Adding "Process Algebra" to TLA

Leslie Lamport

Sun 22 Jan 1995 [12:44]

This is a rough first draft of some very sweet syntactic sugar for defining TLA actions and associated predicates, inspired by process algebra. The first part describes the notation; the second part contains some handwaving about how one might use process-algebra style reasoning to verify specifications written in this style. I think the first part is fairly reasonable; the verification part is still pretty kludgy and needs a lot of work.

1 Specification

I first describe the notation in terms of a simple example. I then indicate the general notation and approximately what it means.

1.1 An Example

The example is a specification of a simple, single-user memory. The user sends either a $\langle \text{"Read"}, l \rangle$ request to read location l or a $\langle \text{"Write"}, l, v \rangle$ request to set location l to v. The memory responds to a read request with $\langle \text{"OK"}, v \rangle$, where v is the current value of location l, and it responds to a write request with $\langle \text{"OK"} \rangle$. No requests need ever occur, but the memory must eventually respond to every request.

The specification is a bit more complicated than necessary because it changes the memory with a separate, internal action. I did that to make the example a bit more interesting. I assume that the action Send(v, c), which sends the value v over channel c, is already defined. I let *Locs* and *Vals* be the sets of possible memory locations and memory values, and *InitMem* be the set of possible initial memory values. I use the TLA notation in which [x EXCEPT ! [i] = u] is array (function) \hat{x} that is the same as x except $\hat{x}[i] = u$.

Here is the specification:

The **ProcAction** command defines the action N(pc) to equal the following, where x, y, and z are arbitrary constants, and the constants x, y, z, rr, and rw are assumed to be distinct.

$$\begin{array}{l} \exists \ l \in Locs \ : \\ \lor \ \lor \land \ pc = x \\ \land \ pc' = \langle rr, l \rangle \\ \land \ Send(\langle \ ``\mathsf{Rd}", l \rangle, c) \land (mem' = mem) \\ \lor \land \ pc = \langle rr, l \rangle \\ \land \ pc' = x \\ \land \ Send(\langle \ ``\mathsf{OK}", mem[l] \rangle) \land (mem' = mem) \\ \lor \ \exists \ v \in Vals \ : \\ \lor \land \ pc = x \\ \land \ pc' = \langle rw, l, v \rangle \\ \land \ Send(\langle \ ``\mathsf{Wr}", l, v \rangle, c) \land (mem' = mem) \\ \lor \land \ pc = \langle rw, l, v \rangle \\ \land \ pc' = \langle z, l, v \rangle \\ \land \ pc' = \langle z, l, v \rangle \\ \land \ pc' = x \\ \land \ Send(\langle \ ``\mathsf{OK}" \rangle, c) \land (mem' = mem) \end{array}$$

It also makes the following definitions (among others):

$$\begin{array}{lll} At(N(pc)) & \triangleq & pc = x \\ rr(pc,l) & \triangleq & \land pc = \langle rr,l \rangle \\ & \land pc' = x \\ & \land Send(\langle \text{``OK''}, mem[l] \rangle) \land (mem' = mem) \\ rw(pc,l,v) & \triangleq & \lor \land pc = \langle rw,l,v \rangle \\ & \land pc' = \langle z,l,v \rangle \\ & \land (mem' = [mem \text{ EXCEPT } ![l] = v]) \land (c' = c) \\ & \lor \land pc = \langle rw,l,v \rangle \\ & \land pc' = x \\ & \land Send(\langle \text{``OK''} \rangle, c) \land (mem' = mem) \end{array}$$

1.2 The General Notation

The right-hand side of a **ProcAction** statement is an expression formed by combining ordinary TLA actions with the following additional operators¹

 $; \quad \oplus \quad \bigoplus \quad (\ldots)^* \quad \uparrow \quad \parallel \quad \parallel$

If A is an ordinary TLA action, then we let A_f be an abbreviation for $A \wedge (f' = f)$, allowing us to write UNCHANGED expressions more compactly. The additional operators have the following intuitive interpretation.

- A; B Do A then B. $A \oplus B$ — Do A or B. $\bigoplus_{v \in S} A(v)$ — Do A(v) for some $v \in S$. $\bigoplus_{v} A(v)$ — Do A(v) for some v. $(A)^*$ — Keep doing A actions forever, or until the loop is exited (see below). $A \uparrow$ — Do A, then exit from the innermost containing $(\dots)^*$.
- $A \parallel B$ Interleave A and B. (If A and B are ordinary TLA actions, then $A \parallel B$ is equivalent, in a sense explained below, to $A; B \oplus B; A$.)

