
Programming G. Manacher
Techniques Editor

The Parallel Execution
of DO Loops
Leslie Lamport
Massachusetts Computer Associates, Inc.

Methods are developed for the parallel execution of
different iterations of a DO loop. Both asynchronous
multiprocessor computers and array computers are
considered. Practical application to the design of
compilers for such computers is discussed.

Key Words and Phrases: parallel computing,
multiprocessor computers, array computers, vector
computers, loops

CR Categories: 4.12, 5.24

FORTRAN DO loop which is used is that the range of
values assumed by the index variable is known upon
entry to the loop. Thus, most but not all ALGOL for
loops can be handled.

The analysis is performed from the standpoint of a
compiler for a multiprocessor computer. Two general
methods are described. The hyperplane method is
applicable to both multiple instruction stream computers
and single instruction stream computers such as the
ILLIAC IV, the CDC STAR-100 and the Texas Instruments
ASC. The coordinate method is applicable to single
instruction stream computers. Both methods translate a
nest of DO loops into a form explicitly indicating the
parallel execution. The DO loops may be of a fairly
general nature. The major restrictions are that the loop
body contain no I /o and no transfer of control to any
statement outside the loop.

These methods are basically quite simple, and can
drastically reduce the execution time of the loop on a
parallel computer. They are currently being imple-
mented in the ILLIAC IV FORTRAN compiler. Preliminary
results indicate that they will yield parallel execution
for a fairly large class of programs.

The two methods are described separately in the
following two sections. The final section discusses
some practical considerations for their implementation.

Introduction

Any program using a significant amount of computer
time spends most of that time executing one or more
loops. For a large class of programs, these loops can be
represented as FORTRAN DO loops. We consider meth-
ods of executing these loops on a multiprocessor com-
puter, in which different processors independently
execute different iterations of the loop at the same time.

This approach was inspired by the ILLIAC IV since
it is the only type of parallel computat ion which that
computer can perform [1]. However, even for a com-
puter with independent processors, it is inherently more
efficient than the usual approach of having the processors
work together on a single iteration of the loop. This is
because it requires much less communicat ion between
individual processors.

The methods presented are, of course, independent
of "the syntax of FORTRAN. The basic feature of the

Copyright @ 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This research was supported by the Advanced Research Proj-
ects Agency of the Department of Defense and was monitored by
Army Research Office-Durham under Contract No. DAHC04-
70-C-0023. Author's address: Massachusetts Computer Associates.
Inc., Lakeside Office Park, Wakefield, MA 01880.

83

I. The Hyperplane Method

Example. To illustrate the hyperplane method, we
consider the following loop.

DO 99 1 = 1, L
DO 99 J = 2, M
DO 99 K = 2, N
U(J,K) = (U(Jq-I,K) q- U(J, Kq-1)

@ @ @
q- U(J--1,K) q- U(J,K--1)) • .25

@ @
99 CONTINUE (1)

(For future reference, we have assigned a name to
each occurrence of the variable U, and written it in a
circle beneath the occurrence.) This is a simplified
version of a standard relaxation computat ion.

The loop body is executed L(M-- 1)(N-- 1) t imes- -
once for each point (I,J,K) in the index set ~ = { (i,j,k) :
1 < i < L , 2 N j N M, 2 N k N N}. We want to speed
up the computat ion by performing some of these execu-
tions concurrently, using multiple processors. Of course,
this must be done in such a way as to produce the same
results as the given loop.

The obvious approach is to expand the loop into the
L(M-- 1)(N-- 1) statements

U(2,2)
U(2,3)

and then apply the techniques described in [2]. This is at

Communications February 1974
of Volume 17
the ACM Number 2

best a formidable task. It is impossible it L, M, and N
are not all known at compile time.

Our approach is to try to execute the loop body
concurrently for all points (1,J,K) in a lying along a
plane. In particular, the hyperplane method will find
that the body of loop (1) can be executed concurrently
for all points (I,J,K) lying in the plane defined by
21 9- J 9- K = constant. The constant is incremented
after each execution, until the loop body has been
executed for all points in a.

To describe this more precisely, we need a means of
expressing concurrent computation. We use the state-
ment

DO 99 CONC FOR ALL (J,K) E 8
where 8 is a finite set of pairs of integers) It has the
following meaning: Assign a separate processor to each
element of 8. For each (j,k) E 8, the processor assigned
to (j,k) is to set J = j, g = k and execute the state-
ments following the DO CONC statement through
statement 99. All processors are to run concurrently,
completely independent of one another. No synchroniza-
tion is assumed. Execution is complete when all proc-
essors have executed statement 99.

Given loop (1), the hyperplane method chooses
new index variables i, J , / ~ related t o / , J, K by

i = 2 I + J + K
J = I
/~ = r (2)

and the inverse relations

I = J
J = i - 2 J - E
K = g7 . (2')

Loop (1) is then rewritten as

DO 9 9 i = 6 , 2 . L 9- M g - N
DO 99 CONC FOR ALL (J,l{) E { (j, k) :

1 < j < L , 2 < i - - 2 j - - k ~ M a n d
2 < k < N }

U(i-- 2 . J - gT,/() = (U (i - 2 , J - / ~ q - 1,/{7)
+ U (1 - 2 . j - F S , I~+I) + U (i - 2 . J

- R - 1,/~) 4- U (i - 2 . J - K , K - 1))
• .25

99 CONTINUE (3)

Using relations (2) and (2'), the reader can check
that loop (3) performs the same L(M--1)(N--1) loop
body executions as loop (1), except in a different order.
To see why both loops give the same results, consider
the computation of U(4,6) in the execution of the
original loop body for the element (9,4,6) E ~. It is set
equal to the average of its four neighboring array
elements: U(5,6), U(4,7), U(3,6), U(4,5). The values of
U(5,6) and U(4,7) were calculated during the execution
of the loop body for (8,5,6) and (8,4,7), respectively,

We remind the reader that a set is an unordered collection of
elements. We will not bother to define a syntax foc expressing sets,
but will use the customary informal mathematical notation.

Fig. 1. Computation of U(4,6) for l = 9.

• Computed
when ! = 8

6 u • #
Computed F " when I = 9

2 4

i.e. during the previous execution of the DO I loop, with
1 = 8. The values of U(3,6) and U(4,5) were calculated
during the current execution of the outer DO 1 loop,
with I = 9. This is shown in Figure 1.

Now consider loop (3). At any time during its
execution, U(p,q) is being computed concurrently for
up to half the elements of the array U. These computa-
tions involve many different values of 1. Figure 2 illus-
trates the execution of the DO CONC for 7 = 27. The
points (p,q) for which U(p,q) is being computed are
marked with "x"s, and the value of I for the computa-
tion is indicated. Figure 3 shows the same thing for
i = 28.

