m〉, and

|= C(M l) ⇒ (∃x : InitE ∨ ∃y : InitM) ∧ Disjoint(e, m).

If |= C(∃∃∃∃∃∃ x : Ê) ∧ C(M l) ⇒ C(∃∃∃∃∃∃ y : M̂)

then |= C(∃∃∃∃∃∃ x : Ê)+v ∧ C(M l) ⇒ C(∃∃∃∃∃∃ y : M̂).

5.2. The basic theorem
Consider a complete system decomposed into components Πi. We would like to prove

that this system is implemented by a lower-level one, consisting of components Πl
i, by

proving that each Πl
i implements Πi. Let Mi be the specification of Πi and M l

i be the
specification of Πl

i. We must prove that
∧n

i=1 M
l
i implies

∧n
i=1 Mi. This implication is

trivially true if M l
i implies Mi, for all i. However, as we saw in the GCD example, M l

i

need not imply Mi.
Even when M l

i ⇒ Mi does not hold, we need not reason about all the lower-level
components together. Instead, we prove Ei ∧ M l

i ⇒ Mi, where Ei includes just the
properties of the other components assumed by component i, and is usually much simpler
than

∧
k �=i M

l
k. Proving Ei ∧ M l

i ⇒ Mi involves reasoning only about component i, not
about the entire lower-level system.
In propositional logic, to deduce that

∧n
i=1 M

l
i implies

∧n
i=1 Mi from

∧n
i=1(Ei∧M l

i ⇒ Mi),
we may prove that

∧n
k=1 M

l
k implies Ei for each i. However, proving this still requires

reasoning about
∧n

k=1 M
l
k, the specification of the entire lower-level system. The following

theorem shows that we need only prove that Ei is implied by
∧n

k=1 Mk, the specification
of the higher-level system—a formula usually much simpler than

∧n
k=1 M

l
k.

Proving Ei ∧ M l
i ⇒ Mi and (

∧n
k=1 Mk) ⇒ Ei for each i and deducing (

∧n
i=1 M

l
i ) ⇒

(
∧n

i=1 Mi) is circular reasoning, and is not sound in general. Such reasoning would allow
us to deduce (

∧n
i=1 M

l
i ) ⇒ (

∧n
i=1 Mi) for anyM

l
i andMi—simply let Ei equalMi. To break

the circularity, we need to add some C’s and one hypothesis: if Ei is ever violated then,
for at least one additional step, M l

i implies Mi. This hypothesis is expressed formally as
|= C(Ei)+v ∧ C(M l

i ) ⇒ C(Mi), for some v; the hypothesis is weakest when v is taken to
be the tuple of all relevant variables. Our proof rule is:

Theorem 1 (Decomposition Theorem) If, for i = 1, . . . , n,

1. |=
n∧

j=1

C(Mj) ⇒ Ei

2. (a) |= C(Ei)+v ∧ C(M l
i ) ⇒ C(Mi)

(b) |= Ei ∧M l
i ⇒ Mi

then |=
n∧

i=1

M l
i ⇒

n∧
i=1

Mi.

In the GCD example, we can use the theorem to prove M l
a∧M l

b ⇒ Ma∧Mb. (The com-
ponent specifications are described in Section 4.2.) The abstract environment specification



337

Ea asserts that b can change only when a < b, and that a is not changed by steps that
change b. Thus,

Ea
∆
= ✷[(a < b) ∧ (a′ = a)]b

The definition of Eb is analogous. We let v be 〈a, b〉.
In general, the environment and component specifications can have internal variables.

The theorem also allows them to contain fairness conditions. However, hypothesis 1
asserts that the Ei are implied by safety properties. In practice, this means that the
theorem can be applied only when the Ei are safety properties. Examples indicate that,
in general, compositional reasoning is possible only when the environment conditions are
safety properties.

5.3. Verifying the hypotheses
We now discuss how one verifies the hypotheses of the Decomposition Theorem, illus-

trating the method with the GCD example.
To prove the first hypothesis, one first uses Propositions 1 and 2 to eliminate the closure

operators and existential quantifiers, reducing the hypothesis to a condition of the form

|=
n∧

i=1

(Init i ∧ ✷[Ni]vi
) ⇒ Ei (8)

For interleaving representations, we can then use Proposition 3 to write
∧n

i=1(Init i ∧
✷[Ni]vi

) in canonical form. For noninterleaving representations, we apply (7). In either
case, the proof of (8) is an implementation proof of the kind discussed in Section 3.1.2.
For the GCD example, the first hypothesis asserts that C(Ma) ∧ C(Mb) implies Ea and

