
Computer Science and State Machines

Leslie Lamport

8 June 2008
minor correction on 13 January 2018

Contribution to a Festschrift honoring
Willem-Paul de Roever on his retirement.

Computation

Computer science is largely about computation. Many kinds of computing
devices have been described, some abstract and some very concrete. Among
them are:

• Automata, including Turing machines, Moore machines, Mealy ma-
chines, pushdown automata, and cellular automata.

• Computer programs written in a programming language.

• Algorithms written in natural language and pseudocode.

• von Neumann computers.

• BNF grammars.

• Process algebras such as CCS.

Computer scientists collectively suffer from what I call the Whorfian syn-
drome1—the confusion of language with reality. Since these devices are
described in different languages, they must all be different. In fact, they are
all naturally described as state machines.

State Machines

There are two ways to define state machine, one emphasizing the states and
the other the transitions from one state to the next. I will use the simpler
one that emphasizes states. For brevity, I ignore termination/liveness and
consider only safety. A state machine is then specified by a set S of states,
a set I of initial states, and a next-state relation N on S, so I ⊆ S and
N ⊆ S × S. It generates all computations s1 → s2 → s3 → · · · such that:

S1. s1 ∈ I

S2. 〈s i , s i+1 〉 ∈ N , for all i .

For example, a BNF grammar can be described by a state machine whose
states are sequences of terminals and/or non-terminals. The set of ini-
tial states contains only the sequence consisting of the single starting non-
terminal. The next-state relation is defined to contain 〈s, t 〉 iff s can be

1See http://en.wikipedia.org/wiki/Sapir-Whorf hypothesis .

1

transformed to t by applying a production rule to expand a single non-
terminal.

Some of the computing devices listed above have an event (called an
“input”, “output”, or “action”) associated with a state transition. Those
devices can be represented by augmenting the state to include the last event.
In other words a transition s

α−→ t from state s to state t with event α can
be represented as a transition from (augmented) state 〈s, β 〉 to state 〈t , α〉,
where β is the event that “led to” s. (Initial states have the form 〈s,⊥〉 for
a special initial event ⊥.)

Describing all the other kinds of computing devices listed above as state
machines is straightforward. Complexity results only from the innate com-
plexity of the device, programs written in a modern programming language
being especially complicated. However, representing a program in even the
simplest language as a state machine may be impossible for a computer
scientist suffering from the Whorfian syndrome. Languages for describing
computing devices often do not make explicit all components of the state.
For example, simple programming languages provide no way to refer to the
call stack, which is an important part of the state. For one afflicted by the
Whorfian syndrome, a state component that has no name doesn’t exist. It
is impossible to represent a program with procedures as a state machine if
all mention of the call stack is forbidden. Whorfian-syndrome induced re-
strictions that make it impossible to represent a program as a state machine
also lead to incompleteness in methods for reasoning about programs.

Specifying a State Machine

To use state machines, we need a language for specifying them. The lan-
guages designed by computer scientists for describing computations usually
specify state machines, defining the computations by S1 and S2. A parti-
san of such a language will insist that it is ideal for describing any state
machine. I will ignore computer scientists and use instead the language em-
ployed by every other branch of science and engineering—namely, ordinary
mathematics.

In science and engineering, a set of states is usually specified by a collec-
tion of variables and their ranges, which are sets of values. A state s assigns
to every variable v a value s(v) in its range. For example, physicists might
describe the state of a particle moving in one dimension by variables x (the
particle’s position) and p (its momentum) whose ranges are the set of real
numbers. The state s t at a time t is described by the real numbers s t(x)

2

and s t(p), which physicists usually write x (t) and p(t).
We specify the set of initial states the way sets of states are generally

described—by a boolean-valued expression containing variables and ordinary
mathematical constants and operators. For the particle example, x = 0
specifies the set of all states s such that s(x) = 0 and s(p) is any real
number.

Because most fields of science and engineering study continuous process-
es, there is no standard way to describe a next-state relation. The simplest
way I know to do it is with an expression that can contain primed as well as
unprimed variables, the unprimed variables referring to the first state and
the primed variables to the second state. For example, (x ′ = x+1)∧(p′ > x ′)
specifies the relation consisting of all pairs 〈s, t 〉 of states such that t(x) =
s(x) + 1 and t(p) > t(x).

