
Lazy Caching in TLA

Peter Ladkin Leslie Lamport Bryan Olivier
Denis Roegel

Tue 13 Apr 1999 [12:12]

Abstract

We address the problem, proposed by Gerth, of verifying that a simplified
version of the lazy caching algorithm of Afek, Brown, and Merritt is sequen-
tially consistent. We specify the algorithm and sequential consistency in
TLA+, a formal specification language based on TLA (the Temporal Logic
of Actions). We then describe how to construct and check a formal TLA
correctness proof.

Contents

1 Introduction 1

2 Lazy Caching in TLA+ 3
2.1 TLA and TLA+ . 3
2.2 The Lazy Caching Algorithm 6

2.2.1 Some Preliminaries: Module MemParams 7
2.2.2 Parameters and Mathematical Operators 8
2.2.3 The Initial Condition and Actions 11
2.2.4 The Complete Specification 14

3 Sequential Consistency 15
3.1 A Serial Database . 15
3.2 Our Specification of Sequential Consistency 17

3.2.1 Common Parameters 17
3.2.2 Sequential Consistency 18
3.2.3 A Closer Look at the Specification 20

3.3 A Gerth-Like Specification of Sequential Consistency 21
3.3.1 Channels . 21
3.3.2 The Gerth-Like Specification 23
3.3.3 Relating the two Specifications 24

4 The Proof 25
4.1 Outline of the Proof . 25
4.2 The Complete Cache . 27
4.3 The Complete Cache with Auxiliary Variables 30
4.4 The Proof of Theorem ACCimpliesDB1 32

4.4.1 The High Level Outline 35
4.4.2 Step 1: The Invariance Proof 37
4.4.3 Step 3.1: Step Simulation 41
4.4.4 Step 4: Fairness . 43
4.4.5 Discussion of the Proof 46

4.5 Epilogue . 47

1 Introduction

Assertional verification of concurrent algorithms began in 1975 with Ash-
croft’s seminal paper [4]. By the late 1980’s, assertional methods had been
developed for specifying concurrent systems and proving that a lower-level
specification implements a higher-level one. Our goal is to transform asser-
tional specification and verification from a scientific theory into an engineer-
ing discipline.

Engineering is the practical application of scientific principles. An en-
gineering discipline comprises a well-defined collection of intellectual tools
that can be applied to a class of problems. The intellectual tools of our
approach are the logic TLA (the Temporal Logic of Actions) [14], the speci-
fication language TLA+ [12], and a hierarchical proof style for writing rigor-
ous proofs [15]. The class of problems we consider are the specification and
verification of safety and liveness properties of concurrent systems.

We demonstrate our approach on a problem suggested by Gerth [8]:
verifying that a simplified version of the lazy caching algorithm of Afek,
Brown, and Merritt [3] is sequentially consistent [16]. Although our expo-
sition is self-contained, it is about specification and verification, not about
lazy caching. We formally specify the algorithm, but a formal specification
is no substitute for an intuitive explanation. Readers looking for such an
explanation are referred to [3].

Published “proofs” of incorrect concurrent algorithms have taught us the
need for rigor. We achieve rigor by using formal mathematics. TLA is a for-
mal logic, with precise proof rules; and TLA+ has a formal semantics. Each
step in a hierarchical proof is a mathematical formula; English appears only
in the proofs of the lowest-level steps. Greater reliability is obtained by car-
rying out the proofs to lower levels of detail. Ultimately, one reaches a point
where prose can be eliminated and the proof checked by computer [7]. How-
ever, the function of proofs in engineering is not to attain absolute certainty,
but to achieve a reasonable degree of confidence with a reasonable amount
of effort. We believe that, at the moment, for many large applications, the
most cost-effective approach stops short of mechanical verification.

