
Verification of a Multiplier: 64 Bits and Beyond

R. P. Kurshan
AT&T Bell Labs

Murray Hill, NJ 07974
k@research.att.com

Leslie Lamport
Digital Equipment Corporation

130 Lytton Avenue
Palo Alto, CA 94301
lamport@src.dec.com

14 April 1993

To appear in Proceedings of the Fifth International Workshop on Computer-
Aided Verification

Verification of a Multiplier: 64 Bits and Beyond

R. P. Kurshan1 and Leslie Lamport2

1 AT&T Bell Labs
Murray Hill, NJ 07974
k@research.att.com

2 Digital Equipment Corporation
Palo Alto, CA 94301

Abstract. Verifying a 64-bit multiplier has a computational complexity
that puts it beyond the grasp of current finite-state algorithms, includ-
ing those based upon homomorphic reduction, the induction principle,
and bdd fixed-point algorithms. Theorem proving, while not bound by
the same computational constraints, may not be feasible for routinely
coping with the complex, low-level details of a real multiplier. We show
how to verify such a multiplier by applying COSPAN, a model-checking
algorithm, to verify local properties of the complex low-level circuit, and
using TLP, a theorem prover based on the Temporal Logic of Actions,
to prove that these properties imply the correctness of the multiplier.
Both verification steps are automated, and we plan to mechanize the
translation between the languages of TLP and COSPAN.

1 Introduction

For finite-state systems, it is in principle possible to use model checking to verify
properties of a system automatically, with little human intervention. However,
computational complexity limits the applicability of such methods. Verifying a
64-bit multiplier is beyond the capability of existing model checkers, even with
indirect methods such as homomorphic reduction [8, 9], structural induction [10],
and fixed-point algorithms using binary decision diagrams [2].

Mechanical theorem proving provides an alternative to automatic model
checking. However, it is hard work. Proving that a system satisfies even a fairly
simple property can be painful. Although progress is being made, and there
have been some impressive verifications using theorem provers [3], it is unclear
how soon theorem proving will be feasible for the routine verification of com-
plicated systems. In any case, complementing a theorem prover with a model
checker that, when feasible, verifies proof obligations automatically will surely
save work.

We show how to combine theorem proving and model checking to mechani-
cally verify systems that are more difficult or infeasible to verify by either method
alone. Our approach applies to systems with a relatively small number of dif-
ferent high-level components. Components may be replicated without limit, if
they are interconnected in a fairly regular fashion, and may have an arbitrarily
complex low-level structure. Model checking is used to verify the individual com-

2

ponents, and theorem proving is used to show that the complete system satisfies
its specification if each component does.

As an example, we verify a k · 2m-bit multiplier, constructed from k-bit mul-
tipliers by recursively applying a method for implementing a 2N -bit multiplier
with four N -bit multipliers. The k-bit multiplier could implement a complex
algorithm such as a radix-4 modified version of Booth’s algorithm [7]. We could
choose k as large as 8. The 8-bit multiplier is small enough to be verified by
model checking, but complicated enough to make its verification with theorem
proving very difficult. For k · 2m equal to 64, the complete multiplier is too
complex to be verified entirely by model checking. Abstracting components (ho-
momorphic reduction [8]) cannot help, because it cannot reduce the complexity
below the size of the combined inputs, which exceeds the limit of tractability for
a multiplier.

In this simple example, we have verified not just a 64-bit multiplier, but an
8 · 2m-bit multiplier for all values of m. Real multipliers are not constructed by
such a simple recursive procedure. However, we expect our approach of com-
bining model checking of local properties with theorem proving to work for real
multipliers.

We combine two existing tools: the TLP theorem prover [4], which verifies
models written in the Temporal Logic of Actions (TLA) [12], and the automata-
theoretic model checker COSPAN [5], which verifies models written in the lan-
guage S/R [6]. We chose to combine TLA and S/R because they are simple and
have similar semantic bases. Moreover, a tool exists for the automatic synthesis
to hardware of an S/R specification. In principle, we could write the models in
either language and translate to the other. We translate from TLA to S/R both
because TLA is more concise, and because theorem proving requires understand-
ing what one is proving, which is easier if the theorem to be proved was written
by a human rather than generated by a translator.

Four models are used: M(N), an abstract N -bit multiplier, which essentially
asserts that its output is the product of its inputs; E(N), the multiplier’s envi-
ronment; DM (N), a circuit that combines four N -bit multipliers to implement
a 2N -bit multiplier; and B(k), the implementation of the k-bit multiplier. Al-
though one can write B(k) in TLA and translate it to S/R, this is not necessary
because all verification involving B(k) is done with COSPAN, so its TLA version
is not needed.

