MODULE BakeryDeconstructed

This is the PlusCal specification of the deconstructed bakery algorithm in the paper
Deconstructing the Bakery to Build a Distributed State Machine

There is one simplification that has been made in the PlusCal version: the registers localCh[i][j]
have been made atomic, a read or write being a single atomic action. This doesn’t affect the
derivation of the distributed bakery algorithm from the deconstructed algorithm, which also
makes the simplifying assumption that those registers are atomic because they disappear from
the final algorithm

Here are some of the changes made to the paper’s notation to conform to PlusCal/TLA+. Tuples
are enclosed in (), so we write (7, j) instead of (,7). There’s no upside down “?” symbol in TLA+,
so that’s replaced by the identifier gm.

The pseudo-code for main process ¢ has two places in which subprocesses (i, j) are forked and
process % resumes execution when they complete. PlusCal doesn’t have subprocesses. This is
represented in PlusCal by having a single process (i, j) executing concurrently with process ¢,
synchronizing appropriately using the variable pc.

Here is the basic idea:

This pseudo-code for process 4:
main code ;
process j # i \in S
sl: subprocess code
end process
p2: more main code

is expressed in PlusCal as follows:

In process ¢
main code ;
p2: await \A j # i : pcl<<i,j>>] = "s2"
more main code
In process (i, j)
sil: await pc[i] = "p2"
subprocess code ;
s2:

Also, processes have identifiers and, for reasons that are not important here, we can’t use 4 as
the identifier for process ¢, so we use (i). So, pc[i] in the example above should be pc[(2)]. In the
pseudo-code, process 4 also launches asynchronous processes (4, j) to set localNum[j][i] to 0. In
the code, these are another set of processes with ids (4, j, “wr”).

Stephan Merz has written a machine-checked TLA+ proof of the invariance of the formula I and
that the algorithm satisfies mutual exclusion. In the course of that, he made two small changes
to the definition of the invariant I . His proof is in the module DeconProof.

EXTENDS Integers

The following defines < to be the lexicographical ordering of pairs of integers.
g<r = V[l <l
VA gl =]
Aq[2] <rf2]

2

Max(i, 7) IF 7 > j THEN 4 ELSE j

CONSTANT N
ASSUME NAssump = N € Nat\ {0}

We define Procs to equal the set of integers from 1 through N and define some sets of process ids.

Procs = 1.. N
OtherProcs(i) = Procs\ {i}
Proclds = {

(@) : i € Procs}
SubProcs = {p € Procs x Procs : p[1] # p[2]}
SubProcsOf (i) = {p € SubProcs : p[1] = i}
A
=

WrProcs w € Procs x Procs x {"wr"} : w[1] # w[2]}

A
gm = CHOOSE v:v ¢ Nat
3k >k ok >k ok ok sk ok >k ok >k ok ok sk ok sk ok sk ok sk ok ok sk ok sk ok >k ok ok ok ok sk ok sk ok >k ok ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk ok ok ok sk sk ok sk ok sk ok ok sk ok sk sk sk ok kok sk ok

--algorithm Decon{
variables number = [p € Procs — 0],
localNum = [p € Procs — [q € OtherProcs(p) — 0]],
localCh = [p € Procs — [q € OtherProcs(p) > 0]]

fair process (main € Proclds)
variable unRead = {}, v =0;

ncs:- while (TRUE) {
skip ; noncritical section
M: await ¥ p € SubProcsOf (self[1]) : pc[p] = “test” ;
unRead := OtherProcs(self[1]) ;
MO: while (unRead # {}) {
with (j € unRead) {
if (localNum/[self [1]][5] # qgm) {
v := Maz(v, localNum[self[1]][5]) } ;
unRead := unRead \ {j}

}
}s
with (n € {m € Nat : m > v}) {
number[self[1]] .= n;
localNum := [j € Procs —
[¢ € OtherProcs(j)
IF ¢ = self[1] THEN gm
ELSE localNum][j][i]]] 5
}s
v:=0;
await Vp € SubProcsOf (self[1]) : pc[p] = "ch" ;
cs: skipj critical section
P: number[self[1]] :==0;
localNum := [j € Procs —
[« € OtherProcs(j) —

IF ¢ = self[1] THEN gm
ELSE localNum|[j][4]]] 5

}

fair process (sub € SubProcs) {
ch: while (TRUE) {
await pc[(self[1])] = “M"
localCh[self [2]][self[1]] :=1}
test: await pec[(self[1])] = “L" ;
localNum/[self[2]][self [1]] := number[self[1]] ;
Lb: localCh[self[2]][self[1]] := 03
L2: await localCh[self[1]][self[2]] = 0;
L3:- See below for an explanation of why there is no fairness here.
await (localNum][self[1]][self[2]] ¢ {0, gm}) =
({number][self[1]], self[1]) <
(localNum |self [1]][self [2]], self[2]))

The await condition is written in the form A = B rather than A V B because
when TLC is finding new states, when evaluating A V B it evaluates B even when
A is true, and in this case that would produce an error if localNum/[self [1]][self [2]]

equals gm.

