
Adding “Process Algebra” to TLA

Leslie Lamport

Sun 22 Jan 1995 [12:44]

This is a rough first draft of some very sweet syntactic sugar for defining TLA
actions and associated predicates, inspired by process algebra. The first part
describes the notation; the second part contains some handwaving about how
one might use process-algebra style reasoning to verify specifications written
in this style. I think the first part is fairly reasonable; the verification part
is still pretty kludgy and needs a lot of work.

1 Specification

I first describe the notation in terms of a simple example. I then indicate
the general notation and approximately what it means.

1.1 An Example

The example is a specification of a simple, single-user memory. The user
sends either a 〈“Read”, l 〉 request to read location l or a 〈“Write”, l , v 〉
request to set location l to v . The memory responds to a read request with
〈“OK”, v 〉, where v is the current value of location l , and it responds to a
write request with 〈“OK”〉. No requests need ever occur, but the memory
must eventually respond to every request.

The specification is a bit more complicated than necessary because it
changes the memory with a separate, internal action. I did that to make the
example a bit more interesting. I assume that the action Send(v , c), which
sends the value v over channel c, is already defined. I let Locs and Vals
be the sets of possible memory locations and memory values, and InitMem
be the set of possible initial memory values. I use the TLA notation in
which [x except ! [i] = u] is array (function) x̂ that is the same as x except
x̂ [i] = u.

1

Here is the specification:

ProcAction N (pc) ∆=
(

⊕
l∈Locs

(Send(〈“Rd”, l 〉, c)mem ; rr : Send(〈“OK”,mem[l]〉)mem

⊕⊕
v∈Vals

Send(〈“Wr”, l , v 〉, c)mem ;
rw : ((mem ′ = [mem except ! [l] = v])c ;

Send(〈“OK”〉)mem)))∗

Spec ∆= ∃∃∃∃∃∃mem, pc :
∧ (mem ′ ∈ InitMem) ∧At(N (pc))
∧ ✷[N (pc)]〈mem,pc 〉
∧ ∀ l ∈ Locs : ∧ WFpc(rr(pc, l))

∧ ∀ v ∈ Vals : WFpc(rw(pc, l , v))

The ProcAction command defines the action N (pc) to equal the following,
where x , y , and z are arbitrary constants, and the constants x , y , z , rr , and
rw are assumed to be distinct.

∃ l ∈ Locs :
∨ ∨ ∧ pc = x

∧ pc′ = 〈rr , l 〉
∧ Send(〈“Rd”, l 〉, c) ∧ (mem ′ = mem)

∨ ∧ pc = 〈rr , l 〉
∧ pc′ = x
∧ Send(〈“OK”,mem[l]〉) ∧ (mem ′ = mem)

∨ ∃ v ∈ Vals :
∨ ∧ pc = x
∧ pc′ = 〈rw , l , v 〉
∧ Send(〈“Wr”, l , v 〉, c) ∧ (mem ′ = mem)

∨ ∧ pc = 〈rw , l , v 〉
∧ pc′ = 〈z , l , v 〉
∧ (mem ′ = [mem except ! [l] = v]) ∧ (c′ = c)

∨ ∧ pc = 〈z , l , v 〉
∧ pc′ = x
∧ Send(〈“OK”〉, c) ∧ (mem ′ = mem)

2

It also makes the following definitions (among others):

At(N (pc)) ∆= pc = x

rr(pc, l) ∆= ∧ pc = 〈rr , l 〉
∧ pc′ = x
∧ Send(〈“OK”,mem[l]〉) ∧ (mem ′ = mem)

rw(pc, l , v) ∆= ∨ ∧ pc = 〈rw , l , v 〉
∧ pc′ = 〈z , l , v 〉
∧ (mem ′ = [mem except ! [l] = v]) ∧ (c′ = c)

∨ ∧ pc = 〈rw , l , v 〉
∧ pc′ = x
∧ Send(〈“OK”〉, c) ∧ (mem ′ = mem)

1.2 The General Notation

The right-hand side of a ProcAction statement is an expression formed by
combining ordinary TLA actions with the following additional operators1

; ⊕
⊕

(. . .)∗ ↑ ‖ ‖
If A is an ordinary TLA action, then we let Af be an abbreviation for
A∧ (f ′ = f), allowing us to write unchanged expressions more compactly.
The additional operators have the following intuitive interpretation.

