MODULE BakeryDistributed

This is the PlusCal specification of the distributed bakery algorithm in the paper
Deconstructing the Bakery to Build a Distributed State Machine

We assume here that you have read the BakeryDeconstructed specification, whose comments
explain the structure of this PlusCal translation of the pseudo-code in the paper, and how it was
model checked.

The statements in gray in the paper’s pseudo-code, which involve the unnecessary variable localCh,
are identified here by lines that end with the comment ERASABLE in the PlusCal code and where
localCh appears in the TypeOK invariant.

EXTENDS Integers, Sequences

g<r = V[l <[]
vV Aq(l] = r(l]
A q[2] < r[2]

CONSTANT N
ASSUME N € Nat\ {0}

Nodes = 1.. N

OtherNodes(i) = Nodes \ {i}

Proclds = {(i):i € Nodes}

SubProcs {p € Nodes x Nodes : p[1] # p[2]}

MsgProcs = {p € Nodes x Nodes x {"msg"} : p[1] # p[2]}
SubProcsOf (i) = {p € SubProcs : p[1] = i}

A
A

A
ack = CHOOSE v:v ¢ Nat
3k >k sk >k ok ok sk ok ok ok >k ok >k sk ok sk sk sk sk ok sk sk sk Sk sk sk >k sk >k sk sk sk sk ok ok >k ok sk sk ok sk sk sk sk ok sk sk ok sk sk >k sk >k ok sk sk sk sk ok sk ok ok sk ok sk sk sk sk sk ok sk k k-

--algorithm Decon{
variables number = [i € Nodes > 0],
localNum = [i € Nodes — [j € OtherNodes(i)
localCh = [i € Nodes — [j € OtherNodes(i)
ackRcvd = [i € Nodes — [j € OtherNodes(7)
g = [i € Nodes — [j € OtherNodes(i) — (}]]

I

b
Il, ERASABLE
)

—0
0
— 0]]
fair process (main € Proclds){
ncs:- while (TRUE){
skip; noncritical section
M: await Vp € SubProcsOf (self[1]) : pc[p] = “LO" ;
with (v € {n € Nat\ {0} :
Vj € OtherNodes(self[1]) :
n > localNum|self [1]][7]}){
number[self[1]] := v ;
q[self[1]] :== [j € OtherNodes(self[1])
} — Append(q[self [1]][j], v)]

L: await Vp € SubProcsOf (self[1]) : pc[p] = “ch” ;
cs: skip; critical section
P: ackRcuvd|[self[1]] ;= [j € OtherNodes(self[1]) — 0] ;
number[self[1]] :== 03
q[self[1]] := [j € OtherNodes(self[1])
} — Append(q[self[1]][j], 0)]

}

fair process (sub € SubProcs){
ch: while (TRUE){
await pc[(self[1])] = “M" ;
localCh[self [2]][self[1]] :=1; ERASABLE
L0: await pc[(self[1])] = “L";
await ackRcud|[self[1]][self[2]] = 1;
localCh[self [2]][self[1]] :== 0 ERASABLE
L2: await localCh|[self[1]][self[2]] = 0; ERASABLE
L3: await V localNum/[self[1]][self[2]] =0
V (number|[self[1]], self[1]) <
(localNum|[self [1]][self [2]], self[2])
}
}

fair process (msg € MsgProcs){
wr: while (TRUE){

await g[self [2]][self[1]] # ()

with (v = Head(q[self[2]][self [1]])){
if (v = ack){ackRcvd[self[1]][self[2]] := 1}
else {localNum|self[1]][self[2]] := v}
if (v € {0, ack}){

q[self [2))[self [1]] := Tadl(q[self [2]][self [1]])}

else {q[self[2]][self [1]] := Tail(g[self [2]] [self[1]) ||
} q[self [1])[self [2]] := Append (q[self [1]][self [2]], ack)}

}
}
}

s sk ok ok ok ok sk sk sk sk oK K K K KK o o ok ok ok ok ok sk sk sk sk sk sk sk sk ok kK s o ok ok ok sk ok sk sk sk sk sk sk K sk ok sk sk ks ok ok sk sk sk sk sk sk sk sk K

BEGIN TRANSLATION (chksum(pcal) = “d4d60f14” A chksum(tla) = “8b3daef”)
VARIABLES number, localNum, localCh, ackRcvd, q, pc

vars = (number, localNum, localCh, ackRcvd, q, pe)
ProcSet = (Proclds) U (SubProcs) U (MsgProcs)

Init £ |Global variables

A number = [i € Nodes — 0]
A localNum = [i € Nodes — [j € OtherNodes(i) — 0]]
AlocalCh = [i € Nodes — [j € OtherNodes(i) — 0]]
A ackRcvd = [i € Nodes — [j € OtherNodes(i) — 0]]
A g =i € Nodes — [j € OtherNodes(i) — ()]]
A pc = [self € ProcSet — CASE self € Proclds — “ncs’
O self € SubProcs — "ch”
O self € MsgProcs — “wr"]
nes(self) = A pe[self] = “ncs”
A\ TRUE
A pc’ = [pc EXCEPT ![self] = “M"]
A UNCHANGED (number, localNum, localCh, ackRcvd, q)

M(self) = A pelself] = “M”
AY p € SubProcsOf (self[1]) : pc[p] = “LO"
AJv € {n € Nat\ {0} :
Vj € OtherNodes(self[1])
n > localNum/[self[1]][4]} :
A number’ = [number EXCEPT ![self[1]] = v]
A q' = [q EXCEPT ![self[1]] = [j € OtherNodes(self[1])
= Append(q[self[1]][j], v)]]

