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Abstract. We present an algorithm, called Disk Paxos, for implement-
ing a reliable distributed system with a network of processors and disks.
Like the original Paxos algorithm, Disk Paxos maintains consistency in
the presence of arbitrary non-Byzantine faults. Progress can be guaran-
teed as long as a majority of the disks are available, even if all processors
but one have failed.

1 Introduction

Fault tolerance requires redundant components. Maintaining consistency in the
event of a system partition makes it impossible for a two-component system to
make progress if either component fails. There are innumerable fault-tolerant
algorithms for implementing distributed systems, but all that we know of equate
component with processor. But there are other types of components that one
might replicate instead. In particular, modern networks can now include disk
drives as independent components. Because commodity disks are cheaper than
computers, it is attractive to use them as the replicated components for achiev-
ing fault tolerance. Commodity disks differ from processors in that they are
not programmable, so we can’t just substitute disks for processors in existing
algorithms.

We present here an algorithm called Disk Paxos for implementing an arbi-
trary fault-tolerant system with a network of processors and disks. It maintains
consistency in the event of any number of non-Byzantine failures. That is, the
algorithm tolerates faulty processors that pause for arbitrarily long periods, fail
completely, and possibly restart; and it tolerates lost and delayed messages. Disk
Paxos guarantees progress if the system is stable and there is at least one non-
faulty processor that can read and write a majority of the disks. Stability means
that each processor is either nonfaulty or has failed completely, and nonfaulty
processors can access nonfaulty disks.



Disk Paxos is a variant of the classic Paxos algorithm [3, 10, 12], a simple,
efficient algorithm that has been used in practical distributed systems [13, 16].
Classic Paxos can be viewed as an implementation of Disk Paxos in which there is
one disk per processor, and a disk can be accessed directly only by its processor.

In the next section, we recall how to reduce the problem of implementing
an arbitrary distributed system to the consensus problem. Section 3 informally
describes Disk Synod, the consensus algorithm used by Disk Paxos. It includes
a sketch of an incomplete correctness proof and explains the relation between
Disk Synod and the Synod protocol of classic Paxos. Section 4 briefly discusses
some implementation details and contains the conventional concluding remarks.
An appendix gives formal specifications of the consensus problem and the Disk
Synod algorithm. Further discussion of the specifications and a sketch of a rig-
orous correctness proof appear in [5].

2 The State-Machine Approach

The state-machine approach [6, 14] is a general method for implementing an
arbitrary distributed system. The system is designed as a deterministic state
machine that executes a sequence of commands, and a consensus algorithm en-
sures that, for each n, all processors agree on the nth command. This reduces
the problem of building an arbitrary system to solving the consensus problem.
In the consensus problem, each processor p starts with an input value input [p],
and all processors output the same value, which equals input [p] for some p. A
solution should be:

Consistent All values output are the same.
Nonblocking If the system is stable and a nonfaulty processor can commu-
nicate with a majority of disks, then the processor will eventually output a
value.

It has long been known that a consistent, nonblocking consensus algorithm re-
quires a three-phase commit protocol [15], with voting, prepare to commit, and
commit phases. Nonblocking algorithms that use fewer phases don’t guarantee
consistency. For example, the group communication algorithms of Isis [2] permit
two processors belonging to the current group to disagree on whether a message
was broadcast in a previous group to which they both belonged. This algorithm
cannot, by itself, guarantee consistency because disagreement about whether a
message had been broadcast can result in disagreement about the output value.

The classic Paxos algorithm [3, 10, 12] achieves its efficiency by using a three-
phase commit protocol, called the Synod algorithm, in which the value to be
committed is not chosen until the second phase. When a new leader is elected, it
executes the first phase just once for the entire sequence of consensus algorithms
performed for all later system commands. Only the last two phases are performed
separately for each individual command.

In the Disk Synod algorithm, the consensus algorithm used by Disk Paxos,
each processor has an assigned block on each disk. The algorithm has two phases.



In each phase, a processor writes to its own block and reads each other processor’s
block on a majority of the disks.1 Only the last phase needs to be executed anew
for each command. So, in the normal steady-state case, a leader chooses a state-
machine command by executing a single write to each of its blocks and a single
read of every other processor’s blocks.