Note how the values being used in the computation
of U(4,6) in Figure 3 were computed in Figure 2. A
comparison with Figure 1 illustrates why this method
of concurrent execution is equivalent to the algorithm
specified by loop (1).

The rewriting has reduced the number of sequential
iterations from L(M--1)(N--1) to 2L + M + N -- 5.
This gives the possibility of an enormous reduction in
execution time. The actual saving in execution time will
depend upon the overhead in executing the DO CONC,
as well as the actual number of processors available.
The DO CONC set contains up to (M--1)(N--1) /2
points. Since individual executions may be asyn-
chronous, the DO CONC is easily implemented with
fewer processors.

We must point out that a real program would prob-
ably have a loop terminated by a convergence test in
place of the outer DO I loop. The hyperplane method

84 Communications February 1974
of Volume 17
the ACM Number 2

Fig. 2. Execution for [= 27.
q.

• • %

8' • "X cP
/

X •

6 • / • ~(

~• /0
• X

• % • •

4, " / • X "

• % •

• X

2 • ~ •

I I I 0
2 4

x

a

x

/ l
% • • %

, ..x .> 6"
X • X

• X

X X

•

• • ~,b

x

• x

x x

I I I L

6 p

Fig. 3. Execution for 7 = 28.

q •• %

8 X X
•%

• / ° X • •

%•• %
• /O •

6 X • m

• • %•

/ • X X
• • %

• ' ~ • X •

• / • X • X
• • %

X • X •

%
x

• •%•

• %• %
•)

g

• • •%

%•

• X

% •
X °

• X

X

i i i i i i i L
2 4 6 p

could then only be applied to the D O J / D O K loop.
The reader can check that applying the general method
described below to this loop reduces the number of
sequential iterations from (M-- 1)(N-- I) to M q- N -- 3
--s t i l l a significant reduction.

N o t a t i o n s a n d A s s u m p t i o n s

To describe the general methods, we introduce some
notation. We consider loops of the following form:

D O 11 = l 1, u I

D O F = ln, u ~

[loop body I

C O N T I N U E (4)

where l j and u j may be any integer-valued expressions,
possibly involving 11, . . . , I j-1. (Our use of superscripts
and subscripts is in accord with the usual notation of
tensor algebra.) We could allow arbitrary constant
D O increments, but this would add many complicated
details.

A variable which appears on the left-hand side of an
assignment statement in the loop body is called a
genera ted variable.

We make the following assumptions about the
loop body.

(AI) It contains no I/O statement.
(A2) It contains no transfer of control to any statement

outside the loop.
(A3) I t contains no subroutine or function call which

can modify data.

8 5

(A4) Any occurrence in the loop body of a generated
variable V A R is of the form V A R (e 1, . . . , e ') ,
where each e ~ is an expression not containing any
generated variable.

Assumption (A3) could be replaced by the assump-
tion that we know which data can be modified by a
subroutine or function call. However, this would com-
plicate the discussion. Assumption (A4) must be
strengthened to assure that the hyperplane method will
work. This will be done below.

We let Z denote the set of all integers, and Z ~
denote the set of n-tuples of integers. For completeness,
we define Z ° = {0}. The index set ~ of loop (4) is de-
fined to be the subset of Z" consisting of all values as-
sumed by (11, . . . , I") during execution of the loop, so

= {(i 1, . . . , i") : l 1 < i I ~ U 1, " ' " }.

Note that ~ may not be known at compile time. The
element (i 1, . . . , i ") of ~ represents the execution of

l 1 ' the loop body for11 " . . . , / ~ = i n.
We order the elements of Z" lexicographically in

the usual manner, with (2,9,13) < (3 , -1 ,10) <
(3,0,0). For any elements P and Q of ~, the loop body
is executed for P before it is executed for Q if and only
if P < Q.

Addition and subtraction of elements of Z" are
defined as usual by coordinate-wise addition and sub-
traction. Thus (3,-- 1,0) -F (2,2,4) = (5,1,4). We let 0
denote the element (0, 0, . . . , 0). It is easy to see that
for any P , Q C z n, we have P < Q if and only if
Q - P > O .

Communications February 1974
of Volume 17
the ACM Number 2

R e w r i t i n g the L o o p
To generalize the rewriting procedure used in our

example, loop (4) will be rewritten in the form

DO a f = k I , /1

DO a Jk = kk, k
DO ot CONC FOR A L L

(jk+l, . . . , j ,) E 3s~ j~
[loop body]

a CONTINUE (5)

where Ssl jk is a subset of Z "-k which may depend
upon the values of f , . . . , jk.

To perform this rewriting, we will construct a one-
to-one mapping J : Z" ~ Z" of the form

j [(/ t , . . , in)] = (~ astlj, . . . ~ aj,,i i)
' ¢=x ' ~=1 (6)

= (j 1 , . . . , j ,)

for integers a / . (2) We then choose the k ~, t~ ~ and
$sl j~ so that the index set ~ of loop (5) equals
J(~), and write the body of loop (5) so that its execu-
tion for the point J(P) E ~ is equivalent to the execu-
tion of the body of loop (4) for P E a.

Define the mapping r :Z" ---~Z k by r [(I 1, . . . , I")] =
(j ~ , . . . , jk), so ~r(P) consists of the first k coordinates
of J(P). It is then clear that for any points J(P),
J(Q) E ~, the execution of the body of loop (5) for
J(P) precedes the execution for J(Q) if and only if
It(P) < 7r(Q). If we consider loop (5) to be a reordering
of the execution of loop (4), this statement is equivalent
to the following.

(E) For any P,Q E ~, the execution of the loop body
for P precedes that for Q, in the new ordering of
executions, if and only if ~-(P) < 7r(Q).

The loop body is executed concurrently for alk
elements of ~ lying on a set of the form { P : r (P) =
constant E Zk}. Since J is assumed to be a one-to-
one linear mapping, these sets are parallel (n - k) -
dimensional planes in Z". ¢3) We thus have concurrent
execution of the loop body along (n-k) -d imensional
planes through the index set. For k = 1, these are
hyperplanes. We use the name "hyperplane method"
to also include the case k > 1.

In our example, we had n = 3 and k -- 1. The map-
ping J : Z 3 ---4 Z 3 is defined by J[(i,j,k)] = (2i+j+k,i ,k) ,
and ~- :Z 3 ---~Z is defined by ~r[(i,j,k)] = 2i + j + k.

The general problem is to find a mapping J for which
loop (5) gives an algorithm equivalent to that of loop
(4). By requiring that J be a linear mapping, we have
greatly restricted the class of mappings which are to be
examined. It is this restriction which makes the analysis
feasible.

J is one-to-one if and only if (6) can be-solved to write the
I s. as linear expressions in the J~ with integer coefficients.

