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Abstract

A constraint is a relation among program variables that is main-
tained throughout execution. Type declarations and a very general
form of aliasing can be expressed as constraints. A proof system based
upon the interpretation of Hoare triples as temporal logic formulas is
given for reasoning about programs with constraints. The proof system
is shown to be sound and relatively complete, and example program
proofs are given.

1 Introduction

Type declarations and aliasing relations have traditionally been thought of
as unrelated concepts. However, both can be viewed as specifying properties
that do not change during program execution. This view leads to a uniform
method for reasoning about types and aliasing in which the usual Hoare
logic triples are regarded as temporal logic formulas.

Aliasing two variables x and y means they always have the same value.
This is usually implemented by allocating the same memory location to x
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and y, thereby ensuring that both variables are changed whenever either is
assigned a new value. However, they could be allocated separate memory
locations and both updated on an assignment to either. Viewing aliasing
as defining certain relationships between the values of variables, with no
implication about storage allocation, allows more general kinds of aliasing
and leads to a simple method for reasoning about aliasing.

To express a more general form of aliasing, we introduce the var state-
ment. To illustrate its use, suppose a program computes a temperature,
and that some times it is convenient to refer to that temperature in degrees
Fahrenheit and other times in degrees Celsius. We will write the statement

var f, c : real constraints f = 9 ∗ c/5 + 32 in S

which declares variables f and c within statement S to be of type real and
to be aliased, so that if the value of f is a temperature in degrees Fahrenheit,
then the value of c is that temperature in degrees Celsius. Changing f causes
a corresponding change to c, and vice-versa. Notice that this more general
form of aliasing cannot be implemented simply by allocating overlapping
memory locations to f and c.

The constraints clause of a var statement is a directive that a speci-
fied predicate—in our example, the aliasing relation f = 9 ∗ c/5 + 32—be
maintained as an invariant, which means that execution is aborted if the
predicate becomes false.

A type declaration can also be viewed as an invariant, so it can be
specified in a constraints clause. If we take the view that the type of a
variable defines the set of values that variable can have, then declaring a
variable f to be of type real is the same as requiring that the predicate
f ∈ R be true throughout execution, where R is the set of real numbers.1

Thus, we could eliminate the “: real” from the above var statement and
add the constraint x, y ∈ R. Since doing so would make the statement less
readable, we will retain the customary syntax for type declarations.

Aliasing and typing can be viewed in terms of constraints because they
are static properties. While dynamic properties, such as the values of vari-
ables, can be changed by execution of a program statement, static properties
cannot. (In most languages, like the one considered here, a declaration is
not a complete statement but rather part of a statement.) The methods we

1For simplicity, we assume R is the infinite set that mathematicians call the real num-
bers, thereby avoiding the problems that round-off errors would introduce for reasoning
about equality of expressions.
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develop for reasoning about aliasing and types can be used to reason about
any static property.

Returning to aliasing, consider a more complicated example in which a
program refers a point in terms of both its Cartesian coordinates x, y and
its polar coordinates r, θ. Variables x, y, r, and θ are declared as follows.

var x, y, r : real, θ : [0, 2 ∗ π)
constraints x = r ∗ cos(θ) and y = r ∗ sin(θ)

in S

(The type declaration for θ states that it is a real in the range 0 ≤ θ < 2π.)
We would like this declaration to mean that when x is changed, r and θ
are changed according to the constraints, but y is not. However, the fact
that y should not change is based upon the knowledge that x and y are
independent coordinates, which is not something discernible in the above
statement. An additional constraint is needed to specify that assigning to
x should not change the value of y and vice-versa; we write this constraint
as x ⊥ y. Similarly, r and θ should be independent, so assigning a value to
either r or θ does not change the other. Hence, the additional constraint
r ⊥ θ is needed. The following declaration of x, y, r, and θ gives the desired
aliasing relations.

var x, y, r : real, θ : [0, 2 ∗ π)
constraints x = r ∗ cos(θ) and y = r ∗ sin(θ)

and x ⊥ y and r ⊥ θ
in S

Finally, observe that the var statement can express forms of aliasing
traditionally implemented by overlapping storage. The statement

var full, right 4 : natural
constraints right 4 = full mod 16
in S

aliases variable right 4 to the right-most four bits of full, where natural
denotes the nonnegative integers. Moreover, the declaration ensures the
desired semantics even on a computer where integers are not stored in binary.

It is probably impossible for a compiler to handle our form of aliasing in
all its generality. While the Fahrenheit/Celsius and full/right 4 examples do
not pose difficult compiling problems, consider what happens if the following
statements appear in the body of the above var x, y, r, θ statement:
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read(x, y) ; write(θ)

Input values a, b with a �= 0 produce the output value arctan(b/a)—some-
thing no present-day compiler is likely to figure out.

We are interested in our general form of aliasing in order to reason about
implicit variables—variables representing portions of the program state that
are not directly visible to the programmer. For example, in a concurrent
programming language with primitives to perform buffered message-passing,
messages sent but not yet delivered are part of the state that must be de-
scribed by implicit variables. (The ρ and σ multisets of [18] are such vari-
ables.) Implicit variables often involve complex aliasing relations. For some
message-passing schemes, a channel is modelled by having an implicit vari-
able in a sender aliased to an implicit variable in the receiver. Even more
complex aliasing occurs when a channel emanating from a network is aliased
to the union of the channels emanating from its components. The CSP lan-
guage [10] supports such a hierarchical channel-naming scheme.