A;B — Do A then B .

A ⊕ B — Do A or B .
⊕
v∈S

A(v) — Do A(v) for some v ∈ S .

⊕
v

A(v) — Do A(v) for some v .

(A)∗ — Keep doing A actions forever, or until the loop is exited (see below).

A ↑ — Do A, then exit from the innermost containing (. . .)∗.

A‖B — Interleave A and B . (If A and B are ordinary TLA actions, then
A‖B is equivalent, in a sense explained below, to A;B ⊕ B ;A.)

1I’m not completely convinced that ‖ and ‖ are necessary.

3

‖
v∈S

A(v) and ‖
v
A(v) — Interleave the A(v) for all v ∈ S and all v , respec-

tively.

A label can be attached to any subexpression. (All labels must be unique
within the ProcAction statement.) If the subexpression l : A appears
in a ProcAction statement, then the following actions and predicates are
defined, where pc is the ProcAction variable and v1, . . . , vn is the sequence
of bound

⊕
variables containing the subexpression.

l(pc, v1, . . . , vn) A TLA action. A step of this action consists of performing
a step of one of the subactions of A.

At(l(pc, v1, . . . , vn)) The predicate asserting that control is at the beginning
of the subexpression.

In(l(pc, v1, . . . , vn)) The predicate asserting that control is at the beginning
or somewhere inside the subexpression.

After(l(pc, v1, . . . , vn)) The predicate asserting that control is immediately
after the subexpression.

It’s fairly straightforward to give a formal semantics to the ProcAction
statement with the operators I’ve defined so far. For future reference, I’ll
sketch how it’s done.

Let a primitive action be an expression of the form l : A, where A
is an ordinary TLA action. A p-action is an expression constructed from
such primitive actions using the operators “;”, ⊕, etc., where the labels l
are all distinct. A ProcAction statement defines a p-action for the entire
right-hand side, as well as for each label. Assume a control variable pc,
distinct from all variables that appear in primitive actions. We will define
a semantics of p-actions by defining, for each p-action P :

• A collection of constants LP called labels, with a distinguished element
atP called the at label.

• A collection of actions AP of the form (pc = l) ∧ (pc′ = k) ∧A, where
A is an ordinary TLA action in which pc does not occur, l ∈ LP , and k
is either a label in LP or one of the special constants “Done” or “Exit”.

We can then define
Act(P) ∆= ∃A ∈ AP : A
At(P) ∆= pc = atP
In(P) ∆= pc ∈ LP

After(P) ∆= pc = “Done”

4

These are the actions and predicates described informally above, where if P
has the label l and v1, . . . , vn are the enclosing

⊕
variables, then we write

l(pc, v1, . . . , vn) instead of Act(P), At(l(pc, v1, . . . , vn)) instead of At(P),
etc.

We then recursively define LP , atP , and AP for any p-action P . Here
are some of the recursive definitions:

• If P is the primitive action l : A, then LP
∆= {l} and AP contains the

single action (pc = l) ∧ (pc′ = “Done”) ∧ A.

• If P = P1;P2, then LP
∆= LP1∪LP2; atP

∆= atP1; and AP
∆= ÂP1∪AP2,

where ÂP1 consists of the actions of AP1 with atP2 substituted for
“Done”.

• If P =
⊕
v∈S

Q , then LP is the set consisting of atQ together with all

elements of the form 〈v , l 〉 with v ∈ S and l ∈ LQ , l �= atQ ; and
AP consists of the set of all actions obtained from actions in AQ by
replacing every label l in LQ different from atQ by 〈v , l 〉, for all v ∈ S .