We believe that such proofs are inevitably long and boring. They are long
because many details must be checked to ensure correctness. They are boring
because even the most interesting proof becomes boring when carried out to
the level of detail needed to avoid errors. Conventional mathematical proofs
try to be interesting and to avoid boring details; as a result, a significant
fraction of the theorems published in mathematical journals are wrong [6,
15]. Discipline can be used to eliminate careless mistakes when checking

1

a long series of trivial steps; discipline cannot help detect subtle errors in
interesting steps.

In assertional reasoning, insight is typically required to find an invariant
and construct a refinement mapping [1]. The proof itself is a tedious matter
of checking the details. For the lazy caching algorithm, we give the invariant
and refinement mapping, and we describe the high-level structure of the
proof. A complete proof would be much too long and boring to include
here. Moreover, the lower-level parts we have done are too long to be read
conveniently as a conventional paper document. We hope to develop a tool
for managing and displaying structured proofs in hypertext.

To be useful, an engineering discipline should be applicable to a rea-
sonably broad class of problems. There would be little point developing a
complete specification and proof method just for caching algorithms. TLA
and TLA+ have been applied to a number of diverse domains, including
hybrid systems [12] and distributed fault-tolerant algorithms [17]. Nothing
new has been introduced for the lazy caching example.1 Some formalisms
might be better suited to reasoning about caching algorithms. However,
we are not interested in finding the simplest or most elegant possible proof.
This kind of short, subtle algorithm can sometimes be verified by a clever
trick that does not generalize to other applications. We have no objection
to using cleverness to simplify a proof, we just do not want to depend upon
it.

The TLA+ specification of the lazy caching algorithm takes about 70
lines. The second author has recently participated in two projects to verify
cache coherence protocols of real multiprocessor computers.2 Each of their
specifications is about 1800 lines of TLA+. Problems of this size are ad-
dressed with rigorous discipline, not clever tricks. We therefore obtain our
proof of the lazy caching algorithm by a straightforward, rigorous applica-
tion of our method, just as we would for a larger, industrial example. This
rigor is overkill for so simple an algorithm, but it is essential for handling
real systems. The most novel part of the proof is the specification of se-
quential consistency, and it is a direct application of an idea introduced in
[11] for specifying serializability. As with any engineering discipline, it takes
practice to learn to write formal specifications and proofs with TLA and
TLA+. But writing a specification and proof of, for example, a Byzantine

1While not new, the TLA formulation of the rules for introducing auxiliary variables
appear in print here for the first time.

2These protocols, like those used in all other multiprocessors we know about, are unre-
lated to lazy caching. The practical applications of the lazy caching algorithm lie outside
the realm of conventional multiprocessor cache consistency.

2

agreement algorithm teaches the skills needed to verify a caching algorithm.
One does not need a new proof method for each problem domain.

In Section 2, we introduce TLA and TLA+ by writing a formal specifica-
tion of Gerth’s version of the lazy caching algorithm. Section 3 presents two
specifications of sequential consistency—the one we use, and an equivalent
one in the spirit of the original definition [16], as adapted by Gerth [8]. In
Section 4, we describe the proof that the specification of the lazy caching
algorithm implements the specification of sequential consistency.

Since we wrote the proof, our intellectual tools have been augmented by
mechanical ones—namely, a parser and model checker for TLA+ are under
development. Section 4.5 describes our use of these tools to check the proof.

2 Lazy Caching in TLA+

2.1 TLA and TLA+

TLA is a temporal logic. Temporal logic formulas contain flexible variables,
which represent quantities that change with time, and rigid variables, which
represent quantities that do not change with time. Flexible variables are
usually just called variables; rigid variables are sometimes called constants.
The meaning [[S]] of a TLA formula S is a boolean function on behaviors,
where a behavior is an infinite sequence of states and a state is an assignment
of values to all flexible variables.3 A behavior σ satisfies a formula S iff
[[S]](σ) equals true. A formula is valid iff it is satisfied by all behaviors.
A specification S is said to implement a specification T iff every behavior
satisfying S satisfies T , which is true iff the formula S ⇒ T is valid. When
we write “S implies T”, we usually mean that S ⇒ T is valid. The syntax
and semantics of TLA are described in [14].