In the Generalized Hoare Logic (GHL) [12, 14], a logic for concurrent
programs, one must reason about state components that describe the control
state. In the original presentation of GHL, the control state was modelled
by at, in, and after predicates, where at(S) is true when control is at the
entry point of statement S, after(S) is true when control is at the exit point
of statement S, and in(S) is true when at(S) is true or control is at a
component of S. Axioms were given to describe the relations among these
predicates. Thus, if S is the statement S1;S2, the axioms of GHL state:

at(S) ≡ at(S1)
after(S) ≡ after(S2)

in(S) ≡ at(S) ∨ in(S1) ∨ in(S2)
after(S1) ≡ at(S2)

GHL included ad hoc rules for reasoning about these control predicates.
However, by viewing the control predicates as implicit variables, and con-
sidering the above relations not as equality of predicates but as aliasing
relations among variables, we can reason about the control state with ex-
actly the same rules used to reason about the values of ordinary program
variables. This is described in detail in [15].
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2 Primitives for Constrained Execution

A var statement, like the one for the Cartesian/polar coordinate example,
specifies three things:

• The names of new variables—x, y, r, and θ in the example.

• Constraints the new variables must satisfy, including those given ex-
plicitly by the constraints clause and those implicit in the type dec-
larations. In the example, the constraints are:

x ∈ R x = r ∗ cos(θ)
y ∈ R y = r ∗ sin(θ)
r ∈ R x ⊥ y
θ ∈ R ∧ 0 ≤ θ < 2π r ⊥ θ

• Other independence constraints involving the new variables. In the
example, there is the implicit assumption that x, y, r, and θ are not
aliased to any other variables, except perhaps variables declared in the
body of the var statement. Thus, there are implicit constraints x ⊥ q
for all variables q declared outside the var statement, and similarly
for y, r, and θ.

Instead of reasoning directly about the var statement, three primitive
statements are introduced, each of which performs one of the above func-
tions. These statements can be used to model the var statement and the
aliasing of implicit variables described above.

The new statement is used to define new variable names, where

new x1 , x2 , . . . , xn in S

defines x1, x2, . . . , xn to be new variable names for use within S. These
variable names, plus any defined in a new statement containing this one,
can be referenced from within S. The usual scoping rules apply, so that
a variable xi defined by this new statement is different from any other
variables with the same name defined by a different new statement.

The declare statement is used to specify constraints. The statement

declare C in S

where C is a predicate, indicates that C is to be maintained during exe-
cution of S and that abortion is to occur if this becomes impossible. If
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S contains a nondeterministic step, such as a nondeterministic assignment
statement, then the choice must be made (if possible) so that the truth of
C is maintained.

Finally, the may alias statement is used to specify independence rela-
tions implicit in a var statement. The statement

x may alias x1, x2, . . . , xn in S

specifies that, during execution of S, the value of x is independent of all
variables, other than x1, x2, . . . , xn, declared in the context of this state-
ment. Thus, this statement specifies constraints x ⊥ q for all variables q
not in the list x1, x2, . . . , xn. Although may alias specifies constraints,
it cannot be modeled with a declare statement because that would require
explicitly writing relations x ⊥ p for every variable name p different from
the xi, and there could be an infinite number of such names.

The new, declare, and may alias statements can be used to model a
var statement. The var x, y, r, θ example could be represented as:

new x, y, r, θ in
x may alias x, y, r, θ in

y may alias x, y, r, θ in
r may alias x, y, r, θ in

θ may alias x, y, r, θ in
declare x ∈ R and y ∈ R and

r ∈ R and θ ∈ [0, 2π) and
x = r ∗ cos(θ) and y = r ∗ sin(θ)
and x ⊥ y and r ⊥ θ

in S

In general, let x1, . . . , xn, y1, . . . , ym be n+m distinct variable names,
and let C be a predicate constructed from the m variables yi plus zero or
more of the xi. The statement

var x1 : T1, . . . , xn : Tn constraints C in S

is modeled by

new x1, x2, . . . , xn in
x1 may alias x1, . . . , xn, y1, . . . , ym in

. . . xn may alias x1, . . . , xn, y1, . . . , ym in
declare C and x1 ∈ T1 and

. . . and xn ∈ Tn

in S
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3 Reasoning About Constraints

Our goal is to prove partial correctness formulas of the form {P}S {Q},
as first proposed by Hoare [8]. To reason about constrained execution, we
interpret such a formula as a temporal assertion about the executions of
S—namely, {P}S {Q} is equivalent to the assertion that any terminating
execution of S beginning with a state in which P is true ends in a state in
which Q is true. Thus, we are viewing {P}S {Q} as a temporal formula,
which is not how it is usually viewed in Hoare’s logic.

One reasons about such temporal assertions with temporal logic.2 The
only knowledge of temporal logic needed to understand this paper is that
the temporal formula ✷A is true of a statement S if and only if A remains
true throughout every possible execution of S. The only formal rules for
reasoning about temporal logic formulas that we need are the following,
which are immediate consequences of the definition of ✷.

Strong Necessitation Rule:

P ⇒ Q

✷P ⇒ ✷Q

Multiplicative Axiom:

✷(A ∧ B) = ✷A ∧ ✷B

To apply temporal logic to program executions, we need to know what
actions are atomic. For example, the formula ✷A asserts that A is true before
and after each atomic action. In general, an atomic action represents the
execution of a primitive statement that can change the value of a variable.
Execution of an assignment statement is the only kind of atomic action
needed to describe the class of languages considered in this paper.

A program execution is a sequence of atomic actions. The possible exe-
cutions of the statement

declare C in S

are all those executions of S for which C is true throughout the execution—
that is, those executions for which ✷C is true. This leads immediately to
an inference rule for declare:

2See [16] for an elementary discussion of temporal logic and the appendix of [13] for
the more advanced temporal logic needed to formalize our method.
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declare Rule:
✷C ⇒ {P} S {Q}

{P} declare C in S {Q}
In this rule, the hypothesis states that the predicate {P}S {Q} is true or
that C does not hold throughout all executions of S.

