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1 Introduction

One way to implement multiprocess synchronization is by providing each process with a single-
writer, multi-reader atomic register (SWMR) that it can write and other processes can read.
We present an adaptive algorithm to implement such a system of registers with an array
of multi-writer multi-reader atomic (MWMR) registers whose length is linear in the number
of participating processes. The algorithm is non-blocking unless an unbounded number of
processes initiate operations.

An adaptive algorithm, also called a uniform algorithm [13], is one that does not know the
number of potentially participating processes. Equivalently, it is an algorithm whose cost is
a function not of the total number of processes but of the number of processes that actually
participate in the algorithm. For the SWMR registers, this is the number of processes that
actually perform a read or write operation. Our goal is to minimize the number of MWMR
registers, and our algorithm uses a number that is linear in the number of participants. No a
priori bound on this number is assumed.

Why do we find this algorithm interesting? There are simpler algorithms that assume
stronger communication primitives—for example, test and set registers—but MWMR registers
are the weakest ones for which we know that an adaptive algorithm is possible. More efficient
randomized algorithms are possible, but our algorithm is always correct, not just correct with
high probability. There is a trivial way to implement a collection of SWMR registers with an
array C of MWMR registers. The i th process simply uses C [i ] as its register. Of course, this
algorithm uses an unbounded number of registers. The obvious way to make the number of
registers linear in the number of participating processes is by having the processes first exe-
cute an adaptive renaming algorithm [7, 10] in which each participating process is assigned a
unique number from 0 to M for some M that depends linearly on the number of participants.
A process assigned the number j then uses C [j ] as its register. However, we know of few
renaming algorithms that do not assume a collection of SWMR registers already allocated to
processes [6, 8, 19]. Those algorithms are all based on the grid-network of “splitters” proposed
by of Anderson and Moir [19]. Of these, the more space-efficient is an improvement of Asp-
nes [6] that requires Θ(k3/2) MWMR registers for k participating processes. Even though the



renaming algorithm is used only to determine the assignment of processes to elements of the
array C , the values in those Θ(k3/2) registers must be maintained forever because additional
processes may enter the system at any time. (Reclaiming the space requires knowing an a
priori bound on the number of processors that might participate.) Thus, our algorithm is the
first that implements a collection of SWMR registers with O(k) MWMR registers.

Almost all previous methods for making an algorithm adaptive start by using one of several
renaming algorithms [2–4, 7, 10]. It has generally been assumed that this is the only way to
implement an adaptive algorithm [9]. Based on an idea in [11], our implementation avoids the
use of a renaming algorithm to begin reliable communication. Instead, participating processes
first announce their presence by using a non-blocking one-shot limited-snapshot algorithm that
we call the GFX (Generalized Fast eXclusion) protocol, which can be viewed as generalizing [16]
from 1-concurrency to k -concurrency. The snapshot is limited to having the property that two
snapshots of the same size coincide. It need not ensure that snapshots of different sizes are
related by containment. To perform a read or write operation to a register, a process first
reads the posted snapshots to find the number n of participants that have announced their
presence, and it executes an algorithm [11] that assumes at most n processes. It then reads the
number of participants again, finishing the operation if that number still equals n. Otherwise,
the process repeats the n-process algorithm for the new value of n. While we use this approach
to implement renaming, it can be used to provide an adaptive implementation of any task.

By using our adaptive algorithm for implementing a collection of SWMR registers, we
can solve any task under the assumption of finite arrival [14]. In particular, using existing
algorithms, we can implement adaptive renaming with a linear range [7, 10]. This in turn allows
us to allocate unique registers to processes with a number of registers linear in the number of
participants. With register allocation, we can implement a collection of SWMR registers with
wait-free read and write operations rather than just non-blocking ones. For many tasks of high
read-write complexity, doing renaming first may reduce the step complexity of an adaptive
algorithm.

We ignore time complexity—the number of steps taken by the algorithm. Our algorithm is
executed just once, to assign SWMR registers to processes; it adds nothing to the cost of using
those registers. Since space used by an adaptive algorithm cannot be reclaimed, it is perhaps
more important than time complexity. Still, optimal time complexity is an interesting problem
that remains unsolved.