}

We allow process (i, j, “wr") to set localNum[j][i] to 0 only if it has not already been set to
gm by process (%) in action MO.
fair process (wrp € WrProcs) {
wr: while (TRUE) {
await A localNum|[self [2]][self [1]] = qm
A pel(self [L])] € {“ncs”, “M”, “M0"} ;
localNum|[self [2]][self [1]] := 03
}
}
}

st ok sk sk sk sk ok s ok sk stk sk ok sk ok sk sk sk sk sk ok s ok sk sk sk sk ok sk ok sk stk sk sk sk e ok sk sksksk sk ok s ok sk skesk sk sk sk ok sk sk sk sk sk ok s ok ok sk sk sk ok
BEGIN TRANSLATION (chksum(pcal) = “4¢176712” A chksum(tla) = “814037¢2”)
VARIABLES number, localNum, localCh, pc, unRead, v
vars = (number, localNum, localCh, pe, unRead, v)

ProcSet = (Proclds) U (SubProcs) U (WrProcs)

Init £ Global variables
A number = [p € Procs — 0]
A localNum = [p € Procs — [q € OtherProcs(p) + 0]]
A localCh = [p € Procs — [q € OtherProcs(p) — 0]]

Process main

A unRead = [self € Proclds — {}]

A v = [self € Proclds — 0]

A pc = [self € ProcSet — CASE self € Proclds — ‘“ncs”
O self € SubProcs — “ch”
O self € WrProcs — “wr"]

A

nes(self) = A pelself] = “ncs”
A TRUE
A pc’ = [pc EXCEPT ![self] = “M"]
A UNCHANGED (number, localNum, localCh, unRead, v)

A

M (self) = A pc[self] = “M"
AY p € SubProcsOf (self[1]) : pc[p] = “test”
A unRead’ = [unRead EXCEPT ![self] = OtherProcs(self[1])]
A pc’ = [pc EXCEPT ![self] = “M0"]
A UNCHANGED (number, localNum, localCh, v)

A

MO(self) = A pc[self] = “MO"
ATF unRead[self] # {}
THEN A3dj € unRead[self] :
ATF localNum|self [1]][j] # qm
THEN A v’ = [v EXCEPT ![self] = Maz(v[self], localNum/[self [1]][j])]
ELSE A TRUE
ANV =w

A unRead’ = [unRead EXCEPT ![self] = unRead[self]\ {j}]
A pc’ = [pc EXCEPT !|[self] = "M0"]
A UNCHANGED (number, localNum)

ELSE Adn € {m € Nat : m > v[self]} :
A number’ = [number EXCEPT ![self[1]] = n]
A localNum' = [j € Procs —
[i € OtherProcs(j) —
IF i = self[1] THEN gm
ELSE localNum][j][]]]
A v = [v EXCEPT ![self] = 0]
A pc’ = [pc EXCEPT ![self] = “L"]
A UNCHANGED unRead
A\ UNCHANGED localCh

L(self) = A pe[self] = “L"
AV p € SubProcsOf (self[1]) : pc[p] = “ch”
A pc’ = [pc EXCEPT ![self] = “cs"]
A UNCHANGED (number, localNum, localCh, unRead, v)

cs(self) = A pe[self] = “cs”
A\ TRUE

P(self) =

A pc’ = [pc EXCEPT ![self] = “P"]
A UNCHANGED (number, localNum, localCh, unRead, v)

A pelself] = "P"
A number’ = [number EXCEPT ![self[1]] = 0]
A localNum' = [j € Procs —
[i € OtherProcs(j) —
IF ¢ = self[1] THEN gm
ELSE localNum][j][]]]
A pc’ = [pc EXCEPT ![self] = “ncs”]
A UNCHANGED (localCh, unRead, v)

main(self) = nes(self) Vv M(self) Vv MO(self) Vv L(self) V cs(self)

A

ch(self)

test(self) =

1>

Lb(self)