Note that in our temporal logic interpretation of partial correctness for-
mulas, the pre- and postconditions are assertions about the program state,
so they must be Boolean-valued functions on the state. In particular, they
cannot contain temporal operators like ✷.

All the usual inference rules for partial correctness formulas (see [8]) still
hold under this new interpretation. For example,

Rule of Consequence:

P ′ � P, {P} S {Q}, Q � Q′

{P ′} S {Q′}

This rule allows the precondition of a partial correctness formula to be weak-
ened and the postcondition to be strengthened.

The only new general rule needed for reasoning about constraints is the

Constraint Strengthening Rule:

{P ∧ C} S {Q ∨ ¬C}
✷C ⇒ {P} S {Q}

To show the validity of this rule, observe that the hypothesis asserts that
every terminating execution of S that begins with P ∧ C true terminates
with Q ∨ ¬C true. Another way of saying this is:

For any terminating execution of S: C true of the initial state
implies that if P is true of the initial state then Q is true of the
final state or ¬C is true of the final state.

The conclusion asserts the following:

For any execution of S: C true throughout the execution implies
that if P is true of the initial state and the execution terminates,
then Q is true of the final state.
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It should now be clear why the hypothesis implies the conclusion.
The expression x ⊥ y, introduced above for stating independence, can

be given a precise meaning as a temporal formula. The formal definition is
given in the Appendix. Intuitively, x ⊥ y is the temporal formula asserting
that if the next atomic action of the program is an assignment to x, then
the assignment does not change the value of y, and if the next atomic action
is an assignment to y, then it does not change the value of x.

The most general kind of temporal formula we write is of the form

✷C ⇒ {P} S {Q}.

Because temporal formulas cannot appear in pre- and postconditions, ⊥
relations can appear only in C, which means they appear only in the form
✷(x ⊥ y). The temporal formula ✷(x ⊥ y) asserts that no assignment to x
during execution causes the value of y to change, and vice-versa.

Rules for reasoning about ⊥ could be deduced from its formal definition.
Instead, we state as axioms two properties that seem to be sufficient for
reasoning about programs. An obvious axiom is:

Commutativity Axiom:

x ⊥ y = y ⊥ x

Another obvious axiom states that if x is always equal to y, then ✷(y ⊥ z)
implies ✷(x ⊥ z). While this rule is sufficient for our examples, the following
generalization is sometimes needed.

Substitution Axiom: For any (single-valued) function f of n ar-
guments and for any variables x, y1, . . . , yn:

✷ (x = f(y1, . . . , yn) ∧ y1 ⊥ z ∧ . . . ∧ yn ⊥ z)
⇒ ✷(x ⊥ z)

4 Axioms For a Toy Language

In the preceding section, certain general rules for reasoning about temporal
logic formulas were given. We now give language-specific rules and axioms
for a toy language. The language contains the usual skip, assignment (:=),
concatenation (;), and while constructs, in addition to the aforementioned
new, declare, and may alias statements. As usual, there is one rule or
axiom for each language construct. The rule for declare was already given.
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4.1 Assignment

Consider the standard way of reasoning about assignment statements in
Hoare’s logic. Assuming there is no aliasing, one deduces

{true} x := y + 1 {x = y + 1}.

This formula is not valid when aliasing is allowed, because the assignment
might appear in the body of a var statement that aliases x to equal y,
in which case the postcondition x = y + 1 would be false. However, this
postcondition would be satisfied if x and y were not aliased, which means
that it would be satisfied if we constrained execution of x := y + 1 by
requiring that x ⊥ y hold. Hence, the rule to use when aliasing is possible
is

✷x ⊥ y ⇒ {true} x := y + 1 {x = y + 1}
(Remember that x ⊥ y cannot appear in the precondition because temporal
formulas may not appear in pre- or postconditions.)

More generally, the Assignment Axiom in Hoare’s logic is

{Q(exp, y1, . . . , yn)} x := exp {Q(x, y1, . . . , yn)}

where Q(x, y1, . . . , yn) is any predicate involving only the program variables
x, y1, . . . , yn, and exp is an expression. Again, this axiom is valid only if
x, the target of the assignment, is not aliased to any of the yi’s. Therefore,
when aliasing is allowed, the correct formula is

Assignment Axiom:

✷(x ⊥ y1 ∧ . . . ∧ x ⊥ yn) ⇒
{Q(exp, y1, . . . , yn)} x := exp {Q(x, y1, . . . , yn)}

4.2 May alias

Recall that the statement

x may alias x1, x2, . . . , xn in S

is really equivalent to
declare A in S
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where A is a conjunction of terms of the form x ⊥ y, for an infinite number
of variables y—namely, every y that is not among the xi. Therefore, the
declare rule gives the following:

✷A ⇒ {P} S {Q}
{P} x may alias x1, . . ., xn in S {Q} (1)

Now, let y1, y2, . . . , ym be a finite number of variables, all different from
any of the xi. Then,

A ⇒ (x ⊥ y1 ∧ . . . ∧ x ⊥ ym). (2)

Given
✷(x ⊥ y1 ∧ . . . ∧ x ⊥ ym) ⇒ {P} S {Q}

we use (2) to deduce
✷A ⇒ {P} S {Q}

which is the hypothesis of (1). Therefore, we get the following inference rule.

may alias Rule:

✷(x ⊥ y1 ∧ . . . ∧ x ⊥ ym) ⇒
{P} S {Q}, ∀i, j : yi

syn

�= xj

{P} x may alias x1, . . . , xn in S {Q}

where a
syn

�= b means that a and b are syntactically different variable names.

