
Derivation of a Simple

Synchronization Algorithm

Leslie Lamport

Digital Equipment Corporation
Systems Research Center

17 November 1986
revised 4 February 1987



What

The following synchronization problem was posed to me by Chuck Thacker.
Consider a collection of worker processes that communicate with one an-
other by sending messages, where each worker has its own input-message
buffer. A worker responds to an input message by performing some com-
putation and sending a (possibly empty) set of messages to other workers.
The problem is to detect when the system has reached termination, which
occurs when there is no more computing to be done. This is, of course, a
standard distributed computing problem. However, in Thacker’s problem,
the system is implemented on a shared-memory multiprocessor, and there
is a single detector process devoted to detecting termination.

This shared-memory version of the termination detection problem is
much easier than the distributed version, and, with Jim Saxe’s help, I had
little difficulty devising a simple, efficient, and unsurprising solution. What I
did find surprising is that, although it seems like a common enough problem,
I could think of no standard algorithm that solves it; I had to devise a new
solution. Moreover, I did so by the same intuitive, trial-and-error approach
that I have been using for fifteen years. I made fewer trials and errors than
I would have fifteen years ago, but that was because my intuition has been
refined by experience, not because I used any rigorous methods for deriving
the algorithm. I therefore felt it would be interesting to see if I could have
derived the algorithm from general principles. The result follows.

How

I assume that the detector halts when it detects termination. There are two
properties required of the algorithm:

• If the detector has halted then the system has really terminated. This
is a safety property.

• If the system has terminated, then the algorithm eventually detects
that it has. This is a liveness property.

Any sensible attempt at a solution seems to satisfy the liveness property, so
I will consider only the safety property, which I denote Safe. Stated more
pedantically, it is:

Safe: detector halted ⇒ termination

1



The predicate termination still has to be defined. The exact definition is
not important; we require only that termination imply that all workers
have finished their computations and can generate no further messages. We
are free to choose the most convenient definition of termination with this
property.

A safety property like Safe is proved by finding an invariant that is
true initially and implies Safe, where an invariant is a predicate I with the
property that any atomic action executed when I is true leaves I true. I
will construct the invariant and the algorithm together.

It is usually helpful to start with a coarse-grained program (one with
big atomic actions) and transform it to a suitably fine-grained one. Coarse-
grained programs are easier to understand, and the fine-grained program
can’t be correct unless the coarse-grained version is. So, we begin by assum-
ing that a worker’s entire operation of removing an input message, comput-
ing, and writing output messages is a single atomic action. The following
trivial algorithm is then obtained by having the detector repeatedly exam-
ine all queues with a single atomic action. Angle brackets enclose atomic
actions, Q[i] denotes worker i’s input queue, and an action of the form
〈P → S〉 is performed by executing S only if P is true.

Algorithm 1:
Worker i
repeat forever
〈Q[i] �= ∅ →
remove head of Q[i];
compute;
add msgs to tail of other queues 〉

Detector
repeat 〈skip〉
until 〈∀i : Q[i] = ∅〉

For this program, no further computation is possible if all input queues are
empty. We therefore define termination to be true if and only if all queues
are empty, since every queue is some worker’s input queue. In other words,
termination equals ∀i : Q[i] = ∅.

The assertion Safe itself is the invariant used to prove the correctness
of Algorithm 1. It is implied by the initial condition and it obviously im-
plies itself. The workers leave Safe invariant because they cannot make
termination false once it becomes true. The detector leaves Safe invariant
because it can halt only if termination is true. Hence, Safe is an invariant
of Algorithm 1.