L2(self) =

1>

L3(self)

sub(self) =
wr(self) =

v P(self)

A pelself] = “ch”

A pel(self [1])] = "M"

A localCh/ = [localCh EXCEPT ![self[2]][self[1]] = 1]
A pc’ = [pc EXCEPT ![self] = “test”]

A UNCHANGED (number, localNum, unRead, v)

A pelself] = “test”

A pel(self[1])] = L

A localNum' = [localNum EXCEPT ![self [2]][self [1]] = number[self[1]]]
A pc’ = [pc EXCEPT ![self] = “Lb"]

A UNCHANGED (number, localCh, unRead, v)

A pe[self] = “Lb"

A localCh/ = [localCh EXCEPT ![self [2]][self[1]] = 0]
A pc’ = [pc EXCEPT ![self] = “L2"]

A UNCHANGED (number, localNum, unRead, v)

A pe[self] = “L2"

A localChlself [1]][self[2]] = 0

A pc’ = [pc EXCEPT ![self] = “L3"]

A UNCHANGED (number, localNum, localCh, unRead, v)

A pelself] = “L3"
A (localNum|[self[1]][self [2]] ¢ {0, gm}) =
({(number[self[1]], self[1]) <
(localNum|self [1]][self [2]], self[2]))
A pc’ = [pc EXCEPT ![self] = “ch"]
A UNCHANGED (number, localNum, localCh, unRead, v)

ch(self) V test(self) v Lb(self) Vv L2(self) v L3(self)

A pelself] = “wr”
A A localNum|self [2]][self[1]] = gm

A pe[(self[1])] € {"ncs”, “M", "MO" }
A localNum' = [localNum EXCEPT ![self [2]][self[1]] = 0]
A pc’ = [pc EXCEPT ![self] = “wr"]
A UNCHANGED (number, localCh, unRead, v)

wrp(self) = wr(self)

Next = (3self € Proclds : main(self))
V (3 self € SubProcs : sub(self))
V (Iself € WrProcs : wrp(self))

A Init A O[Next]yars

AV self € Proclds : WF s ((pe[self] # “ncs”) A main(self))
AV self € SubProcs : WF a5 ((pc[self] # “L3") A sub(self))
AV self € WrProcs : WE a0 (wrp(self))

Spec

END TRANSLATION

|

1
In statement L3, the await condition is satisfied if process (i, j) reads localNum/[self[1]][self [2]]
equal to gm. This is because that’s a possible execution, since the process could “interpret” the
gm as 0. For checking safety (namely, mutual exclusion), we want to allow that because it’s a
possibility that must be taken into account. However, for checking liveness, we don’t want to
require that the statement must be executed when localNum|[self[1]][self [2]] equals gm, since that
value could also be interpreted as localNum|self [1]][self [2]] equal to 1, which could prevent the wait
condition from being true. So we omit that fairness condition from the formula Spec produced by
translating the algorithm, and we add weak fairness of the action when localNum|self [1]][self[2]]

does not equal gm. This produces the TLA+ specification FSpec defined here.
FSpec £ A Spec
AY q € SubProcs : WF 4,5 (L3(q) A (localNum|[q[1]][¢[2]] # gm))

From laziness, I didn’t bother adding the condition for pc in the following type-coreectness in-
variant.

TypeOK = A number € [Procs — Nat]
A A DOMAIN localNum = Procs
AY i € Procs : localNumli] € [OtherProcs(i) — Nat U {gm}]
A A DOMAIN localCh = Procs
AYi € Procs : localCh[i] € [OtherProcs(i) — {0, 1}]

That the algorithm satisfies mutual exclusion is expressed by the invariance of the following state
predicate.

MutualExclusion = ¥ p, q € Proclds : (p # q) = ({pc[p], pclq]} # {"cs"})

The following is the TLA formula that provides a precise definition definition of starvation freedom.

StarvationFree = ¥ p € Proclds : (pc[p] = “M”) ~ (pc[p] = “cs”)

Definition of the invariant in the appendix of the expanded version of the paper.

inBakery(i, j) = V pe[(i,)] € {"Lb", "L2", “L3"}

nCS(i) = pe[(i)] = “cs”

In TLA+, we can’t write both inDoorway(i, j, w) and inDoorway(%, j), so we change the first to
inDoorwayVal. Its definition differs from the definition of inDoorway(i, j, w) in the paper to avoid
having to add a history variable to remember the value of localNum|self[1]][j] read in statement
MO. It’s a nicer definition, but it would have required more explanation than the definition in the
paper. This change of definition leaves I invariant and probably simplifies a formal proof a bit.

