
Leslie Lamport:

The Specification Language TLA+

This is an addendum to a chapter by Stephan Merz in the book
Logics of Specification Languages by Dines Bjørner and Martin C.
Henson (Springer, 2008). It appeared in that book as part of a
“reviews” chapter.

Stephan Merz describes the TLA logic in great detail and provides about as
good a description of TLA+ and how it can be used as is possible in a single
chapter. Here, I give a historical account of how I developed TLA and TLA+

that explains some of the design choices, and I briefly discuss how TLA+ is used
in practice.

Whence TLA

The logic TLA adds three things to the very simple temporal logic introduced
into computer science by Pnueli [4]:

• Invariance under stuttering.

• Temporal existential quantification.

• Taking as atomic formulas not just state predicates but also action for-
mulas.

Here is what prompted these additions.
When Pnueli first introduced temporal logic to computer science in the

1970s, it was clear to me that it provided the right logic for expressing the
simple liveness properties of concurrent algorithms that were being considered
at the time and for formalizing their proofs. In the early 1980s, interest turned
from ad hoc properties of systems to complete specifications. The idea of speci-
fying a system as a conjunction of the temporal logic properties it should satisfy
seemed quite attractive [5]. However, it soon became obvious that this approach
does not work in practice. It is impossible to understand what a conjunction
of individual properties actually specifies. The only practical way to specify
non-trivial systems is to describe them as abstract state machines. So, I started
writing specifications as state machines, where the meaning of a state machine
was a temporal logic formula that described the set of all its possible executions.

There is a basic problem with using a state machine as a specification. Con-
sider an hour clock—a clock that displays only the hour. Ignoring the actual
time that elapses between ticks, an hour clock is trivially specified by a state
machine that increments the hour with each step. This specification, or any
similar one, does not forbid the clock from showing minutes (or temperature
or the phase of the moon). The specification should therefore be satisfied by a

1



clock that shows both the hour and the minute. However, a naive state-machine
specification of the hour clock asserts that the hour changes with every step,
while an hour-minute clock changes the hour only on every 60th step. This
problem is solved by requiring invariance under stuttering. The specification
of the hour clock must allow any finite number of stuttering steps—ones that
leave the hour unchanged—between successive changes to the hour. Steps of
the hour-minute clock that change only the minute are then stuttering steps
allowed by the hour clock’s specification.

At the time, such state-machine specifications were criticized as being overly
specific. The state-machine specification of a FIFO queue I would have written
in those days would have been equivalent to the specification given by module
InternalFIFO in Merz’s Figure 4 (Section 3.5), though probably written in a
pseudo-programming language. Critics pointed out that a specification should
only mention the interface variables in and out . The variable q should not
appear, since there is no reason why an implementation needs to implement the
required behavior with an explicit queue. The only way to avoid all mention
of q is to describe explicitly all the queue’s possible behaviors. To see how
difficult this is, I urge the reader to try to write an informal natural-language
specification of a FIFO queue without mentioning the contents of the queue.
However, the criticism remained valid: a specification of the queue should be
in terms only of the variables in and out . The answer was to hide internal
state variables. Hiding a variable is expressed in temporal logic by temporal
existential quantification. The only (free) variables of the specification Fifo in
module FIFO of Merz’s Figure 4 are in and out .

The final step in the development of TLA came when I realized that taking
action formulas as the atomic formulas in Pnueli’s temporal logic made it easy
to describe state machines with temporal logic formulas. There was no need
to translate from a language for expressing state machines into temporal logic.
The state machine could be written directly as a temporal logic formula.

TLA has allowed me to better understand and to formalize many concepts in
concurrency. Merz discusses implementation as implication and composition as
conjunction. The example that I find most compelling is reduction. Reduction
is the process of proving properties of a concurrent algorithm by reasoning about
a coarser-grained version. There are a number of theorems and folk theorems
stating when this is possible. For example, one reduction folk theorem asserts
that if shared variables are accessed only in mutually exclusive critical sections,
then we can pretend that the execution of an entire critical section is a single
atomic step. It was intuitively clear that these results were all variations on one
basic idea, but it was only with the aid of TLA that I was able to understand
reduction well enough to express that idea as a single theorem that encompasses
those prior results [1].

Whence TLA+

After deciding that TLA was the right way to describe and reason about con-
current systems, my next step was to develop a complete specification language

2



based on it. Merz makes the simple idea of taking predicate logic and (untyped)
set theory as the logic of actions for TLA seem natural and almost inevitable.
In fact, it took me years to discard the usual concepts of computer science to
achieve the simplicity of TLA+. Here are two examples.

