
Distributed Snapshots: Determining Global
States of Distributed Systems
K. MANI CHANDY
University of Texas at Austin
and
LESLIE LAMPORT
Stanford Research Institute

This paper presents an algorithm by which a process in a distributed system determines a global
state of the system during a computation. Many problems in distributed systems can be cast in terms
of the problem of detecting global states. For instance, the global state detection algorithm helps to
solve an important class of problems: stable property detection. A stable property is one that persists:
once a stable property becomes true it remains true thereafter. Examples of stable properties are
“computation has terminated,” “ the system is deadlocked” and “all tokens in a token ring have
disappeared.” The stable property detection problem is that of devising algorithms to detect a given
stable property. Global state detection can also be used for checkpointing.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems-distributed applications; distributed databases; network operating systems; D.4.1 [Operating
Systems]: Process Management-concurrency; deadlocks, multiprocessing/multiprogramming; mutual
exclusion; scheduling; synchronization; D.4.5 [Operating Systems]: Reliability-backup procedures;
checkpoint/restart; fault-tolerance; verification

General Terms: Algorithms

Additional Key Words and Phrases: Global States, Distributed deadlock detection, distributed
systems, message communication systems

1. INTRODUCTION

This paper presents algorithms by which a process in a distributed system can
determine a global state of the system during a computation. Processes in a
distributed system communicate by sending and receiving messages. A process
can record its own state and the messages it sends and receives; it can record
nothing else. To determine a global system state, a process p must enlist the

This work was supported in part by the Air Force Office of Scientific Research under Grant AFOSR
81-0205 and in part by the National Science Foundation under Grant MCS 81-04459.
Authors’ addresses: K. M. Chandy, Department of Computer Sciences, University of Texas at Austin,
Austin, TX 78712; L. Lamport, Stanford Research Institute, Menlo Park, CA 94025.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1985 ACM 0734-2071/85/0200-0063 $00.75

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985, Pages 63-75.

64 l K. M. Chandy and L. Lamporl

cooperation of other processes that must record their own local states and send
the recorded local states to p. All processes cannot record their local states at
precisely the same instant unless they have access to a common clock. We assume
that processes do not share clocks or memory. The problem is to devise algorithms
by which processes record their own states and the states of communication
channels so that the set of process and channel states recorded form a global
system state. The global-state-detection algorithm is to be superimposed on the
underlying computation: it must run concurrently with, but not alter, this
underlying computation.

The state-detection algorithm plays the role of a group of photographers
observing a panoramic, dynamic scene, such as a sky filled with migrating birds-
a scene so vast that it cannot be captured by a single photograph. The photog-
raphers must take several snapshots and piece the snapshots together to form a
picture of the overall scene. The snapshots cannot all be taken at precisely the
same instant because of synchronization problems. Furthermore, the photogra-
phers should not disturb the process that is being photographed; for instance,
they cannot get all the birds in the heavens to remain motionless while the
photographs are taken. Yet, the composite picture should be meaningful. The
problem before us is to define “meaningful” and then to determine how the
photographs should be taken.

We now describe an important class of problems that can be solved with the
global-state-detection algorithm. Let y be a predicate function defined on the
global states of a distributed system D; that is, y(S) is true or false for a global
state S of D. The predicate y is said to be a stable property of D if y(S) implies
y(S’) for all global states S’ of D reachable from global state S of D. In other
words, if y is a stable property and y is true at a point in a computation of D,
then y is true at all later points in that computation. Examples of stable properties
are “computation has terminated, ” “the system is deadlocked,” and “all tokens
in a token ring have disappeared.”

Several distributed-system problems can be formulated as the general problem
of devising an algorithm by which a process in a distributed system can determine
whether a stable property y of the system holds. Deadlock detection [2, 5, 8, 9,
111 and termination detection [l, 4, lo] are special cases of the stable-property
detection problem. Details of the algorithm are presented later. The basic idea
of the algorithm is that a global state S of the system is determined and y(S) is
computed to see if the stable property y holds.