In the non-adaptive case, it has been shown that at least n registers are required to im-
plement n SWMR registers [11], so the linear number of registers used by our algorithms is
optimal up to a constant factor. We originally believed that adaptive algorithms required more
than a linear number of registers, and we tried to derive such a lower bound on the number
of registers, independent of their size. When the difficulty is caused by processes stepping on
each other because of the lack of a priori coordination, size of the registers is not a factor. (See
the lower bound for consensus [12].) We were therefore surprised to discover our algorithm.

Section 2 describes our implementation and sketches an informal proof of its correctness.
(Some might call this sketch a proof.) In Section 3, the two key algorithms used in the
implementation are precisely described in the PlusCal algorithm language [18]. The section
also describes formal TLA+ correctness proofs of the safety properties of these algorithms. The
complete mechanically-checked proofs are available on the Web [15].

2 An Informal Proof of the Algorithm

A sequence of SWMR registers is easily implemented using an algorithm we call SnapShot .
We obtain this algorithm via two intermediate algorithms: the Leaky Repository Protocol and
Algorithm GFX. We give here informal proofs of these algorithms; formal proofs of algorithms
GFX and SnapShot are described in Section 3.



2.1 Preliminaries

Our algorithms assumes a small constant number of infinite arrays of MRMW registers, indexed
by natural numbers, all registers containing the same initial value that we take to be { } (the
empty set). The algorithms write into only the first k elements of the arrays, where k is a
linear function of the number of participating processes. Hence, they can be implemented by
finite arrays, given a bound on the number of possible participants.

Since we are interested only in space complexity, for simplicity we never read a single array
entry; we always atomically read the entire array, using the double scan method of [2]. To
allow scanning an infinite array A, we use an auxiliary infinite array A, where a process writes
A[i ] by first writing some value other than { } into A[0], . . . ,A[i ]. A scan of A can assume
A[i ] = { } for all i ≥ j if A[j ] = { }.

2.2 The Leaky Repository

The Leaky Repository Protocol maintains a repository of facts using an infinite array A of
MWMR registers, where the value of a register can be any finite set of facts. At any time,
the contents of the repository is the set A[0] ∪ A[1] ∪ . . . of facts, which can be obtained by
atomically reading the array A. The repository is leaky because facts stored in it may be lost.
We would like a process to be able to add a facts to the repository and have them remain there
forever, but that is hard to do. Instead, we describe a protocol that tries to do this. It doesn’t
succeed, but it does provide a property that makes it a useful building block for the GFX and
SnapShot algorithms.

Here is how process p tries to add a set F of facts to the repository. To try to avoid
destroying previously added facts, p writes to a register only by performing a read-then-write
operation that first atomically reads the entire array A and then writes the facts in F together
with all the other facts it has ever read or written. To try to keep the facts in F from being
overwritten by other processes, p performs such read-then-write operations to put the facts in
F into multiple registers. To use as little of the array A as possible, p writes into the first n
registers of A, for some n that it hopes is large enough.

Process p hopes that, if an atomic read of A shows the facts in F in each of the first
n registers of A, then that ensures they will remain in the repository forever. Of course, it
doesn’t—the repository is leaky. Here’s what can go wrong. Suppose that there are n processes
other than p, each of which has performed the read of a read-then-write operation to a different
one of the first n registers and is about to do the write. Process p can then perform read-then-
write operations to the first n registers and read A to find that those registers all contain the
facts in F . The n other processes can then perform their writes, destroying all traces of the
facts in F . Before the nth process writes, the contents of the repository satisfies:

R1. It contains all the facts in F .

This property is falsified by the nth process’s write. Each register i then contains a set Fi of
facts written by a different process pi . Moreover, each of the those n read-then-write operations
was begun before p’s final read of A. Therefore, the contents of the repository at that moment
satisfies the following property, where R is the read of A by p that found the facts of F in all
those n registers.

R2. It contains all the facts in F0 ∪ . . . ∪ Fn−1, for sets Fi such that there are n distinct
processes p0, . . . , pn−1 different from p, where each pi wrote Fi with a read-then-write
operation that began before R.

We now generalize from this scenario. Note that R1 and R2 assert properties (that may be
true or false) of an arbitrary read R of the repository by a process p that obtains a set F



of facts. R2 asserts the existence of some sets Fi and processes pi , not the ones from any
particular scenario. Note also that if a set S of facts satisfies R1 or R2, then any superset of
S also satisfies R1 or R2. We will prove the following:

Property R If a read R of A by process p finds F ⊆ A[i ] for i = 0, . . . ,n − 1, then
at all times after that read, the contents of the array A satisfies R1 or R2.