TLA+ is a formal language based on TLA and Zermelo-Fraenkel set
theory. We will explain its features as they are used. Most of the operators
and constructs of TLA+, including all the ones we use, are summarized in
Figures 1 and 2. We try to explain our specifications in enough detail that
readers unfamiliar with TLA and TLA+ will be able to understand them.

We do not attempt to explain the choices made in TLA+. The rationale
for much of its notation is not apparent from this one example. Also, why
we don’t write certain things may be puzzling. There are a number of
restrictions in TLA+ that are needed to maintain its simplicity. Surprising

3One source of TLA’s simplicity is that there is a single state space, instead of a
different set of states for each specification.

3

Logic
true false ∧ ∨ ¬ ⇒ ≡
∀ x : p(x) ∃ x : p(x) ∀ x ∈ S : p(x) ∃ x ∈ S : p(x)
choose x : p(x) [Equals some x satisfying p, or an arbitrary

value if no such x exists]
Sets

= 	= ∈ /∈ ∪ ∩ ⊆ \ [set difference]
{e1, . . . , en} [Set consisting of elements ei]
{x ∈ S : p(x)} [Set of elements x in S satisfying p(x)]
{e(x) : x ∈ S} [Set of elements e(x) such that x in S]
union S [Union of all elements of S]

Functions
f [e] [Function application]
domain f [Domain of function f]
[x ∈ S �→ e(x)] [Function f such that f [x] = e(x) for x ∈ S]
[S → T] [Set of functions f with f [x] ∈ T for x ∈ S]
[f except ! [e1] = e2] [Function f̂ equal to f except f̂ [e1] = e2]

Tuples
e[i] [The ith component of tuple e]
〈e1, . . . , en 〉 [The n-tuple whose ith component is ei]
S 1 × . . . × Sn [The set of all n-tuples with ith component in S i]

Miscellaneous
“c1 . . . cn” [A literal string of n characters]
d1 . . . dn [Numbers]
if p then e1 else e2 [Equals e1 if p true, else e2]
let x 1

∆= e1 . . . xn
∆= en in e [Equals e in the context of the definitions]

Nonconstant Operators
p′ [p with variables primed] ✷F [F is always true]
[A]e [A ∨ (e ′ = e)] ✸F [Eventually: ¬✷¬F]
〈A〉e [A ∧ (e ′ 	= e)] WFe(A) [Weak fairness]
unchanged e [e ′ = e] SFe(A) [Strong fairness]

Enabled A [∃ values of primed variables for which action A is true]
∃∃∃∃∃∃ x : F ∀∀∀∀∀∀ x : F [Temporal quantification.]

Figure 1: TLA+ operators.

4

assume N ∆= A
Defines N to equal formula A, which can contain only constant pa-
rameters, and asserts it as an assumption.

constant C1, . . . ,Cn

Declares the C i to be constant parameters (rigid variables).

extends M1, . . . ,Mn

Imports parameters, assumptions, definitions, and theorems from the
modules M i .

N ∆= instance M
Imports definitions from module M with parameters instantiated
and with “N !” appended to defined names. If N has the form
P(x 1, . . . , xn), then the x i become additional formal parameters of
each included definition.

module M
Begins a module named M .

theorem N ∆= T
Defines N to equal formula T and asserts it to be a theorem that is
deducible from the module’s definitions and assumptions.

variable v1, . . . , vn

Declares the v i to be variable parameters (flexible variables).

N ∆= E
Defines N to equal E . If N has the form P(x 1, . . . , xn), then this
defines P to be an operator with n arguments

f [x ∈ S] ∆= . . .
Defines f to be a function with domain S .

A meaningless decoration.

Marks the end of a module.

Figure 2: Syntactic keywords and symbols of TLA+.

