Adding “Process Algebra” to TLA

Leslie Lamport

Sun 22 Jan 1995 [12:44]

This is a rough first draft of some very sweet syntactic sugar for defining TLA
actions and associated predicates, inspired by process algebra. The first part
describes the notation; the second part contains some handwaving about how
one might use process-algebra style reasoning to verify specifications written
in this style. I think the first part is fairly reasonable; the verification part
is still pretty kludgy and needs a lot of work.

1 Specification

I first describe the notation in terms of a simple example. I then indicate
the general notation and approximately what it means.

1.1 An Example

The example is a specification of a simple, single-user memory. The user
sends either a (“Read”,l) request to read location [or a (“Write”, [, v)
request to set location [to v . The memory responds to a read request with
(“OK”,v), where v is the current value of location [, and it responds to a
write request with (“OK”). No requests need ever occur, but the memory
must eventually respond to every request.

The specification is a bit more complicated than necessary because it
changes the memory with a separate, internal action. I did that to make the
example a bit more interesting. I assume that the action Send(v, ¢), which
sends the value v over channel ¢, is already defined. I let Locs and Vals
be the sets of possible memory locations and memory values, and InitMem
be the set of possible initial memory values. 1 use the TLA notation in
which [z EXCEPT ![i] = u] is array (function) Z that is the same as x except
Z[i] = u.

Here is the specification:

ProcAction N(pc) =

(@ (Send({“Rd”,1), ¢)mem; 71 : Send({ “OK”, mem[l]))mem
l€Locs fas)

@ Send(< “Wr” | 1, U>, C)mem ;
veVals rw : ((mem' = [mem EXCEPT ![l] = v])¢;
Send({ “OK”) mem)))”

Spec £ Amem, pe :
A (mem’ € InitMem) N At(N (pc))
N D[N(pc)]<mem,pc>
AY 1€ Locs : N WFEp(rr(pc, 1))
ANYwv e Vals : WF,(rw(pe, 1, v))

The ProcAction command defines the action N (pc) to equal the following,
where z, y, and z are arbitrary constants, and the constants z, y, z, rr, and
rw are assumed to be distinct.

31 € Locs :
VVApc==zx
A pc = (rr,l)

A Send((“Rd”, 1), c) A (mem’ = mem)
VA pc=(rr,l)
Apc =z
A Send({“OK”, mem[l])) A (mem’ = mem)
VvV dv e Vals :
VApc=zx
A pc = (rw,l,v)
A Send({“Wr” 1, v), c) A (mem' = mem)
VA pe = (rw,l,v)
A pc ={z,1,v)
A (mem’ = [mem EXCEPT ![l] = v]) A (¢' = ¢)
Apc =z
A Send({“OK”), ¢) A (mem’ = mem)

It also makes the following definitions (among others):

At(N(pc)) = pc=z
rr(pc, 1) 2 Ape=(rrl)

A pd =z

A Send({“OK”, mem(l])) A (mem’ = mem)
rw(pe,l,v) = VA pec=(rw,l,v)

Apc ={z1,v)

A (mem’ = [mem EXCEPT ![l] = v]) A (¢' = ¢)
VA pe = (rw,l,v)

Apc =z

A Send({“OK”), c) A (mem' = mem)

1.2 The General Notation

The right-hand side of a ProcAction statement is an expression formed by
combining ordinary TLA actions with the following additional operators'

S <> R CPR L B |

If A is an ordinary TLA action, then we let Ay be an abbreviation for
AN (f' =), allowing us to write UNCHANGED expressions more compactly.
The additional operators have the following intuitive interpretation.

A; B — Do A then B.
A® B — Do A or B.

@A(v) — Do A(v) for some v € S.
veS

@A(v) — Do A(v) for some v.

v
(A)* — Keep doing A actions forever, or until the loop is exited (see below).
A1 — Do A, then exit from the innermost containing (...)*.

A||B — Interleave A and B. (If A and B are ordinary TLA actions, then
A||B is equivalent, in a sense explained below, to A; B @ B; A.)

I'm not completely convinced that || and || are necessary.

|| A(v) and || A(v) — Interleave the A(v) for all v € S and all v, respec-
veES v
tively.

A label can be attached to any subexpression. (All labels must be unique
within the ProcAction statement.) If the subexpression | : A appears
in a ProcAction statement, then the following actions and predicates are
defined, where pc is the ProcAction variable and vq, ..., v, is the sequence
of bound & variables containing the subexpression.

l(pc,v1,...,v,) A TLA action. A step of this action consists of performing
a step of one of the subactions of A.