The classic result of Fischer, Lynch, and Patterson [4] implies that a purely
asynchronous nonblocking consensus algorithm is impossible. So, real-time clocks
must be introduced. The typical industry approach is to use an ad hoc algorithm
based on timeouts to elect a leader, and then have the leader choose the output.
It is easy to devise a leader-election algorithm that works when the system is
stable, which means that it works most of the time. It is very hard to make one
that always works correctly even when the system is unstable. Both classic Paxos
and Disk Paxos also assume a real-time algorithm for electing a leader. However,
the leader is used only to ensure progress. Consistency is maintained even if
there are multiple leaders. Thus, if the leader-election algorithm fails because
the network is unstable, the system can fail to make progress; it cannot become
inconsistent. The system will again make progress when it becomes stable and
a single leader is elected.

3 An Informal Description of Disk Synod

We now informally describe the Disk Synod algorithm and explain why it works.
(A formal specification appears in the appendix.) We also discuss its relation to
classic Paxos’s Synod Protocol. Remember that, in normal operation, only a
single leader will be executing the algorithm. The other processors do nothing;
they simply wait for the leader to inform them of the outcome. However, the
algorithm must preserve consistency even when it is executed by multiple proces-
sors, or when the leader fails before announcing the outcome, and a new leader
is chosen.

3.1 The Algorithm

We assume that each processor p starts with an input value input [p].2 As in
Paxos’s Synod algorithm, a processor executes a sequence of numbered ballots,
with increasing ballot numbers. A ballot number is a positive integer, and dif-
ferent processors use different ballot numbers. For example, if the processors are
numbered from 1 through N , then processor i could use ballot numbers i , i +N ,
i + 2N , etc. A ballot has two phases:

Phase 1 Choose a value v .
Phase 2 Try to commit v .

1 There is also an extra phase that a processor executes when recovering from a failure.
2 If processor p fails, it can restart with a new value of input [p].



In either phase, a processor aborts its ballot if it learns that another processor
has begun a higher-numbered ballot. In that case, the processor may then choose
a higher ballot number and start a new ballot. If the processor completes phase 2
without aborting—that is, without learning of a higher-numbered ballot—then
value v is committed and the processor can output it. Since a processor does not
choose the value to be committed until phase 2, phase 1 can be performed once
for any number of separate instances of the algorithm.

To ensure consistency, we must guarantee that two different values cannot be
successfully committed—either by different processors or by the same processor
in two different ballots. To ensure that the algorithm is nonblocking, we must
guarantee that, if there is only a single processor p executing it, then p will
eventually commit a value.

In practice, when a processor successfully commits a value, it will write on
its disk block that the value was committed and also broadcast that fact to the
other processors. If a processor learns that a value has been committed, it will
abort its ballot and simply output the value. It is obvious that this optimization
preserves correctness; we will not consider it further.

To execute the algorithm, a processor p maintains a record dblock [p] con-
taining the following three components:

mbal The current ballot number.
bal The largest ballot number for which p reached phase 2.
inp The value p tried to commit in ballot number bal .

Initially, bal equal 0, inp equals a special value NotAnInput that is not a possible
input value, and mbal is any ballot number. We let disk [d ][p] be the block on
disk d in which processor p writes dblock [p]. We assume that reading and writing
a block are atomic operations.

Processor p executes phase 1 or 2 of a ballot as follows. For each disk d , it
tries first to write dblock [p] to disk [d ][p] and then to read disk [d ][q] for all other
processors q. It aborts the ballot if, for any d and q, it finds disk [d ][q].mbal >
dblock [p].mbal . The phase completes when p has written and read a major-
ity of the disks, without reading any block whose mbal component is greater
than dblock [p].mbal . When it completes phase 1, p chooses a new value of
dblock [p].inp, sets dblock [p].bal to dblock [p].mbal (its current ballot number),
and begins phase 2. When it completes phase 2, p has committed dblock [p].inp.

To complete our description of the two phases, we now describe how processor
p chooses the value of dblock [p].inp that it tries to commit in phase 2. Let
blocksSeen be the set consisting of dblock [p] and all the records disk [d ][q] read
by p in phase 1. Let nonInitBlks be the subset of blocksSeen consisting of those
records whose inp field is not NotAnInput . If nonInitBlks is empty, then p sets
dblock [p].inp to its own input value input [p]. Otherwise, it sets dblock [p].inp to
bk .inp for some record bk in nonInitBlks having the largest value of bk .bal .