2 Decomposition in TLA

We begin with a brief description of TLA; a more complete exposition appears
in [12]. We assume an infinite collection of variables and a suitably large collec-
tion of values. A state is an assignment of values to variables. A state function
is an ordinary expression, such as x+ y+1, built from values and variables, and
a predicate is a Boolean-valued state function, such as x > y+1. An action is a
Boolean-valued expression, such as x′ > y+1, containing primed and unprimed
variables. A pair 〈s, t〉 of states satisfies action A iff (if and only if) A is true

3

when unprimed and primed variables are replaced by their values in s and t.
(We let 〈. . .〉 denote a sequence or tuple.) An action represents allowed state
transitions—for example, x′ = x+ 1 allows any transition in which the value of
x is incremented by 1. We let v′ denote the expression obtained by priming all
the variables in the state function v—for example (x+ y+1)′ equals x′ + y′+1.
An action A is enabled in a state s iff there is some state t such that 〈s, t〉
satisfies A.

A behavior is an infinite sequence of states. A TLA formula is true or false
for a behavior. We write |= F to denote that F is true for all behaviors. A TLA
formula S specifies a system whose correct executions are represented by the
behaviors satisfying S. A system with TLA specification S therefore satisfies a
property P iff |= S ⇒ P .

The basic class of TLA formulas we will use are of the form I ∧ ✷[N]v ∧ L,
where I is an “initial state” predicate, N is an action, v is a state function,
[N]v denotes N ∨ (v′ = v), and L is a conjunction of formulas of the form
WFv(A), defined below. A behavior satisfies this formula iff the initial state
satisfies I, every successive pair of states satisfies [N]v (representing either an N
transition or one that leaves v unchanged—a “stuttering” step), and the behavior
satisfies L. A behavior satisfies WFv(A) iff the action A∧ (v′
= v) is satisfied by
infinitely many pairs of successive states, or is disabled in infinitely many states
of the behavior.

Another class of TLA formulas we use have the form ✷P , where P is a
predicate. Such a formula is true for a behavior iff P is true for every state of
the behavior. We also use the TLA operator ∃∃∃∃∃∃, where ∃∃∃∃∃∃x : F essentially denotes
the formula F with x “hidden”. The precise definition of ∃∃∃∃∃∃ can be found in [12].

A finite sequence ρ of states is said to satisfy a TLA formula F iff ρ is the
prefix of a behavior that satisfies F .3 A formula F is said to be a safety property
iff the following condition is satisfied: if every finite prefix of σ satisfies F , then
σ satisfies F . The closure C(F) of a formula F is the strongest safety property
(conjunction of all such properties) implied by F . If L is the conjunction of
formulas of the form WFv(A) where each A implies N , then

C(I ∧ ✷[N]v ∧ L) ≡ I ∧ ✷[N]v (1)

In particular, I ∧ ✷[N]v is a safety property. For any predicate P , the formula
✷P is also a safety property.

For any safety property E, we define E⊕ to be the property that is true “one
step longer than” E is. In other words, a finite sequence of states ρ of length
n satisfies E⊕ iff either n = 1, or n > 1 and the prefix of ρ of length n − 1
satisfies E. An infinite behavior satisfies E⊕ iff it satisfies E or has the form
〈s0, . . . , sn, sn, sn, . . .〉, where n = 0 or 〈s0, . . . , sn−1〉 satisfies E. In general, E⊕

is not expressible with the TLA operators ′, ✷, and ∃∃∃∃∃∃. For example, false⊕ is
the conjunction of the formulas ✷[false]x for all variables x, and such an infinite

3 Since TLA formulas are invariant under stuttering [11], the definition of safety that
follows would be the same had we defined ρ to satisfy F iff the behavior obtained
by repeating the last state of ρ satisfies F .

4

conjunction cannot be expressed in TLA. However, formulas of the form E⊕

occur only in hypotheses of the form |= E⊕ ∧ P ⇒ Q, which can be verified by
substituting for E⊕ a “conservative approximation” Ẽ satisfying |= E⊕ ⇒ Ẽ. A
suitable approximation is obtained by applying

|= (I ∧ ✷[N]v)⊕ ⇒ ∃∃∃∃∃∃ s : Ĩ ∧ ✷[Ñ]〈s, v〉 (2)

where s is a variable that does not occur in I, N , or v, and

Ĩ
∆= (I ∧ (s = 0)) ∨ (¬I ∧ (s = 1))

Ñ ∆= (s = 0) ∧ ((N ∧ (s′ = s)) ∨ (¬N ∧ (s′ = 1)))