Eb. This differs from the third hypothesis of (1) in Section 2 because of the C’s. To
verify the hypothesis, we can apply Proposition 1 to show that C(Ma) and C(Mb) are
obtained by simply deleting the fairness conditions from Ma and Mb. Since Nb implies
(a < b) ∧ (a′ = a), it is easy to see that C(Mb) implies Ea. It is equally easy to see that
C(Ma) implies Eb. (In more complicated examples, Ei will not follow from C(Mj) for any
single j.)
To prove part (a) of the second hypothesis, we first eliminate the +. For noninterleaving

representations, this must be done with Proposition 4. For interleaving representations,
we can apply Proposition 5. In either case, we can prove the resulting formula by first
using Proposition 2 to eliminate quantifiers, using Proposition 1 to compute closures, and
then performing a standard implementation proof with a refinement mapping.
Part (b) of the hypothesis also calls for a standard implementation proof, for which we

use the same refinement mapping as in the proof of (a). Since Ei implies C(Ei)+v and M l
i

implies C(M l
i ), we can infer from part (a) that Ei ∧M l

i implies C(Mi). Thus proving part
(b) requires verifying only the liveness part of Mi.
For the GCD example, we verify the two parts of the second hypothesis by proving

C(Ea)+〈a, b〉 ∧ C(M l
a) ⇒ C(Ma) and Ea ∧ M l

a ⇒ Ma; the proofs of the corresponding
conditions for Mb are similar. We first observe that the initial condition of Ea is true, and
that, since M l

a is an interleaving representation, its next-state action N l
a implies that no

step changes both a and b, so C(M l
a) implies Disjoint(a, b). Hence, applying Proposition 5,

we reduce our task to proving C(Ea) ∧ C(M l
a) ⇒ C(Ma) and Ea ∧ M l

a ⇒ Ma. Applying



338

Proposition 2 to remove the quantifier from C(M l
a) and Proposition 1 to remove the C’s,

we reduce proving C(Ea) ∧ C(M l
a) ⇒ C(Ma) to proving

Ea ∧ Init l
a ∧ ✷[N l

a]〈a, ai , pca〉 ⇒ Inita ∧ ✷[Na]a (9)

Using simple logic and (9), we reduce proving Ea ∧M l
a ⇒ Ma to proving

Ea ∧ Init l
a ∧ ✷[N l

a]〈a, ai , pca〉 ∧WF〈a, ai , pca〉(N l
a) ⇒ WFa(Na) (10)

We can use Proposition 3 to rewrite the left-hand sides of (9) and (10) in canonical form.
The resulting conditions are in the usual form for a TLA implementation proof.
In summary, by applying our propositions in a standard sequence, we can use the

Decomposition Theorem to reduce decompositional reasoning to ordinary TLA reasoning.
This reduction may seem complicated for so trivial an example as the GCD program, but
it will be an insignificant part of the proof for any realistic example.

5.4. The general theorem
We sometimes need to prove the correctness of systems defined inductively. At induction

stage N+1, the low- and high-level specifications are defined as the conjunctions of k copies
of low- and high-level specifications of stage N , respectively. For example, a 2N+1-bit
multiplier is sometimes implemented by combining four 2N -bit multipliers. We want to
prove by induction on N that the stage N low-level specification implements the stage N
high-level specification. For such a proof, we need a more general decomposition theorem
whose conclusion at stage N can be used in proving the hypotheses at state N+1. The
appropriate theorem is:

Theorem 2 (General Decomposition Theorem) If, for i = 1, . . . , n,

1. |= C(E) ∧
n∧

j=1

C(Mj) ⇒ Ei

2. (a) |= C(Ei)+v ∧ C(M l
i ) ⇒ C(Mi)

(b) |= Ei ∧M l
i ⇒ Mi

3. v is a tuple of variables including all the free variables of Mi.

then (a) |= C(E)+v ∧
n∧

j=1

C(M l
j) ⇒

n∧
j=1

C(Mj), and

(b) |= E ∧
n∧

j=1

M l
j ⇒

n∧
j=1

Mj.

Conclusion (b) of this theorem has the same form as hypothesis 2(b), with M l
i and Mi

replaced with conjunctions. To make the corresponding hypothesis 2(a) follow from con-
clusion (a), it suffices to prove

∧n
j=1 C(Mj) ⇒ C(∧n

j=1 Mj), since C(∧n
j=1 M

l
j) ⇒

∧n
j=1 C(M l

j)
is always true.
The General Decomposition Theorem has been applied to the verification of an induc-

tively defined multiplier circuit [11].
It can be shown that both versions of our decomposition theorem provide complete

rules for verifying that one composition implies another. However, this result is of no



339

significance. Decomposition can simplify a proof only if the proof can be decomposed,
in the sense that each M l

i implements the corresponding Mi under a simple environment
assumption Ei. Our theorems are designed to handle those proofs that can be decomposed.