Several algorithms for solving deadlock and termination problems by deter-
mining the global states of distributed systems have been published. Gligor and
Shattuck [5] state that many of the published algorithms are incorrect and
impractical. A reason for the incorrect or impractical algorithms may be that the
relationships among local process states, global system states, and points in a
distributed computation are not well understood. One of the contributions of this
paper is to define these relationships.

Many distributed algorithms are structured as a sequence of phases, where
each phase consists of a transient part in which useful work is done, followed by
a stable part in which the system cycles endlessly and uselessly. The presence of
stable behavior indicates the end of a phase. A phase is similar to a series of
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Distributed Snapshots l 65

iterations in a sequential program, which are repeated until successive iterations
produce no change, that is, stability is attained. Stability must be detected so
that one phase can be terminated and the next phase initiated [lo]. The
termination of a computational phase is not identical to the termination of a
computation. When a computation terminates, all activities cease-messages are
not sent and process states do not change. There may be activity during the
stable behavior that indicates the end of a computational phase-messages may
be sent and received, and processes may change state, but this activity serves no
purpose other than to signal the end of a phase. In this paper, we are concerned
with the detection of stable system properties; the cessation of activity is only
one example of a stable property.

Strictly speaking, properties such as “the system is deadlocked” are not stable
if the deadlock is “broken” and computation is reinitiated. However, to keep
exposition simple, we shall partition the overall problem into the problems of (1)
detecting the termination of one phase (and informing all processes that a phase
has ended) and (2) initiating a new phase. The following is a stable property:
“the kth computational phase has terminated,” lz = 1,2, Hence, the methods
presented in this paper are applicable to detecting the termination of the lath
phase for a given k.

In this paper we restrict attention to the problem of detecting stable properties.
The problem of initiating the next phase of computation is not considered here
because the solution to that problem varies significantly depending on the
application, being different for database deadlock detection than for detecting
the termination of a diffusing computation.

We have to present our algorithms in terms of a model of a system. The model
chosen is not important in itself; we could have couched our discussion in terms
of other models. We shall describe our model informally and only to the level of
detail necessary to make the algorithms clear.

2. MODEL OF A DISTRIBUTED SYSTEM

A distributed system consists of a finite set of processes and a finite set of
channels. It is described by a labeled, directed graph in which the vertices
represent processes and the edges represent channels. Figure 1 is an example.

Channels are assumed to have infinite buffers, to be error-free, and to deliver
messages in the order sent. (The infinite buffer assumption is made for ease of
exposition: bounded buffers may be assumed provided there exists a proof that
no process attempts to add a message to a full buffer.) The delay experienced by
a message in a channel is arbitrary but finite. The sequence of messages received
along a channel is an initial subsequence of the sequence of messages sent along
the channel. The state of a channel is the sequence of messages sent along the
channel, excluding the messages received along the channel.

A process is defined by a set of states, an initial state (from this set), and a set
of events. An event e in a process p is an atomic action that may change the state
of p itself and the state of at most one channel c incident on p: the state of c may
be changed by the sending of a message along c (if c is directed away from p) or
the receipt of a message along c (if c is directed towards p). An event e is defined
by (1) the process p in which the event occurs, (2) the state s of p immediately

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

66 l K. M. Chandy and L. Lamport

Fig. 1. A distributed system with processes p,
q, and r and channels cl, c2, c3, and c4.

before the event, (3) the state s’ of p immediately after the event, (4) the channel
c (if any) whose state is altered by the event, and (5) the message M, if any, sent
along c (if c is a channel directed away from p) or received along c (if c is directed
towards p). We define e by the 5-tuple (p, s, s’, M, c), where M and c are a
special symbol, null, if the occurrence of e does not change the state of any
channel.