(The symbol ∆= means equals by definition.)
The key to verifying a complex system is decomposing the proof. In TLA, a

system is decomposed into components by writing its specification as the con-
junction of its components’ specifications. We represent a system composed of
n components by a TLA formula E ∧B1 ∧ . . .∧Bn, where E is the environment
specification and Bi is the specification of the ith component. We consider only
the case of E a safety property. Our problem is to prove that, in the presence of
a properly functioning environment, the system satisfies some property F . This
requires proving |= E ∧B1 ∧ . . . ∧Bn ⇒ F . We do this by writing a high-level
specification Mi for each component i, and proving4

|= E ∧M1 ∧ . . . ∧Mn ⇒ F (3)
|= E ∧B1 ∧ . . . ∧Bn ⇒ E ∧M1 ∧ . . . ∧Mn (4)

We prove (3) by standard TLA reasoning—that is, by theorem proving. To prove
(4), we use the following theorem, which is proved in [1].

Decomposition Theorem If E is a safety property and, for i = 1, . . . , n,

1. Ei is a safety property.
2. |= E ∧ C(M1) ∧ . . . ∧ C(Mn) ⇒ Ei

3. (a) |= Ei ∧Bi ⇒ Mi

(b) |= E⊕
i ∧ C(Bi) ⇒ C(Mi)

4. |= C(M1 ∧ . . . ∧Mn) ≡ C(M1) ∧ . . . ∧ C(Mn)

then (a) |= E ∧B1 ∧ . . . ∧Bn ⇒ M1 ∧ . . . ∧Mn, and
(b) |= E⊕ ∧ C(B1 ∧ . . . ∧Bn) ⇒ C(M1 ∧ . . . ∧Mn).

Conclusion (a) provides the desired result (4). Conclusions (a) and (b) have the
same form as hypotheses 3(a) and 3(b); as we shall see, this permits recursive
application of the theorem.

To apply the Decomposition Theorem, we choose Ei to be an abstract speci-
fication of the ith component’s environment. The second hypothesis asserts that
4 In general, one might want to replace E by a more abstract environment specification
in (3) and in the conclusion of (4). This generalization is not needed in our example.

5

Ei is implemented by the composition of the safety properties of the high-level
specifications Mi and their environment. The third hypothesis essentially as-
serts that the composition of the low-level specification and its environment
implements the high-level specification. The fourth hypothesis is a technical re-
quirement; conclusion (a) remains valid even if this hypothesis is not satisfied.

In a simple application of the theorem, the three hypotheses are proved as
follows. The first hypothesis will follow immediately from (1) and the form of
E. The second hypothesis will be proved by standard TLA reasoning—that is,
by theorem proving, using TLP. The third hypothesis will be proved by model
checking, using COSPAN. The fourth hypothesis is checked with (1). Because
our multiplier is defined recursively, it will be verified by recursive application of
the Decomposition Theorem. As explained in Section 5 below, model checking
is needed only for the base-case application of the theorem.

Theorem proving is applied only to the specifications E, Ei and Mi. The
specifications E and Ei are abstractions of the environment, describing only as
much of the environment’s behavior as is necessary to ensure correct operation
of the system or the individual component. The specification Mi is a high-level
abstraction. Hence, we are proving theorems only about relatively simple spec-
ifications. All reasoning about Bi, the detailed specification of the component,
is done with model checking. Thus, we need not even write the TLA formula
Bi. We translate the TLA formulas Ei, Mi, C(Mi), and the approximation to
E⊕

i into S/R, the language of the COSPAN model checker, and use COSPAN
to verify the S/R formulas corresponding to the TLA formulas of hypothesis 3.

Note that the Decomposition Theorem would be false if E⊕
i were replaced

by Ei in hypothesis 3(b). For example, with this change, the hypotheses would
be satisfied by letting all the Ei and Mi be false, and conclusion (a) would
assert |= ¬(E ∧ B1 ∧ . . . ∧ Bn) for arbitrary E and Bi. It is trivial to infer
the refinement relation (4) from |= Bi ⇒ Mi for each i. However, in systems
such as the multiplier, which have a high degree of global coordination among
components, |= Bi ⇒ Mi is almost never true; in these systems, one can generally
prove little about the behavior of a component Bi without knowing something
about the behavior of its environment Ei.

3 The Specification of the Multiplier

We write the specification in a formal language based on TLA containing oper-
ators for defining data structures; language structures for making declarations,
definitions, and assumptions; and a module mechanism for encapsulating names
and performing renaming. This language, which can be translated into S/R,
is a subset of a more general specification language under development called
TLA+ [13].

We assume some conventional mathematical notation for numbers and sets.
We write f [x] for the application of a function f to a value x in its domain, and
we let [S → T] denote the set of all functions with domain S and range a subset of
T . Functions are explicitly defined with expressions of the form [x ∈ S �→ e(x)],

6

which denotes the function f with domain S such that f [x] = e(x) for all x ∈ S.
We define BitVector(i) to be the set of all i-bit-wide bit vectors and Val(i, v)

to be the value of the i-bit vector v interpreted as a binary number. They are
defined formally as follows.