Finally, we describe what processor p does when it recovers from a failure.
In this case, p reads its own block disk [d ][p] from a majority of disks d . It then
sets dblock [p] to any block bk it read having the maximum value of bk .mbal , and
it starts a new ballot by increasing dblock [p].mbal and beginning phase 1.



3.2 Why the Algorithm Works

Suppose processor p can read and write a majority of the disks, and all processors
other than p stop executing the algorithm. In this case, p will eventually choose
a ballot number greater than the mbal field of all blocks on the disks it can read,
and its ballot will succeed. Hence, this algorithm is nonblocking, in the sense
explained above.

We now explain, intuitively, why the Disk Synod algorithm maintains consis-
tency. First, we consider the following shared-memory version of the algorithm
that uses single-writer, multiple-reader regular registers.3 Instead of writing to
disk, processor p writes dblock [p] to a shared register; and it reads the values of
dblock [q] for other processors q from the registers. A processor chooses its bal
and inp values for phase 2 the same way as before, except that it reads just
one dblock value for each other processor, rather than one from each disk. We
assume for now that processors do not fail.

To prove consistency, we must show that, for any processors p and q, if p
finishes phase 2 and commits the value vp and q finishes phase 2 and commits the
value vq , then vp = vq . Let bp and bq be the respective ballot numbers on which
these values are committed. Without loss of generality, we can assume bp ≤ bq .
Moreover, using induction on bq , we can assume that, if any processor r starts
phase 2 for a ballot br with bp ≤ br < bq , then it does so with dblock [r ].inp = vp .

When reading in phase 2, p cannot have seen the value of dblock [q].mbal
written by q in phase 1—otherwise, p would have aborted. Hence p’s read of
dblock [q] in phase 2 did not follow q’s phase 1 write. Because reading follows
writing in each phase, this implies that q’s phase 1 read of dblock [p] must have
followed p’s phase 2 write. Hence, q read the current (final) value of dblock [p]
in phase 1—a record with bal field bp and inp field vp . Let bk be any other
block that q read in its phase 1. Since q did not abort, bq > bk .mbal . Since
bk .mbal ≥ bk .bal for any block bk , this implies bq > bk .bal . By the induction
assumption, we obtain that, if bk .bal ≥ bp , then bk .inp = vp . Since this is true
for all blocks bk read by q in phase 1, and since q read the final value of dblock [p],
the algorithm implies that q must set dblock [q].inp to vp for phase 2, proving
that vp = vq .

To obtain the Disk Synod algorithm from the shared-memory version, we use
a technique due to Attiya, Bar-Noy, and Dolev [1] to implement a single-writer,
multiple reader register with a network of disks. To write a value, a processor
writes the value together with a version number to a majority of the disks. To
read, a processor reads a majority of the disks and takes the value with the
largest version number. Since two majorities of disks contain at least one disk
in common, a read must obtain either the last version for which the write was
completed, or else a later version. Hence, this implements a regular register.
With this technique, we transform the shared-memory version into a version for
a network of processors and disks.
3 A regular register is one in which a read that does not overlap a write returns the

register’s current value, and a read that overlaps one or more writes returns either
the register’s previous value or one of the values being written [7].



The actual Disk Synod algorithm simplifies the algorithm obtained by this
transformation in two ways. First, the version number is not needed. The mbal
and bal values play the role of a version number. Second, a processor p need
not choose a single version of dblock [q] from among the ones it reads from disk.
Because mbal and bal values do not decrease, earlier versions have no effect.

So far, we have ignored processor failures. There is a trivial way to extend
the shared-memory algorithm to allow processor failures. A processor recovers
by simply reading its dblock value from its register and starting a new ballot. A
failed process then acts like one in which a processor may start a new ballot at
any time. We can show that this generalized version is also correct. However, in
the actual disk algorithm, a processor can fail while it is writing. This can leave
its disk blocks in a state in which no value has been written to a majority of
the disks. Such a state has no counterpart in the shared-memory version. There
seems to be no easy way to derive the recovery procedure from a shared-memory
algorithm. The proof of the complete Disk Synod algorithm, with failures, is
much more complicated than the one for the simple shared-memory version.
Trying to write the kind of behavioral proof given above for the simple algorithm
leads to the kind of complicated, error-prone reasoning that we have learned to
avoid. A sketch of a rigorous assertional proof is given in [5].