A global state of a distributed system is a set of component process and channel
states: the initial global state is one in which the state of each process is its initial
state and the state of each channel is the empty sequence. The occurrence of an
event may change the global state. Let e = (p, s, s’, M, c) we say e can occur in
global state S if and only if (1) the state of process p in global state S is s and
(2) if c is a channel directed towards p, then the state of c in global state S is a
sequence of messages with M at its head. We define a function next, where
next (S, e) is the global state immediately after the occurrence of event e in global
state S. The value of next(S, e) is defined only if event e can occur in global state
S, in which case next(S, e) is the global state identical to S except that: (1) the
state of p in next(S, e) is s’; (2) if e is a channel directed towards p, then the
state of c in next(S, e) is c’s state in S with message M deleted from its head;
and (3) if c is a channel directed away from p, then the state of c in next(S, e) is
the same as c’s state in S with message M added to the tail.

Let seq = (ei: 0 5 i 5 n) be a sequence of events in component processes of a
distributed system. We say that seq is a computation of the system if and only if
event ei can occur in global state Si, 0 5 i 5 n, where So is the initial global state
and

Si+l = neXt(Si, ei) for 0 5 i 5 n.

An alternate model, based on Lamport [6], which views computations as
partially ordered sets of events, is given in [7].

Example 2.1. To illustrate the definition of a distributed system, consider a
simple system consisting of two processes p and q, and two channels c and c’ as
shown in Figure 2.

The system contains one token that is passed from one process to another, and
hence we call this system the “single-token conservation” system. Each process
has two states, so and sl, where so is the state in which the process does not
possess the token and s1 is the state in which it does. The initial state of p is sl
and of q is so. Each process has two events: (1) a transition from s1 to so wit’- the
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Distributed Snapshots l 67

Fig. 2. The simple distributed system of
Examples 2.1 and 2.2.

channel

process

Fig. 3. State-transition diagram of a process in
Example 2.1.

receive token

in transit
global state: token in p

global state: token in C’ ------ global state: token in q ---_

L---------l L-------J
Fig. 4. Global states and transitions of the single-token conservation system.

sending of the token, and (2) a transition from so to s1 with the receipt of the
token. The state-transition diagram for a process is shown in Figure 3. The global
states and transitions are shown in Figure 4.

A system computation corresponds to a path in the global-state-transition
diagram (Figure 4) starting at the initial global state. Examples of system
computations are: (1) the empty sequence and (2) (p sends token, q receives
token, q sends token). The following sequence is not a computation of the system:
(p sends token, q sends token), because the event “q sends token” cannot occur
while q is in the state so.

For brevity, the four global states, in order of transition (see Figure 4), will be
called (1) in-p, (2) in-c, (3) in-q, and (4) in-c’, to denote the location of the token.
This example will be used later to motivate the algorithm. Cl

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

68 l K. M. Chandy and L. Lamport

initial Fig. 5. State-transition diagram for process p
in Example 2.2.

Fig. 6. State-transition diagram for process q
in Example 2.2.

initial global

state A-state rZstate So

1 p sends M

S@QBc global state Sl

q sends M’

S,eBD global state S2

p receives M’

@ADD global state S3

A empty

Fig. 7. A computation for Example 2.2.

Example 2.2. This example illustrates nondeterministic computations. Non-
determinism plays an interesting role in the snapshot algorithm.

In Example 2.1 there is exactly one event possible in each global state. Consider
a system with the same topology as Example 2.1 (see Figure 2) but where the
processes p and q are defined by the state-transition diagrams of Figures 5
and 6.

An example of a computation is shown in Figure 7. The reader should observe
that there may be more than one transition allowable from a global state. For
instance, events ‘p sends M ” and “q sends M’ ” may occur in the initial global
state, and the next states after these events are different. Cl
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Distributed Snapshots l 69

3. THE ALGORITHM

3.1. Motivation for the Steps of the Algorithm

The global-state recording algorithm works as follows: Each process records its
own state, and the two processes that a channel is incident on cooperate in
recording the channel state. We cannot ensure that the states of all processes
and channels will be recorded at the same instant because there is no global
clock; however, we require that the recorded process and channel states form a
“meaningful” global system state.

The global-state recording algorithm is to be superimposed on the underlying
computation, that is, it must run concurrently with, but not alter, the underlying
computation. The algorithm, may send messages and require processes to carry
out computations; however, the messages and computation required to record the
global state must not interfere with the underlying computation.