Like most computer scientists, I thought that assignment statements were
the natural way to describe state changes. I was skeptical when Jim Horning
suggested that I write x ′ = x + 1 instead of x : = x + 1. However, I tried it
and found that it worked quite well. Unlike most computer scientists, I realized
how much simpler x ′ = x + 1 is than x : = x + 1. The assignment statement
asserts that nothing but x changes—a concept that cannot be expressed math-
ematically in any simple way. (Since there are an infinite number of possible
variables and a mathematical formula can mention only a finite number of them,
a formula cannot assert that no variable other than x changes.) I was therefore
happy to eliminate assignment statements. Upon seeing TLA+, almost every
computer scientist suggests getting get rid of the unchanged conjuncts, essen-
tially by introducing assignment. Initially, I replied that this would gain little,
since removing the unchanged conjuncts would reduce the size of most real
specifications by less than 5%. I now point out that the explicit unchanged
conjuncts provide valuable redundancy, allowing the model checker to detect
the common error of forgetting to specify the new value of a variable.

Like most computer scientists, I assumed that a language should be typed.
When I realized that I could eliminate traditional types and let type correctness
be an invariant, Mart́ın Abadi encouraged me to do so. Only after I took his
advice and started writing untyped specifications did I realize how complicated
and constraining types are [2].

When I first started to think about a specification language for TLA, I
assumed it would need the usual kinds of programming-language constructs
favored by computer scientists. However, I didn’t know which ones. I therefore
decided to start with only TLA and simple mathematics, and to add other
constructs as I needed them. Somewhat to my surprise, I found that all I
needed were:

• A few constructs for writing mathematics formally, such as definitions and
an if/then/else operator.

• Variable declarations and name scoping, which led to the TLA+ module
structure.

Using TLA+

The initial motivation for TLA was to make completely formal, hierarchical
correctness proofs of concurrent systems as simple as possible. The development
of TLA+ was motivated by the needs of engineers building large systems, for
which complete formal development is out of the question. Thus, the TLC
model checker was written about 6 years ago, while a project to develop a
mechanical proof checker for TLA+ is just starting. (This is in contrast to B,

3



which was developed for the complete mechanical verification of relatively simple
programs.)

The industrial TLA+ specifications I know of have mainly been high-level
descriptions of concurrent algorithms or protocols. They have been written to
debug the designs (with the aid of TLC) and to serve as documentation. TLA+

specifications have also been used to improve testing of implementations. Ran-
domly generated tests are notoriously inefficient at finding errors in concurrent
systems. It is much more effective to guide testing with behaviors generated by
TLC from the TLA+ specification [6].

My fundamental objective is to improve the design of systems by getting
engineers to think carefully about what they build. I have met with very limited
success. Most engineers are looking for tools that can find bugs automatically
without requiring any thought. Such tools are useful, but good systems are
not built by removing the bugs from poorly designed ones. Thus far, hardware
engineers have been the most eager users of TLA+. They are very concerned
about errors and are accustomed to using formal tools.

A couple of years ago, I asked Brannon Battson, then a hardware designer
at Intel, why he used TLA+. He replied:

I get asked this question a lot. I randomly select between the following
two answers:

1. It saves a lot of effort to use a high-level language which easily models
operations on complex data structures—i.e., select the subset of ele-
ments in this set satisfying these conditions and apply this next state
equation, etc. Most languages achieve readability of such operations
through function encapsulation and other information hiding tech-
niques. But information hiding is the last thing we want in a formal
specification. TLA+ provides a powerful set of operators (borrowed
from mathematics) which can be used to densely encode complex
statements in a readable fashion, without hiding information.

2. The next big frontier in computer engineering is algorithmic com-
plexity. In order to tackle this increasingly complex world, we need
tools and languages which augment human thought, not supplant
it. TLA+ is a language which connects engineers to the underlying
mathematics of their design—providing insight which they otherwise
wouldn’t have.

For an idea of the problems that face designers of complex systems, I recommend
trying to solve the Wildfire Challenge Problem [3].

References

[1] Ernie Cohen and Leslie Lamport. Reduction in TLA. In David Sangiorgi
and Robert de Simone, editors, CONCUR’98 Concurrency Theory, volume

4



1466 of Lecture Notes in Computer Science, pages 317–331. Springer-Verlag,
1998.

[2] Leslie Lamport and Lawrence C. Paulson. Should your specification language
be typed? ACM Transactions on Programming Languages and Systems,
21(3):502–526, May 1999.

[3] Leslie Lamport, Madhu Sharma, Mark Tuttle, and Yuan Yu. The wild-
fire verification challenge problem. At URL http://research.microsoft.
com/users/lamport/tla/wildfire-challenge.html on the World Wide
Web. It can also be found by searching the Web for the 24-letter string
wildfirechallengeproblem.

[4] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on the Foundations of Computer Science, pages 46–57.
IEEE, November 1977.

[5] Richard L. Schwartz and P. M. Melliar-Smith. Temporal logic specification
of distributed systems. In Proceedings of the 2nd International Conference
on Distributed Computing Systems, pages 446–454. IEEE Computer Society
Press, April 1981.

[6] Serdar Tasiran, Yuan Yu, Brannon Batson, and Scott Kreider. Using formal
specifications to monitor and guide simulation: Verifying the cache coherence
engine of the Alpha 21364 microprocessor. In In Proceedings of the 3rd IEEE
Workshop on Microprocessor Test and Verification, Common Challenges and
Solutions. IEEE Computer Society, 2002.

5