The definition of inDoorway(t, j) is equivalent to the one in the paper. It is obviously implied by
Jw € Nat : inDoorwayVal(i, j, w), and type correctness implies the opposite implication.
inDoorwayVal(i, j, w) = V A pe[(i)] = “M0”

Nj ¢ unRead[(i))

Ao[(i)] > w

V A pel(i)] = “L”
A pel{i, §)] = “test”
A number[i] > w

inDoorway(i, j) = V A pe[(i)] = “M0O”
Aj ¢ unRead[(i)]
VA pe[(d)] = "L
A pe[(i, 7)] = “test”

Outside(i, j) = —(inDoorway(i, j) V inBakery(i, 7))

J

Before(i, j) = A inBakery(i, j)
AV Outside(j, 1)
V inDoorwayVal(j, i, number[i])
V' A inBakery(j, 1)
A {number[i], i) < (number[j], 7)
A —passed(j, i, “L3")

=

A inBakery(i, j) = Before(i, j) V Before(j, i)

V inDoorway(j, 1)
A passed(i, j, “L2") = Before(i, j) V Before(j, 1)
A passed(i, j, “L3") = Before(i, j)

Inv(i, §)

I = Vi€ Procs:Yj € OtherProcs(i) : Inv(i, §)

I

TESTING THE SPEC

The following definitions are for testing the specification with TLC. Since the spec allows the
values of number|n] to get arbitrarily large, there are infinitely many states. The obvious solution
to that is to use models with a state constraint that number|n] is at most some value TestMazNum.
However, TLC would still not be able to execute the spec because the with statement in action
M allows an infinite number of possible values for number|[n]. To solve that problem, we have the
model redefine Nat to a finite set of numbers. The obvious set is 0 .. TestMaxNum. However,
trying that reveals a subtle problem. Running the model produces a bogus counterexample to the
StarvationFree property.

This is surprising, since constraints on the state space generally fail to find real counterexamples
to a liveness property because the counterexamples require large (possibly infinite) traces that are
ruled out by the state constraint. The remaining traces may not satisfy the liveness property, but
they are ruled out because they fail to satisfy the algorithm’s fairness requirements. In this case,
a behavior that didn’t satisfy the liveness property StarvationFree but shouldn’t have satisfied
the fairness requirements of the algorithm did satisfy the fairness requirement because of the
substitution of a finite set of numbers for Nat.

Here’s what happened: In the behavior, two nodes kept alternately entering the critical section
in a way that kept increasing their values of num until one of those values reached TestMazxNum.
That one entered its critical section while the other was in its noncritical section, re-entered its
noncritical section, and then the two processes kept repeating this dance forever. Meanwhile, a
third process’s subprocess was trying to execute action M. Every time it tried to execute that
action, it saw that another process’s number equaled TestMazNum. In a normal execution, it
would just set its value of num larger than TestMaxNum and eventually enter its critical section.
However, it couldn’t do that because the substitution of 0 .. TestMazNum for Nat meant that
it couldn’t set num to such a value, so the enter step was disabled. The fairness requirement
on the enter action is weak fairness, which requires an action eventually to be taken only if it’s
continually enabled. Requiring strong fairness of the action would have solved this problem,
because the enabled action kept being enabled and strong fairness would rule out a behavior in
which that process’s enter step never occurred. However, it’s important that the algorithm satisfy
starvation freedom without assuming strong fairness of any of its steps.

The solution to this problem is to substitute 0 .. (TestMaz + 1) for Nat. The state constraint will
allow the enter step to be taken, but will allow no further steps from that state. The process still
never enters its critical section, but now the behavior that keeps it from doing so will violate the
weak fairness requirements on that process’s steps.

TestMazNum = 6
TestNat = 0 .. (TestMazNum + 1)
TEST RESULTS

TLC has tested that TypeOK, MutualExclusion, and I are invariants of the algorithm, and that
the algorithm satisfies the temporal property StarvationFree. As a sanity check, some smaller
models were used to check that, if fairness is not disabled for the ncs action, then the algorithm
satisfies the following property, which asserts that every process executes the critical section
infinitely many times.

Vi € Procs : OO(pe[(i)] = “cs”)

The largest model that was tested was for N = 3 and TestMazNum = 6; it had 7,842,672 reachable
states. |

\ * Modification History
\ * Last modified Thu Aug 26 12:33:09 PDT 2021 by lamport
\ * Created Sat Apr 24 09:45:26 PDT 2021 by lamport