3.3 Deriving Classic Paxos from Disk Paxos

In the usual view of a distributed fault-tolerant system, a processor performs
actions and maintains its state in local memory, using stable storage to recover
from failures. An alternative view is that a processor maintains the state of its
stable storage, using local memory only to cache the contents of stable storage.
Identifying disks with stable storage, a traditional distributed system is then
a network of disks and processors in which each disk belongs to a separate
processor; other processors can read a disk only by sending messages to its
owner.

Let us now consider how to implement Disk Synod on a network of processors
that each has its own disk. To perform phase 1 or 2, a processor p would access a
disk d by sending a message containing dblock [p] to disk d ’s owner q. Processor
q could write dblock [p] to disk [d ][p], read disk [d ][r ] for all r �= p, and send the
values it read back to p. However, examining the Disk Synod algorithm reveals
that there’s no need to send back all that data. All p needs are (i) to know if
its mbal field is larger than any other block’s mbal field and, if it is, (ii) the bal
and inp fields for the block having the maximum bal field. Hence, q need only
store on disk three values: the bal and inp fields for the block with maximum
bal field, and the maximum mbal field of all disk blocks. Of course, q would have
those values cached in its memory, so it would actually write to disk only if any
of those values are changed.

A processor must also read its own disk blocks to recover from a failure.
Suppose we implement Disk Synod by letting p write to its own disk before
sending messages to any other processor. This ensures that its own disk has the
maximum value of disk [d ][p].mbal among all the disks d . Hence, to restart after



a failure, p need only read its block from its own disk. In addition to the mbal ,
bal , and inp value mentioned above, p would also keep the value of dblock [p] on
its disk.

We can now compare this algorithm with classic Paxos’s Synod protocol [10].
The mbal , bal , and inp components of dblock [p] are just lastTried [p], nextBal [p],
and prevVote[p] of the Synod Protocol. Phase 1 of the Disk Synod algorithm
corresponds to sending the NextBallot message and receiving the LastVote re-
sponses in the Synod Protocol. Phase 2 corresponds to sending the BeginBallot
and receiving the Voted replies.4 The Synod Protocol’s Success message corre-
sponds to the optimization mentioned above of recording on disk that a value
has been committed.

This version of the Disk Synod algorithm differs from the Synod Protocol
in two ways. First, the Synod Protocol’s NextBallot message contains only the
mbal value; it does not contain bal and inp values. To obtain the Synod Protocol,
we would have to modify the Disk Synod algorithm so that, in phase 1, it writes
only the mbal field of its disk block and leaves the bal and inp fields unchanged.
The algorithm remains correct, with essentially the same proof, under this mod-
ification. However, the modification makes the algorithm harder to implement
with real disks.

The second difference between this version of the Disk Synod algorithm and
the Synod Protocol is in the restart procedure. A disk contains only the afore-
mentioned mbal , bal , and inp values. It does not contain a separate copy of its
owner’s dblock value. The Synod Protocol can be obtained from the following
variant of the Disk Synod algorithm. Let bk be the block disk [d ][p] with maxi-
mum bal field read by processor p in the restart procedure. Processor p can begin
phase 1 with bal and inp values obtained from any disk block bk ′, written by
any processor, such that bk ′.bal ≥ bk .bal . It can be shown that the Disk Synod
algorithm remains correct under this modification too.

4 Conclusion

4.1 Implementation Considerations

Implicit in our description of the Disk Synod algorithm are certain assumptions
about how reading and writing are implemented when disks are accessed over a
network. If operations sent to the disks may be lost, a processor p must receive
an acknowledgment from disk d that its write to disk [d ][p] succeeded. This may
require p to explicitly read its disk block after writing it. If operations may
arrive at the disk in a different order than they were sent, p will have to wait
for the acknowledgment that its write to disk d succeeded before reading other
processors’ blocks from d . Moreover, some mechanism is needed to ensure that
a write from an earlier ballot does not arrive after a write from a later one,

4 In the Synod Protocol, a processor q does not bother sending a response if p sends
it a disk block with a value of mbal smaller than one already on disk. Sending back
the maximum mbal value is an optimization mentioned in [10].



overwriting the later value with the earlier one. How this is achieved will be
system dependent. (It is impossible to implement any fault-tolerant system if
writes to disk can linger arbitrarily long in the network and cause later values
to be overwritten.)