Property R allows R2 to be satisfied with different sets Fi and processes pi at different times,
and it allows R1 to become true again after it has become false. If there are at most n
participants when p performs R, then R2 can never be true, so the facts in F must remain in
the repository forever.

Property R is true of any protocol in which a process writes to a register of A using only a
read-then-write operation that first reads A and then writes all the facts it has ever read from
or written to A (perhaps writing additional facts too). We say that any such algorithm obeys
the Leaky Repository Protocol for repository A.

We could use the Leaky Repository Protocol in an obvious way to implement an add F
operation that always satisfies R1 or R2 after it has completed. However, we instead implement
an add & read f operation that adds a single fact f to the repository and returns a set F such
that F is the contents of the repository when the operation completes and thereafter always
satisfies R1 or R2, for some “suitable” n. What n is suitable varies with the application, and it
may depends on the add & read operation and on F . To perform an add & read f operation,
process p executes the Leaky Repository Protocol to keep writing f in registers. The operation
completes and returns the set F of facts when a read of A finds that F is the contents of the
repository and A[0] = · · · = A[n − 1] = F for some suitable n.

The add & read operation is used by Algorithm SnapShot with the “suitable” value of n
being the number of participants. In that case, R2 cannot be true, so the set of facts returned
by the add & read remain in the repository forever. To determine the number of participants,
SnapShot uses Algorithm GFX , which uses add & read operations in which the “suitable”
value of n is one plus the number of facts in the repository. Property R then implies that if
the facts that a process read from the repository are no longer all there, then facts added by
n + 1 other processes are.

A process p’s add & read operation need never complete. It can forever keep doing read-
then-write operations if other processes keep performing add & read operations that add new
facts. However, with a bounded number of participating processes and a bound on the number
of registers that each operation writes, the entire collection of add & read operations is non-
blocking—meaning that if some process is performing an add & read operation then some
add & read operation will eventually complete. To prove this, we suppose that some set of
processes is forever trying to perform add & read operations, none of which complete, and we
obtain a contradiction. Since each process writes non-decreasing sets of facts and there are
only a finite number of facts being added, eventually each process p forever reads only a fixed
set Fp of facts and keeps writing Fp . If all the sets Fp are the same, every process will write
only that set. Since there is a bound on the number of registers that an operation writes, this
implies that all the operations will finish. If all the Fp are not the same, choose a minimal
set Fq . Since q ’s operation doesn’t finish, it must eventually read a set Fr different from Fq .
Minimality of Fq implies that Fr contains a fact not in Fq , contradicting the assumption that
q reads only facts in Fq . Hence, the algorithm is non-blocking.

We now prove Property R. We must show that R1 or R2 holds forever after the read R of p
finds F ⊆ A[i ] for all i < n. Define W (i) to be the set (whose elements are sets of facts) that
contains every set of facts that some process is about to write into A[i ], having completed the
read of A in a read-then-write operation. Let W 0(i) be the value of W (i) when p performs



R. We show that the following invariant is true upon completion of p’s read R and is left true
by every further step of the algorithm:

For all i < n, the value of A[i ] and every element of W (i) contains (as a subset) either
F or an element of W 0(i).

The invariant is true upon completion of R because then W 0(i) = W (i) and F ⊆ A[i ] for all
i < n. A step that writes a value from W (i) into A[i ] obviously cannot falsify the invariant.
A step that adds a value to W (i) cannot falsify the invariant because the value being added to
W (i) contains all the facts obtained by reading the repository after read R, which includes the
value of A[i ]. This completes the proof of invariance. The invariant implies that the contents
of the repository satisfies R1 or R2, since either (i) some A[i ] contains F , so R1 holds, or else
(ii) each A[i ] with i < n contains an element of W 0(i), which by definition of W 0(i) implies
that the union of the A[i ] satisfies R2. This proves Property R.

2.3 Algorithm GFX

Algorithm GFX is a one-shot algorithm, meaning that it is executed at most once by any
process. It solves the following weaker version of the snapshot task [2]: A process p that
executes the algorithm must return a set Fp of participants such that

– p ∈ Fp for any p.

– |Fp | = |Fq | implies Fp = Fq for any p and q , where |F | is the cardinality of the set F .