BitVector(i) ∆= [{0, . . . , i− 1} → {0, 1}]
Val(i, v) ∆=

i−1∑
j=0

v[j] · 2j

We let Multiply(i, v, w) denote the 2i-bit vector obtained by multiplying the
i-bit vectors v and w. Formally, Multiply is defined by the following axiom,
where Nat denotes the set of natural numbers. (A list bulleted by ∧ denotes the
conjunction of the items.)

∀ i ∈ Nat : ∀ v, w ∈ Bitvector(i) :
∧ Multiply(i, v, w) ∈ BitVector(2i)
∧ Val(2i, Multiply(i, v, w)) = Val(i, v) · Val(i, w)

We specify an asynchronous multiplier circuit with inputs a and x and out-
put out that synchronizes with its environment using a two-phase handshaking
protocol on the bits sig and ack . The environment can change the inputs when
sig = ack ; it complements sig when the inputs are ready. The multiplier can
change the output when sig
= ack ; it complements ack when the output is
ready. Initially, sig and ack equal 0 and the multiplier is ready to receive input.
The TLA formulas M specifying the multiplier and E specifying its environment
are defined in the Mult module of Figure 1. The parameters section declares
all the variables and unspecified constants that may appear in the module. The
declaration of N asserts the assumption that N is an element of Nat . The initial
conditions on the outputs are in MInit , and the initial conditions on the inputs
are in EInit . A simple logical calculation shows that the formula E ∧ M that
describes the system consisting of the multiplier and its environment equals

(MInit ∧ EInit) ∧ ✷[MNext ∨ ENext]v ∧ WFv(Finish)

where v denotes the 5-tuple 〈a, x, sig , out , ack 〉. Hence, the system has the
expected TLA specification.

Figure 2 contains the module DblMult , which defines the specification DM
of a 2N -bit multiplier implemented with four “internal” N -bit multipliers and a
combinational four-input adder, and defines the specification DE of its environ-
ment. The implementation is based on the observation that if a = 2N · aH + aL
and x = 2N · xH + xL, then

a · x = 22N · (aH · xH) + 2N · ((aH · xL) + (aL · xH)) + (aL · xL)
The four multiplications are performed by four copies of the N -bit multiplier
named HH , LH , HL, and LL. The external inputs and outputs of the 2N -bit
multiplier are given the same names as in the N -bit multiplier. The variables

7

module Mult
parameters

a, x, out , sig , ack : variables
N : Nat constant

predicates

MInit
∆
= (out ∈ BitVector (2 ∗N)) ∧ (ack = 0)

EInit
∆
= (a ∈ BitVector (N)) ∧ (x ∈ BitVector (N)) ∧ (sig = 0)

actions
Think

∆
= ∧ sig �= ack
∧ ack ′ = ack
∧ out ′ ∈ BitVector (2 ∗N)

Finish
∆
= ∧ sig �= ack
∧ ack ′ = 1− ack
∧ out ′ = Multiply(N, a, x)

MNext
∆
= Think ∨ Finish

ENext
∆
= ∧ sig = ack
∧ sig ′ ∈ {0, 1}
∧ (a′ ∈ BitVector (N)) ∧ (x′ ∈ BitVector (N))

temporal formulas

M
∆
= MInit ∧ ✷[MNext]〈out ,ack〉 ∧ WF〈out , ack〉(Finish)

E
∆
= EInit ∧ ✷[ENext]〈a, x, sig〉

Fig. 1. TLA specifications of an N-bit multiplier and its environment. The multiplier’s
2N-bit output out is the product of its N-bit inputs a and x. The variables sig and
ack are used for synchronization.

outHH , . . . , ackLL represent “internal wires” that hold the outputs and ack ’s of
the four multipliers. The four multipliers’ sig inputs are taken from the external
sig input, and their a and x inputs are the appropriate N -bit subvectors aH ,
aL, xH , and xL of the external a and x inputs.

The first include statement effectively defines the LL multiplier. Formally,
it includes a copy of all the definitions from the Mult module, with the indicated
substitutions for the parameters, and with the name of the defined symbols
changed by prefacing them with “LL.”. Thus the statement adds the following
definition, among others, to module DblMult .

LL.MInit ∆= (outLL ∈ BitVector(2 ∗N)) ∧ (ackLL = 0)

The next three include statements similarly include the other three needed
copies of the N -bit multiplier, and the fourth one includes the definition of
Dbl.E , the specification of a 2N -bit multiplier’s environment.

The temporal formula ExtAck has the usual form for a specification of a sim-
ple component that takes as input the multipliers’ ack outputs and the external
sig input and generates the external ack output.