At(l(pc,v1,...,v,)) The predicate asserting that control is at the beginning
of the subexpression.

In(l(pc,v1,...,v,)) The predicate asserting that control is at the beginning
or somewhere inside the subexpression.

After(l(pc,v1,...,v,)) The predicate asserting that control is immediately
after the subexpression.

It’s fairly straightforward to give a formal semantics to the ProcAction
statement with the operators I've defined so far. For future reference, I'll
sketch how it’s done.

Let a primitive action be an expression of the form [: A, where A
is an ordinary TLA action. A p-action is an expression constructed from
such primitive actions using the operators “;”, @, etc., where the labels [
are all distinct. A ProcAction statement defines a p-action for the entire
right-hand side, as well as for each label. Assume a control variable pc,
distinct from all variables that appear in primitive actions. We will define
a semantics of p-actions by defining, for each p-action P:

e A collection of constants Lp called labels, with a distinguished element
atp called the at label.

e A collection of actions Ap of the form (pc = 1) A (pc’ = k) A A, where
A is an ordinary TLA action in which pc does not occur, [€ Lp, and &
is either a label in Lp or one of the special constants “Done” or “Exit”.

We can then define

Act(P) 2 JAcAp: A
At(P) £ pc=atp
In(P) 2 pcelLp
After(P) £ pc = “Done”

4

These are the actions and predicates described informally above, where if P
has the label [and vy, ..., v, are the enclosing € variables, then we write
l(pc,v1,...,v,) instead of Act(P), At(l(pc,v1,...,vy)) instead of At(P),
etc.

We then recursively define Lp, atp, and Ap for any p-action P. Here
are some of the recursive definitions:

e If P is the primitive action I : A, then Lp = {I} and Ap contains the
single action (pc = 1) A (pc’ = “Done”) A A.

e If P = P1; P2, then Lp 2 LpiULpo; atp = atpr;and Ap = ApiUAps,
where Ap; consists of the actions of Ap; with atpy substituted for
“Done”.

o If P = @Q, then Lp is the set consisting of atg together with all

veES
elements of the form (v,l) with v € S and | € Lg, | # atg; and

Ap consists of the set of all actions obtained from actions in Ag by
replacing every label [in Lg different from atg by (v,[), forall v € S.

o If P = P1||P2, then Lp is the set of all labels ([1,[2), where i is
either in Lpy or equals “Done”, excluding (“Done”, “Done”); atp 2
(atpi,atpe); and Ap 2 Z;lufpg, where fT;l consists of all actions of
the form (pc = (1,12)) A (pc’ = (k,12)) A A, for some (pc = 1) A (pc’ =
k)N Ain Ap; and some [2 in Lpy or equal to "Done”, except writing
pc’ = “Done” instead of pc’ = (“Done”, “Done”), and pc’ = “Exit”
instead of pc’ = (“Exit”, 12).

The definitions for the other constructs are similar.

1.3 Is This Enough?

I don’t see any need for additional operators. I think that the only missing
standard CCS operators are hiding and more general recursion than sim-
ple looping. Hiding is expressed with the ordinary TLA quantifier 3. Tt
shouldn’t be hard to extend the language of p-actions to allow recursive def-
initions. For a recursively defined p-action P, the sets Lp and Ap become
infinite, but that shouldn’t cause any problem. However, I don’t think this
kind of recursive definition is necessary. I think that recursion should be
restricted to the definitions of data types. For example, here’s a specifica-
tion of a bounded buffer, with input channel in and output channel out, in

which a Put request waits if the buffer is full, and a Get request waits if the
buffer is empty.

ProcAction B(pc) =
(@ Send(vain)@,out);
veVals p : (Len(q) # Max) A (¢ = qo (v)) A Send(“OK”,in)ous)*
I

(Send(“Get”, out) g in);
g9 : (g # () A (¢ = Tail(q)) A Send(Head(q), out)pm)"

Spec = Aq,pc : A (= ()) N At(B(pc))

[(p)](q,m out,pc)
A WFp,;((pc)) ANV v € Vals : WF p(p(pc,v))

Here’s an alternative way of writing the specification that does not use the

|| construct.