To implement the algorithm, we use the Leaky Repository Protocol with a single infinite
array A1, where the repository’s facts are (names of) processes. A process p executes the
GFX algorithm by executing an add & read p operation that completes and returns a set
of facts/processes F until it reads A1[0] = · · · = A1[|F |] = F . Thus, the suitable n for this
add & read operation is 1 + |F |, where F is the set of facts being returned.

Now suppose a process p’s execution of the GFX algorithm completes and returns the
value F . Every write by a process q writes the fact/process q . Property R therefore implies
that after the read by p that completes its execution of the GFX algorithm, the repository
A1 forever contains either (by R1) all the processes in F or (by R2) |F |+ 1 distinct processes.
Any execution of the GFX algorithm that then completes cannot return a set G 6= F of facts
with |G | = |F |. This proves that the GFX algorithm satisfies its required properties.

Each execution of the GFX algorithm is an execution of an add & read operation for the
leaky repository that writes a number of registers at most one greater than the total number of
participants. The algorithm is therefore non-blocking if there is a bounded set of participants.
In a non-blocking one-shot algorithm with a finite set of participants, every execution of the
algorithm by a participant completes.

2.4 Algorithm SnapShot

Algorithm SnapShot implements a non-leaky repository that provides an add-and-read opera-
tion we call snap f that atomically adds the single fact f and returns the new contents of the
repository. More precisely, in addition to the obvious properties that snap f adds fact f and
returns only facts that have been added, the algorithm satisfies the property that if a snap
operation opp by process p returns set Fp and a snap operation opq by process q returns Fq ,
then:

– Fp ⊆ Fq or Fq ⊆ Fp .

– If opp finishes before opq starts, then Fp ⊆ Fq .



The idea of the SnapShot algorithm is to use the Leaky Repository Protocol on an array A3,
and to implement a snap f operation by an add & read f operation to the repository, where the
“sufficient” number n of registers is greater than the total number of participants. Property R
then implies that if the add & read f operation succeeds, the value returned remains forever
in the repository (because R2 cannot hold).

Let’s suppose that that there is a count operation that a process p can call to learn the
number of participants that can be executing a snap operation. To perform a snap f operation,
a process p first executes count to obtain a bound n on the number of participants. It then
executes the Leaky Repository Protocol to add f to the repository, writing in the first n registers
of A3. If a read of the repository obtains a value F such that A[0] = · · · = A[n − 1] = F ,
process p executes the count operation again. If that execution returns the same number n
of participants, then the snap f operation completes and returns the value F . Otherwise, the
process continues the procedure, replacing n with the new value returned by count.

If a snap f operation by process p completes and returns the set F of facts, Property R
holds for the final read of the repository that obtains F . Since F was in n registers and the read
occurred when there were at most n participants, R2 cannot hold. Hence R1 holds forever,
so F remains forever in the repository. Every snap operation that completes after p’s snap f
operation sees the facts in F and therefore returns a set G with F ⊆ G . This implies that the
SnapShot algorithm satisfies its requirement.

We still have to implement the count operation. We do that by using algorithm GFX
and a second array A2 of registers. When a participant p arrives, before performing any snap
operation it (i) executes GFX to obtain a set S of participants, which includes itself, and
(ii) writes (the processes in) S in A2[|S | − 1]. The correctness property of GFX implies that
no other value can ever be written in A2[|S | − 1]. Since the processes written in A2 are all
participants and every participant is written in A2, the set of all processes in A2 includes all
participants that can write to A3. The count operation is then performed by reading A2 and
counting the number of (distinct) processes read.

A snap operation executes a leaky repository’s add & read operations that write a number
of registers at most equal to the number of participating processes. Therefore, if there are a
bounded number of participants, then the SnapShot algorithm is non-blocking.

2.5 Implementing the SWMR Registers

Using algorithm SnapShot , the collection of SWMR registers is implemented as follows. To
write x as the i th write to its (simulated) SWMR register, a process p performs the operation
snap 〈p, i , x 〉, ignoring the value returned by the snap operation. To atomically read all pro-
cesses’ SWMR registers, a process executes a snap ⊥ operation for a special fact ⊥. (Algorithm
SnapShot allows multiple snap f operations with the same fact f .) The current value of process
q ’s register is the value x in the triple 〈q , i , x 〉 with the largest value of i in the set returned by
the snap operation. If no such triple exists, then q has not yet written to its SWMR register. It
follows easily from the properties of the SnapShot algorithm that this implements a collection
of SWMR registers with an atomic operation that reads all the registers.