3 We consider Z ~ to be a subset of ordinary Euclidean n-space
in the obvious way.

Bas ic Cons iderat ions

Let VAR be a program array variable. An occurrence
of VAR is any appearance of it in the loop body. If it
appears on the left-hand side of an assignment state-
ment, the occurrence is called a generation; otherwise,
it is called a use. Thus, generations modify the values of
elements of the array, and uses do not.

Consider the use u2 of the variable U in loop (1).
During execution of the loop body for (i,j,k) E ~,
it references the array element U(j+ 1,k). We define the
occurrence mapping Tu2:g ~ Z 2 by T~[(i,j,k)] =
(j + l,k). Similarly, if f is an occurrence of an r-dimen-
sional generated variable VAR in loop (4), then the
occurrence mapping TI : g ~ Z r is defined so that f
references the Tz(P) element of VAR during execution
of the loop body for P E g. Assumption (A4) guarantees
that this is a reasonable definition.

We are looking for a condition to assure that the
rewritten loop (5) is equivalent to the given loop (4).
F rom our example, we can see that the significant con-
sideration is the sequence of references to array ele-
ments. In loop (1), a value for U(5,6) is generated by
ul during execution of the loop body for (8,5,6) E ~.
This value is used by u2 during the execution for (9,4,6).
Therefore, when we change the order of executions in
the rewriting, we must still have the execution for
(8,5,6) precede the execution for (9,4,6). By statement
(E) above, this means that r must satisfy 7r[(8,5,6)] <
r[(9,4,6)]. Indeed, for our particular choice of r we
have ~-[(8,5,6)] = 27 < ~-[(9,4,6)] = 28.

In general, let VAR be any variable. If a generation
and a use of VAR both reference the same array ele-
ment during execution of the loop, then the order of
the references must be preserved. In other words, i f f
is a generation and g is a use of VAR, and TI(P) =
To(Q) for some points P, Q E a, then: (i) if P < Q,
we must have ~r(P) < lr(Q); and (ii) if Q < P, we
must have ~r(Q) < 7r(P). In the above example,
T~I [(8,5,6)] = T,~[(9,4,6)] = (5,6), and (8,5,6) < (9,4,6),
so we must have ~r[(8,5,6)] < ~r[(9,4,6)]. Note that if P
= Q, then the order of execution of the references will
automatically be preserved since they happen during
a single execution of the loop body.

The above rule should also apply to any two genera-
tions of a variable. This guarantees that the variable
has the correct values after the loop is run. It also
ensures that a use will always obtain the value assigned
by the correct generation.

These remarks can be combined into the following
basic rule.

(C1) For every variable, and every ordered pair of
occurrencesf, g of that variable, at least one of which
is a generation: if TI(P) = Ta(Q) for P,Q E ~ with
P < Q, then ~r must satisfy the relation 7r(P) <
~'(a).

Notice that the case Q < P is obtained by interchanging
f and g.

86 Communications February 1974
of Volume 17
the ACM Number 2

Table I.

Sets

(ul,ul) = (*,0,0)
(ul,u2) = (%--1,0)
(u2,ul) = (*,1,0)

(ul,u3) = (*,0,--1)
(u3,ul) = (*,0,1)

Elements Constraints > 0
(+,0,0) a~ > 0
(+ , -1 ,0) al - a2 > 0
(+,1,0) al + a2 > 0
(0,1,0) a2 > 0
(+ ,0 , -1) al - a3 > 0
(+,0,1) al + a~ > 0
(0,0,1) a3 > 0

(ul,u4) = (,,1,0) same as (u2,ul)
(u4,ul) = (*,-1,0) same as (ul,u2)
(ul,uS) = (*,0,1) same as (u3,ul)
(u5,ul) = (*,0,-1) same as (ul,u3)

Rule (Cl) ensures that the new ordering o f execu-
tions o f the loop body preserves all relevant orderings
of variable references. The orderings not necessarily
preserved are those between references to different array
elements, and between two uses. Changing just these
orderings cannot change the value o f anything com-
puted by the loop. The assumptions we have made
about the loop body, especially the assumption that it
contains no premature exit f rom the loop, therefore
imply that rule (C1) gives a sufficient condi t ion for
loop (5) to be equivalent to loop (4). Fo r most loops,
(C1) is also a necessary condit ion.

The Sets (f , g)
The trouble with rule (C1) is that it requires us to

consider many pairs of points P ,Q in ~. Fo r the loop
(1), there are (L - -1) (M - 1) (N - 1) pairs of elements
P,Q E ~ with T, I (P) = T,,.,(Q) and P < Q. However ,
T~I(P) = T~,~(Q) only if Q = P -I- (, , - 1 , 0) , where •
denotes any integer. We would like to be able to work
with the single descriptor (. , - -1 , 0) rather than all
the pairs P,Q.

This suggests the following definition. Fo r any
occurrence f , g of a generated variable in loop (4),
define the subset (f , g) o f Z ~ by (f , g) = {X : TI(P) =
T o (P + X) for some P E Z"}. Observe that (f ,g) is
independent of the index set ~. In our example,
(ul, u2) = {(x,--1,0) : x E Z}, and we denote this set
by (. , - - 1,0). The other sets (f ,g) of loop (1) which we
will use are listed in Table I.

We now rewrite rule (C1) in terms of the sets (f ,g) .
First, note that 7r(P+X) = 7r(P) + 7r(X), since we
have assumed ~- to be a linear mapping. (Recall the
definition of 7r, and formula (6).) Also, remember that
A < A 9- B i f a n d only if B > 0. Then just substi-
tut ing P 9- X for Q in rule (Cl) yields this rule.

(CI ') F o r . . . generat ion: if Tf (P) = T o (P + X) for
P,P q- X C ~ with X > 0, then 7r must satisfy
the relation ~-(X) > 0.

Removing the clause " for P,P 9- X E ~" f rom (CI ')
gives a stronger condit ion for ~- to satisfy. Doing
this and using the definition of (f ,g) then gives the
following more stringent rule.

(C2) For every variable, and every ordered pair o f
occurrencesf , g o f that variable, at least one of which
is a generat ion: for every X E (f ,g) with X > 0,
7r must satisfy ~'(X) > 0.

Any ~r satisfying (C2) also satisfies (C1). Hence,
rule (C2) gives a sufficient condi t ion for loop (5) to be
equivalent to loop (4). Moreover , (C2) is independent
of the index set ~.