5

Event Allowed if Action

Ri(d, a) Ci(a) = d ∧ Out i = {}
∧ no ∗-ed entries in Ini

Wi(d, a) Out i := append(Out i, (d, a))

MWi(d, a) head(Out i) = (d, a) Mem [a] := d;
Out i := tail(Out i);
(∀k 	= i :: Ink := append(Ink, (d, a)));
Ini := append(In i, (d, a, ∗))

MRi(d, a) Mem[a] = d Ini := append(In i, (d, a))

CUi(d, a) head(In i) is either
(d, a) or (d, a, ∗) Ini := tail (Ini); Ci := update(Ci, d, a)

CIi Ci := restrict(Ci)

Initially: ∀a Mem [a] = 0
∧ ∀i = 1 . . . n Ci ⊂ Mem ∧ Ini = {} ∧ Out i = {}

Fairness: no action other than CIi can be always enabled but never taken

W—write MW—memory write CU—cache update
R—read MR—memory read CI—cache invalidate

Figure 3: Gerth’s version of the lazy caching algorithm, from Figure 4 of [8].

complications can arise from features that appear innocuous—for example,
a type system [18]. These complications are usually not apparent in semi-
formal expositions such as [5] and [21].

2.2 The Lazy Caching Algorithm

We introduce TLA and TLA+ by first specifying Gerth’s version of the lazy
caching algorithm. Gerth described the algorithm informally with the state
machine of Figure 3.4 Our specification is a fairly direct translation of this
state machine into TLA+. Had the state machine been specified formally,
the translation could have been performed by a straightforward algorithm.
However, Gerth’s state machine would not have had so simple and compact
a description if it were written in a general-purpose formal language for
specifying state machines.

4Gerth specified that only Ri(d , a) and Wi(d , a) events are externally observable. How-
ever, by observing only these events, there is no way to tell that a memory system is using
lazy caching and not some other cache coherence algorithm. We therefore also make
externally visible the events that change the queues and caches.

6

module MemParams
extends Naturals, Sequences

variable ch
constant Data, InitData,Addr ,N

assume ValAssump ∆= (InitData ⊆ Data) ∧ (N ∈ Nat) ∧ (N > 0)

Proc ∆= 1 . . N

Figure 4: Parameters of the cache specifications.

We represent an algorithm by a TLA formula. As in ordinary mathemat-
ics, hierarchical structure is obtained by defining complex formulas in terms
of simpler ones. Our specification is a sequence of definitions, culminating
in the one that describes the lazy caching algorithm.

2.2.1 Some Preliminaries: Module MemParams

TLA+ specifications are structured using modules. Parts of the lazy caching
specification are placed in the separate module MemParams of Figure 4 so
they can be easily reused in later specifications.

The module first extends modules Naturals and Sequences, meaning that
it adds the definitions from those modules to the MemParams module. (An
equivalent specification can be obtained by replacing the extends state-
ment with the definitions from those two modules.) The standard module
Naturals defines the set Nat of natural numbers, operators on natural num-
bers such as + and >, and the usual representation of natural numbers as
Arabic numerals. It also defines the infix operator “. .” so that, if i and j are
natural numbers, then i . . j is the set of natural numbers n with i ≤ n ≤ j .
The Sequences module defines some operations on sequences; this module
and the operators it defines are described in Section 2.2.2 below.

Module MemParams next declares some parameters. Parameters are
the free symbols of a specification. By replacing all defined symbols with
their definitions, a TLA+ specification can be reduced to a formula contain-
ing only parameters and the operators of Figure 1. The parameter ch is
a (flexible) variable representing the communication channels between the
processors and the memory system. We need such a variable because TLA
is based on states rather than events. Gerth’s Wi(d , a) and Ri (d , a) events

7

are represented in our specification by changes to ch[i], the channel joining
process i to the memory. The other parameters, all constants, are: the set
Data of values that can be stored in a memory location, the subset InitData
of possible initial values, the set Addr of memory addresses, and the number
N of processes.