Recall that, in Disk Paxos, a sequence of instances of the Disk Synod algo-
rithm is used to commit a sequence of commands. In a straightforward imple-
mentation of Disk Paxos, processor p would write to its disk blocks the value of
dblock [p] for the current instance of Disk Synod, plus the sequence of all com-
mands that have already been committed. The sequence of all commands that
have ever been committed is probably too large to fit on a single disk block.
However, the complete sequence can be stored on multiple disk blocks. All that
must be kept in the same disk block as dblock [p] is a pointer to the head of the
queue. For most applications, it is not necessary to remember the entire sequence
of commands [10, Section 3.3.2]. In many cases, all the data that must be kept
will fit in a single disk block.

In the application for which Disk Paxos was devised (a future Compaq prod-
uct), the set of processors is not known in advance. Each disk contains a directory
listing the processors and the locations of their disk blocks. Before reading a disk,
a processor reads the disk’s directory. To write a disk’s directory, a processor
must acquire a lock for that disk by executing a real-time mutual exclusion al-
gorithm based on Fischer’s protocol [8]. A processor joins the system by adding
itself to the directory on a majority of disks.

4.2 Concluding Remarks

We have presented Disk Paxos, an efficient implementation of the state machine
approach in a system in which processors communicate by accessing ordinary
(nonprogrammable) disks. In the normal case, the leader commits a command
by writing its own block and reading every other processor’s block on a majority
of the shared disks. This is clearly the minimal number of disk accesses needed.

Disk Paxos was motivated by the recent development of the Storage Area Net-
work (SAN)—an architecture consisting of a network of computers and disks in
which all disks can be accessed by each computer. Commodity disks are cheaper
than computers, so using redundant disks for fault tolerance is more economical
than using redundant computers. Moreover, since disks do not run application-
level programs, they are less likely to crash than computers.

Because commodity disks are not programmable, we could not simply sub-
stitute disks for processors in the classic Paxos algorithm. Instead we took the
ideas of classic Paxos and transplanted them to the SAN environment. What
we obtained is almost, but not quite, a generalization of classic Paxos. Indeed,
when Disk Paxos is instantiated to a single disk, we obtain what may be called
Shared-Memory Paxos. Algorithms for shared memory are usually more succinct
and clear than their message passing counterparts. Thus, Disk Paxos can be con-
sidered yet another revisiting of classic Paxos that exposes its underlying ideas
by removing the message-passing clutter. Perhaps other distributed algorithms
can also be made more clear by recasting them in a shared-memory setting.
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2. Kenneth Birman, André Schiper, and Pat Stephenson. Lightweight causal and
atomic group multicast. ACM Transactions on Computer Systems, 9(3):272–314,
August 1991.

3. Roberto De Prisco, Butler Lampson, and Nancy Lynch. Revisiting the Paxos
algorithm. In Marios Mavronicolas and Philippas Tsigas, editors, Proceedings of
the 11th International Workshop on Distributed Algorithms (WDAG 97), volume
1320 of Lecture Notes in Computer Science, pages 111–125, Saarbruken, Germany,
1997. Springer-Verlag.

4. Michael J. Fischer, Nancy Lynch, and Michael S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM, 32(2):374–382,
April 1985.

5. Eli Gafni and Leslie Lamport. Disk paxos. Technical Report ??, Compaq Systems
Research Center, July 2000.

6. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

7. Leslie Lamport. On interprocess communication. Distributed Computing, 1:77–101,
1986.

8. Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on Com-
puter Systems, 5(1):1–11, February 1987.

9. Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994.