Each condi t ion 7r(X) > 0 given by rule C2 is a
constra int on our choice o f 7r. I f 7r satisfies all these
constraints, then loop (5) is equivalent to loop (4).
Table I lists the constraints on ~r for loop (1). In this
case ~r : Z 3 ---~Z is o f the form rr[(i,j,k)] = a~i + a2j +
a3k, and Table I gives the constraints which must be
satisfied by ax, a2, and a3. Fo r example, the set o f ele-
ments > 0 i n (ul, u2) is (+ , - - 1 , 0) = {(x , - - l ,0) :
x > 0}. The requirement that ~-[(x,-- 1,0)] > 0 for each
x > 0 yields the constraint a~ -- a2 > 0. Our choice of
al = 2, a2 = as = 1 satisfies all these constraints.
Therefore, loop (3) is equivalent to loop (1).

Computing the Sets (f ,g)
In order to guarantee that we find a mapping ~r

which satisfies (C2), some further restriction must be
made on the forms of variable occurrences allowed in
the loop body. We make the following assumption.

(A5) Each occurrence o f a generated variable F A R in
the loop body is of the fo rm

V A n (Iq +ml , . . . , Iir 'Jvmr), (7)

where the m ~ are integer constants, and j l , . . . ,jr are
r distinct integers between 1 and n. Moreover , the
j~ are t h e s a m e for any two occurrences o f VAR.

Thus, if a generation A(I2--1,I1,14+1) appears in
the loop body, then the occurrence A (f + l , I X + 6 , 1 4)
may also appear. However, the occurrence A (I 1 - 1,I2,/4)
may not.

It is possible to generalize our results to the case o f
occurrences of the fo rm VAR(e ~, . . . , e r) in which e ~ is
any linear function of fl, . . . , F . However , the results
become weaker and much more complicated.

N o w let f be the occurrence (7) and let g be
the occurrence V A R (I j' + n 1, . . . , I jr-'}-n'). Then
T i [(p ~ , . . . , p")] = (p J I + m ~ , . . . , pJr+rnr), and
To[(p 1, . . . , p")] = (p J ' + n 1, . . . , pJ'+nr) . It is easy to
see f rom the definition that (f , g) is the set o f all ele-
ments of Z" whose jkth coordinate is m k -- n k, for
k = 1 , . . . , r, and whose remaining n -- r coordinates
are any integers.

As an example, suppose n = 5 a n d f , g are the oc-
currences VAR(I3+ I , f + 5,IS), VAR(I~--}-I,I2,IS--k l).
Then (f ,g) is the set {(x,5,0,y,--1) :x , y E Z}, which
we denote by (, , 5 ,0 , . , - -1) .

The index variable I j is said to be missing f rom V A R
if f l is not one of the I jk in (7). It is clear that I j is miss-
ing f rom V A R if and only if the set (f ,g) has an • in

87 Communications February 1974
of Volume 17
the ACM Number 2

the j th coordinate, for any occurrences f , g of VAR.
We call f a missing index variable if it is missing f rom
some generated variable in the loop.

The Hyperplane Theorem
The following result is an impor tan t special case of

a more general result which will be given later. 4 The
p r o o f contains an a lgor i thm for const ruct ing a map-
ping 7r which satisfies (C2). The reader can check that
it gives the ~- which we used for loop (1). As we will see
in loop (11) below, the a lgor i thm sometimes works
even if the hypothesis of the theorem is not satisfied.

H Y P E R P L A N E C O N C U R R E N C Y THEOREM. Assume that
loop (4) satisfies (A1)- (A5) , and that none o f the index
variables 12, . . . , I ~ is a missing variable. Then it can be
rewritten in the fo rm of loop (5) f o r k = 1. Moreover,
the mapping J used for the rewriting can be chosen to be
independent o f the index set g.

PROOF. We will first construct a mapping 7r : Z n --+ Z
which satisfies rule (C2). Let 6, be the set consisting of
all the elements X > 0 of all the sets (f , g) referred
to in (C2). We must const ruct ~- so that ~-(X) > 0 for
all X C 6,.

Let " + " denote any positive integer, so
(+ , x 2 , . . . , x ~) is any element of Z" o f the form
(x, x 2 , . . . , x ") with x > 0. Since 11 is the only index
variable which may be missing, we can write 6, =
{) (1 , . . . , X N } , where X~ = (Xr 1 , . . . , x ~ ") , or X~ =
(+ , Xr 2, . . . , X~ ~) for some integers x / .

The mapping ~r is defined by

7 r [(i 1 , . . . , /n)] = a~I 1 -t- "'" -t- a,1 ~ (8)

for nonnegat ive integers a~, to be chosen below. Since
2 n al _> 0, ~-[(1, x~-, . . . , x~)] > 0 implies ~r[(x, X r 2 , . . . ,

x~n)] > 0 for any integer x > 0. Therefore, each X~ of
the form (+ , x ~ 2 , . . . , x~") can be replaced by X~ =
(1, x~ 2, . . . , x~"), and it is sufficient to construct ~- such
that ~r(X~) > 0 for each r = 1, . . . , N.

Define 6,j = {X~ :x~ 1 x{ -1 = 0, x / # 0},
so 6,i is the set o f all X~ whose j th coordinate is the left-
mos t nonzero one. Then each X, is an element o f some

6,3..
N o w construct the a~. sequentially for j = n, n -- 1,

• . . , 1 as follows. Let a; be the smallest nonnegat ive
integer such that a j x / + . . . -4- a, x f ~ > 0 for each
X~ = (0 , . . . , 0, x / , . . . , x~ n) ~ 6,j . Since X, > 0
and x / ~ 0 imply x , j > 0, this is possible.

Clearly, we have ~r(X~) > 0 for all X~ C 6,~'. But
each X~ is in some 6'y, so r(X~) > 0 for each r = 1, . . . ,
N. Thus, 7r satisfies rule (C2). Observe that the first
nonzero aj that was chosen must equal 1, so 1 is the
greatest c o m m o n divisor o f the as . (If all the aj are
zero, then 6' must be empty, so we can let ~ r [(f , . . . ,
1")] = 11.) A classical number theoretic calculation,
described in [4, p. 31], then gives a one- to-one linear
mapping J : Z " ~ Z" such that J [(f , . . . , F)] =
0 r [(l ~ , . . . , 1 ,)] , . . .) . (5)

Since the sets (f ig) are independent o f the index

set 9, the construct ion o f r and .1 given above is also
independent of 9. This completes the p roof . []

Observe that the theorem is trivially true without
the restriction that J be independent of a, because
given any set 9 we can construct a J for which the sets
Ss2, s- contain at most one element, and the order
o f execution of the loop body is unchanged. Fo r
example, if 9 = {(x,y,z) :1 ~ x < 10, 1 ~ y < 5,
1 < z < 7}, let J[(x,y,z)] = (3 5 x + 7 y + z , x, y). Such
a J is clearly of no interest. However , because the
mapping J provided by the theorem depends only on
the loop body, it will always give real concurrent execu-
tion for a large enough index set.