Let us now attempt to refine this program. Our first observation is
that Safe will remain true throughout the execution if the worker adds its

2



messages to the output queues before removing the message from its input
queue. This leads to the following refinement of Algorithm 1:

Algorithm 2:
Worker i
repeat forever
α: 〈Q[i] �= ∅ →

compute;
add msgs to tail of other queues 〉;

β: 〈remove head of Q[i]〉

Detector
repeat 〈skip〉
until 〈∀i : Q[i] = ∅〉

For this algorithm, termination is defined to be true if and only if every
worker is at statement α with its input queue empty. Letting at(αi) be the
predicate asserting that worker i is at statement α, we can write termination
as ∀i : at(αi) ∧ Q[i] = ∅

Although Safe is true throughout the execution of Algorithm 2, it fails
to be an invariant because of a technicality. To be an invariant, Safe must
be left true by executing a program action in any state that satisfies it, not
just in states that can be reached by executing the algorithm. Consider a
state in which worker i is at statement β and its input queue is empty. (This
is an unreachable state.) The action of removing a message from an empty
queue is undefined, so executing β could do anything—including falsify Safe.
We can rule out such unreachable states by strengthening Safe, obtaining
the following invariant.

I2: Safe ∧ (at(βi)⇒ Q[i] �= ∅)
It is easy to check that I2 is an invariant of Algorithm 2, is true initially,
and implies Safe.

We now try to refine the detector so that instead of examining all queues
as a single action, it examines them one at a time. The following is essentially
the only way to do this, where W denotes the set of all workers:

Detector
U := W ;
while 〈U �= ∅〉

do 〈choose u in U ;
if Q[u] = ∅ then U := U − {u}

else U := W 〉
The set of queues U contains workers whose queues the detector has not yet
examined. The detector can race ahead and finish whenever all the queues
Q[u] with u in U are empty. Therefore, for Safe to remain true, the following
predicate would have to be invariant:

3



I2a: I2 ∧ [(∀u ∈ U : Q[u] = ∅)⇒ termination]

However, I2a is not left invariant by the workers. A worker can falsify its
second conjunct by removing the last message from the input queue of a
worker in U after having added a message to the input queue of a worker
not in U . It is easy to see that this algorithm is incorrect; the detector could
observe all the queues empty when the system has not yet terminated. This
is the case even for the worker of Algorithm 1 that removes and adds the
messages as a single atomic action.

A little thought reveals that there is no way to correct this algorithm
without additional communication between the workers and the detector.
The trouble arises because the last conjunct of I2a is falsified when a worker
removes a message from its input queue. Suppose we weaken I2a by disjoin-
ing a Boolean b to this conjunct, yielding

I2b: I2 ∧ [(∀u ∈ U : Q[u] = ∅)⇒ (termination ∨ b)]

To maintain the invariance of I2b, a worker must make b true whenever it
removes the last element from a queue. It is easier to set b true uncondi-
tionally than to check if the queue is empty, so we let the worker set b true
whenever it removes any message from its input queue.

Recall that I2 includes the conjunct Safe, which asserts that if the de-
tector has halted then the system has terminated. To keep the detector
from making Safe false, it must not terminate if b is true. This suggests the
following algorithm:

Algorithm 3:
Worker i
repeat forever
α 〈Q[i] �= ∅ →

compute;
add msgs to tail of other queues 〉;

β: 〈b := true ;
remove head of Q[i]〉

Detector
repeat
〈U := W ;
b :=false 〉;

while 〈U �= ∅〉
do 〈choose u in U ;

if Q[u] = ∅
then U := U − {u}
else U := W ;

b := false 〉
until η: 〈¬b 〉

This algorithm can falsify I2b in an uninteresting case—namely, if the detec-
tor executes its until test η in a state with U �= ∅ and with b and termination
both false. This case is uninteresting because it cannot occur in an actual

4



execution; the detector can reach η only when U = ∅. Such an impossible
case is ruled out by strengthening the invariant, which we do as follows:

I3: I2 ∧ [(∀u ∈ U : Q[u] = ∅)⇒ (termination ∨ b)]
∧ [at(η)⇒ U = ∅]

We must now check that Algorithm 3 maintains the invariance of I3. It is
clear that the workers still leave I2 invariant and they don’t affect the third
conjunct of I3. A worker’s α action cannot falsify the second conjunct of I3,
and its β action makes the second conjunct true by setting b true. Hence,
the workers leave I3 invariant.