10. Leslie Lamport. The part-time parliament. ACM Transactions on Computer Sys-
tems, 16(2):133–169, May 1998.

11. Leslie Lamport. Specifying concurrent systems with TLA+. In Manfred Broy and
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Appendix

We now give precise specifications of the consensus problem solved by the Disk
Synod algorithm and of the algorithm itself. The specifications are written in
TLA+, a formal language that combines the temporal logic of actions (TLA) [9],
set theory, and first-order logic with notation for making definitions and encap-
sulating them in modules. These specifications have been debugged with the aid
of the TLC model checker [17]. (However, errors may have been introduced by
the manual process of translating from TLA+ to LATEX.) TLA+ is described
in [11]; annotated versions of the specifications, with fuller explanations of the
TLA+ constructs, appear in [5].

We feel that the algorithm’s nonblocking property is sufficiently obvious not
to need a rigorous specification and proof, so we consider only consistency. We
therefore do not specify any liveness properties, so we make very little use of
temporal logic.

The Specification of Consensus

We assume that there are N processors, numbered 1 through N . Each processor
p has two registers: an input register input [p] that initially equals some element
of the set Inputs of possible input values, and an output register output [p] that
initially equals a special value NotAnInput that is not an element of Inputs .
Processor p chooses an output value by setting output [p]. It can also fail, which
it does by setting input [p] to any value in Inputs and resetting output [p] to
NotAnInput . The precise condition to be satisfied is that, if some processor p
ever sets output [p] to some value v , then

– v must be a value that is, or at one time was, the value of input [q] for some
processor q

– if any processor r (including p itself) later sets output [r ] to some value w
other than NotAnInput , then w = v .

We first define a specification ISpec that has two additional variables: allInput ,
the set of all inputs chosen so far, and chosen, which is set to the first output
value chosen. The actual specification SynodSpec is obtained from ISpec by hid-
ing allInput and chosen. Hiding in TLA is expressed by the temporal existential
quantifier ∃∃∃∃∃∃ . To formally define SynodSpec in TLA+, we define ISpec in a sub-
module that is then instantiated. However, the reader not familiar with TLA+

can ignore these details and pretend that SynodSpec is simply defined to equal
∃∃∃∃∃∃ allInput , chosen : ISpec.

The reader unfamiliar with TLA can consider the specification ISpec to con-
sist of two parts: the initial predicate IInit and the next-state action INext ,
which is a predicate relating the new (primed) state with the old (unprimed)
state.

Most of the TLA+ notation used in the definitions should be self-evident,
except for the following function constructs: [x ∈ S �→ g(x )] is the function f



with domain S such that f [x ] = g(x ) for all x in S ; [S → T ] is the set of all
functions with domain S and range a subset of T ; and [f except ! [x ] = e]
is the function f̂ that is the same as f except that f̂ [x ] = e. TLA+ allows
conjunctions and disjunctions to be written as bulleted lists, with indentation
used to eliminate parentheses.

The specification is contained in the following module named SynodSpec. The
module begins with an extends statement that imports the Naturals module,
which defines the set Nat of natural numbers and the usual arithmetic opera-
tions. The Naturals module also defines i . . j to be the set of natural numbers
from i through j .

module SynodSpec
extends Naturals

constant N , Inputs
assume (N ∈ Nat) ∧ (N > 0)

Proc ∆= 1 . . N
NotAnInput ∆= choose c : c /∈ Inputs

variables input , output
module Inner

variables allInput , chosen

IInit ∆= ∧ input ∈ [Proc → Inputs ]
∧ output = [p ∈ Proc �→ NotAnInput ]
∧ chosen = NotAnInput
∧ allInput = {input [p] : p ∈ Proc}

Choose(p) ∆=
∧ output [p] = NotAnInput
∧ if chosen = NotAnInput

then ∃ ip ∈ allInput : ∧ chosen ′ = ip
∧ output ′ = [output except ! [p] = ip]

else ∧ output ′ = [output except ! [p] = chosen]
∧ unchanged chosen

∧ unchanged 〈input , allInput 〉
Fail(p) ∆= ∧ output ′ = [output except ! [p] = NotAnInput ]

∧ ∃ ip ∈ Inputs : ∧ input ′ = [input except ! [p] = ip]
∧ allInput ′ = allInput ∪ {ip}

∧ unchanged chosen

INext ∆= ∃ p ∈ Proc : Choose(p) ∨ Fail(p)