State Machines in Action

The benefits of describing state machines mathematically rather than hid-
ing them behind computer-science languages would make a long list. It
might begin with the replacement of esoteric programming logics by ordi-
nary mathematics. For example, the Hoare triple {P}S{Q} becomes the
formula P ∧S ⇒ Q ′, where S is the relation on states described by the pro-
gram statement S and Q ′ is formula Q with each variable primed. Instead of
compiling such a list, I consider one nice little example—two algorithms that
appear unrelated until they are expressed mathematically as state machines.

The first algorithm is described by this simple program X that runs
forever, alternately performing the operations P and C.

X : loop P ; C endloop

The second algorithm is an important hardware protocol called two-phase
handshake, illustrated by this diagram.

Prod Cons
-

�

p

c

The “wires” p and c can assume the values 0 and 1; the arrows indicate
that p is set by process Prod and c is set by process Cons. The processes
synchronize using p and c so they take turns executing operations P and C.
Their protocol can be described as follows, where p and c are initially equal

3

and ⊕ is defined to be addition modulo 2 (known to hardware designers as
1-bit exclusive-or).

Y : process Prod : whenever p = c do P ; p := p⊕ 1 end

||
process Cons : whenever p 6= c do C ; c := c⊕ 1 end

It is easy to see, though not completely obvious, that Y alternately performs
P and C operations, just like X . From the state machines’ pseudocode de-
scriptions, this seems coincidental. The mathematical descriptions of these
state machines reveal that it is no coincidence. Starting from X , we can
derive Y mathematically.

For simplicity, assume P and C to be atomic operations. They are then
described by relations between primed and unprimed variables. To avoid
introducing new symbols, let P and C also denote these two mathematical
relations. Let varPC be the set of variables that occur in these relations.

To describe program X as a state machine, we must introduce a variable
to represent the control state—part of the state not described by program
variables, so to victims of the Whorfian syndrome it doesn’t exist. Let’s call
that variable pc, which we assume is not in varPC . The state variables of
X are therefore pc and the variables in varPC . Since P and C are atomic
operations, each executed as a single step, the variable pc assumes just two
values. Let those values be 0 and 1. State machine X then has initial pred-
icate InitX and next-state relation NextX defined as follows, where InitPC
specifies the initial values of the variables in varPC .

InitX
∆
= (pc = 0) ∧ InitPC

NextX
∆
= ((pc = 0) ∧ P ∧ (pc′ = 1))

∨ ((pc = 1) ∧ C ∧ (pc′ = 0))

To describe Y as a simple state machine, we assume that the body of each
process is executed as a single atomic action. Thus, when p = c is true,
process Prod both executes P and increments p as one step. There is then
no control state, and the state variables are p, c, and the variables in varPC .
The initial predicate and next-state relation of Y are

InitY
∆
= (p = c) ∧ InitPC

NextY
∆
= Prod ∨ Cons

4

where formulas Prod and Cons, which describe the two processes, are de-
fined by:

Prod
∆
= (p = c) ∧ P ∧ (p′ = p ⊕ 1) ∧ (c′ = c)

Cons
∆
= (p 6= c) ∧ C ∧ (c′ = c ⊕ 1) ∧ (p′ = p)

The mathematical relation between these two state machines is simple:

Y is obtained from X by substituting p ⊕ c for pc.

Substituting an expression for a variable is a basic and powerful mathemat-
ical operation. Let us now see exactly how we derive Y from X by this
substitution.

For any formula F , let F be the formula obtained from F by this sub-
stitution. For example, pc′ equals (p ⊕ c)′, which equals p′ ⊕ c′. It is easy
to see that

pc =

{
0 if p = c

1 if p 6= c

from which we obtain

InitX
∆
= (p = c) ∧ InitPC

NextX
∆
= Pr ∨ Co

where

Pr
∆
= (p = c) ∧ P ∧ (p′ 6= c′)

Co
∆
= (p 6= c) ∧ C ∧ (p′ = c′)

The formulas InitX and NextX are the initial predicate and next-state rela-
tion of a state machine X whose states are the states of Y. We first consider
its relation to state machine X .