The detector can falsify I2 only by making Safe false, which it can do
only by terminating. However, the last two conjuncts of I3 imply that the
until test can find b false only when the system has terminated. Thus,
starting in a state satisfying I3, the detector cannot falsify I2. The detector
obviously cannot falsify the third conjunct of I3. It can falsify the second
conjunct only when it decreases U or sets b false. However, it decreases U
only by removing a worker with an empty queue, which cannot falsify the
conjunct. When it sets b false it also sets U equal to the set of all workers. If
all the queues are empty, then I2 implies that every worker is at statement
α. Since termination is defined to be ∀i : at(αi) ∧ Q[i] = ∅, it is true if all
the queues are empty. Hence, the second conjunct of I3 remains true in this
case, completing the proof that I3 is an invariant of Algorithm 3.

For future reference, observe that executing the detector’s else clause
maintains the invariance of I3 even if Q[u] = ∅. In other words, the detector
must execute the else clause when the if test is false, but it can execute
either clause when the if test is true. (Executing the else clause when
Q[u] �= ∅ can affect liveness, but that does not concern us.)

We next refine the worker to make the setting of b true and the removal
of the message from its input queue be two separate actions. To maintain
the truth of the last conjunct of I3, it is clear that the worker should first
set b true, then remove the message, which gives the following algorithm:

5



Algorithm 4:
Worker i
repeat forever
α 〈Q[i] �= ∅ →

compute;
add msgs to tail of other queues 〉;

β: 〈b := true〉;
γ: 〈remove head of Q[i]〉

Detector
repeat
〈U := W ;
b :=false 〉;

while 〈U �= ∅〉
do 〈choose u in U ;

if Q[u] = ∅
then U := U − {u}
else U := W ;

b := false 〉
until η: 〈¬b 〉

We must redefine termination so it is true if the only message in any input
queue is one that is about to be removed by statement γ. In other words,

termination ≡ ∀i : (at(αi)∧Q[i] = ∅) ∨ (at(γi)∧tail(Q[i]) = ∅)
We can apply a standard trick to show that Algorithm 4 satisfies the

same safety property as Algorithm 3. Define Q′[i] to equal Q[i] except when
worker i is at statement γ, in which case it equals the tail of Q[i]. In other
words, Q′[i] is an imaginary version of the real input queue Q[i] such that
the worker removes the message from the head of Q′[i] in the same action
with which it sets b true. Let I3′ be the formula I3 with Q[i] replaced
everywhere by Q′[i], and with termination defined as above rather than
with the definition used in Algorithm 3. I claim that I3′ is an invariant of
Algorithm 4.

The proof that Algorithm 4 leaves I3′ invariant is essentially the same as
the proof that Algorithm 3 leaves I3 invariant and is left to the reader. Here,
I will explain intuitively why we expect I3′ to be invariant. A worker changes
Q′[i] in Algorithm 4 exactly the same way it changes Q[i] in Algorithm 3.
Since Algorithm 3 leaves I3 invariant, and I3′ is the same as I3 except for
the substitution of Q′[i] for Q[i], the workers in Algorithm 4 should leave I3′

invariant. By similar reasoning, the detector would also leave I3′ invariant
if its if condition were replaced by Q′[u] = ∅. However, Q′[u] is always
a subset of Q[u], so Q[u] = ∅ implies Q′[u] = ∅. Hence, using the test
Q[u] = ∅ means that the detector may execute the else clause even though
the condition Q′[u] = ∅ is true, but it will never execute the then clause if
the test Q′[u] = ∅ is false. As we observed above, Algorithm 3 maintains
the invariance of I3 even if the else clause is executed when the if condition
is true. Therefore, since the detector would maintain the invariance of I3′

6



if it used the if condition Q′[u] = ∅, it maintains the invariance of I3′ with
the actual condition Q[u] = ∅.