We now consider an example to motivate the steps of the algorithm. In the
example we shall assume that we can record the state of a channel instantane-
ously; we postpone discussion of how the channel state is recorded. Let c be a
channel from p to 9. The purpose of the example is to gain an intuitive
understanding of the relationship between the instant at which the state of
channel c is to be recorded and the instants at which the states of processes p
and q are to be recorded.

Example 3.1. Consider the single-token conservation system. Assume that
the state of process p is recorded in global state in-p. Then the state recorded for
p shows the token in p. Now assume that the global state transits to in-c (because
p sends the token). Suppose the states of channels c and c’ and of process q were
recorded in global state in-c, so the state recorded for channel c shows it with the
token and the states recorded for channel c’ and process q show them not in
possession of the token. The composite global state recorded in this fashion
would show two tokens in the system, one in p and the other in c. But a global
state with two tokens is unreachable from the initial global state in a single-t&en
conservation system! The inconsistency arises because the state of p is recorded
before p sent a message along c and the state of c is recorded after p sent the
message. Let n be the number of messages sent along c beforep’s state is recorded,
and let n’ be the number of messages sent along c before c’s state is recorded.
Our example suggests that the recorded global state may be inconsistent if n <

I n.
Now consider an alternate scenario. Suppose the state of c is recorded in global

state in-p, the system then transits to global state in-c, and the states of c’, p,
and q are recorded in global state in-c. The recorded global state shows no tokens
in the system. This example suggests that the recorded global state may be
inconsistent if the state of c is recorded before p sends a message along c and the
state of p is recorded after p sends a message along c, that is, if n > n’. Cl

We learn from these examples that (in general) a consistent global state
requires

n = n’. (1)
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

70 l K. M. Chandy and L. Lamport

Let m be the number of messages received along c before q’s state is recorded.
Let m’ be the number of messages received along c before c’s state is recorded.
We leave it up to the reader to extend the example to show that consistency
requires

m = m’. (2)

In every state, the number of messages received along a channel cannot exceed
the number of messages sent along that channel, that is,

From the above equations,

n’ 2 m’. (3)

n 2 m. (4)

The state of channel c that is recorded must be the sequence of messages sent
along the channel before the sender’s state is recorded, excluding the sequence
of messages received along the channel before the receiver’s state is recorded-
that is, if n’ = m’, the recorded state of c must be the empty sequence, and if n’
> m’, the recorded state of c must be the (m’ + l)st, . . . , n’th messages sent by
p along c. This fact and eqs. (l)-(4) suggest a simple algorithm by which q can
record the state of channel c. Process p sends a special message, called a marker,
after the nth message it sends along c (and before sending further messages along
c). The marker has no effect on the underlying computation. The state of c is
the sequence of messages received by q after q records its own state and before q
receives the marker along c. To ensure eq. (4), q must record its state, if it has
not done so already, after receiving a marker along c and before q receives further
messages along c.

Our example suggests the following outline for a global state detection algo-
rithm.

3.2 Global-State-Detection Algorithm Outline

Marker-Sending Rule for a Process p. For each channel c, incident on, and
directed away from p:

p sends one marker along c after p records its state and before p sends further messages
along c.

Marker-Receiving Rule for a Process q. On receiving a marker along a channel
C:

if q has not recorded its state then
begin q records its state;

q records the state c as the empty sequence
end

else q records the state of c as the sequence of messages received along c after q’s state
was recorded and before q received the marker along c.

3.3 Termination of the Algorithm

The marker receiving and sending rules guarantee that if a marker is received
along every channel, then each process will record its state and the states of all
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Distributed Snapshots l 71

incoming channels. To ensure that the global-state recording algorithm termi-
nates in finite time, each process must ensure that (Ll) no marker remains
forever in an incident input channel and (L2) it records its state within finite
time of initiation of the algorithm.