Condi t ion (C2) gives a set of constraints on the
mapping ~- : Z ~ --~ Z. The Hyperp lane Theorem proves
the existence o f a ~- satisfying those constraints. We now
consider the problem of making an opt imal choice of rr.

It seems most reasonable to minimize the number
of steps in the outer DO j1 loop of (5). (Remember that
k = 1.) I f a sufficiently large number of processors are
available, then this gives the max imum amoun t o f con-
current computa t ion . This means that we must minimize
i l l - - ~kl in loop (5). But X 1 and 1 are just the upper and
lower bounds o f { r (P) : P ~ 9}. Setting M ~ = u ~ -- l ~,
it is easy to see that 1 _ Xl equals

M 1] a l [+ . . . + M n l a ~ f , (9)

where the a t are defined by (8). F inding an opt imal r
is thus reduced to the following integer p rog ramming
problem: find integers a l , . . . , a , satisfying the con-
straint inequalities given by rule (C2), which minimize
the expression (9).

Observe that the greatest c o m m o n divisor of the
resulting a~ must be I. This follows because the con-
straints are o f the form xla~ + . . . + xna~ > 0, so
dividing the a~ by their g.c.d, gives new values o f a~
satisfying the constraints, with a smaller value for (9).
Hence, the method of [4] can be applied to finding the
mapping J.

Al though the above integer p rog ramming problem
is algorithmically solvable, we know of no practical
method of finding a solution in the general case. H o w -
ever, the construct ion used in proving the Hyperp lane
Theorem should provide a good choice of 7r. In fact,
for mos t reasonable loops such as loop (1), it actually
gives the opt imal solution.

The General Plane Theorem
We now generalize the Hyperp lane Theorem to

cover the case when some of the index variables
I 2 , . . . , I n are missing. Concurrent execution is then
possible for the points in 9 lying along parallel planes.
Each missing variable may lower the dimension of the
planes by one. The following theorem may be viewed
as a generalization o f a result stated in [5, p. 584].

4 A weaker version of this result can be found in [3].
5If a j = 1, then we can define Jas follows: for each k > 2,

let jk equal some distinct Itk with/k ¢ j.

88 Communications February 1974
of Volume 17
the ACM Number 2

PLANE CONCURRENCY THEOREM. Assume that loop

(4) satisfies (A1)- (A5) and that at most k -- 1 o f the
• 2 , i n index vartables I , . . . are missing. Then loop (4) can

be rewritten in the forrn & l o o p (5). Moreover, the map-
ping J used f o r the rewriting can be chosen to be inde-
pendent o f the index set ~.

PROOF. The p roof is a general izat ion of the p roof of
the Hyperp lane Theorem. Let I s2, . . . , I i k be the pos-
sibly missing variables a m o n g I 2 , . . . , F . Set j l =
1,jk+l = n + 1, and assume jl < j2 < • - • < j , < j ,+l •

Let 6, be the set of all elements X > 0 of all sets
(f i g) referred to by rule (C2). We must const ruct ~- so
tha t 7r(X) > 0 fo r all X ~ 6,. Let 6,j = { (0 , . . . ,
0, x J , . . . , x ") C 6) : x j > 0}, so 6,i is the set of all
elements of 6' whose j th coord ina te is the lef t -most
nonzero one. Then every e lement of 6" is in one of
the 6"j..

The mapp ing ~- :Z" ---+ Z k will be cons t ruc ted with
7r(P) = (Trl(p), . . . , ~rk(P)), where each 7r i : Z " --+ Z is
defined by ~ J [(f , . . . , I")] = a~I ~ + . . . + a,~I ~ for
nonnegat ive integers aj . Moreover , we will have a / = 0
i f j < j~ or j > j~+l • This implies tha t if X C 6"j" and
and j > j~+l, then TrY(X) = 0. It therefore suffices to
const ruct ~-~ so tha t for each j with j i <_ j < j i + l , and
each X C 6)3' : TrY(X) > 0 - - f o r we then have ~-(X) =
(o , . . . , 0, # (x) , . . . , ~(x)) > 0.

Recall tha t for the sets (f ,g) , an • can appear only
in the j l , • • • , jk coordinates . Thus any element of any
of the sets 6'3' with j i ~ j < j i+l can be represented in

Ji X{i+1-1 the fo rm (0 , . . . , 0, x ~ , . . . , , . . .) , or
j i + l ".

(0 , . . . , 0 , + , x , ,.. . . , x~ '+'-1, . . .) for a f i n i t e c o l -
lection of integers x / , j~ _< j < j i+l • By the same argu-
ment used in the p r o o f of the Hype rp l ane Theorem,
we can replace " + " by x'~ ~ = 1, and choose a / >_ 0,

• a i Jl i xJ i+ l - -1 j ~ < j < j ~ + l s u c h t h t a ~ X r + . . . +"s~+~-I , > 0
for each r. Choosing a / = 0 for j < j l and j > j~+t
completes the const ruct ion of the required ~-~.

The const ruct ion of [4] is then applied to give
• i . I i~ invertable relat ions of the fo rm J~ = a~ -t- . . - +

i Ji+l--1 ' ~ J i+ l - -1] r a~+~_a.I , and J*~ = z...,*=s~ b~.I , for j i < j <
i~+,. Combin ing these and reorder ing the JJ gives the
required m a p p i n g J . []

As in the hyperp lane case, to get an opt imal solu-
tion, we want to minimize the n u m b e r of i terat ions of
the outer D O loops. This means minimizing (u~- - ;~+ l)
• . . (p~--~ ,~+l) . I t is easy to verify that if none of the
expressions l ~, u ~ involve any index variable, then this
n u m b e r is equal to (M1 [a~ll + . . . + M ~ [a ~ l [+ 1)
• . . (M~[a~*[+ - . . + M " [a , *] + 1), where M ~ =
u ~ -- l ~, and the a / a r e defined by (6)•

F inding the best a / i s now an integer p r o g r a m m i n g
problem. No te that a solut ion with at a , = 0
for some i gives a solut ion to the rewrit ing p rob lem
with k replaced by k -- 1, since that 7r ~ can be r emoved
wi thout affecting the const ra in t inequalities• The Plane
Concur rency T h e o r e m proves the existence of a

: Z" Z ~ ~r --+ satisfying (C2), for a par t icular value of k.
I t m a y be possible to find such a ~r for a smaller k.