ISpec ∆= IInit ∧ ✷[INext ]〈input, output, chosen, allInput 〉

IS (chosen, allInput) ∆= instance Inner
SynodSpec ∆= ∃∃∃∃∃∃ chosen, allInput : IS (chosen, allInput)!ISpec



The Disk Synod Algorithm

The Disk Synod algorithm’s specification appears in module DiskSynod , which
uses an extends statement to import all the declarations and definitions from
the SynodSpec module. The specification introduces three new constant param-
eters: an operator Ballot such that Ballot(p) is the set of ballot numbers that
processor p can use; a set Disk of disks; and a predicate IsMajority, which gen-
eralizes the notion of a majority. The specification asserts the assumptions that
different processors have disjoint sets of ballot numbers, and that, for any sub-
sets S and T of Disk , if IsMajority(S ) and IsMajority(T ) are true, then S and
T are not disjoint.

The specification uses the following variables: input and output are imported
from the SynodSpec module; dblock and disk were explained in the informal
description of the algorithm; phase[p] is the current phase of processor p, which
is set to 0 when p fails and to 3 when p chooses its output; disksWritten[p]
is the set of disks that processor p has written during its current phase; and
blocksRead [p][d ] is the set of values p has read from disk d during its current
phase.

Some additional TLA+ notation is introduced in the specification. TLA+

has the following record constructs: [f 1 �→ v1, . . . , f n �→ vn ] is the record r
with fields f 1, . . . , f n such that r .f i = v i , for each i ; and [f 1 : S 1, . . . , f n : Sn ]
is the set of all such records with v i an element of the set S i , for each i . The
except construct has the following extensions: in [f except ! [x ] = e], an @ in
expression e denotes f [x ]; the except part can have multiple “replacements”
separated by commas; and the construct generalizes to functions of functions in
the obvious way—for example, [f except ! [x ][y] = e]. In TLA+, subset S is
the set of all subsets of S , and union S is the union of all the elements of S .

The algorithm’s specification is formula DiskSynodSpec, but the reader un-
familiar with TLA can consider the specification to be the initial predicate Init
and the next-state action Next . The module ends by asserting the correctness of
the algorithm, expressed in TLA by the statement that the algorithm’s specifica-
tion implies its correctness condition. On first reading, we recommend jumping
from the definition of Init to the definition of Next , and then reading backwards
to see what is defined in terms of what.

module DiskSynod
extends SynodSpec

constants Ballot( ), Disk , IsMajority( )

assume ∧ ∀ p ∈ Proc : ∧ Ballot(p) ⊆ {n ∈ Nat : n > 0}
∧ ∀ q ∈ Proc \ {p} : Ballot(p) ∩ Ballot(q) = {}

∧ ∀S ,T ∈ subset Disk :
IsMajority(S ) ∧ IsMajority(T ) ⇒ (S ∩ T �= {})

DiskBlock ∆= [ mbal : (union {Ballot(p) : p ∈ Proc}) ∪ {0},
bal : (union {Ballot(p) : p ∈ Proc}) ∪ {0},
inp : Inputs ∪ {NotAnInput} ]



InitDB ∆= [mbal �→ 0, bal �→ 0, inp �→ NotAnInput ]

variables disk , dblock , phase, disksWritten, blocksRead

vars ∆= 〈input , output , disk , phase, dblock , disksWritten, blocksRead 〉
Init ∆= ∧ input ∈ [Proc → Inputs ]

∧ output = [p ∈ Proc �→ NotAnInput ]
∧ disk = [d ∈ Disk �→ [p ∈ Proc �→ InitDB ]]
∧ phase = [p ∈ Proc �→ 0]
∧ dblock = [p ∈ Proc �→ InitDB ]
∧ output = [p ∈ Proc �→ NotAnInput ]
∧ disksWritten = [p ∈ Proc �→ {}]
∧ blocksRead = [p ∈ Proc �→ [d ∈ Disk �→ {}]]

hasRead(p, d , q) ∆= ∃ br ∈ blocksRead [p][d ] : br .proc = q

allBlocksRead(p) ∆= let allRdBlks ∆= union {blocksRead [p][d ] : d ∈ Disk}
in {br .block : br ∈ allRdBlks}

