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Here’s how I think process-algebraic proofs work in general—at least, in
the “Amsterdam style”. It all sounds pretty abstract, but I’ve looked at a
couple of simple examples and it seems to actually work.

I’ll consider the problem of proving equivalence of two processes. Proof
of implementation should be analogous, for some suitable notion of imple-
mentation.

First, consider the finite-state case, with no
∑
’s or data-bearing actions,

where the process essentially specifies a finite-state machine. In this case,
we can apply the process-algebra laws to symbolically execute the state
machine, rewriting the process P in the form

P = . . . + α1 . α2 . . . . . αk .P + . . .

where the sum is finite. The terms in the sum essentially describe the
reachable states of the state machine—that is, the invariant. I’m sure there
are algorithms to determine if two such representations are equivalent. (I
would guess there’s a smallest such representation, but I don’t know much
about finite state machines. If there is, then it can be defined to be the
canonical form of P , and two processes are equivalent iff they have the same
canonical form.)

Next, consider the case with data. Actions are of the form α(v) for some
constant expression v , processes can have parameters, and the processes
can use the operator

∑
v∈S . (For simplicity, I’ll exclude the correspond-

ing parallel composition operator
∏

v∈S ; I don’t think there’s any inherent
problem adding it.) I believe that, without loss of generality, by taking suit-
able Cartesian product spaces and applying the laws of process algebra, any
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process P can be rewritten in the form

P(v) =
. . . +

∑

w1∈S1

. . .
∑

wn∈Sn

α1(f1(w1, . . . ,wn)) . α2(f2(w1, . . . ,wn)) .

. . . . αk (fk (w1, . . . ,wn )) . (P(w1)‖ . . . ‖P(wn ))
+ . . .

By taking more complicated data spaces, using trees instead of just Carte-
sian products, one can define a new machine—basically, replacing P(w1)‖ . . . ‖P(wn )
by P(〈w1, . . . ,wn 〉)—I think a process can be rewritten in the form

P(v) = . . . +
∑

w∈S

α1(f1(w)) . . . . . αk (fk (w)) .P(w) + . . .

In either case, these summands represent the reachable states in an unbounded-
state machine—in other words, the invariant. Proving the equivalence of
two such representations is, in general, undecidable. Once one has such a
representation, one can keep expanding it by substituting for P(w) in one
term and applying algebraic identities to get back to the standard form. In
practice, to prove equivalence of two processes, one has to expand their rep-
resentations until they become isomorphic. I suspect that there’s a relative
completeness theorem asserting that if you can express all the sets S and
functions fi you wanted and could prove all you valid facts about them, then
you can prove the equivalence of any two equivalent processes. Rob, do you
know of such a result?
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