ProcAction Put(pc) =
(@ Send(fu7in)(q,out);
veVals p : (Len(q) # Maz) A (¢ = qo (v)) A Send(“OK”, in)our)*
ProcAction Get(pc) =
(Send(“Get”, out)q n>
g: (¢g# ()N (¢ = Tail(q)) N Send(Head(q), out);p)*

A

Spec =
Elq pel, pe2 :
A (g = ()) N At(Put(pcl)) N At(Get(pc2))
A O[Put(pcl))in A D[Get(pe2)]out A B[(pel” # pel) V (pe2' # pe2)],
N WFp.(g(pc2)) AV v € Vals : WFp.(p(pcl,v))

One might think of adding a synchronous parallel composition operator |||,
where A|||B is equivalent to A; B @ B; A ® A A B for primitive actions A
and B. However, I think that conjunction of temporal formulas can be used
just as easily to express synchronous composition.

2 Verification

Those of you old enough to remember

AUTHOR = "Susan Owicki and Leslie Lamport",

TITLE = "Proving Liveness Properties of Concurrent
Programs",

JOURNAL = toplas,

volume = 4,

number = 3,

YEAR = 1982,

month = JUL,

PAGES = "455--495"

will recognize the At, In, and After control predicates. What I've done is
define a tiny programming language. I know from experience that these
control predicates are all you need to prove properties about programs.
However, I expect that we can simulate the process-algebra style of proof
rules for reasoning about p-actions

Here’s a quick sketch of my idea for how this is done. I'll stick to proving
safety properties. We have to prove

32 : Initl ANO[N1](,) = Ay : it2 AD[N2],

For this, it suffices to find a refinement mapping—a function 3 of = and
z—and prove Initl = Init2 and

[NLAT) () = [N2] (57 (1)

where [is a suitable invariant and overbarring means substituting 7 for y.
I'll ignore initial conditions and just consider (1). I'll suppose N1 and N2
are written as p-actions with control variables pcl and pc2, respectively.?
Then (1) can be written

[At(N1) A1)y 2 pery = [Act(N2)),, 5 o3 2)

In general, 7 will be a function of x and z, and we’ll we’ll wind up defining
pc2 to be a function of pcl, so (2) reduces to

Act(N1) AT = [Act(N2)] , 5 503) (3)

More precisely, we assume that we're given the refinement mapping ¥ for
the explicit internal variables y (excluding pc2), and we have to show that
there exists a function pc2 of pel so that (3) holds. The idea is to do this
recursively for the subexpressions of N1 and N2.

2In general, N1 and N2 may just include p-actions as disjuncts. In this case, the type
of verification I describe here is just part of the reasoning.

Let A and B be p-actions with control variables pcl and pc2, respec-

A|B
tively. Let C :‘>D mean that there exists a mapping A from Ly to Lp U

flg
{“Done”, “Exit” } with A(ata) = atp such that (f' = f) = (¢’ = g) and

AVYILELs: A (pel =1) = (pc2 = X(1))
A (pel’ = 1) = (pe2' = (D))

A (pcl’ = “Done”) = (pc2’ = “Done”)

A (pel! = “Exit”) = (pe2’ = “Exit”)

N C

= DV ((¢' = g) A (pc2' = pc2))

Let’s now let F be the formula obtained by substituting 7 for y in F, and
let F be the formula obtained by substituting pc2 for pc2 in F. Let’s also
abbreviate Act(A) to A. Then (3) becomes

To prove that there exists pc2 for which (4) holds, it suffices to prove

NinaT M2 R
(z.9)[(=.7)

<

We do this by applying “algebraic” rules to decompose the problem. First,
there is a rule for primitive actions and for each operator—for example:

e If A and B are primitive actions, (f' = f) = (¢’ = g), and I AN A =
[B,, then I A A22 B,

flg
o If A1A;::B§131 and A2 Ai::”?m, then A1; A2 Al?A;:LBQ?BQBL B2.
g g g

«If 4 ‘;::B; B for all v, then @A @”‘;::“Q“B [45Y;;
9 v 9 v

. AlB .
The relation = also obeys some general logical rules, such as:

flg
. I:>(C%3;D) iff (1 A C)i::B;D.
g g

Al|B B|C AlC
e Transitivity: X 22 ¥ and ¥ %5 Z imply X f::h> Z.
g

flg

8

A|B
We can also define an equivalence relation ?, where A ? Biff A f:‘\f> B and

B|A

B f:|f> A. For example, if A and B are primitive actions, then

A||B<?>A;B€9B;A

for any f. Another useful equivalence is (4;f = f) <?>A, which expresses
stuttering equivalence. The relation ? should play the role of bisimulation

equivalence in process algebra.