The algorithm can be initiated by one or more processes, each of which records
its state spontaneously, without receiving markers from other processes; we
postpone discussion of what may cause a process to record its state spontaneously.
If process p records its state and there is a channel from p to a process 4, then q
will record its state in finite time because p will send a marker along the channel
and q will receive the marker in finite time (Ll). Hence if p records its state and
there is a path (in the graph representing the system) from p to a process q, then
q will record its state in finite time because, by induction, every process along
the path will record its state in finite time. Termination in finite time is ensured
if for every process q: q spontaneously records its state or there is a path from a
process p, which spontaneously records its state, to q.

In particular, if the graph is strongly connected and at least one process
spontaneously records its state, then all processes will record their states in finite
time (provided Ll is ensured).

The algorithm described so far allows each process to record its state and the
states of incoming channels. The recorded process and channel states must be
collected and assembled to form the recorded global state. We shall not describe
algorithms for collecting the recorded information because such algorithms have
been described elsewhere [4, lo]. A simple algorithm for collecting information
in a system whose topology is strongly connected is for each process to send the
information it records along all outgoing channels, and for each process receiving
information for the first time to copy it and propagate it along all of its outgoing
channels. All the recorded information will then get to all the processes in finite
time, allowing all processes to determine the recorded global state.

4. PROPERTIES OF THE RECORDED GLOBAL STATE

To gain an intuitive understanding of the properties of the global state recorded
by the algorithm, we shall study Example 2.2. Assume that the state of p is
recorded in global state So (Figure 7), so the state recorded for p is A. After
recording its state, p sends a marker along channel c. Now assume that the
iystem goes to global state Si, then Sz, and then S3 while the marker is still in
transit, and the marker is received by q when the system is in global state SB. On
receiving the marker, q records its state, which is D, and records the state of c to
be the empty sequence. After recording its state, q sends a marker along channel
c’. On receiving the marker, p records the state of c’ as the sequence consisting
of the single message M’. The recorded global state S* is shown in Figure 8. The
recording algorithm was initiated in global state 5’0 and terminated in global state
s3.

Observe that the global state S* recorded by the algorithm is not identical to
any of the global states So, S1, Sz, S3 that occurred in the computation. Of what
use is the algorithm if the recorded global state never occurred? We shall now
answer this question.

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

72 l K. M. Chandy and L. Lamport

empty

M’

state D

Fig. 8. A recorded global state for Example 2.2.

Let seq = (ei, 0 5 i) be a distributed computation, and let Si be the global state
of the system immediately before event ei, 0 5 i, in seq. Let the algorithm be
initiated in global state S, and let it terminate in global state S4, 0 5 1 I 4; in
other words, the algorithm is initiated after e,-l if L > 0, and before e,, and it
terminates after eeel if 4 > 0, and before e,. We observed in Example 2.2 that
the recorded global state S* may be different from all global states Sk, 1 5 k 5 4.

We shall show that:

(1) S* is reachable from S,, and
(2) S, is reachable from S*.

Specifically, we shall show that there exists a computation seq’ where

(1) seq’ is a permutation of seq, such that S,, S* and S4 occur as global states in

(2) S, = S* or S, occurs earlier than S*, and
(3) S, = S* or S* occurs earlier than S, in seq’.

THEOREM 1. There exists a computation seq’ = (el, 0 I i) where

(1) Foralli,wherei<10rir4:e!=ei,and
(2) the subsequence (ei, L 5 i < 4) is a permutation of the subsequence (ei, L 5 i

< 4), and
(3) for all i where i 5 L or i 2 4: S,! = Si, and
(4) there exists some k, L 5 k 5 4, such that S* = SL.

PROOF. Event ei in seq is called a prerecording event if and only if ci is in a
process p and p records its state after ei in seq. Event ei in seq is called a
postrecording event if and only if it is not a prerecording event-that is, if ei is
in a process p and p records its state before ei in seq. All events ei, i < 1, are
prerecording events and all events ei, i > 4, are postrecording events in seq.
There may be a postrecording event ej-1 before a prerecording event ej for some
j, L < j < 4; this can occur only if ej-1 and ej are in different processes (because
if ej-1 and cj are in the same process and ej-1 is a postrecording event, then so is
ej).

