Erratum to Lamport's "On Interprocess Communication — Part I: Basic Formalism"

Jerry James james@ittc.ku.edu

ITTC, EECS Department University of Kansas Lawrence, Kansas 66045–7612

1 Error in Proposition **1**

While constructing a PVS specification and proof of [1] with PVS [2], a small error was found in the statement of Proposition 1. That proposition states:

Proposition 1 Let $\langle S, \dots, - - + \rangle$ and $\langle S, \stackrel{\prime}{\longrightarrow}, -\stackrel{\prime}{\rightarrow} \rangle$ be system executions, both of which have global-time models, such that for any $A, B \in S : A \longrightarrow B$ implies $A \stackrel{\prime}{\longrightarrow} B$. For any global-time model μ of $\langle S, \dots, - + \rangle$ there exists a global-time model μ' of $\langle S, \stackrel{\prime}{\longrightarrow}, -\stackrel{\prime}{\rightarrow} \rangle$ such that $\mu'(A) \subseteq \mu(A)$ for every $A \in S$.

Here is a counterexample to Proposition 1. Let execution 1 be over the set $S = \{op_1, op_2\}$, where $A \longrightarrow B$ is false for all pairs of operations and $A \dashrightarrow B$ is true for all pairs of operations. Let execution 2 be over the same set of operations, but $op_1 \longrightarrow op_2$ and $op_1 \dashrightarrow op_2$, and there are no other precedes or can-affect relationships. It is easy to see that both system executions satisfy axioms A1–A5. We now show that all of the conditions of Proposition 1 are satisfied.

• Execution 1 has a global-time model. Here is an example:

$$\begin{array}{lll} \mu(op_1) &=& [1,2] \\ \mu(op_2) &=& [0,1] \end{array}$$

• Execution 2 has a global-time model. Here is an example:

$$\begin{array}{rcl} \mu(op_1) &=& [0,1] \\ \mu(op_2) &=& [2,3] \end{array}$$

• For any $A, B \in S : A \longrightarrow B$ implies $A \xrightarrow{\prime} B$. This is trivially satisfied.

Let μ be the global-time model of execution 1 given above. Then proposition 1 claims that a global-time model μ' of execution 2 exists such that $\mu'(A) \subseteq \mu(A)$ for every $A \in S$. But this is impossible, since every element of $\mu'(op_1)$ must be less than any element of $\mu'(op_2)$.

2 Repairing the error

Proposition 1 can only be falsified by choosing μ so that one operation begins at precisely the instant that another ends, making the intersection of their execution intervals a singleton. In the PVS specification and proof located at http://www.ittc.ku.edu/consistency/, a modified version of Proposition 1 is stated and proved, as follows.

Definition 1 A global-time model μ of a system execution $\langle S, \longrightarrow, - \rightarrow \rangle$ is nonsimultaneous if there are no operations $A, B \in S$ such that $\max(\mu(A)) = \min(\mu(B))$.

Proposition 1 (Corrected) Let $\langle S, \dots, - \cdot \rangle$ and $\langle S, \stackrel{\prime}{\longrightarrow}, \stackrel{\prime}{-} \rangle$ be system executions, both of which have global-time models, such that for any $A, B \in S : A \longrightarrow B$ implies $A \stackrel{\prime}{\longrightarrow} B$. For any nonsimultaneous global-time model μ of $\langle S, \dots, - \cdot \rangle$ there exists a global-time model μ' of $\langle S, \stackrel{\prime}{\longrightarrow}, \stackrel{\prime}{-} \rangle$ such that $\mu'(A) \subseteq \mu(A)$ for every $A \in S$.

Furthermore, we show that the argument in [1] to which Proposition 1 was applied can be salvaged as follows.

Theorem 2 Let $\langle S, \dots, -- \rangle$ be a system execution with a global-time model μ . Then there exists a nonsimultaneous global-time model μ' of $\langle S, \dots, -- \rangle$.

References

- [1] Leslie Lamport. On interprocess communication, Part I: Basic formalism. *Distributed Computing*, 1(2):77–85, April 1986.
- [2] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal verification for faulttolerant architectures: Prolegomena to the design of PVS. *IEEE Transactions on Software Engineering*, 21(2):107–25, February 1995.