4.3 New

The rule for the new statement is essentially the same as the one for ordinary
Hoare triples—see Rule 16 of [1]. The statement

new x1 , . . . , xn in S

declares that the variables xi are different from all variables declared out-
side the statement. It is equivalent to substituting for all free (undeclared)
occurrences of xi in S another variable yi that is not used anywhere in
the entire program. Of course, when reasoning about S in isolation, we do
not know what the entire program is. However, since, we are concerned
only with a particular pre- and postcondition, it suffices to choose the yi so
that they don’t appear in that pre- or postcondition or in S. This leads to
the following rule, where S[y1/x1, . . . , yn/xn] is the statement obtained by
substituting yi for every free occurrence of xi in S, for i = 1, . . . , n.
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new Rule: For any distinct variable names y1, . . . , yn not oc-
curring free in P , S, or Q:

{P} S[y1/x1, . . . , yn/xn] {Q}
{P} new x1, . . . , xn in S {Q}

Note that, unlike [1], initial values for the variables xi in S are not assumed;
executions containing arbitrary initial values are permitted.

4.4 Remaining Statements

The axioms for the remaining statements are just the ordinary Hoare logic
partial correctness rules. For example, Hoare’s rule for statement concate-
nation is:

Statement Concatenation:

{P} S {Q′} , {Q′} S′ {Q}
{P} S;S′ {Q}

5 Examples

5.1 No Aliasing

We first consider an example in which there is no aliasing—that is, there
are no constraints. Let S be the statement

var x : real in y := y + 1;
x := y + 3

We will prove the obvious relation

{y = 1} S {y = 2} (3)

From the Assignment Axiom, we get

✷true ⇒ {y = 1} y := y + 1 {y = 2}
✷x′ ⊥ y ⇒ {y = 2} x′ := y + 3 {y = 2}

Using ordinary propositional logic and the Strong Necessitation Rule, the
antecedents of these implications can be strengthened to get

✷(x′ ⊥ y ∧ x′ ∈ R) ⇒ {y = 1} y := y + 1 {y = 2} (4)
✷(x′ ⊥ y ∧ x′ ∈ R) ⇒ {y = 2} x′ := y + 3 {y = 2} (5)
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Combining (4) and (5) gives

✷(x′ ⊥ y ∧ x′ ∈ R) ⇒
{y = 1} y := y + 1 {y = 2} ∧ {y = 2} x′ := y + 3 {y = 2}

Application of the Statement Concatenation Rule to the consequent of this
yields

✷(x′ ⊥ y ∧ x′ ∈ R) ⇒
{y = 1} y := y + 1; x′ := y + 3 {y = 2}

The declare Rule now allows us to conclude

✷(x′ ⊥ y) ⇒ {y = 1}
declare x′ ∈ R in

y := y + 1; x′ := y + 3 {y = 2}
Applying the may alias rule yields

{y = 1} x′ may alias x′, y in
declare x′ ∈ R in

y := y + 1; x′ := y + 3 {y = 2}
Finally, the new Rule allows us to deduce

{y = 1} new x in
x may alias x, y in

declare x ∈ R
in y := y + 1; x := y + 3 {y = 2}

The statement in this formula is equivalent to our original statement S,
according to the method of modeling var statements described in Section 2,
so the desired result is proved.

5.2 Simple Aliasing

Next, let S be the same as above except with x and y aliased:

var x : real constraint x = y in y := y + 1;
x := y + 3

Formula (3) is no longer valid for this program. Instead, we have

{y = 1} S {y = 5} (6)
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The proof of this is as follows. From the Assignment Axiom, we have

✷true ⇒ {y = 1} y := y + 1 {y = 2}
✷true ⇒ {y = 2} x′ := y + 3 {x′ = 5}

Combining these, using the Statement Concatenation Rule, yields

✷true ⇒ {y = 1} S′ {x′ = 5}
where S′ is the statement

y := y + 1; x′ := y + 3

Applying the Rule of Consequence to this, using the tautologies

(x′ = 5) ⇒ (y = 5 ∨ x′ �= y)
(y = 1 ∧ x′ = y) ⇒ (y = 1)

we conclude

✷true ⇒ {y = 1 ∧ x′ = y} S′ {y = 5 ∨ x′ �= y}
The Constraint Strengthening Rule now allows us to deduce

✷x′ = y ⇒ {y = 1} S′ {y = 5}
Using propositional logic and the Strong Necessitation Rule, we can strength-
en the antecedent of the implication to obtain

✷(x′ = y ∧ x′ ∈ R) ⇒ {y = 1} S′ {y = 5}
The declare Rule now yields

{y = 1} declare x′ = y and x′ ∈ R in S′ {y = 5}
from which the may alias Rule allows us to deduce

{y = 1} x′ may alias x′, y in
declare x′ = y and x′ ∈ R in

S′ {y = 5}
Finally, the new Rule allows the conclusion

{y = 1} new x in
x may alias x, y in

declare x = y and x ∈ R in
y := y + 1
x := y + 3 {y = 5}

This is just what is required to prove (6).

14



5.3 Cartesian/Polar Coordinates

As a final example, let S be the following statement.

var x, y : real
constraints x = r ∗ cos(θ) and y = r ∗ sin(θ)

and x ⊥ y in x := 2 ∗ x;
y := 2 ∗ y

A little trigonometry shows that if r is initially positive, then executing S
should double the value of r and leave θ unchanged. Thus, the following
should hold:

{r = r0 ∧ θ = θ0} S {r = 2r0 ∧ θ = θ0}

However, further reflection indicates that this is not quite valid because
executing S can add any even multiple of π to θ or can negate r and add
any odd multiple of π to θ. Thus, we stipulate that r ≥ 0 and 0 ≤ θ < 2π
remain true throughout execution, and prove

✷(r ≥ 0 ∧ 0 ≤ θ < 2π) ⇒
{r = r0 ∧ θ = θ0} S {r = 2r0 ∧ θ = θ0} (7)

Let S′ be the statement

x′ := 2 ∗ x′ ; y′ := 2 ∗ y′.