• If P = P1‖P2, then LP is the set of all labels 〈 l1, l2〉, where li is
either in LP1 or equals “Done”, excluding 〈“Done”, “Done”〉; atP

∆=
〈atP1, atP2 〉; and AP

∆= ÂP1∪ÂP2, where ÂP1 consists of all actions of
the form (pc = 〈 l , l2〉)∧ (pc′ = 〈k , l2〉)∧A, for some (pc = l)∧ (pc′ =
k) ∧A in AP1 and some l2 in LP2 or equal to ”Done”, except writing
pc′ = “Done” instead of pc′ = 〈“Done”, “Done”〉, and pc′ = “Exit”
instead of pc′ = 〈“Exit”, l2〉.

The definitions for the other constructs are similar.

1.3 Is This Enough?

I don’t see any need for additional operators. I think that the only missing
standard CCS operators are hiding and more general recursion than sim-
ple looping. Hiding is expressed with the ordinary TLA quantifier ∃∃∃∃∃∃ . It
shouldn’t be hard to extend the language of p-actions to allow recursive def-
initions. For a recursively defined p-action P , the sets LP and AP become
infinite, but that shouldn’t cause any problem. However, I don’t think this
kind of recursive definition is necessary. I think that recursion should be
restricted to the definitions of data types. For example, here’s a specifica-
tion of a bounded buffer, with input channel in and output channel out , in

5

which a Put request waits if the buffer is full, and a Get request waits if the
buffer is empty.

ProcAction B(pc) ∆=
(

⊕
v∈Vals

Send(v , in)〈q ,out 〉 ;
p : (Len(q) �= Max) ∧ (q ′ = q ◦ 〈v 〉) ∧ Send(“OK”, in)out)∗

‖
(Send(“Get”, out)〈q ,in 〉 ;

g : (q �= 〈 〉) ∧ (q ′ = Tail(q)) ∧ Send(Head(q), out)in)∗

Spec ∆= ∃∃∃∃∃∃ q , pc : ∧ (q = 〈 〉) ∧ At(B(pc))
∧ ✷[B(pc)]〈q ,in,out ,pc 〉
∧ WF pc(g(pc)) ∧ ∀ v ∈ Vals : WF pc(p(pc, v))

Here’s an alternative way of writing the specification that does not use the
‖ construct.

ProcAction Put(pc) ∆=
(

⊕
v∈Vals

Send(v , in)〈q ,out 〉 ;
p : (Len(q) �= Max) ∧ (q ′ = q ◦ 〈v 〉) ∧ Send(“OK”, in)out)∗

ProcAction Get(pc) ∆=
(Send(“Get”, out)〈q ,in 〉 ;

g : (q �= 〈 〉) ∧ (q ′ = Tail(q)) ∧ Send(Head(q), out)in)∗

Spec ∆=
∃∃∃∃∃∃ q , pc1, pc2 :

∧ (q = 〈 〉) ∧ At(Put(pc1)) ∧ At(Get(pc2))
∧ ✷[Put(pc1)]in ∧ ✷[Get(pc2)]out ∧ ✷[(pc1′ �= pc1) ∨ (pc2′ �= pc2)]q
∧ WF pc(g(pc2)) ∧ ∀ v ∈ Vals : WF pc(p(pc1, v))

One might think of adding a synchronous parallel composition operator |||,
where A|||B is equivalent to A;B ⊕ B ;A ⊕ A ∧ B for primitive actions A
and B . However, I think that conjunction of temporal formulas can be used
just as easily to express synchronous composition.

2 Verification

Those of you old enough to remember

AUTHOR = "Susan Owicki and Leslie Lamport",

6

TITLE = "Proving Liveness Properties of Concurrent
Programs",

JOURNAL = toplas,
volume = 4,
number = 3,
YEAR = 1982,
month = JUL,
PAGES = "455--495"

will recognize the At , In, and After control predicates. What I’ve done is
define a tiny programming language. I know from experience that these
control predicates are all you need to prove properties about programs.
However, I expect that we can simulate the process-algebra style of proof
rules for reasoning about p-actions

Here’s a quick sketch of my idea for how this is done. I’ll stick to proving
safety properties. We have to prove

