
Leaderless Byzantine Paxos

Leslie Lamport

Microsoft Research

Appeared in Distributed Computing: 25th International Symposium: DISC 2011,
David Peleg, editor. Springer-Verlag (2011) 141–142

Minor correction: 27 December 2011



Leaderless Byzantine Paxos

Leslie Lamport

Microsoft Research

Abstract. The role of leader in an asynchronous Byzantine agreement
algorithm is played by a virtual leader that is implemented using a syn-
chronous Byzantine agreement algorithm.

Agreement in a completely asynchronous distributed system is impossible in
the presence of even a single fault [5]. Practical fault-tolerant “asynchronous”
agreement algorithms assume some synchrony assumption to make progress,
maintaining consistency even if that assumption is violated. Dependence on syn-
chrony may be explicit [4], or may be built into reliance on a failure detector [2]
or a leader-election algorithm. Algorithms that are based on leader election are
called Paxos algorithms [6–8]. Byzantine Paxos algorithms are extensions of these
algorithms to tolerate malicious failures [1, 9].

For Byzantine agreement, reliance on a leader is problematic. Existing algo-
rithms have quite convincing proofs that a malicious leader cannot cause incon-
sistency. However, arguments that a malicious leader cannot prevent progress are
not so satisfactory. Castro and Liskov [1] describe a method by which the system
can detect lack of progress and choose a new leader. However, their method is
rather ad hoc. It is not clear how well it will work in practice, where it can be
very difficult to distinguish malicious behavior from transient communication
errors.

The first Byzantine agreement algorithms, developed for process control ap-
plications, did not require a leader [10]. However, they assumed synchronous
communication: that messages sent between nonfaulty processes are received
within a known length of time. These algorithms are not suitable in the asyn-
chronous case because a loss of synchrony can cause inconsistency.

We propose a simple method for implementing a leaderless Byzantine agree-
ment algorithm: replacing the leaders in an ordinary Byzantine Paxos algorithm
by a virtual leader that is implemented using a synchronous Byzantine agreement
algorithm. Messages that in the ordinary algorithm are sent to the leader are
instead sent to all the servers. Each server then decides what message the leader
should send next and proposes it as the leader’s next message. The servers then
execute a synchronous Byzantine agreement algorithm to try to agree on the
vector of proposed messages—a vector containing one proposal for each server.
(This type of agreement is called interactive consistency [10].) Each server then
uses a deterministic procedure to choose the message sent by the virtual leader,
and it acts as if it had received this message.

When the system behaves synchronously, as is required for progress by any
algorithm, each non-faulty server chooses the same virtual-leader message. The



virtual leader thus behaves correctly, and the Byzantine Paxos algorithm makes
progress. If the system does not behave synchronously, then the synchronous
Byzantine agreement algorithm may fail, causing different servers to choose dif-
ferent virtual-leader messages. This is equivalent to a malicious leader sending
conflicting messages to different processes. The malicious virtual leader can pre-
vent progress (which cannot be guaranteed without synchrony), but does not
cause inconsistency because a Byzantine Paxos algorithm can tolerate a mali-
cious leader.

Leaderless Paxos adds to a Byzantine Paxos algorithm the cost of the leader
agreement algorithm. The time required by a leader agreement algorithm that
tolerates F faulty servers is F + 1 message delays, which replaces the 1 message
delay of a leader simply sending a message. (Early-stopping algorithms probably
cannot be used because implementing a virtual leader seems to require simulta-
neous Byzantine agreement, which cannot guarantee early stopping [3].) For N
servers, approximately NF extra messages are required.

References

1. Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceed-
ings of the Third Symposium on Operating Systems Design and Implementation,
pages 173–186. ACM, 1999.

2. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, 1996.

3. Danny Dolev, Ruediger Reischuk, and H. Raymond Strong. Early stopping in
Byzantine agreement. Journal of the ACM, 37(4):720–741, October 1990.

4. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM, 35(2):288–323, April 1988.

5. Michael J. Fischer, Nancy Lynch, and Michael S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM, 32(2):374–382,
April 1985.

6. Leslie Lamport. The part-time parliament. ACM Transactions on Computer Sys-
tems, 16(2):133–169, May 1998.

7. Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing
Column), 32(4):51–58, December 2001.

8. Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, October 2006.
9. Jean-Philippe Martin and Lorenzo Alvisi. Fast byzantine consensus. In Proceedings

of the International Conference on Dependable Systems and Networks (DSN 2005),
pages 402–411, Yokohama, June 2006. IEEE Computer Society.

10. Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228–234, April 1980.