F o r completeness , we state a sufficient condi t ion
for the loop body to be concurrent ly executable for all
points in o-- i .e , to be able to rewrite loop (4) with a

D O a C O N C F O R A L L (11 , . . . , I n) C S
statement• This involves setting J equal to the identi ty
mapping , k = 0, and 7r : Z" ~ Z ° the mapp ing defined
by~r (P) = 0 f o r a l l P C Z". Since (g , f) = { - - X : X C
(f i g) }, it is clear tha t this ~- satisfies (C2) if and only if
all the sets (f i g) are equal to {0}. The me thod of
compu t ing these sets then gives the fol lowing ra ther
obvious result•

I f loop (4) satisfies (A1)- (AS) , none of the index
variables are missing, and all occurrences of any
genera ted variable are identical, then the loop can
be rewrit ten as:

D O a C O N C F O R A L L (f , . . . , I") C S

The hypothesis means tha t in the expression (6) for
each generated variable VAR, r = n and the m ~ are the
same for all occurrences of VAR.

I I . T h e C o o r d i n a t e M e t h o d

Example• We illustrate the coord ina te me thod with
the following loop.

D O 24 1 = 2, M
D O 24 J = l, N

21 A (L J) = B(I , J) + C(I)

® ® @
22 c(I) = B (I - I , J)

@ ®
23 B(I, J) = A(I + 1, J) ** 2

® @
24 C O N T I N U E (11)

The hyperp lane me thod would rewrite this as a D O i /
D O C O N C J l o o p w i t h] = I - k - J, and J = J. (Al-
though J is a missing variable, so the hypothesis of the
hyperp lane theorem is not satisfied, the a lgor i thm used
in the p r o o f still gives a ~- satisfying (C2).) The rewrit ten
loop has M + N -- 2 sequential i terations.

F o r a synchronous , single instruct ion s t ream com-
puter like the ILLIAC IV, we can do bet ter than this by
using the coord ina te method . T o express synchronous
parallel execution, we in t roduce the D O S I M (for
SIMul taneous l y) s ta tement having the following form.

D O c~ S I M F O R A L L C $,

where 8 is a finite set of integers• Its mean ing is similar
to tha t o f the D O C O N C s ta tement , except tha t the
c o m p u t a t i o n is pe r fo rmed synchronous ly by the indi-
vidual processors• Each e lement of S is assigned to a
separa te processor , and each s ta tement in the range of
the D O S I M is, in turn, s imul taneously executed by all
the processors . An ass ignment s ta tement is executed by

89 Communications February 1974
of Volume 17
the ACM Number 2

first computing the right-hand side, then simultaneously
performing the assignment.

The coordinate method does not introduce new
index variables. It will rewrite loop (11) as

D O 24 J = 1, N
D O 2 4 S I M F O R A L L I E { i : 2 < i < M}
T E M P (I) = A (I + 1, J)

@
= ~(i , ,I) + c (i)

@ @
= T E M P (I) ** 2

21 A(/, J)

®
23 B(I, J)

®
22 c(i)

@
= B (I - 1, J)

@
24 C O N T I N U E (12)

Observe that the D O S I M must be executed by syn-
chronous processors. Processor i must generate the
value for B(i, j) in statement 23 before processor i + 1
uses it in statement 22. We also see from this that it
was necessary to rearrange the loop body in writing
loop (12) in order to obtain a loop equivalent to the
original one.

Loop (12) requires only N sequential iterations,
instead of the M + N -- 2 required by the hyperplane
method. Moreover, the change of index variables in the
hyperplane method produces more complicated sub-
script expressions, significantly increasing the time
needed for a single execution of the loop body. By
using the original index variables, the coordinate
method eliminates this source of inefficiency. However,
there are sortie loops, such as loop (1), which cannot
be rewritten with the coordinate method. These loops
require the hyperplane method.

Assumptions and Notation
In general, we consider a loop of the form

11 d I D O a = 11, u I,

D O a I" = l ~, u", d"

! loop body I

ct C O N T I N U E (13)

We assume that the loop body satisfies assumptions
(A1)-(A4). In addition, we make the following assump-
tions:

(A6) Each d ~ is an integer constant.
(A7) There is no conditional transfer of control within

the loop body.

Assumption (A7) prohibits a statement such as

I F (A(I1).GT.O) GO TO 9

in the loop body. Such a statement would be me~tning-
less inside a D O S I M 11 loop, since all processors must
execute the same statement. However, we do allow a

conditional assignment statement such as

I F (A(I~).GT.O) B (I ~) == A(I 1)

It is easily implemented on the ILLIAC IV by turning off
individual processors. The real assumption in (A7) is
that there are no loops within the loop body. In that
case, conditional branches can be removed by adding
1F clauses.

We are not making assumption(A5). Some restric-
tions on subscript expressions must be made by a real
compiler to permit computation of the (f , g) sets. We
will not consider this problem.

To simplify the discussion, we assume that each d ~
equals 1, and that the expressions l ~ and u ~ do not con-
tain any of the index variables I j. The modifications
necessary for the general case are described later.

The coordinate method will rewrite loop (13) as

D O a I j~ = l i~, u j'

D O a I ~ = l jk, u j~
D O ct S I M F O R A L L (1 ~k+l, . . . , ff~) C $

I loop body]
a C O N T I N U E (14)

where j l < " " < jk and 8 is the set {(x k+l, . . . , x n) :
1 ~'' _< x ' < uS'}.

: Z ~ Z ~ The mapping r ~ is defined as before.
However, now it is the simple mapping r[(i 1, . . . , i n)] =
(i J l , . . . , iJ~). In other words, r just deletes the

jk+t, • • •, jn coordinates. In our example, ~r was defined
by ~r[(i,j)] = j.

Basic Considerations
Any D O C O N C statement can be executed as a

D O SIM, since it must give the same result if the asyn-
chronous processors happen to be synchronized. Thus,
the rewriting could be done just as before by trying to
find a r which satisfies (C2). However, the synchrony
of the computation allows us to weaken the condition
(C2).

Recall that rule (C1) was made so that the rewriting
will preserve the order in which two different references
are made to the same array element. For references
made during two different executions of the loop body,
the asynchrony of the processors requires that the
order of those executions be preserved. However, with
synchronous processors, we can allow the two loop body
executions to be done simultaneously if the references
will then be made in the correct order. The order of
these two references is determined by the positions
within the loop body of the occurrences which do the
referencing.

First, assume that we do not change the loop body.
For two occurrences f and g, let f - * g denote that the
execution of f precedes the execution of g within the
loop body. This means either that the statement con-
taining f precedes the statement containing g, or that f
is a use and g a generation in the same statement. The

90 Communications February 1974
of Volume 17
the ACM Number 2

Table I1.
Is (s1 (i)) Ordering relations

The sets (f,g) violated? $1 (ii) $2

(al,al) = (0,0) NO -- - -
(al,a2) = (--1,0) NO -- --
(a2,al) = (1,0) NO a2 ---* al - -
(b3,b3) = (0,0) NO -- --
(bl,b3) = (o,o) NO -- bl ~ b3
(b3,bl) = (0,0) NO -- - -
(b2,b3) = (--1,0) NO -- --
(b3,b2) = (1,0) NO b3 ---* b2 --
(cl,cl) = (0,*) NO -- --
(c1,c2) = (0,*) NO -- cl --o c2
(c2,cl) = (0,*) NO -- - -

above observation allows us to change rule (C1) to the
following weaker condition on ~-.