The description of the parameters in the preceding paragraph is an infor-
mal comment. The constant declaration tells us only that N is a constant,
not that it is a number. The assume statement asserts, and assigns the
name ValAssump to, the assumption that InitData is a subset of Data and
N is a positive natural number. (It is unnecessary to assume that Data and
InitData are sets because TLA+ is based on Zermelo-Fraenkel set theory, in
which every constant is a set.)

Module MemParams ends by defining the constant Proc, the set of pro-
cessor names, to be the set {1, . . . ,N } of natural numbers.

2.2.2 Parameters and Mathematical Operators

The specification of the lazy caching algorithm is contained in the LazyCache
module of Figures 5 and 6. The module first imports four other modules.
Importing module MemParams imports its definitions, assumptions, and pa-
rameter declarations. The other modules contain only operator definitions.
We have already discussed the Naturals and Sequences modules. Module
ChannelInterface defines the operator ChanOp described below; the module
is given in Section 3.3.1.

Module LazyCache next declares four variable parameters, which cor-
respond to the variables of Gerth’s specification. TLA+ does not use sub-
scripted variables, and we prefer to use lower-case names for variables and
upper-case names for constants, so we write c[i] instead of C i , in[i] instead
of In i , etc. Processor i maintains the queues in[i] and out [i] and the cache
c[i]; variable mem represents the main memory. Figure 7 is a picture of
the state machine; it describes the flow of data in the algorithm and the
meanings of the variables.

When using a formal language, we must specify mathematical operations
that are usually taken for granted. TLA+ provides the predefined operators
for sets, functions, and tuples shown in Figure 1. Its set notation is standard.
As in ordinary mathematics, a function has a domain, which is a set. The set
of all functions with domain S and range a subset of T is written [S → T].
Function application is denoted by square brackets. The TLA+ construct
[x ∈ S �→ e(x)] is a “lambda expression” that represents the function f with
domain S such that f [x] = e(x) for all x in S . For example, the squaring

8

module LazyCache
extends MemParams, ChannelInterface, Sequences, Naturals

variable c, in, out ,mem

NotData ∆= choose i : i /∈ Data
Restrict(f) ∆=

{g ∈ [Addr → Data ∪ {NotData}] : ∀ a ∈ Addr : g [a] ∈ {f [a],NotData}}
Init ∆= ∧ mem ∈ [Addr → InitData]

∧ c ∈ [Proc → Restrict(mem)]
∧ in = [i ∈ Proc �→ 〈 〉]
∧ out = [i ∈ Proc �→ 〈 〉]

Read(i , d , a) ∆= ∧ out [i] = 〈 〉
∧ ∀ j ∈ 1 . . Len(in[i]) : Len(in[i][j]) = 2
∧ c[i][a] = d
∧ ChanOp(ch[i], 〈i , “Rd”, d , a 〉)
∧ ∀ j ∈ Proc \ {i} : unchanged ch[j]
∧ unchanged 〈c, in, out ,mem 〉

Write(i , d , a) ∆= ∧ ChanOp(ch[i], 〈i , “Wr”, d , a 〉)
∧ out ′ = [out except ! [i] = out [i] ◦ 〈〈d , a 〉〉]
∧ ∀ j ∈ Proc \ {i} : unchanged ch[j]
∧ unchanged 〈c, in,mem 〉

MemWrite(i) ∆=
∧ out [i] 	= 〈 〉
∧ out ′ = [out except ! [i] = Tail(out [i])]
∧ in ′ = [j ∈ Proc �→ in[j] ◦ if j = i then 〈Head(out [i]) ◦ 〈“∗”〉〉

else 〈Head(out [i])〉]
∧ mem ′ = [mem except ! [Head(out [i])[2]] = Head(out [i])[1]]
∧ unchanged 〈c, ch 〉

CacheUpdate(i) ∆= ∧ in[i] 	= 〈 〉
∧ in ′ = [in except ! [i] = Tail(in[i])]
∧ c′ = [c except ! [i][Head(in[i])[2]] = Head(in[i])[1]]
∧ unchanged 〈out , ch,mem 〉

Figure 5: The lazy caching algorithm (beginning).