We shall derive a computation seq’ by permuting seq, where all prerecording
events occur before all postrecording events in seq’. We shall show that S* is the
global state in seq’ after all prerecording events and before all postrecording
events.

Assume that there is a postrecording event ej-1 before a prerecording event ej
in seq. We shall show that the sequence obtained by interchanging ej-1 and ej
must also be a computation. Events ej-1 and ej must be on different processes.
Let p be the process in which ej-1 occurs, and let q be the process in which ej
occurs. There cannot be a message sent at ej-1 which is received at ej because (1)
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Distributed Snapshots l 73

if a message is sent along a channel c when event ej-1 occurs, then a marker must
have been sent along c before ej-1, since ej-1 is a postrecording event, and (2) if
the message is received along channel c when ej occurs, then the marker must
have been received along c before ej occurs (since channels are first-in-first-out),
in which case (by the marker-receiving rule) ej would be a postrecording event
too.

The state of process q is not altered by the occurrence of event ej-1 because
ej-1 is in a different process p. If ej is an event in which q receives a message M
along a channel c, then M must have been the message at the head of c before
event ej-1, since a message sent at ej-1 cannot be received at ej. Hence event ej
can occur in global state Sj-1.

The state of process p is not altered by the occurrence of ej. Hence ej-1 can
occur after ej. Hence the sequence of events el, . . . , ej-2, ej, ej-1 is a computation.
From the arguments in the last paragraph it follows that the global state after
computation el, . . . , ej is the same as the global state after computation el, . . . ,
ej-2, ej, ej-1.

Let seq* be a permutation of seq that is identical to seq except that ej and ej-1
are interchanged. Then seq* must also be a computation. Let Si be the global
state immediately before the ith event in seq*. From the arguments of the previous
paragraph,

Si = Si for all i where i # j.

By repeatedly swapping postrecording events that immediately follow prere-
cording events, we see that there exists a permutation seq’ of seq in which

(1) all prerecording events precede all postrecording events,
(2) seq’ is a computation,
(3) foralliwherei<Lori?4:ef=ei,and
(4) foralliwhereisLori?+:SI=Si.

Now we shall show that the global state after all prerecording events and
before all postrecording events in seq’ is S. To do this, we need to show that

(1) the state of each process p in S* is the same as its state after the process
computation consisting of the sequence of prerecorded events on p, and

(2) the state of each channel c in S* is (sequence of messages corresponding to
prerecorded sends on c) - (sequence of messages corresponding to prere-
corded receives on c).

The proof of the first part is trivial. Now we prove part (2). Let c be a channel
from process p to process q. The state of channel c recorded in S* is the sequence
of messages received on c by q after q records its state and before q receives a
marker on c. The sequence of messages sent by p along c before p sends a marker
along c is the sequence corresponding to prerecorded sends on c. Part (2) now
follows. 0

Example 4.1. The purpose of this example is to show how the computation
seq’ is derived from the computation seq. Consider Example 2.2. The sequence

ACM Transactions on Computer Systems, Vol. 3, NO. 1, February 1985.

74 l K. M. Chandy and L. Lamport

of events shown in the computation of Figure 7 is

eo: p sends M and changes state to B (a postrecording event)
el: q sends M’ and changes state to D (a prerecording event)
e2: p receives M’ and changes state to A (a postrecording event)

Since eo, a postrecording event, immediately precedes el, a prerecording event,
we interchange them, to get the permuted sequence seq’:

eb: q sends M’ and changes state to D (a prerecording event)
e;: p sends M and changes state to B (a postrecording event)
e’,: p receives M’ and changes state to A (a postrecording event)

In seq’, all prerecording events precede all postrecording events. We leave it to
the reader to show that the global state after eb is the recorded global state.

5. STABILITY DETECTION

We now solve the stability-detection problem described in Section 1. We study
the stability-detection problem because it is a paradigm for many practical
problems, such as distributed deadlock detection.