F o r . . . generation: if Ts(P) = To (P) for P, Q E
with P < Q, then we must have either
(i) ~-(P) < r (O) , or
(ii) r (P) = r (Q) andf---~ g.

In this rule, either (i) or (ii) is sufficient to ensure that
occur rencef references the array element Ts(P) for the
point P E a before g references the same array element
for Q E ~. The conditions can be rewritten in the fol-
lowing equivalent form:

(i) r (P) _< r (O) , and (i i) / f r (P) = r (Q) thenf----~ g.

In the same way that (C2) was obtained from (C1),
the above rule gives the following rule.

(S1) For every variable and every ordered pair of
occurrencesf, g of that variable, at least one of which
is a generation: for every X E (f ,g) with X > 0,
we must have
(i) ~r(X) > 0, and
(ii) i f re(X) = O, then f ---~ g.

I f r satisfies rule (S1), then it satisfies the preceding
rule, so the rewritten loop (14) is equivalent to the
original loop (13).

So far, our discussion has assumed that we have
not changed the loop body. Now let us consider chang-
ing the order of execution of the occurrences. That is,
we may change the position of occurrences within the
loop body, as we did in writing loop (12). (There was
no point in doing this for asynchronous processors
since it couldn't help.)

Let f ~ g mean that f is executed before g in the
rewritten loop body. Then rule (S1) guarantees that the
correct temporal ordering of references is maintained
when the references were made in the original loop
during different executions of the loop body. Having
changed the positions of occurrences in rewriting the

loop body, we now have to make sure that any two
references to the same array element made during a
single execution of the loop body are still made in the
correct order. The following analogue of rule (C1)
handles this.

For . . . generation: if Ts(P) = To(P) for some
P E ~ and f precedes g in the original loop body,
then f---* g.

Rewriting this in terms of the sets (fig) gives the follow-
ing rule.

($2) For every variable, and every ordered pair of
occurrences f ,g of that variable, at least one of
which is a generation: if 0 E (f,g) and f precedes
g in the original loop body, then f - -+ g.

Rules (S1) and ($2) guarantee that the rewritten loop
(14) is equivalent to the original loop (13). Note that
rule ($2) does not involve Ir.

The Coordinate Algorithm
(S 1) and ($2) together give a sufficient condition for

a particular rewriting to be equivalent to the original
loop. Rule (Sl(i)) gives a condition which must be
satisfied by ~-. Rules (Sl(ii)) and ($2) specify ordering
relations among the occurrences in the rewritten loop
body. However, they do not indicate whether it is
possible to rewrite the loop body so that these relations
are satisfied. We now give a method for deciding if
such a rewriting exists.

First, we make a trivial observation: a use in an
assignment statement must precede the generation in
that statement. This observation is given the status of
a rule.

($3) For any use f and generation g in a single state-
ment, we must havef - -~ g.

Now let ~ denote the relations given by rules (S1)-
($3). Add all relations implied by transitivity. That is,
whenever f ~ g and g ~ h, add the relation f - - ~ h.
(An efficient algorithm for doing this is given by [6].)
If the resulting ordering relations are consistent-- that
is, if we do not h a v e f - - ~ f for any occurrence f - - t h e n
the loop body can be rewritten to satisfy the ordering
relations.

To show how the rewriting is actually done, we de-
scribe the application of the coordinate method to loop
(11). The calculations for Steps 1, 3, and 4 are shown
in Table II.

Step 1. Compute the relevant sets (f ,g) for rules (SI)
and ($2).

Step 2. Choose the DO S I M variables. We wish to
rewrite loop (I1) as a DO J / D O S I M 1 loop, so
the mapping ~- is defined by ~r[(i,j)] = j .

Step 3. Check that (Sl(i)) is not violated.
Step 4. Find the ordering relations given by (Sl(ii))

and ($2).

91 Communications February 1974
of Volume 17
the ACM Number 2

Step 5. Apply ($3) to get the following relations:
statement 21 : bl -~ a l

cl --* al
statement 22: b2 --~ c2
statement 23: a2 -~ c3

Step 6. Find all relations implied by transitivity:
b3 --* c2 [by b3 --* b2 and b2 -~ c2]
a2 --* b2 [by a2 --* b3 and b3 -~ b2]
bl --* b2 [by bl --* b3 and b3 --. b2]
bl --* c2 [by bl -~ b2 and b2 --* c2]
a2 --~ c2 [by a2 --~ b3 and b3 ~ c2]

Step 7. Check that no relation of the form f --* f was
found in Step 4 or Step 6.

Step 8. Order the generations in any way which is con-
sistent with the above relations--i .e, obeying
b3 --* c2. We let a l --* b3 --* c2. We then write:
21 A(I, J) =

@
23 B(I, J) =

@
22 C (I) =

@
Step 9. Insert the uses in positions implied by the

ordering relations (recall that a2 ~ al)"
A(I + 1, J)

@
21 A(I, J) = B(I, J) + C(I)

@ @ @
23 B(I, J) = **2

@
22 C(I) = B (I - - 1, J)

@ @
Step 10. Add any extra variables necessitated by uses

no longer appearing in their original statements:
TEMP(I) = A (i + l, J)

@
21 A(I, J) = B(I, J) + C(I)

@ @ @
23 B(I, J) = T E M P (I) ** 2

@
22 C(I) = B (I - - 1, J)

@ @
Step 11. Insert the DO and DO S I M statements, to

get loop (12).

Further Remarks
I t is easy to deduce a general algorithm for the

coordinate method from the preceding example. The
method can be extended to cover the case of an in-
consistent ordering of the occurrences. In that case,
the loop can be broken into a sequence of sub-loops.
Every generation g for which the relation g --~ g does
not hold can be executed within a DO S I M loop. An
algorithm for doing this is described in [7].

In general, there are 2" - 1 choices for the DO
S I M variables in Step 2. Steps 3-11 are repeated for
different choices until a suitable one is found. Rule
(S1) should quickly eliminate many possibilities. In our
example, the choice of a DO I / D O S I M J rewriting is
eliminated by the relation cl ~ cl given by (Sl(ii)).
One can also show that loop (13) can be rewritten
with a DO S I M (I jk, . . . , P") only if it can be re-
written with a DO S I M (I ~+1, . . . , Ii"), where
jk < "'" < j , . Thus, eliminating DO I / D O S I M J
for loop (11) also eliminates the possibility of a DO
S I M (I,J) rewriting. I f no choice of DO S I M variables
works, then the hyperplane method must be tried.