From the Statement Concatenation Rule and two applications of the As-
signment Axiom, we deduce

✷x′ ⊥ y′ ⇒ {x′ = r0 cos θ0 ∧ y′ = r0 sin θ0} S′

{x′ = 2r0 cos θ0 ∧ y′ = 2r0 sin θ0}

Now, note that the following are tautologies:

(x′ = r0 cos θ0 ∧ r cos θ = r0 cos θ0 ∧ x′ = r cos θ)
⇒ (x′ = r0 cos θ0)

(x′ = 2r0 cos θ0) ⇒ (r cos θ = 2r0 cos θ0 ∨ x′ �= r cos θ)
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Similar tautologies apply to y′. Therefore, by the Rule of Consequence we
conclude

✷x′ ⊥ y′ ⇒{
x′ = r0 cos θ0 ∧ r cos θ = r0 cos θ0 ∧ x′ = r cos θ ∧
y′ = r0 sin θ0 ∧ r sin θ = r0 sin θ0 ∧ y′ = r sin θ

}

S′{
(r cos θ = 2r0 cos θ0 ∨x′ �= r cos θ) ∧
(r sin θ = 2r0 sin θ0 ∨ y′ �= r sin θ)

}

From this, the Constraint Strengthening Rule and Rule of Consequence
allow us to derive

✷(x′ ⊥ y′ ∧ x′ = r cos θ ∧ y′ = r sin θ) ⇒{
r cos θ= r0 cos θ0 ∧
r sin θ = r0 sin θ0

}
S′

{
r cos θ=2r0 cos θ0 ∧
r sin θ =2r0 sin θ0

}

By the Rule of Consequence, using some trigonometry and the previous
theorem we can now deduce

✷(x′ ⊥ y′ ∧ x′ = r cos θ ∧ y′ = r sin θ) ⇒{
r = r0 ∧ θ = θ0 ∧
r ≥ 0 ∧ 0 ≤ θ < 2π

}
S′

{
(r = 2r0 ∧ θ = θ0) ∨

¬(r ≥ 0 ∧ 0 ≤ θ < 2π)

}

We now use the Constraint Strengthening Rule to derive

✷(x′ ⊥ y′ ∧ x′ = r cos θ ∧ y′ = r sin θ∧
r ≥ 0 ∧ 0 ≤ θ < 2π) ⇒

{r = r0 ∧ θ = θ0} S′ {r = 2r0 ∧ θ = θ0}
It is now a simple matter to use the declare Rule, the may alias Rule, and
finally the new Rule to obtain (7).

6 Discussion

We have introduced the idea of describing types and aliasing in terms of
constraints and given general rules for reasoning about constrained execu-
tion. Our approach involves embedding the usual Hoare partial correctness
formalism in temporal logic. One reasons about static properties with con-
straints and about dynamic properties with pre- and postconditions.

Having applied our method to a simple language, we now consider some
of the problems in extending it to more complex languages. We also discuss
the relation of our approach to previous work.
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6.1 Types

In our toy language, we were able to handle a type declaration simply by
translating it to a constraint about the values that the variable can assume.
This does not work for languages that make more extensive use of type
information—for example, by performing coercions in the event of a type
mismatch; nor does it work for languages in which a type mismatch in an
assignment generates an indeterminate result rather than abortion. (Our
semantics causes abortion if executing an assignment would violate a type
constraint.)

Reasoning about these more complex languages requires adding state
predicates that characterize the type of a variable and modifying our Axiom
of Assignment. However, care must be employed when reasoning about
predicates like type(x) = ‘integer’ because x = y, which means that the
values of x and y are equal, does not imply type(x) = type(y).

If a type mismatch can abort execution, reasoning about type correctness
requires proving total correctness properties. While we have not yet con-
sidered this problem, we feel that our approach should be ideal for proving
termination properties because it is based upon temporal logic, and tempo-
ral logic is effective for proving liveness properties like termination [16].

6.2 Generalized Assignments:
Expressions as Targets

In the Cartesian/polar coordinate example, x is aliased to r cos θ. Thus,
assigning to x is the same as assigning to r cos θ. The obvious next step is
to try writing r cos θ on the left-hand side of an assignment statement, even
if there is no variable aliased to this expression. For arbitrary expressions
exp1 and exp2, the statement

exp1 := exp2

causes the value of exp1 after execution to be the same as the value of
exp2 before execution. To reason about this form of generalized assignment,
we extend ⊥ to be a relation on expressions rather than just on variable
names. The temporal formula exp1 ⊥ exp2 now means that assigning to
exp1 does not change the value of exp2, and vice-versa. The axiom for
generalized assignment is the same as the Assignment Axiom given above,
except that x and the yi can be arbitrary expressions. The commutativity
and substitution axioms given above are also valid for these more general ⊥
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relations. However, additional axioms are needed for deriving ⊥ relations
between expressions from ⊥ relations between their components—axioms
such as

(exp1 ⊥ exp2) ∧ (exp1 ⊥ exp3) ⇒ exp1 ⊥ (exp2 + exp3)

We do not give a formal semantics for this here.

6.3 Arrays and Pointers

Our approach can handle arrays by regarding assignment to an element of
an array as an assignment to the entire array, as described in [11]. Array
assignment cannot be handled using our generalized assignment statement,
where an expression like A[i] appears on the left-hand side, because this
does not give the usual semantics for

A[exp] := exp′.

Letting the subscripts old and new denote values before and after the assign-
ment, the semantics of generalized assignment defines the above statement
to mean that Anew[expnew] = exp′old, while the usual meaning of array as-
signment is Anew[expold] = exp′old. This difference helps explain why the
ordinary assignment axiom is not easily extended to arrays. This also in-
dicates why our more general assignment statement is not easily compiled,
since it requires computing the value of an expression in a (new) state with-
out knowing what that state is.