The intuitive argument that Algorithm 4 leaves I3′ invariant comes close
to being a formal proof, but it ignores the fact that Algorithm 4 has an
extra control point γ and a slightly different definition of termination. One
could prove formally that Algorithm 4 correctly implements Algorithm 3.
However, it is easier to prove invariance directly. The purpose of the intuitive
argument was to indicate how one arrives at such an invariant. Observe the
technique of modifying the invariant of the coarser-grained algorithm by
replacing a variable Q[i] with a state function Q′[i] whose value changes
in the finer-grained algorithm the same way the value of Q[i] changes in
the coarser-grained one. This technique of replacing variables with state
functions always works when the refinement does not significantly change the
behavior of the algorithm. In cases such as the refinement from Algorithm 3
to Algorithm 4, where the the algorithm’s behavior is changed, the technique
may or may not work.

We could further refine Algorithm 4—for example, by splitting statement
α so the test, the “compute” statement, and the sending of each message are
separate actions. However, the behavior of the resulting algorithms remain
essentially the same so long as we maintain the atomicity of the operations of
sending a message, removing a message from a queue, and testing if a queue
is empty. The invariant of the refined algorithm can be obtained directly
from I3′ by the technique of replacing variables with state functions.

A more interesting refinement is to replace the single variable b with a
more complicated data structure, so that setting b and testing its value are
no longer atomic actions. For example, we could maintain a separate bit
b[i] for each worker and define b to be the disjunction of the b[i]. Worker i
would make b true by setting b[i] true; the detector would read or write b
by reading or writing all the b[i]. The algorithm works with any reasonable
implementation of b, though defining what “reasonable” means and giving a
formal proof require the introduction of concepts that are beyond the scope
of this short note.

Observe that as we refined the algorithm, our correctness condition be-
came more complicated. (The condition was stated in terms of termination,
whose definition also had to be refined.) We have ignored the question
of whether this condition really implies that the algorithm is correct. It
is characteristic of conventional program verification that the correctness
condition is stated in terms of the program itself. Stating and proving a
more abstract correctness property that is independent of the implementa-

7



tion would have required an extended detour into the realm of concurrent
program specification.

Why

One should be skeptical of after-the-fact derivations of algorithms, and there
is good reason for skepticism in this case. Why did I refine the worker
before refining the detector? What led me to add the Boolean b to I3? The
derivation is not as straightforward as the exposition may suggest; there is
plenty of intuition at work. Still, when comparing this derivation with the
way it really happened, I am struck by how much of my original intuition can
be explained in terms of maintaining an invariant. For example, consider the
decision to have the worker set b before removing the message from its input
queue. My original intuition told me the actions should occur in this order
to make it easier for the detector to discover the existence of a nonempty
queue. In the above derivation, this ordering was obvious from the need to
maintain the invariance of the last conjunct of I3.

Before writing this note, I thought I derived concurrent algorithms by
behavioral reasoning—reasoning about the possible orders in which actions
could occur. I regarded assertional reasoning—reasoning in terms of invari-
ants—to be an unintuitive process that I employed only afterwards in the
correctness proof. I now understand that the intuition I use when devising
a new algorithm involves preconscious assertional reasoning. The intuition
that led me to avoid false termination detection by having the worker set
b before removing the input message was based upon a fuzzy notion of
invariance, not upon any consideration of sequences of actions.

I still don’t believe that interesting algorithms can be derived using for-
mal methods alone; one does need intuition. It was intuition that led me
to add the Boolean b. However, I now believe that thinking in terms of
invariance can be useful even at the earliest stage of algorithm development.
Rather than being counter to intuition, assertional reasoning is often the ba-
sis for intuitive reasoning. Making the assertional reasoning explicit should
aid intuition.

8