8

module DblMult
parameters

a, x, out , sig , ack , outLL, outLH , outHL, outHH ,
ackLL, ackLH , ackHL, ackHH : variables

N : Nat

state functions
aH

∆
= [i ∈ {0, . . . , N − 1} 	→ a[i+N]]

aL
∆
= [i ∈ {0, . . . , N − 1} 	→ a[i]]

xH
∆
= [i ∈ {0, . . . , N − 1} 	→ x[i+N]]

xL
∆
= [i ∈ {0, . . . , N − 1} 	→ x[i]]

acks
∆
= 〈ack , ackLL, ackLH , ackHL, ackHH 〉

include Mult as LL with a← aL, x← xL, out ← outLL, ack ← ackLL
include Mult as LH with a← aL, x← xH , out ← outLH , ack ← ackLH
include Mult as HL with a← aH , x← xL, out ← outHL, ack ← ackHL
include Mult as HH with a← aH, x← xH, out ← outHH , ack ← ackHH
include Mult as Dbl with N ← 2 ∗N

actions
AckNext

∆
= ack ′ = if (ackLL = sig) ∧ (ackLH = sig)

∧ (ackHL = sig) ∧ (ackHH = sig)
then sig
else 1− sig

temporal formulas

ExtAck
∆
= (ack = 0) ∧ ✷[AckNext]acks ∧ WFacks(AckNext)

Adder
∆
= ✷ ∧ out ∈ BitVector (4 ∗N)

∧ Val(4 ∗N, out) = (22∗N ∗Val(2 ∗N, outHH)
+ 2N ∗ (Val(2 ∗N, outLH)

+ Val(2 ∗N, outHL))
+ Val(2 ∗N, outLL)) mod 24∗N

DM
∆
= LL.M ∧ LH .M ∧ HL.M ∧ HH .M ∧ ExtAck ∧ Adder

DE
∆
= Dbl.E

Fig. 2. Specification of the 2N-bit multiplier and its environment. Four copies of the
N-bit multiplier, operating on half of each input value, are composed, and their outputs
combined to form the output.

The formula Adder specifies the adder. It has the form ✷P , where P de-
scribes the appropriate relation between the adder’s output out and its four
inputs, which are the outputs of the internal multipliers. The specification is so
simple because we are assuming a combinational adder, whose output is always
a function of its inputs. In a real multiplier, the addition would be performed by
a separate sequential component. We have used a combinational circuit both for
simplicity and to illustrate how to represent such circuits. (The combinational
adder makes our implementation so simple that it could be verified without the

9

Decomposition Theorem. However, the theorem would be needed to verify a more
realistic implementation in which a send/acknowledgement protocol is used to
transmit the outputs of the component multipliers to a sequential adder.)

Finally, the specification DM of the 2N -bit multiplier is defined to be the
conjunction of the specification of its components, and the specification DE of
its environment is defined to be Dbl.E .

4 Translation into S/R

COSPAN is used to verify hypothesis 3 of the Decomposition Theorem. This re-
quires S/R versions of E, an approximation to E⊕, M , C(M), B(k) and C(B(k)),
where B(k) is a specification of the low-level k-bit multiplier. These S/R speci-
fications could all be obtained by translating TLA formulas. However, the TLA
versions of B(k) and C(B(k)) are not needed. The specification B(k) of the
low-level multiplier can be written directly in S/R. We describe below how the
S/R version of C(B(k)) is constructed from the S/R version of B(k). The S/R
versions of the remaining formulas can be obtained by translation.

Since circuits are synthesized from their S/R specifications, our translation
must guarantee that whatever we prove about a TLA specification is valid for
its S/R translation. The TLA theorems we prove have the form |= F ⇒ G for
formulas F and G. Let F̂ denote the S/R translation of the TLA formula F .
Correctness of the translation means that the TLA theorem |= F ⇒ G implies
the S/R theorem L(F̂) ⊆ L(Ĝ), where L(S) denotes the language of the S/R
specification S.

In S/R, declaring the type of a variable guarantees that the variable’s value
is always of that type. Hence, to infer the validity of L(F̂) ⊆ L(Ĝ), it suffices
to prove |= F ⇒ G assuming type correctness. This means that we need only
prove |= F ∧ ✷T ⇒ G, where T is the predicate asserting that the values of
all variables have the type declared in the S/R specification. All the TLA proof
obligations can thus be weakened by adding the hypothesis ✷T . However, this
hypothesis should not be needed, because a TLA specification should imply type
correctness.