By regarding an array as a single variable, our formalism can handle
aliasing relations between entire arrays. However, our current formalism
does not handle simple aliasing of array elements. For example, if x is not
aliased to any element of the array A, then we can easily prove that assigning
a value to A[1] does not change x’s value by deducing

✷x ⊥ A ⇒ {x = 7} A[1] := 1 {x = 7}

However, we cannot do this just knowing that x is not aliased to A[1],
because our rules are not strong enough to prove

✷x ⊥ A[1] ⇒ {x = 7} A[1] := 1 {x = 7}

The required generalization must replace ⊥ with a noncommutative re-
lation, since the assertion that assigning to A[i] does not change i is not
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equivalent to the assertion that assigning to i does not change A[i]. More-
over, aliasing relations are no longer static, since whether A[i] and x are
aliased may depend upon the value of i. Being dynamic, aliasing relations
like ⊥ have to appear in pre- and postconditions, which is prohibited by the
current formalism.

Similar extensions are needed for reasoning about aliasing in programs
that use pointers. Moreover, in a language with pointers, type relations
might also be dynamic—for example, if a pointer can point to variables of
type real and of type [0, 2 ∗ π). In this case, type relations would have to
appear in pre- and postconditions.

These extensions will be described in a future paper.

6.4 Procedures

The most general form of parameter passing is call by name, since it can
be used to simulate call by reference and call by value-result. With call
by name, a formal parameter is essentially aliased to the corresponding
argument. Thus, our approach can be used for reasoning about procedures.

Traditionally, programming languages with procedures do not allow an
arbitrary expression as the argument corresponding to a formal parameter
that appears on the left-hand side of an assignment, since assignment to an
expression is not defined by these languages. We have defined what it means
to assign a value to a variable that is aliased to an expression, so there is no
semantic reason for this prohibition. However, some restriction is needed to
ensure that the language can be compiled.

6.5 Related Work

Previous work on aliasing, [1, 3, 4, 5, 6, 7, 9], has been motivated by shared
storage among arguments of a procedure call. We are aware of no work that
can handle the rich aliasing structures that concern us. However, program-
ming languages where computations are partially or completely specified in
terms of constraints have been investigated [2, 19, 20, 21, 22].

In most previous work on aliasing, the program state consists of a map-
ping from variable names to a space of (abstract) locations plus a map from
locations to values. We feel that if the language itself has no pointers, then
the semantics should not be given in terms of pointers, even if the values
of these pointers are abstract locations instead of real memory addresses.
Moreover, the existence of semantic pointers unnecessarily complicates rea-

19



soning about programs. Also, approaches based on locations are rarely fully
abstract [3]. Finally, and most importantly, the use of locations does not
support reasoning about the more general form of aliasing that is not based
on shared storage.

Our work resembles Reynolds’ [17] handling of call by name in many
ways. Reynolds defines a formal system, called Specification Logic, that
contains a relation # very similar to ⊥ and an assignment rule much like
ours. The effects of aliasing are described in terms of interference, which can
be seen as the dual of our viewing aliasing in terms of invariants. (See [14]
for a discussion of the relation between interference and invariance.)

The meaning of a formula in Specification Logic is based on an environ-
ment in addition to a state. The environment is a mapping from variable
names to a space of locations and brings with it the difficulties mentioned
above. In addition, in Specification Logic, assertions about the environment
are made using a completely new logic, distinct from the one used to reason
about the state. In our approach, all reasoning is done in a single logical
system—temporal logic. Assertions about the state are expressed by tem-
porally trivial formulas—formulas containing no temporal operators. We do
not need the concept of an environment, using instead temporal assertions
about the state. Of course, Specification Logic handles forms of aliasing not
considered in this paper. We are currently extending our temporal logic ap-
proach to cover the full range of language features handled by Specification
Logic.

Our approach can be viewed as a generalization of one proposed by
Brooks [3], and we were somewhat influenced by his work. We handle a
much more general form of aliasing, but, if we restricted ourselves to aliasing
relations that are simple equalities between variables, then proofs in our
system and in Brooks’ would be quite similar. To extend Brooks’ work to
handle our more general form of aliasing, it appears that a new deductive
method would have to be added; we avoided this by embedding our proof
system in temporal logic.
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Appendix
The Formal Semantics

A.1 The Language

We now give a formal semantics for our toy language containing skip, assign-
ment, concatenation, and while, plus the three statements new, declare,
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and may alias introduced to model the var statement. The class of expres-
sions and variable types is not specified. We assume only that expressions
are built from some set Var of variable names, that variables assume val-
ues in some set Val , and that expressions are built from operators on those
values. However, in the statement

declare C in S

C can involve ⊥ in addition to Boolean expressions.
Finally, we require the value of an expression to be defined for any values

of its component variables. Thus, the expression x + 10 must be assigned a
value, even when x = true. This can be done by including a special value
undefined in Val ; the precise details for doing this are irrelevant.

A.2 Temporal Logic

A state is defined to be a mapping from Var to Val , so a state s assigns
a value s(x) to every variable name x ∈ Var . Let S denote the set of
states. A state s is extended to a mapping from ordinary (nontemporal)
expressions to values in the obvious way—for example, s(x + y) is defined
to equal s(x) + s(y). Let s |= exp denote the assertion that s(exp) = true.
(s |= x > 10 is false if s(x) has a nonnumeric value.)

An action is defined to be an element of Var ∪ {τ}, where τ is a symbol
not in Var . For x ∈ Var , action x represents an assignment to x. Action
τ represents an assignment to a variable declared in some new statement
inside the current statement; thus τ , models a variable that is “invisible” in
the current context.