∃∃∃∃∃∃ z : Init1 ∧ ✷[N 1]〈x ,z 〉 ⇒ ∃∃∃∃∃∃ y : Init2 ∧ ✷[N 2]〈x ,y 〉

For this, it suffices to find a refinement mapping—a function y of x and
z—and prove Init1 ⇒ Init2 and

[N 1 ∧ I]〈x ,z 〉 ⇒ [N 2]〈x ,y 〉 (1)

where I is a suitable invariant and overbarring means substituting y for y .
I’ll ignore initial conditions and just consider (1). I’ll suppose N 1 and N 2
are written as p-actions with control variables pc1 and pc2, respectively.2

Then (1) can be written

[Act(N 1) ∧ I]〈x ,z ,pc1〉 ⇒ [Act(N 2)]〈x ,y,pc2〉 (2)

In general, y will be a function of x and z , and we’ll we’ll wind up defining
pc2 to be a function of pc1, so (2) reduces to

Act(N 1) ∧ I ⇒ [Act(N 2)]〈x ,y ,pc2〉 (3)

More precisely, we assume that we’re given the refinement mapping y for
the explicit internal variables y (excluding pc2), and we have to show that
there exists a function pc2 of pc1 so that (3) holds. The idea is to do this
recursively for the subexpressions of N 1 and N 2.

2In general, N 1 and N 2 may just include p-actions as disjuncts. In this case, the type
of verification I describe here is just part of the reasoning.

7

Let A and B be p-actions with control variables pc1 and pc2, respec-

tively. Let C
A|B
=⇒
f |g

D mean that there exists a mapping λ from LA to LB ∪
{“Done”, “Exit”} with λ(atA) = atB such that (f ′ = f) ⇒ (g ′ = g) and

∧ ∀ l ∈ LA : ∧ (pc1 = l) ⇒ (pc2 = λ(l))
∧ (pc1′ = l) ⇒ (pc2′ = λ(l))

∧ (pc1′ = “Done”) ⇒ (pc2′ = “Done”)
∧ (pc1′ = “Exit”) ⇒ (pc2′ = “Exit”)
∧ C
⇒ D ∨ ((g ′ = g) ∧ (pc2′ = pc2))

Let’s now let F be the formula obtained by substituting y for y in F , and
let F be the formula obtained by substituting pc2 for pc2 in F . Let’s also
abbreviate Act(A) to A. Then (3) becomes

N 1 ∧ I ⇒ [N 2]〈x ,y,pc2〉 (4)

To prove that there exists pc2 for which (4) holds, it suffices to prove

N 1 ∧ I
N1|N2
=⇒

〈x ,y 〉|〈x ,y 〉
N 2

We do this by applying “algebraic” rules to decompose the problem. First,
there is a rule for primitive actions and for each operator—for example:

• If A and B are primitive actions, (f ′ = f) ⇒ (g ′ = g), and I ∧ A ⇒
[B]g , then I ∧ A

A|B
=⇒
f |g

B .

• If A1
A1|B1
=⇒
f |g

B1 and A2
A2|B2
=⇒
f |g

B2, then A1;A2
A1;A2|B1;B2

=⇒
f |g

B1;B2.

• If A
A|B
=⇒
f |g

B for all v , then
⊕
v

A
⊕vA|⊕vB=⇒

f |g

⊕
v

B

The relation
A|B
=⇒
f |g

also obeys some general logical rules, such as:

• I ⇒ (C
A|B
=⇒
f |g

D) iff (I ∧ C)
A|B
=⇒
f |g

D .

• Transitivity: X
A|B
=⇒
f |g

Y and Y
B |C
=⇒
g |h

Z imply X
A|C
=⇒
f |h

Z .

8

We can also define an equivalence relation ⇔
f
, where A⇔

f
B iff A

A|B
=⇒
f |f

B and

B
B |A
=⇒
f |f

A. For example, if A and B are primitive actions, then

A‖B ⇔
f

A;B ⊕ B ;A

for any f . Another useful equivalence is (A; f ′ = f)⇔
f

A, which expresses

stuttering equivalence. The relation ⇔
f
should play the role of bisimulation

equivalence in process algebra.

9