3 The Formal Proofs

We believe that our implementation of SWMR registers from algorithm SnapShot is obvious
enough that a precise description of it and a formal proof of its correctness are not necessary.
However, algorithms GFX and SnapShot are subtle. In this section, we precisely describe
these algorithms in the PlusCal algorithm language [18]. PlusCal constructs whose meanings
may not be obvious are briefly explained as they are introduced. A PlusCal expression can



be any TLA+ formula [17], and a PlusCal algorithm is automatically translated to a TLA+

specification that defines the algorithm’s formal meaning.
We have written formal, mechanically-checked TLA+ correctness proofs of the safety prop-

erties of the GFX and SnapShot algorithms. Those proofs are sketched here; the complete
proofs are available on the Web [15]. Unlike the informal proofs of Section 2, which use be-
havioral reasoning, the formal proofs use purely assertional reasoning. They are therefore not
a direct formalization of the informal proofs.

Algorithms GFX and SnapShot are written in terms of the set Proc of all processes that
eventually participate. We assume that this set is finite (otherwise the algorithms would not
be non-blocking). Processes that perform no actions are not represented in our specifications.
Since processes do not use the value of Proc, our algorithm does not assume any a priori
knowledge of the number of participating processes.

3.1 Algorithm GFX

The Specification

The specification of what algorithm GFX is supposed to do is given by algorithm GFXSpec
of Figure 1. The variable statement declares the global variable result and initializes it to be

--algorithm GFXSpec
{ variable result = [p ∈ Proc 7→ {}]

process(Pr ∈ Proc)
{ A: with (P ∈ {Q ∈ subset Proc :

∧ self ∈ Q
∧ ∀p ∈ Proc \ {self } :
∨ Cardinality(result [p]) 6= Cardinality(Q)
∨ Q = result [p]

} )
{result [self ] := P}

}
}

Fig. 1. Specification of Algorithm GFX.

an array indexed by the set Proc of processes, with result [p] initially the empty set {} for each
process p. The process statement declares there to be one process for each element of Proc, the
statement’s body giving the code for process self . The statement with (x ∈ S ){Σ} executes
Σ with an arbitrary element of S substituted for x . The expression subset Proc denotes the
set of all subsets of Proc. TLA+ allows conjunctions and disjunctions to be represented as lists
of formulas bulleted with ∧ or ∨, using indentation to eliminate parentheses. (This notation
makes large formulas easier to read.)

In PlusCal, an atomic action is the execution of code from one label to the next, where
there is an implicit label Done at the end. Thus, the entire body of the process is executed as a
single atomic action A (named by the label). The with statement sets result [self ] to P , which
is an arbitrarily chosen element Q in the set of subsets of Proc such that (i) self is in Q and
(ii) for each other process p, either the cardinality of Q is unequal to the cardinality of result [p],
or else Q equals result [p]. Thus, a process p that does not execute its A action has result [p]
always equal to the empty set. A process p that executes its A action terminates with result [p]
equal to a set of processes containing p such that for any other process q , either result [p] and
result [q ] have different cardinalities, or result [p] = result [q ]. The TLA+ translation of the



algorithm introduces a variable pc, where pc[p] equals the label at which control is in process
p, so pc[p] equals either the string “A” or the string “Done”.

The Algorithm

Algorithm GFX is described in Figure 2. The variables known and notKnown are local to

--algorithm GFX
{ variables A1 = [i ∈ Nat 7→ {}], result = [p ∈ Proc 7→ {}] ;

process (Pr ∈ Proc)
variables known = {self }, notKnown = {} ;
{ a: known := known ∪ NUnion(A1) ;

notKnown := {i ∈ 0 . . (Cardinality(known)) : known 6= A1[i ]} ;
if (notKnown 6= {})
{ b : with (i ∈ notKnown) {A1[i ] := known} ;

goto a
}

else {result [self ] := known} ;
}

}

Fig. 2. Algorithm GFX.

self (the current process) and cannot be read or written by other processes. Variable known
stores the set of processes known to process self , and unKnown stores a set of array indices
(natural numbers). In the TLA+ translation, their values are arrays indexed by the set Proc.
The other new notation used in this algorithm is: Nat is the set of natural numbers, i . . j is
the set of integers k with i ≤ k ≤ j , and the operator NUnion is defined (in the TLA+ module
containing the algorithm) by

NUnion(A)
∆
= union{A[i ] : i ∈ Nat}

where the union expression is commonly written by mathematicians as
⋃

i ∈ Nat A[i ]. Eval-
uation of that expression is implemented by atomically reading the array A. Observe that
although result is a global variable, result [p] is accessed only by process p.