A behavior is defined to be a sequence σ of the form

s0
x1−→ · · · xn−→ sn (8)

where the si are states and the xi are actions. This behavior denotes an
execution starting in state s0 and terminating in state sn, where the ith

action changes the state from si−1 to si. Since partial correctness does not
distinguish between aborting and infinite looping, we consider only finite
(terminating) behaviors, although our definitions are easily extended to in-
clude infinite (nonterminating) ones. We allow the case n = 0, where s0 is
the behavior starting in state s0 that performs no actions.

In the temporal logic of [13], a formula is composed of state predicates,
action predicates, and temporal operators. The set of Boolean expressions
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is taken to be our state predicates. Action predicates are those of the form
α(x), together with the action predicate halt . A Boolean expression is true of
a behavior if it is true of the first state in the behavior. An action predicate
α(x) is true if x is the first action in the behavior; action predicate halt is
true only if there is no next action. The semantics of this temporal logic
assigns a truth value to σ |= F for every behavior σ and every formula F .
We write |= F to denote that σ |= F is true for all behaviors σ.

We will define a behavioral semantics for our language where M[[S]]
is a set of behaviors representing all possible terminating executions of S.
Semantic validity of a temporal logic formula F for a program S is defined
by

|=S F
def= ∀σ ∈ M[[S]] : σ |= F

To define the temporal operator ⊥, we first define the operator by
letting σ |= x y mean that if the first action of σ is an assignment to x,
then that assignment does not change the value of y. In other words, letting
σ be the sequence of (8), we have

σ |= x y
def= (x

syn
= x1) ⇒ (s0(y) = s1(y))

In the temporal logic of [13],

x y
def= ∀η : (y = η ) ⇒ (α(x) < y = η)

We define x ⊥ y to be (x y) ∧ (y x). Note that σ |= x ⊥ y is true if σ is
a sequence with no actions.

The formulas deduced by our method for reasoning about programs are of
the form ✷C ⇒ {P}S {Q}, where C is a temporal logic formula. However,
{P}S {Q} is not a temporal logic formula because it refers to the statement
S—a concept with no counterpart in the temporal logic. To make semantic
sense out of this formula, first define {P} → {Q} to be true for the behav-
ior (8) if and only if s0 |= P ⇒ sn |= Q. This is defined in terms of temporal
logic operators by

{P} → {Q} def= P ⇒ ✷(halt ⇒ Q)

A program S satisfies ✷C ⇒ {P}S {Q} if and only if |=S ✷C ⇒ {P} → {Q}.

A.3 The Behavioral Semantics

For any statement S in our language, we define M[[S]] to be a set of behav-
iors. The definition is by induction on the structure of S.

24



skip M[[skip]] def= {s0 : s0 ∈ S}
The skip statement generates no actions.

assignment M[[x := exp]] def= {s x−→ t : t(x) = s(exp)}
An assignment generates a single action that sets the value of the left-
hand side to the original value of the right-hand side. Note that M[[S]]
contains behaviors that make arbitrary changes to other variables,
since any such change could be caused by an appropriate aliasing.

concatenation M[[S1; S2]] is defined to equal

{s0
x1−→ · · · xn+m−→ sn+m :

s0
x1−→ · · · xn−→ sn ∈ M[[S1]]

and sn
xn+1−→ · · · xn+m−→ sn+m ∈ M[[S2]]}

Note that we are including only finite (terminating) behaviors.

while We define M[[while B do S]] inductively by

M[[while0 B do S]] def= {s0 ∈ S : s0(B) = false}
M[[whilei+1 B do S]] def=

{s0
x1−→ · · · xn−→ sn ∈ M[[S; whilei B do S]] :

s0(B) = true}
M[[while B do S]] def=

⋃∞
i=0 M[[whilei B do S]]

Intuitively, M[[whilei . . . ]] contains the behaviors in which the body
of the while statement is executed exactly i times.

declare M[[declare C in S]] def= {σ ∈ M[[S]] : σ |= ✷C}
The declare acts as a “filter” to eliminate any behaviors of S in which
C does not always hold.

new If σ is the sequence (8), let σ[x1/y1, . . . , xn/yn] denote the sequence

s′0
x′
1−→ · · · x′

n−→ s′n

where

s′i(v) =




si(v) if ∀j : v
syn

�= xj and v
syn

�= yj

s0(xj) if v
syn= xj

s0(yj) if v
syn= yj

(9)
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x′
i =

{
xi if ∀j : x′

i

syn

�= yj

τ otherwise
(10)

Then σ ∈ M[[new x1, . . . , xn in S]] if and only if there exist variable
names y1, . . . , yn not free in S and σ′ ∈ M[[S[y1/x1, . . . , yn/xn]]] such
that σ = σ′[x1/y1, . . . , xn, yn].

This formal definition captures the intuitive notion that to execute the
new statement, one first executes its body with new variables yi sub-
stituted for the xi. The resulting execution is then modified by hiding
all references to the variables yi—replacing assignments to the yi by
τ actions and letting yi refer once more to its external declaration—
and requiring that the externally declared values of the xi remain
unchanged.

may alias M[[x may alias x1, . . . , xn in S]] is defined to equal

{σ ∈ M[[S]] : ∀y : (∀i : y
syn

�= xi) ⇒ σ |= ✷(x ⊥ y)}

This is the formal definition of our intuitive idea that the may alias
is equivalent to a declaration of an an infinite number of ⊥ relations.

A.4 Soundness and Completeness

In the main body of this paper, we gave a set of rules for deriving formulas
of the form ✷C ⇒ {P}S {Q}. Having defined the set of behaviors M[[S]],
we have given a semantic meaning to these formulas, namely:

M[[✷C ⇒ {P}S {Q}]] def= |=S ✷C ⇒ {P} → {Q}

We can now discuss the soundness and completeness of our system.
Soundness means that for any formula F derived by our system, M[[F ]]

equals true. The proof of this involves checking the validity of all our axioms
and proof rules. This involves a straightforward formalization of the informal
arguments given in section 4.