The S/R translation of M appears in Figure 3. A stvar declaration defines
a state variable, which is initialized by an init declaration and assigned values
by an asgn declaration. (The → indicates that the value is assumed in the next
step.) A locvar declaration defines a local (internal) combinational variable,
which also is assigned values by an asgn. (The := indicates that the value is
assumed in the current step, so no initialization is needed.) Assigning a set of val-
ues denotes nondeterministic choice, and the expression e1 ? b | e2 equals e1 if b is
true, else e2. The cyset declaration asserts a fairness constraint, removing all be-
haviors that eventually remain within the declared set. The “proc K : KILL(p)”
statement eliminates all behaviors that satisfy p.

The S/R version of M is obtained from the TLA formula as follows. The
initial predicate MInit yields the init statements for ack and out . The formula
✷[MNext]〈out, ack〉 yields the asgn statements for ack and out . The nondeter-

10

proctype M(N : integer; a, x : (0 .. 2^N-1) ; sig : (0, 1))
import a, x, sig
locvar choose : (1, 2, 3) /* encodes [MNext]〈out , ack〉 choices */
asgn choose := {1, 2, 3} /* makes nondeterministic choice */

stvar ack : (0, 1) /* ack of output variables */
stvar out[2∗N] : (0, 1) /* output variables */
stvar finish : (0, 1) /* variable to express fairness */

/* initial conditions */
init ack := 0
init [i in 0 . . 2∗N−1]{ out[i] := {0, 1} }
init finish := 0

/* next-state relation */
asgn ack → ack ? (choose = 1) ∗ (sig �= ack)

| 1 − ack ? (choose = 2) ∗ (sig �= ack)
| ack

asgn [i in 0 . . 2∗N−1]{ out[i] → {0, 1} ? (choose = 1) ∗ (sig �= ack)
| mul[i] ? (choose = 2) ∗ (sig �= ack)
| out[i] }

asgn finish → 1 ? (sig �= ack) ∗ (choose = 2) | 0
/* implementation of “call” of Multiply in next-state relation */

locvar mul[2∗N] : (0, 1)
asgn [i in 0 . . 2∗N−1]{ mul[i] := {0, 1} }

proc K : KILL(∼(+[i in 0 . . 2∗N−1](mul[i] ∗ 2^i) =
+[i in 0 . . N−1](a[i] ∗ 2^i) ∗ (+[i in 0 . . N−1](x[i] ∗ 2^i))))

/* fairness */
cyset { finish := 0 }

end M()

Fig. 3. The S/R translation of the TLA formula M .

minism expressed in TLA by writing the next-state relation as a disjunction is
expressed in S/R by introducing a variable choose with as many values as there
are disjuncts. In the S/R translation of M , the correspondence between values
of choose and disjuncts of [MNext]〈out, ack〉 is:

(choose = 1) ⇒ Think
(choose = 2) ⇒ Finish
(choose = 3) ⇒ 〈ack , out〉′ = 〈ack , out〉

A TLA fairness condition is expressed by adding a variable to record that the
action has occurred and a cyset statement to require its occurrence. The TLA
formula WF〈out, ack〉(Finish) is represented by the variable finish and the cyset
statement.

It follows from (1) that C(M) equals MInit ∧ ✷[MNext]〈out, ack〉, so its S/R
translation is the same as that of M , except with the cyset declaration removed.
This can be deduced directly from the following result: if, in the state-transition
graph, there is an exit from the set of states defined by each cyset declaration,

11

proctype E(N : integer; out : (0 .. 2^(2*N)-1) ; ack : (0, 1))
import out, ack
locvar choose : (1, 2) /* encodes [ENext]〈a, x, sig〉 choices */
asgn choose := {1, 2} /* makes non-deterministic choice */

stvar sig : (0, 1) /* signal of input variables */
stvar a[2∗N] : (0, 1) /* variables of 1st input */
stvar x[2∗N] : (0, 1) /* variables of 2nd input */

/* initial conditions */
init sig := 0
init [i in 0 . . 2∗N−1]{a[i] := {0, 1}}
init [i in 0 . . 2∗N−1]{x[i] := {0, 1}}

/* next-state relation */
asgn sig → {0, 1} ? (choose = 1) ∗ (sig = ack) | {sig}
asgn [i in 0 . . 2∗N−1]{ a[i] → {0, 1} ? (choose = 1) ∗ (sig = ack) | {a[i]} }
asgn [i in 0 . . 2∗N−1]{ x[i] → {0, 1} ? (choose = 1) ∗ (sig = ack) | {x[i]} }
end E()

Fig. 4. S/R translation of the TLA formula E.

then the closure of an S/R specification can be obtained by removing its cyset
declarations. This result allows us to obtain the closure C(B(k)) of a low-level
k-bit multiplier specification B(k) written directly in S/R.