A pc’ = [pc EXCEPT ![self] = “L"]
A UNCHANGED (localNum, localCh, ackRcvd)

L(self) = Ape[self] = “L”
AY p € SubProcsOf (self[1]) : pc[p] = “ch”

A pc’ = [pc EXCEPT ![self] = "cs”]
A UNCHANGED (number, localNum, localCh, ackRcvd, q)

cs(self) = A pelself] = "cs”

A\ TRUE

A pc’ = [pc EXCEPT ![self] = “P"]

A UNCHANGED (number, localNum, localCh, ackRcvd, q)
P(self) = A pclself] = “P"

A ackRevd’ = [ackRcvd EXCEPT ![self[1]] = [j € OtherNodes(self[1]) — 0]]
A number’ = [number EXCEPT ![self[1]] = 0]
A ¢ = [q EXCEPT ![self[1]] = [j € OtherNodes(self[1])
— Append(q[self[1]][j], 0)]]
A pc’ = [pc EXCEPT ![self] = “ncs”|
A UNCHANGED (localNum, localCh)

main(self) = nes(self) vV M(self) v L(self) V es(self) V P(self)

ch(self) = A pe[self] = “ch”
A pel(self[1])] = “M"

A localCh' = [localCh EXCEPT ![self[2]][self[1]] = 1]
A pc’ = [pc EXCEPT ![self] = “L0"]
A UNCHANGED (number, localNum, ackRcvd, q)

LO(self) = A pe[self] = “LO"
A pel{self[1])] = “L"
A ackRevd[self[1]][self[2]] =1
A localCh/ = [localCh EXCEPT ![self [2]][self[1]] = 0]
A pc’ = [pc EXCEPT ![self] = “L2"]
A UNCHANGED (number, localNum, ackRcvd, q)

L2(self) = A pe[self] = “L2"
A localChlself [1]][self[2]] = 0
A pc’ = [pc EXCEPT ![self] = “L3"]
A UNCHANGED (number, localNum, localCh, ackRcvd, q)

L3(self) = A pe[self] = “L3"
A V localNum/[self [1]][self[2]] = 0
V (number[self [1]], self[1]) <
(localNum[self [1]][self [2]], self[2])
A pc’ = [pc EXCEPT ![self] = “ch"]
A UNCHANGED (number, localNum, localCh, ackRcvd, q)

sub(self) = ch(self)V LO(self) vV L2(self) V L3(self)

wr(self) = A pelself] = “wr”
A qself [2]][self [1]] # O
ALET v = Head(q[self[2]][self[1]])IN
AIF v = ack
THEN A ackRcvd’ = [ackRcvd EXCEPT ![self [1]][self[2]] = 1]
A UNCHANGED localNum
ELSE A localNum' = [localNum EXCEPT ![self[1]][self[2]] = v]
A UNCHANGED ackRcvd
ATF v € {0, ack}
THEN A ¢' = [¢ EXCEPT ![self[2]][self[1]] = Tail(q[self[2]][self[1]])]
ELSE A ¢’ = [¢ EXCEPT ![self[2]][self[1]] = Tail(q[self [2]][self[1]]),
[self (1self [2]] = Append(alself (][self 2], ack)]
A pc’ = [pc EXCEPT ![self] = “wr"]
A UNCHANGED (number, localCh)

msg(self) = wr(self)

Next = (3self € Proclds : main(self))
V (3 self € SubProcs : sub(self))
V (3 self € MsgProcs : msg(self))

Spec = A Init A O[Next]yars

AV self € Proclds : WF s ((pe[self] # “ncs”) A main(self))
AV self € SubProcs : WF a5 (sub(self))
AV self € MsgProcs : WF s (msg(self))

END TRANSLATION

! |
I 1

TypeOK = A number € [Nodes — Nat]
A A DOMAIN localNum = Nodes
AV i € Nodes : localNumli] € [OtherNodes(i) — Nat]
A A DOMAIN localCh = Nodes ERASABLE
AVYi € Nodes : localCh[i] € [OtherNodes(i) — {0, 1}] ERASABLE
A A DOMAIN ackRcvd = Nodes
AYi € Nodes : ackRcvd[i] € [OtherNodes(i) — {0, 1}]
A A DOMAIN ¢ = Nodes
AV i € Nodes : q[i] € [OtherNodes(i) — Seq(Nat U {ack})]
A A DOMAIN pc = ProcSet
AY p € ProcSet :
CASE p € Proclds — pclp] € {"“ncs”, "M", “L", “cs”, “P"}
O p € SubProcs — pclp] € {“ch”, “LOo", “L2", “L3"}
O p € MsgProcs — pclp] = “wr"

MutualExclusion = ¥ p, r € Proclds : (p # r) = ({pc[p], pc[r]} # {“cs"})
StarvationFree = ¥ p € Proclds : (pc[p] = “M") ~ (pc[p] = “cs”)

=

TestMazxrNum 6
TestNat = 0 .. (TestMazNum + 1)

TEST RESULTS

TLC has tested that TypeOK and MutualEzclusion are invariants of the algorithm, and that the
algorithm satisfies the temporal property StarvationFree. As a sanity check, some smaller models
were used to check that, if fairness is not disabled for the ncs action, then the algorithm satisfies
the following property, which asserts that every process executes the critical section infinitely
many times.

Vi € Procs : OO (pc[(i)] = “cs”)

The largest model that was tested was for N = 3 and TestMaxNum = 6. It had 24,943,042
reachable states and was executed in a little less than 52 minutes on a 64-core machine using 55
| worker threads.

J

\ * Modification History
\ * Last modified Mon Aug 02 15:23:28 PDT 2021 by lamport
\ * Created Tue Apr 27 10:33:38 PDT 2021 by lamport