A stability-detection algorithm is defined as follows:

Input: A stable property y
Output: A Boolean value definite with the property:

(y(S,) + definite) and (definite --$ y(S,)
where S, and S, are the global states of the system when the algorithm is
initiated and when it terminates, respectively. (The symbol + denotes logical
implication.)

The input to the algorithm is (the definition of) function y. During the
execution of the algorithm the value y(S) for some global state S may be
determined by a process in the system by applying the externally defined function
y to global state S. By the output of the algorithm being a Boolean value definite
we mean that (1) some specially designated process (say p) enters and thereafter
remains in some special state to symbolize an output of definite = true, and (2)
p enters and remains in some other special state to symbolize an output of
definite = false.

Definite = true implies that the stable property holds when the algorithm
terminates. However, definite = false implies that the stable property does not
hold when the algorithm is initiated. We emphasize that definite = true gives us
information about the state of the system at the termination of the algorithm,
whereas definite = false gives us information about the system state at the
initiation of the algorithm. In particular, we cannot deduce from definite = faLse
that the stable property does not hold at termination of the algorithm.

The solution to the stability detection problem is

begin
record a global state S*;
definite := y(S*)

end.

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1935.

Distributed Snapshots l 75

The correctness of the stability detection algorithm follows from the following
facts:

(1) S* is reachable from S,,
(2) S, is reachable from S* (Theorem l), and
(3) y(S) + y(S’) for all S’ reachable from S (definition of a stable property).

ACKNOWLEDGMENTS

J. M&a’s contributions in defining the problem of global state detection are
gratefully acknowledged. We are grateful to E. W. Dijkstra and C. S. Scholten
for their comments-particularly regarding the proof of Theorem 1. The outline
of the current version of the proof was suggested by them. Dijkstra’s note [3] on
the subject provides colorful insight into the problem of stability detection.
Thanks are due to C. A. R. Hoare, F. Schneider, and G. Andrews who helped us
with detailed comments. We are grateful to Anita Jones and anonymous referees
for suggestions.

REFERENCES

1. CHANDY, K. M., AND MISRA, J. Distributed computation on graphs: Shortest path algorithms.
Commun. ACM 25, 11 (Nov. 1982), 833-837.

2. CHANDY, K. M., MISRA, J., AND HAAS, L. Distributed deadlock detection. ACM Trans. Comput.
Syst. I,2 (May 1983), 144-156.

3. DIJKSTRA, E. W. The distributed snapshot of K. M. Chandy and L. Lamport. Tech. Rep. EWD
864a, Univ. of Texas, Austin, Tex., 1984.

4. DIJKSTRA, E. W., AND SCHOLTEN, C. S. Termination detection for diffusing computations. Znf.
Proc. Lett. 12, 1 (Aug. 1980), 1-4.

5. GLIGOR, V. D., AND SHATTUCK, S. H. Deadlock detection in distributed systems. IEEE Trans.
Softw. Eng. SE-6, 5 (Sep. 1980), 435-440.

6. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21, 7 (Jul. 1978), 558-565.

7. LAMPORT, L., AND CHANDY, K. M. On partially-ordered event models of distributed computa-
tions. Submitted for publication.

8. MAHOUD, S. A., AND RIORDAN, J. S. Software controlled access to distributed databases.
INFOR 15, 1 (Feb. 1977), 22-36.

9. MENASCE, D., AND MUNTZ, R. Locking and deadlock detection in distributed data bases. IEEE
Trans. Softw. Eng. SE-& 3 (May 1979), 195-202.

10. MISRA, J., AND CHANDY, K. M. Termination detection of diffusing computations in communi-
cating sequential processes. ACM Trans. Program. Lang. Syst. 4, 1 (Jan. 1982), 37-43.

11. OBERMARCK, R. Distributed deadlock detection algorithm. ACM Trans. Database Syst. 7, 2
(Jun. 1982), 187-208.

Received January 1984; revised September 1984; accepted 7 December 1984

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1965.