Define a mapping Ψ from states of Y to states of X by letting Ψ(s) assign
the same values to the variables in varPC as s, and letting it assign to pc
the value s(p)⊕ s(c). (Recall that s(p) and s(c) are the values assigned to
p and c by state s.) Extend Ψ to a mapping on computations (sequences
of states) by letting Ψ(s1 → s2 → . . .) equal Ψ(s1) → Ψ(s2) → It
follows easily from our definition of F that a formula F is true of state s
of Y iff F is true of state Ψ(s) of X . Similarly, a relation R is true of a
pair 〈s1, s2 〉 of states of Y iff R is true of 〈Ψ(s1), Ψ(s2)〉. It follows that a
sequence σ of states of Y is a computation of the state machine X iff Ψ(σ)
is a computation of X .

5

Let us now consider the disjuncts of the next-state relation NextX , start-
ing with Pr . Because p and c assume only the values 0 and 1, p = c implies

p′ 6= c′ ≡ ((p′ = p ⊕ 1) ∧ (c′ = c))

∨ ((p′ = p) ∧ (c′ = c ⊕ 1))

This implies

Pr ≡ ((p = c) ∧ P ∧ (p ′ = p ⊕ 1) ∧ (c′ = c))

∨ ((p = c) ∧ P ∧ (p ′ = p) ∧ (c′ = c ⊕ 1))

A Pr step therefore either increments p and leaves c unchanged (satisfying
the first disjunct) or else increments c and leaves p unchanged (satisfying
the second disjunct). If we want an algorithm in which the process that
executes P modifies only p, then we must allow only the first possibility,
eliminating the second disjunct. We are left with the first disjunct, which
equals Prod . A similar calculation shows that we obtain Cons from Co by
eliminating a disjunct that modifies p and leaves c unchanged. This leads
us to a state machine with initial predicate InitX and next-state predicate
Prod ∨ Cons, which is precisely the state machine Y.

Our derivation shows that Prod implies Pr and Cons implies Co. Hence,
NextY implies NextX . Since InitY equals InitX , we deduce that any com-
putation σ of Y is a computation of X . We have already seen that σ is a
computation of X iff Ψ(σ) is a computation of X . Hence, if σ is any com-
putation of Y, then Ψ(σ) is a computation of X . Because the states s and
Ψ(s) assign the same values to the variables in varPC , this means that σ has
the same P and C steps as Ψ(σ). Thus, we deduce that the derived protocol
Y produces the same sequence of P and C operations as does X . Since it is
obvious that X alternately executes P and C operations, this shows that Y
does too. In other words, this shows that Y is correct by construction.

When presenting this kind of derivation, it is conventional to pretend
that it leads to the discovery of the resulting protocol. I presented Y before
the derivation to make it easier to see where we were heading. This allowed
me to “cheat” by letting pc assume the convenient values 0 and 1. Had I
chosen two arbitrary values a and b instead, we would have substituted

if p = c then a else b

for pc. A simple calculation would have shown

pc =

{
a if p = c

b if p 6= c

6

From that point, the derivation would have proceeded exactly as before,
with the same formulas InitX and NextX .

A Lesson

Using ordinary mathematics, we have derived the simple but useful protocol
Y from the trivial algorithm X by substituting p⊕c for pc. We could do this
because we represented these algorithms as state machines and we described
the state machines using ordinary mathematics.

The pseudocode descriptions probably seem more natural to most com-
puter scientists. But how could our derivation possibly have been done from
those descriptions? How do we substitute for a variable pc that doesn’t
appear in the pseudocode? Even if pc did appear as a variable, what
would it mean to substitute an expression for it in an assignment statement
pc : = . . . ?

Quite a number of formalisms have been proposed for specifying and
verifying protocols such as Y. The ones that work in practice essentially
describe a protocol as a state machine. Many of these formalisms are said
to be mathematical, having words like algebra and calculus in their names.
Because a proof that a protocol satisfies a specification is easily turned into
a derivation of the protocol from the specification, it should be simple to
derive Y from X in any of those formalisms. (A practical formalism will have
no trouble handling such a simple example.) But in how many of them can
this derivation be performed by substituting for pc in the actual specification
of X ? The answer is: very, very few. Despite what those who suffer from
the Whorfian syndrome may believe, calling something mathematical does
not confer upon it the power and simplicity of ordinary mathematics.

7