There are two atomic actions that a process p can execute. Action a sets known[p] and
notKnown[p], executes the if test, and then either goes to label b or else executes the else
clause, setting result [p], and terminates. Action b writes to one element of A1 and goes to
label a.

Safety The safety property satisfied by the GFX algorithm is that it implements algorithm
GFXSpec under the refinement mapping [1] that substitutes expressions of GFX ’s variables
for the variables of GFXSpec as follows:

result ← result
pc ← [p ∈ Proc 7→ if pc[p] = “Done” then “Done” else “A”]

Implementation under this refinement mapping means that in any execution of algorithm GFX ,
the sequence of values assumed by the substituting expressions is ones that algorithm GFXSpec
allows for its variables.

This safety property is a fairly direct consequence of the invariance of the assertion
GFXCorrect defined as follows. Let two sets of processes be compatible iff they are either



equal or have different cardinality. We define GFXCorrect to assert that, for any processes p
and q of Proc, if p and q have terminated then result [p] and result [q ] are compatible.

To understand why GFXCorrect is an invariant of algorithm GFX , observe that process
p terminates and sets result [p] to known[p] after using the GFX protocol to write known[p]
into registers A1[0], . . . , A1[Cardinality(known[p])]. Any process q that reads known[p] will
set known[q ] to be a superset of that value, so known[p] and known[q ] are compatible because
the definition of compatibility implies that two sets are compatible if one is a superset of the
other. If no process reads the value known[p], then Cardinality(known[p]) + 1 processes must
have written their known values into A1. Since known[r ] contains r , for each process r , the
union of all A1[i ] therefore has cardinality greater than that of known[p], and any process q
that then terminates will do so with result [q ] having cardinality greater than known[p].

To make this reasoning completely rigorous requires an inductive invariance proof [5]. Define
PA1 to be the set of potential values of the array A1, meaning the values that A1 could have
after some subset of the processes at control location b execute their b action. The key part of
the inductive invariant is:

∀p ∈ Proc, P ∈ PA1 :
∨ Cardinality(known[p]) < Cardinality(NUnion(P))
∨ known[p] ⊆ NUnion(P)

A machine-checked formal proof of safety is available on the Web [15].

Liveness The algorithm is non-blocking, meaning that if some process in Proc keeps taking
steps, then some process in Proc eventually terminates—even if other processes stop before
they terminate. The proof that GFX is non-blocking is by contradiction. Assume a non-
empty set Π of nonterminating processes in Proc that keep taking steps. For each process p
in Proc, elements are never removed from the set known[p], and known[p] is a subset of the
finite set Proc. Hence, eventually the values of known[p] remain unchanged for all p in Proc.
We consider the execution from that point on. Choose p in Π so that known[p] is minimal,
meaning that known[q ] is not a proper subset of known[p] for any q in Π. Since p has not
terminated and keeps taking steps, it must perform an infinite number of writes to registers
A[i ] with 0 ≤ i ≤ Cardinality(known[p]). Hence, it must perform an infinite number of writes
to A[j ] for some j . To do that, p must infinitely often read A[j ] to be different from the value
known[p] that p writes to A[j ]. At least one of those values of A[j ] must equal known[q ] for
some q in Π with q 6= p. Since known[p] does not change, this value of known[q ] must be a
subset of known[p]; and since known[q ] is unequal to known[p], it must be a proper subset of
known[p]. This contradicts the minimality of known[p].

Space complexity. A process p writes only to array elements A1[i ] with i ≤
Cardinality(known[p]). Since known[p] is a subset of the set Proc of participating processes,
this implies that no register A1[i ] with i > Cardinality(Proc) is ever written. Therefore,
algorithm GXF uses at most Cardinality(Proc) + 1 registers.

3.2 Algorithm SnapShot

The Specification

The SnapShot algorithm maintains a set S of values that is initially empty. It provides a snap
operation whose argument is a value v . Executing snap(v) atomically adds v to S and returns
the current value of S . Algorithm SnapSpec is specified in Figure 3. The only additional
PlusCal construct it introduces is either, where the statement either Σ1 or Σ2 is executed
by nondeterministically choosing either Σ1 or Σ2 and executing it.