¹I'm not completely convinced that \parallel and \parallel are necessary.

 $\underset{v \in S}{\parallel} A(v) \text{ and } \underset{v}{\parallel} A(v) - \text{Interleave the } A(v) \text{ for all } v \in S \text{ and all } v, \text{ respectively.}$

A label can be attached to any subexpression. (All labels must be unique within the **ProcAction** statement.) If the subexpression l : A appears in a **ProcAction** statement, then the following actions and predicates are defined, where pc is the **ProcAction** variable and v_1, \ldots, v_n is the sequence of bound \bigoplus variables containing the subexpression.

- $l(pc, v_1, \ldots, v_n)$ A TLA action. A step of this action consists of performing a step of one of the subactions of A.
- $At(l(pc, v_1, \ldots, v_n))$ The predicate asserting that control is at the beginning of the subexpression.
- $In(l(pc, v_1, \ldots, v_n))$ The predicate asserting that control is at the beginning or somewhere inside the subexpression.
- After $(l(pc, v_1, \ldots, v_n))$ The predicate asserting that control is immediately after the subexpression.

It's fairly straightforward to give a formal semantics to the **ProcAction** statement with the operators I've defined so far. For future reference, I'll sketch how it's done.

Let a primitive action be an expression of the form l : A, where A is an ordinary TLA action. A p-action is an expression constructed from such primitive actions using the operators ";", \oplus , etc., where the labels l are all distinct. A **ProcAction** statement defines a p-action for the entire right-hand side, as well as for each label. Assume a control variable pc, distinct from all variables that appear in primitive actions. We will define a semantics of p-actions by defining, for each p-action P:

- A collection of constants L_P called *labels*, with a distinguished element at_P called the at label.
- A collection of actions A_P of the form $(pc = l) \land (pc' = k) \land A$, where A is an ordinary TLA action in which pc does not occur, $l \in L_P$, and k is either a label in L_P or one of the special constants "Done" or "Exit".

We can then define

$$Act(P) \stackrel{\Delta}{=} \exists A \in A_P : A$$
$$At(P) \stackrel{\Delta}{=} pc = at_P$$
$$In(P) \stackrel{\Delta}{=} pc \in L_P$$
$$After(P) \stackrel{\Delta}{=} pc = \text{``Done''}$$

These are the actions and predicates described informally above, where if P has the label l and v_1, \ldots, v_n are the enclosing \bigoplus variables, then we write $l(pc, v_1, \ldots, v_n)$ instead of Act(P), $At(l(pc, v_1, \ldots, v_n))$ instead of At(P), etc.

We then recursively define L_P , at_P , and A_P for any p-action P. Here are some of the recursive definitions:

- If P is the primitive action l : A, then L_P ≜ {l} and A_P contains the single action (pc = l) ∧ (pc' = "Done") ∧ A.
- If P = P1; P2, then $L_P \triangleq L_{P1} \cup L_{P2}$; $at_P \triangleq at_{P1}$; and $A_P \triangleq \widehat{A_{P1}} \cup A_{P2}$, where $\widehat{A_{P1}}$ consists of the actions of A_{P1} with at_{P2} substituted for "Done".
- If $P = \bigoplus_{v \in S} Q$, then L_P is the set consisting of at_Q together with all elements of the form $\langle v, l \rangle$ with $v \in S$ and $l \in L_Q$, $l \neq at_Q$; and A_P consists of the set of all actions obtained from actions in A_Q by replacing every label l in L_Q different from at_Q by $\langle v, l \rangle$, for all $v \in S$.
- If P = P1||P2, then L_P is the set of all labels (l1, l2), where li is either in L_{P1} or equals "Done", excluding ("Done", "Done"); at_P ≜ (at_{P1}, at_{P2}); and A_P ≜ Â_{P1} ∪ Â_{P2}, where Â_{P1} consists of all actions of the form (pc = (l, l2)) ∧ (pc' = (k, l2)) ∧ A, for some (pc = l) ∧ (pc' = k) ∧ A in A_{P1} and some l2 in L_{P2} or equal to "Done", except writing pc' = "Done" instead of pc' = ("Done", "Done"), and pc' = "Exit" instead of pc' = ("Exit", l2).