Completeness means that every semantically correct formula is derivable
using our rules. Since completeness is impossible, one usually proves relative
completeness in the sense of Cook, which, as explained in [1], means that
the system is complete if we assume that:

C1. All valid state predicates are given.
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C2. The set of state predicates is sufficiently expressive, meaning that for
any state predicate P and statement S, postS(P ), the strongest post-
condition of P with respect to S, is a state predicate.

These assumptions are not enough to guarantee completeness in our
system. In ordinary Hoare logic, one assumes the ability to reason about
state predicates. Since formulas in our logic contain temporal operators, like
✷ and ⊥, we need to reason about temporal logic formulas. We therefore
assume that3

C1′. All valid temporal logic formulas constructed from the state predicates
are given.

where a valid temporal logic formula is one that is true for any behavior.
Thus, just as assumption C1 for ordinary Hoare Logic contains only infor-
mation about the state space—not information about the program—so C1′

gives information about state functions and temporal operators—not about
the program. Since state predicates are temporal formulas, C1′ subsumes
C1.

In addition to strengthening C1, we must also strengthen C2. To see
why, suppose our set of state predicates did not contain the predicate true,
but required that we use the semantically equivalent predicate x = x. Our
Assignment Axiom does not allow us to deduce {x = x} y := 1 {x = x}; we
can only deduce it under the irrelevant hypothesis ✷(y ⊥ x). In general, we
need to assume that if a state predicate does not depend upon the value of
a variable x, then we can write that predicate as an expression that does
not involve x. We therefore require the following additional expressiveness
condition:

C2a. For any expression exp, mathematical function f , and variables y1,
. . . , yn: if the relation exp = f(y1, . . . , yn) is valid, then f(y1, . . . , yn)
is an expression.

Having made these extra assumptions, we now consider completeness.
Completeness for ordinary Hoare logic means that every valid formula is
provable. In our system, there are formulas of the form ✷C ⇒ {P}S {Q},
where C has the form C ′ ∧ (x ⊥ y1) ∧ . . . ∧ (x ⊥ yn) and C ′ is an ordinary
(nontemporal) expression. Completeness therefore means that every valid
formula of this form is provable.

3Actually, this assumption is stronger than necessary, since we are concerned only with
temporal logic formulas of the form ✷C ⇒ {P}S {Q}.
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The proof is by induction on the structure of S. If S is a skip state-
ment, then ✷C ⇒ {P}S {Q} is semantically equivalent to (C ′ ∧ P ) ⇒ Q.
By assumption C1′, this is provable, and we can use it, the ordinary ax-
iom for skip ({P} skip {P}), the Rule of Consequence, and the Constraint
Strengthening Rule to deduce ✷C ⇒ {P}S {Q}. (The details are left to
the reader.)

Next, let S be the assignment statement x := exp. A consequence of
C1′ is a complete system for deriving ⊥ relations. Thus, we can assume
that C includes all relations xi ⊥ yi that are derivable from it. It is easy
to see that ✷C ⇒ {P}S {Q} is semantically equivalent to, and, by the
Constraint Strengthening Rule, derivable from

✷(x1 ⊥ y1 ∧ . . . ∧ xn ⊥ yn) ⇒ {P ∧ C ′} S {Q ∨ ¬C ′}
We can therefore restrict consideration to the case in which C consists only
of the conjunction of the constraints xi ⊥ yi.

Since {P}S {Q} is semantically equivalent to postS(P ) ⇒ Q, by the
Rule of Consequence and C2, we can let Q = postS (P ).

Let Q = Q(x, z1, . . . , zm), where the zi are different from x. By C2a,
we can assume that the value of Q depends upon each of the zj . Since
Q = postS(P ), this means that there is a behavior s

x−→ t in M[[S]] such
that s |= P , but t′ �|= Q for some state t′ that differs from t only in the value
of zj. However, since the semantics of S does not constrain the ending values
of any variable other than x, s

x−→ t′ is in M[[S]]. Therefore, if x ⊥ zj were
not one of the constraints in C, then ✷C ⇒ {P}S {Q} would be invalid.
Hence, the constraint C contains all the ⊥ relations needed to apply our
Assignment Axiom, and completeness follows by the same argument as in
the ordinary Hoare Logic [1].

The proof for the declare is immediate, since if S is the statement

declare C ′ in S′

then ✷C ⇒ {P}S {Q} is semantically equivalent to ✷(C∧C ′)⇒{P}S′ {Q}.
Similarly, if S is the statement

x may alias x1, . . . xn in S′

the result follows from the fact that ✷C ⇒ {P}S {Q} is semantically equiv-
alent to ✷C ∧ C ′ ⇒ {P}S′ {Q}, where C ′ ≡ (x ⊥ y1) ∧ . . . ∧ (x ⊥ ym)
and the yi are all the variable names other than the xj that appear in P ,
C, and Q.

28



To finish the completeness proof, we must show that for every com-
pound statement S, we can prove every valid formula ✷C ⇒ {P}S {Q}
under the assumption that we can prove every such formula for the com-
ponents of S. This involves a separate proof for every type of compound
statement. The proofs for concatenation, while, and new are similar to
the ones for the ordinary Hoare logic given in [1]. The only difference in
the proofs arises because of the “✷C ⇒”. The proofs in [1] rely on the fact
that {P}S {Q} is valid iff postS(P ) ⇒ Q. The formula ✷C ⇒ {P}S {Q}
is valid iff {P}declare C in S {Q} is valid, by the semantic equivalence
mentioned above. This, in turn, is valid iff postdeclare C in S(P ) is express-
able, and implies Q. However, expressability follows from our assumptions
C2 and C2a. With this observation, the completeness proofs of [1] are now
easily extended to our more general class of assertion.
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