9

MemRead(i) ∆= ∧ ∃ a ∈ Addr :
in ′ = [in except ! [i] = in[i] ◦ 〈〈mem[a], a 〉〉]

∧ unchanged 〈out , c,mem, ch 〉
CacheInval(i) ∆= ∃ f ∈ Restrict(c[i]) :

∧ c′ = [c except ! [i] = f]
∧ unchanged 〈in, out ,mem, ch 〉

Next(i) ∆= ∨ ∃ d ∈ Data, a ∈ Addr : Read(i , d , a) ∨Write(i , d , a)
∨ MemWrite(i) ∨CacheUpdate(i) ∨ MemRead(i)

∨ CacheInval(i)

vars ∆= 〈c, in, out ,mem, ch 〉
Spec ∆= ∧ Init

∧ ✷[∃ i ∈ Proc : Next(i)]vars
∧ ∀ i ∈ Proc : WFvars(CacheUpdate(i)) ∧ WFvars(MemWrite(i))

Figure 6: The lazy caching algorithm (continued).

function on natural numbers is [n ∈ Nat �→ n ∗ n]. Tuples are enclosed by
angle brackets. An n-tuple is a function whose domain is the set {1, . . . ,n}
of natural numbers, so 〈v1, . . . , vn 〉[i] (the function 〈v1, . . . , vn 〉 applied to
i) equals v i , for 1 ≤ i ≤ n.

Mathematical operators not provided by TLA+ must be defined. Our
specifications use operators on finite sequences, including Head , Tail , ◦ (con-
catenation), and Len (length) that are defined in the Sequences module
of Figure 8. Finite sequences are represented as tuples, so 〈v ,w 〉 equals
〈v 〉 ◦ 〈w 〉, and 〈 〉 is the empty sequence. Other operators defined by the
Sequences module are explained later. The reader interested in how ordi-
nary mathematics is formalized in TLA+ can work out the details of the
definitions in module Sequences with the aid of Figures 1 and 2.

A memory assigns data values to addresses, so its contents are repre-
sented by a function in [Addr → Data]. A cache assigns data values to some
addresses. We could represent the contents of a cache by a function whose
domain is a subset of Addr . However, we find it more convenient to choose
some value NotData not in Data and represent a cache’s contents by a func-
tion f in [Addr → Data ∪ {NotData}], where f [a] = NotData means that
the cache does not contain a data value for address a. The first definition
in module LazyCache is of the constant NotData .

“Restricting” the contents of a cache means removing data values from it.
The operator Restrict is defined so that Restrict(f) is the set of restrictions

10

mem
❄

✻ ✻

. . .

✻

✻

✻

❄

❄

✻

✻

✻

❄

❄

in[1] out [1]

c[1]

ch[1]

Processor 1 Processor N

in[N] out [N]

c[N]

ch[N]

� � �

Figure 7: The state machine describing the lazy caching algorithm, where
c[i] is a cache, out [i] is a queue of 〈data, address〉 pairs for writes by processor
i that have not yet been performed to memory, and in[i] is a queue of
〈data, address〉 pairs and 〈data, address, “∗”〉 triples of pending writes to
c[i], a “∗” indicating that the write was issued by processor i .

of f , for any cache contents f . Formally, Restrict(f) is the set of all functions
g in [Addr → Data ∪ {NotData}] such that g [a] equals f [a] or NotData , for
all a in Addr .

2.2.3 The Initial Condition and Actions

Module LazyCache next defines seven formulas that are formal statements
of the initial condition and the six event descriptions of Figure 3.