The definitions for the other constructs are similar.

1.3 Is This Enough?

I don't see any need for additional operators. I think that the only missing standard CCS operators are hiding and more general recursion than simple looping. Hiding is expressed with the ordinary TLA quantifier \exists . It shouldn't be hard to extend the language of p-actions to allow recursive definitions. For a recursively defined p-action P, the sets L_P and A_P become infinite, but that shouldn't cause any problem. However, I don't think this kind of recursive definition is necessary. I think that recursion should be restricted to the definitions of data types. For example, here's a specification of a bounded buffer, with input channel *in* and output channel *out*, in

which a *Put* request waits if the buffer is full, and a *Get* request waits if the buffer is empty.

ProcAction $B(pc) \triangleq$ $(\bigoplus_{v \in Vals} Send(v, in)_{\langle q, out \rangle};$ $v \in Vals \quad p : (Len(q) \neq Max) \land (q' = q \circ \langle v \rangle) \land Send("OK", in)_{out})^*$ \parallel $(Send("Get", out)_{\langle q, in \rangle};$ $g : (q \neq \langle \rangle) \land (q' = Tail(q)) \land Send(Head(q), out)_{in})^*$ $Spec \triangleq \exists q, pc : \land (q = \langle \rangle) \land At(B(pc))$ $\land \Box[B(pc)]_{\langle q, in, out, pc \rangle}$ $\land WF_{pc}(g(pc)) \land \forall v \in Vals : WF_{pc}(p(pc, v))$

Here's an alternative way of writing the specification that does not use the \parallel construct.

 $\begin{array}{l} \mathbf{ProcAction} \ Put(pc) \triangleq \\ (\bigoplus_{v \in Vals} \ Send(v,in)_{\langle q,out \rangle}; \\ v \in Vals \ p : (Len(q) \neq Max) \land (q' = q \circ \langle v \rangle) \land Send("\mathsf{OK}",in)_{out})^* \end{array}$ $\begin{array}{l} \mathbf{ProcAction} \ Get(pc) \triangleq \\ (\ Send("\mathsf{Get}",out)_{\langle q,in \rangle}; \\ g : (q \neq \langle \rangle) \land (q' = Tail(q)) \land Send(Head(q),out)_{in})^* \end{array}$ $\begin{array}{l} Spec \ \triangleq \\ \mathbf{J} \ q, pc1, pc2 : \\ \land (q = \langle \rangle) \land At(Put(pc1)) \land At(Get(pc2)) \\ \land \Box[Put(pc1)]_{in} \land \Box[Get(pc2)]_{out} \land \Box[(pc1' \neq pc1) \lor (pc2' \neq pc2)]_{q} \\ \land WF_{pc}(g(pc2)) \land \forall v \in Vals : WF_{pc}(p(pc1,v)) \end{array}$

One might think of adding a synchronous parallel composition operator |||, where A|||B is equivalent to $A; B \oplus B; A \oplus A \wedge B$ for primitive actions A and B. However, I think that conjunction of temporal formulas can be used just as easily to express synchronous composition.

2 Verification

Those of you old enough to remember

AUTHOR = "Susan Owicki and Leslie Lamport",

will recognize the At, In, and After control predicates. What I've done is define a tiny programming language. I know from experience that these control predicates are all you need to prove properties about programs. However, I expect that we can simulate the process-algebra style of proof rules for reasoning about p-actions

Here's a quick sketch of my idea for how this is done. I'll stick to proving safety properties. We have to prove

$$\exists z : Init1 \land \Box[N1]_{\langle x,z \rangle} \Rightarrow \exists y : Init2 \land \Box[N2]_{\langle x,y \rangle}$$

For this, it suffices to find a refinement mapping—a function \overline{y} of x and z—and prove $Init1 \Rightarrow \overline{Init2}$ and

$$[N1 \wedge I]_{\langle x, z \rangle} \Rightarrow [\overline{N2}]_{\langle x, \overline{y} \rangle} \tag{1}$$

where I is a suitable invariant and overbarring means substituting \overline{y} for y. I'll ignore initial conditions and just consider (1). I'll suppose N1 and N2 are written as p-actions with control variables pc1 and pc2, respectively.² Then (1) can be written

$$[Act(N1) \wedge I]_{\langle x, z, pc1 \rangle} \Rightarrow [\overline{Act(N2)}]_{\langle x, \overline{y}, \overline{pc2} \rangle}$$
(2)