--algorithm SnapSpec
{ variables myVals = [i ∈ Proc 7→ {}], nextout = [i ∈ Proc 7→ {}] ;
process (Pr ∈ Proc)

variable out = {} ;
{ A: while (true)

{ with (v ∈ Val) { myVals[self ] := myVals[self ] ∪ {v} } ;
B : with (V ∈ {W ∈ subset PUnion(myVals) :

∧ myVals[self ] ⊆W
∧ PUnion(nextout) ⊆W } )

{ nextout [self ] := V } ;
C : either out := nextout [self ]

or goto B ;
}

}
}

Fig. 3. Algorithm SnapSpec, the specification of SnapShot .

The algorithm appears in a TLA+ module that declares Proc as for the GFX algorithm,
declares the set Val , which represents the set of all possible values that can be added to S , and
defines the operator PUnion by

PUnion(A)
∆
= union {A[p] : p ∈ Proc}

The body of the while loop describes the snap(v) operation, where the value v is chosen
by executing the with (v ∈ Val) statement. The result returned by the operation is written
to the process-local variable out . The set S of values maintained by the algorithm equals
PUnion(nextout). Thus, action A represents choosing the value v ; action B represents adding
v to S and reading the current value of S (into nextout [self ]); and action C represents returning
the value read.

The Algorithm

Algorithm SnapShot appears in Figure 4. It uses two infinite arrays A2 and A3 of MWMR reg-
isters. The code contains no notation that hasn’t appeared in previous algorithms. The single
atomic action c atomically reads both A2 and A3 in evaluating NUnion(A2) and NUnion(A3).
However, the value of A2 that it reads is used only in the statement that writes to nextout , a
“history” variable that is never read. This variable is used only to reason about the algorithm.
The else clause in which nextout is set is not meant to be implemented.

A process p begins the algorithm by executing the GFX algorithm and writing the value
result [p] it obtains into A2[Cardinality(result [p])− 1]. Since GFX ensures that two processes
cannot obtain different values of result having the same cardinality, a value written in any reg-
ister A2[i ] remains there forever. Since result [p] contains p and is a subset of the participating
processes, this implies that NUnion(A2) is a subset of the participating processes containing
all processes that have finished executing the GFX algorithm.

The execution of algorithm GFX and writing into A2 is represented by action a of SnapShot .
Action a consists of action A of algorithm GFXSpec plus the assignment to A2. Having proved
that GFX implements GFXSpec, we can represent the code of GFX by the corresponding
code of GFXSpec. More precisely, we proved that algorithm GFX implements GFXSpec under
a refinement mapping in which result is implemented by variable result of GFX . From this,
it follows that proving the correctness of algorithm SnapShot proves the correctness of an
algorithm in which the code from GFXSpec in step a is replaced by the corresponding code of
GFX .



--algorithm SnapShot

{ variables result = [p ∈ Proc 7→ {}],
A2 = [i ∈ Nat 7→ {}], A3 = [i ∈ Nat 7→ {}];

process (Pr ∈ Proc)
variables myVals = {}, known = {}, notKnown = {},

lnbpart = 0, nbpart = 0, nextout = {}, out = {} ;

{ a: with (P ∈ {Q ∈ subsetProc :
∧ self ∈ Q
∧ ∀p ∈ Proc \ {self } :
∨ Cardinality(result [p]) 6= Cardinality(Q)
∨ Q = result [p]

} )
{ result [self ] := P } ;

A2[Cardinality(result [self ])− 1] := result [self ] ;

b: while ( true )
{ with (v ∈ Val) { myVals := myVals ∪ {v} } ;

known := myVals ∪ known ;
nbpart := Cardinality(NUnion(A2)) ;

c: lnbpart := nbpart ;
known := known ∪NUnion(A3) ;
notKnown := {i ∈ 0 . . (nbpart − 1) : known 6= A3[i ]} ;
if (notKnown 6= {}) { d : with (i ∈ notKnown)

{ A3[i ] := known };
goto c }

else if (nbpart = Cardinality(NUnion(A2)))
{ nextout := known } ;

e: nbpart := Cardinality(NUnion(A2)) ;
if (lnbpart = nbpart) {out := known}
else {goto c}

}
}

}

Fig. 4. Algorithm SnapShot.