InitializePhase(p) ∆=
∧ disksWritten ′ = [disksWritten except ! [p] = {}]
∧ blocksRead ′ = [blocksRead except ! [p] = [d ∈ Disk �→ {}]]

StartBallot(p) ∆=
∧ phase[p] ∈ {1, 2}
∧ phase ′ = [phase except ! [p] = 1]
∧ ∃ b ∈ Ballot(p) : ∧ b > dblock [p].mbal

∧ dblock ′ = [dblock except ! [p].mbal = b]
∧ InitializePhase(p)
∧ unchanged 〈input , output , disk 〉

Phase1or2Write(p, d) ∆=
∧ phase[p] ∈ {1, 2}
∧ disk ′ = [disk except ! [d ][p] = dblock [p]]
∧ disksWritten ′ = [disksWritten except ! [p] = @ ∪ {d}]
∧ unchanged 〈input , output , phase, dblock , blocksRead 〉

Phase1or2Read(p, d , q) ∆=
∧ d ∈ disksWritten[p]
∧ if disk [d ][q].mbal < dblock [p].mbal

then ∧ blocksRead ′ =
[blocksRead except

! [p][d ] = @ ∪ {[block �→ disk [d ][q], proc �→ q]}]
∧ unchanged

〈input , output , disk , phase, dblock , disksWritten 〉
else StartBallot(p)



EndPhase1or2(p) ∆=
∧ IsMajority({d ∈ disksWritten[p] : ∀ q ∈ Proc \ {p} : hasRead(p, d , q)})
∧ ∨ ∧ phase[p] = 1

∧ dblock ′ =
[ dblock except

! [p].bal = dblock [p].mbal ,
! [p].inp = let blocksSeen ∆= allBlocksRead(p) ∪ {dblock [p]}

nonInitBlks ∆=
{bs ∈ blocksSeen : bs .inp �= NotAnInput}

maxBlk ∆= choose b ∈ nonInitBlks :
∀ c ∈ nonInitBlks : b.bal ≥ c.bal

in if nonInitBlks = {} then input [p]
else maxBlk .inp ]

∧ unchanged output
∨ ∧ phase[p] = 2

∧ output ′ = [output except ! [p] = dblock [p].inp]
∧ unchanged dblock

∧ phase ′ = [phase except ! [p] = @ + 1]
∧ InitializePhase(p)
∧ unchanged 〈input , disk 〉

Fail(p) ∆= ∧ ∃ ip ∈ Inputs : input ′ = [input except ! [p] = ip]
∧ phase ′ = [phase except ! [p] = 0]
∧ dblock ′ = [dblock except ! [p] = InitDB ]
∧ output ′ = [output except ! [p] = NotAnInput ]
∧ InitializePhase(p)
∧ unchanged disk

Phase0Read(p, d) ∆=
∧ phase[p] = 0
∧ blocksRead ′ = [blocksRead except

! [p][d ] = @ ∪ {[block �→ disk [d ][p], proc �→ p]}]
∧ unchanged 〈input , output , disk , phase, dblock , disksWritten 〉

EndPhase0(p) ∆=
∧ phase[p] = 0
∧ IsMajority({d ∈ Disk : hasRead(p, d , p)})
∧ ∃ b ∈ Ballot(p) :

∧ ∀ r ∈ allBlocksRead(p) : b > r .mbal
∧ dblock ′ = [dblock except

! [p] = [ (choose r ∈ allBlocksRead(p) :
∀ s ∈ allBlocksRead(p) : r .bal ≥ s .bal)

except ! .mbal = b] ]
∧ InitializePhase(p)
∧ phase ′ = [phase except ! [p] = 1]
∧ unchanged 〈input , output , disk 〉



Next ∆= ∃ p ∈ Proc :
∨ StartBallot(p)
∨ ∃ d ∈ Disk : ∨ Phase0Read(p, d)

∨ Phase1or2Write(p, d)
∨ ∃ q ∈ Proc \ {p} : Phase1or2Read(p, d , q)

∨ EndPhase1or2(p)
∨ Fail(p)
∨ EndPhase0(p)

DiskSynodSpec ∆= Init ∧ ✷[Next ]vars

theorem DiskSynodSpec ⇒ SynodSpec