To handle arbitrary DO increments d ~, one need
only generalize the definition of the set (f ,g) as fol-
lows: (f ,g) = { (x l , . . . , x ") C Z " : T s (P) = To[P +
(d lx 1, . . . , dnxn)], for some P C Z"}. The rules (S1)-
($3) and the algorithm described above remain the
same.

For arbitrary DO limits if, u s we proceed as follows.
For each i: if the expression 1 s contains some I t, then
replace I ~ by the new index variable i ~ = I s -- l s. Steps
1-10 are then executed as before. In Step 11, a more
complicated procedure is needed to find the DO limits
and DO S I M set for the rewritten loop.

Ill. Practical Considerations

Satisfying the Assumptions
Our analysis required several assumptions about the

given loop. I f a loop does not satisfy these assumptions,
then it may still be possible to rewrite it so that it does.
We have already indicated that assumption (A7) can
be met by replacing conditional transfers with IF
clauses. We now describe some other useful techniques.

Our first assumption was that the DOs are tightly
nested, as in loop (4) ; i.e. we did not allow loops such as

D 0 9 9 I = 1, M
21 A(I, 1) = 0

DO 99 J = 2, N

It is easy to rewrite this as the following tightly nested
loop:

D 0 9 9 I = 1, M
DO 99 J = 2, N

21 IF (J .EQ. 2) A(I ,J - -1) = 0

This method works in general. I t may be possible later
to move statement 21 back outside the J loop and
remove the IF clause. A future paper will describe
methods of handling nontightly nested loops without
using this artifice [8].

Assumption (A4) can sometimes be satisfied by sub-
stituting for generated variables. One technique is illus-

92 Communications February 1974
of Volume 1"/
the ACM Number 2

trated by the following example. Given
K = N
D 0 6 1 = 1, N

5 B(I) = A (K)
6 K = K - - 1

we can rewrite it as
D 0 5 1 I = I , N

5 B(I) = A (N - k - I - - I)
51 C O N T I N U E
61 K = 1

The use of auxiliary variables to effect negative incre-
menting is fairly common in FORTRAN programs.

Scalar Variables
Even though the loop satisfies all the restrictions,

it is clear that these methods can give no parallel com-
putation if there are generated scalar variables. Any
such variable must be eliminated?

Often, the variable simply acts as a temporary
storage word within a single execution of the loop body.
The variable X in the following loop is an example.

D 0 3 1 = 1, 10
X = S Q R T (A (I))
B(I) = X

3 C(1) = E X P (X)
In this loop, each occurrence of X can be replaced by
X X (I) , where X X i s a new variable.

In general, we want to replace each occurrence of
the scalar by V A R (i 1 , . . . , I ") , for a new variable
VAR. (After the rewriting, to save space, we can lower
the dimension of V A R by eliminating any subscript
not containing a D O F O R A L L index variable.) A
simple analysis of the loop body's flow path determines
if this is possible.

Another common situation is for the variable X
to appear in the loop body only in the statement
X = X -b expression, where the expression does not
involve X. This statement just forms the sum of the
expression for all points in the index set ~. We can re-
place it by the statement l IAR (11, . . . , /") = expres-
sion, and add the following "s ta tement" after the
loop: X = X q- ~'~(? I ")~ V A R (I 1, . . . , I"). The
sum can be executed in parallel with a special sub-
routine.

The same approach applies when the variable is
used in a similar way to compute the maximum or
minimum value of an expression for all points in a.

Practical Restrictions
The methods we have described yield parallelism

in the form of D O C O N C or D O S I M loops. In order
for them to be of use in a real compiler, the particular
target computer must be capable of' efficiently executing
these loops in parallel. The structure of the computer
will place additional restrictions on the loops which
the compiler can handle.

s In our formalism, a scalar is a zero-dimensional array. Each
~,g) set for a scalar variable equals all of Z ~.

Consider the loop

D 0 2 I = 1, N
A (2 , I - - 1) = B(I)

2 A(2 , I) = C(I)

The coordinate method can rewrite this as a D O S I M
I loop. However, to execute this D O S I M loop in
parallel on the ILLIAC IV requires a peculiar method of
storing the arrays. This storage scheme would probably
be incompatible with the requirements of the rest of
the program.

In general, the computer 's data accessing mechanism
will limit the forms of variable occurrences which may
appear in the loop. I t may also limit the utility of the
hyperplane method. For example, implementation of
the hyperplane method on the STAR-100 requires dy-
namic reformating of the arrays.

We have allowed a conditional assignment state-
ment such as

I F (A(I).GT.O)B(1) = .,4(1)
inside a D O S I M I loop. This is easily implemented on
the ILLIA¢ IV and with vector operations on the STAR-100.
However, it cannot be implemented with the ASC vector
operations.

Other computer designs will require different re-
strictions on the loops. However, our methods seem
sufficiently general to be applicable to any parallel
computer to be built in the near future.

Conclusion

We have presented methods for obtaining parallel
execution of a D O loop nest. A number of details and
refinements were omitted for simplicity. Some of these
are described in [7]. However, all the basic ideas neces-
sary for their implementation have been included.
Preliminary experience with the ILLIAC IV FORTRAN
compiler indicates that these methods can be used to
obtain parallel execution for a fairly large class of
sequential programs.

Received February 1972; revised January 1973

References
1. Mclntyre, David. An introduction to the ILLIAC-IV
computer. Datamation 16, 4 (Apr. 1970), 60-67.
2. Ramamoorthy, C.V., and Gonzalez, M.J. A survey of
techniques for recognizing parallel processable streams in
computer programs. Proc. AFIPS 1969 FJCC, Vol. 35. AFIPS
Press, Montvale, N. J. pp. 1-15.
3. Muroaka, Yoishi. Parallelism exposure and exploitation in
programs. Ph.D. Th., U. of Illinois, Urbana, II1., 1971.
4. Mordell, L.J. Diophantine Equations. Academic Press, New
York, 1969.
5. Karp, R.M., Miller, R.E., and Winograd, S. The Organization
of computations for uniform recurrence equations. J. ACM 14,
3 (July 1967), 563-590.
6. Warshall, Stephen. A theorem on Boolean matrices. J. A C M
9, 1 (Jan. 1962), 11-12.
7. Lamport, Leslie, and Presberg, David. The parallel execution of
F O R T R A N DO loops. Mass. Computer Associates, Inc., AD
742-279. Wakefield, Mass. 1971.
8. Lamport, Leslie. The coordinate method for the parallel exe-
cution of DO loops. To appear in Proc. 1973 Sagamore Comput.
Conf.

93 Communications February 1974
of Volume 17
the ACM Number 2