The while loop at label b implements the while loop of SnapSpec. Action b, the first action
of the loop, first chooses the value v for which the process is performing the snap operation
and adds it to known. It then writes Cardinality(NUnion(A2)), which is an upper bound on
the number of processes executing the while loop, into nbpart . The loop body then executes
the Leaky Repository Protocol to write known into registers A3[0], . . . , A3[nbpart − 1]. The
properties of the protocol ensure that if the write succeeds, then the value that was written
will remain forever a subset of NUnion(A3) if there are still at most nbpart processes executing
the while loop. If so, the snap operation finishes and returns that value (by writing out);
otherwise, the process tries again.

Observe the similarity of actions c and d of algorithm SnapShot and the process code
(actions a and b) of algorithm GFX . If you understand why algorithm GFX is correct, you
will see why algorithm SnapShot is. In fact, algorithm SnapShot is less subtle because it makes
use of a possibly incorrect upper bound on the number of participants, trying again if the
bound was not correct.

The safety property satisfied by algorithm SnapShot is that it implements SnapSpec under
a suitable refinement mapping. However, a single process of SnapShot executing its a action
can implement the simultaneous execution of action C by multiple processes of SnapSpec, each
executing the action’s or clause. To define the refinement mapping, we would have to add
a special kind of auxiliary variable that adds “stuttering steps” to algorithm SnapShot [1].
Instead of doing that, we modify our specification to allow such simultaneous steps. The
necessary specification cannot be expressed in PlusCal, but it is easily written in TLA+ starting
from the PlusCal translation of the algorithm in Figure 3.

The modified specification is implemented under the refinement mapping that substitutes
the variables myVals, nextout , and out of SnapShot for the corresponding variables of SnapSpec,
and that substitutes the following expression for variable pc of SnapSpec:

[p ∈ Proc 7→ case pc[p] ∈ {“a”, “b”} → “A”
2 pc[p] ∈ {“c”, “d”} → “B”
2 pc[p] = “e”→ if lnbpart [p] = Cardinality(NUnion(A2))

then “C” else “B” ]

As usual, the proof of this implementation rests on an invariance proof. The key part of the
inductive invariant is:

∀p ∈ Proc : ∀P ∈ PA3 : nextout [p] ⊆ NUnion(P)

where PA3 is the set of potential values of A3, defined the same way as the set PA1 of potential
values of A1 for algorithm GFX . A rigorous proof is available on the Web [15].

To show that the algorithm is non-blocking, we first deduce from the non-blocking property
of algorithm GFX that every participating process eventually reaches the while loop. At that
point, A2 never again changes, so eventually the if condition in step e is forever true. The
proof is then the same as the proof for algorithm GFX , being based on the monotonicity of the
values of known[p] and the fact that a nonterminating process keeps reading and writing A3.

It is obvious that the SnapShot algorithm uses at most O(k) of the A2 and A3 registers
plus the O(k) registers used by algorithm GFX , where k is the cardinality of Proc.

4 Conclusion

We have built on earlier work of Delporte-Gallet et al. (DFGR) [11]. Unlike previous implemen-
tations of SWMR registers using arrays of MWMR registers, DFGR provided a non-blocking
implementation that did not first solve the renaming problem to allocate registers to processes.



However, their implementation required a known bound n on the number of participating
processes. It used the Leaky Repository Protocol with n registers, so there were not enough
different processes to destroy all traces of a write. To eliminate this requirement, we take full
advantage of the protocol in algorithm GFX , which allows all traces of a write to be destroyed
if each register’s value is overwritten by a different process. Using algorithm GFX , processes
can determine the current number n of participants. We then use a variant of the DFGR algo-
rithm that assumes there are at most n participants, but that aborts and retries if n changes
while performing an operation.

We have tried to make our algorithm easier to understand by breaking it into the GFX
algorithm and the SnapShot algorithm that uses GFX as a “subroutine”. The proof that the
two algorithms are non-blocking is straightforward. The safety properties of both algorithms
depend on their use of the Leaky Repository Protocol. Here, we have given informal correctness
proofs. We have written short, completely formal PlusCal descriptions of the algorithms.
Formal machine-checked proofs of their safety properties are available [15].

We have considered only complexity in the number of registers. DFGR showed that at least
n registers are required to implement n SWMR registers, so the linear number of registers used
by our algorithms is optimal up to a constant factor. The question of step complexity is still
completely open. We conjecture that there is an adaptive snapshot algorithm with a linear
number of registers with cubic step complexity.
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