The S/R translation of TLA formula E is similar to that of M ; it appears
in Figure 4. The translations of ExtAck and Adder are straightforward and are
omitted. The S/R version of the approximation to E⊕ can be obtained by trans-
lating the TLA formula computed with (2). It can also be obtained directly from
the S/R translation of E.

The TLA to S/R translator will have to include directives for instantiating
parameters and subformulas. For example, the S/R specification of a 2k-bit
multiplier is obtained from the translation of the formula DM from the DblMult
module by substituting k for N and substituting copies of the S/R specification
B(k) of a k-bit multiplier for LL.M , LH.M , HL.M , and HH.M .

The S/R specification of the complete multiplier, from which an implementa-
tion can be synthesized, is obtained by repeated instantiation in the S/R version
of DM . The translation to S/R of DM is a simple composition of the transla-
tions of its component multipliers and of the specifications ExtAck and Adder .
The S/R versions of the component multipliers are obtained by instantiation of
parameters from the S/R translation of M .

5 The Correctness Proof

We want to prove that our recursively-defined, low-level implementation of a
k·2m-bit multiplier satisfies its high-level specification. Let M(i) and E(i) denote
the specifications obtained by substituting i for N in the formulas M and E of
module Mult . Let B(k) be the low-level implementation of the k-bit multiplier,

12

and recursively define B(k·2m+1) to be the specification obtained by substituting
k · 2m for N and B(k · 2m) for M in the formula DM of module DblMult . We
want to prove |= E(k · 2m) ∧B(k · 2m) ⇒ M(k · 2m), for all m ≥ 0. The proof is
by induction on m. Letting N equal k · 2m, we:

(i) Prove (a) |= E(k) ∧B(k) ⇒ M(k)
(b) |= E(k)⊕ ∧ C(B(k)) ⇒ C(M(k))

(ii) Assume (a) |= E(N) ∧B(N) ⇒ M(N)
(b) |= E(N)⊕ ∧ C(B(N)) ⇒ C(M(N))

and prove (a) |= E(2N) ∧B(2N) ⇒ M(2N)
(b) |= E(2N)⊕ ∧ C(B(2N)) ⇒ C(M(2N))

Step (i), the base case of the induction, can be done by translating the formulas
to S/R and using COSPAN. However, since one does not reason about it in
TLA, the specification B(k) can be written directly in S/R. If B(k) implements a
complex multiplier, such as the radix-4 modified version of Booth’s algorithm [7],
the COSPAN verification would be straightforward when k = 8.

Step (ii), the induction step, is proved with the Decomposition Theorem. We
first express the specification B(2N) as a conjunction of the specification of its
components. Let prefixing by LL, LH , HL, and HH denote substitutions for a,
x, out , and ack as in the DblMult module. Making the parameter N explicit,
our recursive procedure for combining multipliers implies that B(2N) equals

LL.B(N) ∧ LH .B(N) ∧HL.B(N) ∧ HH .B(N) ∧ ExtAck(N) ∧ Adder (N)

We can infer the conclusion of (ii) from

|= E(2N) ∧ LL.M (N) ∧ . . . ∧Adder (N) ⇒ M(2N) (5a)

|= E(2N)⊕ ∧ C(LL.M (N) ∧ . . . ∧ Adder (N)) ⇒ C(M(2N)) (5b)

|= E(2N) ∧B(2N) ⇒ LL.M (N) ∧ . . . ∧ Adder(N) (6a)

|= E(2N)⊕ ∧ C(B(2N)) ⇒ C(LL.M (N) ∧ . . . ∧ Adder(N)) (6b)

We prove (6a) and (6b) with the Decomposition Theorem. Omitting trivial im-
plications, the hypotheses of the theorem to be verified are:

1. E(2N), LL.E (N), . . . , and HH .E (N) are safety properties.
2. |= E(2N) ∧ C(LL.M (N)) ∧ . . . C(Adder(N)) ⇒

LL.E (N) ∧ LH .E(N) ∧ HL.E (N) ∧ HH .E(N)
3. (a) |= E(N) ∧B(N) ⇒ M(N)

(b) |= E(N)⊕ ∧ C(B(N)) ⇒ C(M(N))
4. |= C(LL.M (N) ∧ . . . ∧ Adder (N)) ≡ C(LL.M (N)) ∧ . . . ∧ C(Adder(N))

Hypothesis 1 follows directly from (1). Hypothesis 3 is just the induction as-
sumption (the assumption in step (ii)). Hence, to complete the proof, we must

13

prove (5a), (5b), and hypotheses 2 and 4. The formula Adder is a safety property,
since it has the form ✷P , so it equals its closure. Reverting to the notation of
the DblMult module, we can therefore rewrite (5a), (5b), and hypotheses 2 and
4 as

|= DE ∧DM ⇒ Dbl .M
|= DE⊕ ∧ C(DM) ⇒ C(Dbl .M)

|= DE ∧ C(LL.M) ∧ . . . ∧ C(HH .M) ∧ C(ExtAck) ∧ Adder ⇒
LL.E ∧ . . . ∧ HH .E

|= C(DM) ≡ C(LL.M) ∧ . . . ∧ C(HH .M) ∧ C(ExtAck) ∧ Adder

We use (2) to substitute for DE⊕, and the closures are computed using (1).
The resulting TLA formulas can then be verified using TLP. Urban Engberg
has begun the TLP verification; he has encountered no serious difficulties and
we expect the proof to be completed soon.