6. COMPARISON WITH RELATED WORK AND CONCLUSIONS

We have developed a method for describing components of concurrent systems as TLA
formulas. Although the idea of reducing programming concepts to logic is old, our method
is new. Our style of writing specifications is direct and, we believe, practical.
We have also provided rules for proving properties of large systems by reasoning about

their components. The Decomposition Theorem is rather simple, yet it allows fairness
properties and hiding. The general treatment of fairness and hiding distinguishes our
approach from earlier ones for modular reasoning [3,5,9,15,16,18,19]. Moreover, this pre-
vious work is mainly concerned with composition of assumption/guarantee specifications,
while our rules are crafted to facilitate decomposition of complete systems. An exception
is the work of Berthet and Cerny [8], who used decomposition in proving safety properties
for finite-state automata.
We have used our Decomposition Theorem with no difficulty on a few toy examples.

However, we believe that its biggest payoff will be for systems that are too complex
to verify easily by hand. The theorem makes it possible for decision procedures to do
most of the work in verifying a system, even when these procedures cannot be applied
to the whole system because its state space is very large or unbounded. This approach
is currently being pursued in one substantial example: the mechanical verification of a
multiplier circuit using a combination of TLA reasoning and mechanical verification with
COSPAN [11]. Because it eliminates reasoning about the complete low-level system, the
Decomposition Theorem is the key to this division of labor.

REFERENCES

1. Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82(2):253–284, May 1991.

2. Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real time. Research
Report 91, Digital Equipment Corporation, Systems Research Center, 1992. An earlier
version, without proofs, appeared in [10, pages 1–27].

3. Mart́ın Abadi and Leslie Lamport. Composing specifications. ACM Transactions on
Programming Languages and Systems, 15(1):73–132, January 1993.

4. Mart́ın Abadi and Leslie Lamport. Conjoining specifications. To appear as an SRC
Research Report, 1993.

5. Mart́ın Abadi and Gordon Plotkin. A logical view of composition and refinement.
Theoretical Computer Science, 114(1):3–30, June 1993.

6. S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative linear
logic. Technical Report DoC 92/24, Department of Computing, Imperial College of
Science, Technology, and Medicine, 1992.

7. Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181–185, October 1985.



340

8. Christian Berthet and Eduard Cerny. An algebraic model for asynchronous circuits
verification. IEEE Transactions On Computers, 37(7):835–847, July 1988.

9. Pierre Collette. Application of the composition principle to Unity-like specifications.
In M.-C. Gaudel and J.-P. Jouannaud, editors, TAPSOFT’93: Theory and Practice
of Software Development, volume 668 of Lecture Notes in Computer Science, pages
230–242, Berlin, 1993. Springer-Verlag.

10. J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, editors. Real-Time:
Theory in Practice, volume 600 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 1992. Proceedings of a REX Real-Time Workshop, held in The Nether-
lands in June, 1991.

11. R. P. Kurshan and Leslie Lamport. Verification of a multiplier: 64 bits and beyond.
In Costas Courcoubetis, editor, Computer-Aided Verification, volume 697 of Lecture
Notes in Computer Science, pages 166–179, Berlin, June 1993. Springer-Verlag. Pro-
ceedings of the Fifth International Conference, CAV’93.

12. Leslie Lamport. What good is temporal logic? In R. E. A. Mason, editor, Information
Processing 83: Proceedings of the IFIP 9th World Congress, pages 657–668, Paris,
September 1983. IFIP, North-Holland.

13. Leslie Lamport. A simple approach to specifying concurrent systems. Communica-
tions of the ACM, 32(1):32–45, January 1989.

14. Leslie Lamport. The temporal logic of actions. Research Report 79, Digital Equip-
ment Corporation, Systems Research Center, December 1991. To appear in Transac-
tions on Programming Languages and Systems.

15. Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE Trans-
actions on Software Engineering, SE-7(4):417–426, July 1981.

16. Paritosh K. Pandya and Mathai Joseph. P-A logic—a compositional proof system for
distributed programs. Distributed Computing, 5(1):37–54, 1991.

17. Amir Pnueli. The temporal semantics of concurrent programs. Theoretical Computer
Science, 13:45–80, 1981.

18. Amir Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In Krzysztof R. Apt, editor, Logics and Models of Concurrent Systems, NATO
ASI Series, pages 123–144. Springer-Verlag, October 1984.

19. Eugene W. Stark. A proof technique for rely/guarantee properties. In S. N. Ma-
heshwari, editor, Foundations of Software Technology and Theoretical Computer Sci-
ence, volume 206 of Lecture Notes in Computer Science, pages 369–391, Berlin, 1985.
Springer-Verlag.

20. Pamela Zave and Michael Jackson. Conjunction as composition. Submitted for pub-
lication, June 1992.