In general, \overline{y} will be a function of x and z, and we'll we'll wind up defining $\overline{pc2}$ to be a function of pc1, so (2) reduces to

$$Act(N1) \wedge I \Rightarrow [\overline{Act(N2)}]_{\langle x,\overline{y},\overline{pc^2} \rangle}$$
(3)

More precisely, we assume that we're given the refinement mapping \overline{y} for the explicit internal variables y (excluding pc2), and we have to show that there exists a function $\overline{pc2}$ of pc1 so that (3) holds. The idea is to do this recursively for the subexpressions of N1 and N2.

 $^{^2 {\}rm In}$ general, N1 and N2 may just include p-actions as disjuncts. In this case, the type of verification I describe here is just part of the reasoning.

Let A and B be p-actions with control variables pc1 and pc2, respectively. Let $C \xrightarrow[f|g]{B} D$ mean that there exists a mapping λ from L_A to $L_B \cup$ {"Done", "Exit"} with $\lambda(at_A) = at_B$ such that $(f' = f) \Rightarrow (g' = g)$ and

$$\wedge \forall l \in L_A : \wedge (pc1 = l) \Rightarrow (pc2 = \lambda(l)) \\ \wedge (pc1' = l) \Rightarrow (pc2' = \lambda(l)) \\ \wedge (pc1' = \text{``Done''}) \Rightarrow (pc2' = \text{``Done''}) \\ \wedge (pc1' = \text{``Exit''}) \Rightarrow (pc2' = \text{``Exit''}) \\ \wedge C \\ \Rightarrow D \lor ((g' = g) \land (pc2' = pc2))$$

Let's now let \overline{F} be the formula obtained by substituting \overline{y} for y in F, and let \overline{F} be the formula obtained by substituting $\overline{pc2}$ for pc2 in \overline{F} . Let's also abbreviate Act(A) to A. Then (3) becomes

$$N1 \wedge I \Rightarrow [\overline{\overline{N2}}]_{\langle x, \overline{y}, \overline{pc2} \rangle} \tag{4}$$

To prove that there exists $\overline{pc2}$ for which (4) holds, it suffices to prove

$$N1 \wedge I \underset{\langle x,y \rangle | \langle x,\overline{y} \rangle}{\overset{N1|N2}{\Longrightarrow}} \overline{N2}$$

We do this by applying "algebraic" rules to decompose the problem. First, there is a rule for primitive actions and for each operator—for example:

- If A and B are primitive actions, $(f' = f) \Rightarrow (g' = g)$, and $I \land A \Rightarrow [B]_g$, then $I \land A \stackrel{A|B}{\underset{f|g}{\longrightarrow}} B$.
- If $A1 \xrightarrow[f]{g} B1$ and $A2 \xrightarrow[f]{g} B2$, then $A1; A2 \xrightarrow[f]{g} B1; B2$.
- If $A \xrightarrow[f]{B} B$ for all v, then $\bigoplus_{v} A \xrightarrow[f]{\oplus_{v} B} \bigoplus_{v} B \bigoplus_{v} B$

The relation $\xrightarrow[f]{B}{\Rightarrow}$ also obeys some general logical rules, such as:

- $I \Rightarrow (C \xrightarrow{A|B}{f|g} D)$ iff $(I \land C) \xrightarrow{A|B}{f|g} D$.
- Transitivity: $X \xrightarrow[f|g]{B|B} Y$ and $Y \xrightarrow[g|h]{B|C} Z$ imply $X \xrightarrow[f|h]{A|C} Z$.

We can also define an equivalence relation \Leftrightarrow_f , where $A \Leftrightarrow_f B$ iff $A \xrightarrow[f]{H} B$ and $B \xrightarrow[f]{H} A$. For example, if A and B are primitive actions, then

$$A \| B \underset{f}{\Leftrightarrow} A; B \oplus B; A$$

for any f. Another useful equivalence is $(A; f' = f) \underset{f}{\Leftrightarrow} A$, which expresses stuttering equivalence. The relation $\underset{f}{\Leftrightarrow}$ should play the role of bisimulation equivalence in process algebra.