To complete the proof of an actual multiplier circuit, we must verify the
low-level implementations of the circuits specified by the formulas ExtAck and
Adder . Because Adder is purely combinational and ExtAck depends on its inputs
in such a simple way, the implementations of these circuits make no assumptions
about their environment (their environment specifications are identically true),
and their correctness can be verified directly by COSPAN.

6 Conclusion

We have shown how two tools, TLP and COSPAN, can be combined to form
a direct path from high-level specification to synthesis. Together, the tools can
be applied to problems that would be difficult or impossible to handle with
either tool separately. We can combine these very different tools because the
languages on which they are based, TLA and S/R, have similar semantics. TLA
is very expressive, but verifying TLA specifications requires theorem proving.
S/R is less expressive, but S/R specifications can be verified by automatic model
checking. Theorem proving involves a great deal of human effort. Model checking
is automatic, but its use is limited by its inherent computational complexity. We
combine the two approaches to make theorem proving as simple as possible by
proving as much as we can with model checking.

Our approach does involve checking some steps by hand. For example, TLP
does not verify that we have correctly applied the Decomposition Theorem.
These steps are few, very simple, and easy to check—even for a complex problem.
Mechanically verifying these steps is possible, but it may provide too small a gain
in reliability to be worth the effort.

The work described here is not complete. We still need to mechanize the
TLA to S/R translation, and to try more demanding examples in which the low-
level specification is not only complex, but is also replicated in a more complex
fashion.

14

References

1. Mart́ın Abadi and Leslie Lamport. Open systems. To appear in 1993 as a SRC
Research Report.

2. Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions On Computers, C-35(8):677–691, August 1986.

3. Shiu-Kai Chin. Verified functions for generating signed-binary arithmetic hard-
ware. IEEE Transactions on Computer-Aided Design, 11(12):1529–1558, Decem-
ber 1992.

4. Urban Engberg, Peter Grønning, and Leslie Lamport. Mechanical verification of
concurrent systems with TLA. In Computer-Aided Verification, Lecture Notes
in Computer Science, Berlin, Heidelberg, New York, June 1992. Springer-Verlag.
Proceedings of the Fourth International Conference, CAV’92.

5. Z. Har’El and R. P. Kurshan. Software for analytical development of communica-
tion protocols. AT&T Technical Journal, 69(1):44–59, 1990.

6. J. Katzenelson and R. P. Kurshan. S/R: A language for specifying protocols and
other coordinating processes. In Proceedings of the 5th Annual International
Phoenix Conference on Computer Communications, pages 286–292, Scottsdale,
Arizona, 1986. IEEE Computer Society.

7. Israel Koren. Computer Arithmetic Algorithms. Prentice Hall, Englewood Cliffs,
New Jersey, 1993.

8. R. P. Kurshan. Reducibility in analysis of coordination. In P. Varaiya and A.B.
Kurzhanski, editors, Discrete Event Systems: Models and Applications, volume 103
of Lecture Notes in Control and Information Sciences, pages 19–39, Berlin, 1987.
Springer-Verlag.

9. R. P. Kurshan. Analysis of discrete event coordination. In J. W. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems,
volume 430 of Lecture Notes in Computer Science, pages 414–453. Springer-Verlag,
May/June 1989.

10. R. P. Kurshan and K. McMillan. A structural induction theorem for processes.
In Proceedings of the 8th annual ACM Symposium on Principles of Distributed
Computing, pages 239–247. ACM Press, 1989.

11. Leslie Lamport. What good is temporal logic? In R. E. A. Mason, editor, Infor-
mation Processing 83: Proceedings of the IFIP 9th World Congress, pages 657–668,
Paris, September 1983. IFIP, North-Holland.

12. Leslie Lamport. The temporal logic of actions. Research Report 79, Digital Equip-
ment Corporation, Systems Research Center, December 1991.

13. Leslie Lamport. Hybrid systems in TLA+. In Hans Rischel and Anders P.
Ravn, editors, Hybrid Systems, Lecture Notes in Computer Science, Berlin, 1993.
Springer-Verlag. Proceedings of a Workshop on Hybrid Systems, to appear.