Init The predicate Init describes the initial values of the variables c, in,
out , and mem. (As we will see from module ChannelInterface, the initial
value of ch doesn’t matter.) The predicate has four conjuncts.5 The first

5TLA+ uses the notation that a list of expressions bulleted by ∧ denotes their conjunc-
tion, and a list of expressions bulleted by ∨ denotes their disjunction. Indentation is used
to eliminate parentheses [13]. (We also continue to use ∧ and ∨ as infix operators.)

11

module Sequences
extends Naturals

Len(s) ∆= choose n : (n ∈ Nat) ∧ ((domain s) = (1 . .n))
Head(s) ∆= s [1]
Tail(s) ∆= [i ∈ 1 . .(Len(s) − 1) �→ s [i + 1]]
s ◦ t ∆= [i ∈ 1 . .(Len(s) + Len(t)) �→ if i ≤ Len(s) then s [i]

else t [i − Len(s)]]
Seq(S) ∆= union {[(1 . .n) → S] : n ∈ Nat}
SelectSeq(s , test()) ∆= let F [t ∈ Seq({s [i] : i ∈ 1 . .Len(s)})] ∆=

if t = 〈 〉 then 〈 〉
else if test(Head(t))

then 〈Head(t)〉 ◦ F [Tail(t)]
else F [Tail(t)]

in F [s]
SubSeq(s ,m,n) ∆= [i ∈ 1 . .(1 + n − m) �→ s [i + m − 1]]

Figure 8: Module Sequences

asserts that mem is the contents of a memory that assigns to each address
an element of InitData. The second conjunct asserts that c is a function
with domain Proc, the set of processor names, and that c[i] (the contents of
processor i ’s cache) is a restriction of mem, for each processor i . The last
two conjuncts assert that in and out are functions with domain Proc such
that in[i] and out [i] are the empty sequence, for each processor i .

Read The operator Read is defined so that the action Read(i , d , a) corre-
sponds to the description of the event Ri(d , a) in Gerth’s state machine. An
action is a boolean-valued expression that may contain primed and unprimed
variables. It specifies a step, which is a pair of states. Unprimed variables
refer to the variables’ values in the first state of the step; primed variables
refer to their values in the second state. A step satisfying Read(i , d , a)
represents an Ri(d , a) event in Gerth’s specification.

Action Read(i , d , a) is the conjunction of six formulas. The first asserts
that the queue out [i] is empty. The second asserts that there is no “∗” entry
in the queue in[i]. More precisely, it asserts that for each positive natural j
less than or equal to the length of in[i], the j th element in[i][j] of in[i] is of
length 2. The third conjunct asserts that cache c[i] assigns d to address a.
These three conjuncts contain no primed variables, so they are conditions

12

on the first state of the step. They correspond to the “allowed if” condition
for Ri (d , a) in Figure 3.

The fourth conjunct of Read(i , d , a) uses the operator ChanOp imported
from module ChannelInterface. For any variable x and value v , formula
ChanOp(x , v) asserts that the values of x and x ′ describe a step that rep-
resents the sending of v over channel x .6 Thus, this conjunct asserts that
the tuple 〈i , “Rd”, d , a 〉, indicating a read of value d from address a by
processor i , is sent over ch[i]. The precise definition of ChanOp, which is
given later, does not matter. However, we should check that it defines a
ChanOp(x , v) step to be a reasonable representation of the event of sending
v on channel x . For example, this would not be the case if a step could
satisfy both ChanOp(x , v) and ChanOp(x ,w), for w 	= v .

The fifth and sixth conjuncts assert what doesn’t change. The formula
unchanged e means e ′ = e, so the fifth conjunct asserts that the step
does not change any other channel—hence nothing is sent on the other
channels. The sixth conjunct asserts that the tuple 〈c, in, out ,mem 〉 does
not change—hence c, in, out , and mem are left unchanged. (In Figure 3,
an event whose action does not mention a variable leaves the variable un-
changed. In a TLA specification, an action that does not specify the new
value of a variable allows the variable to assume any value.)

Write Action Write(i , d , a) corresponds to the description of the state ma-
chine event Wi(d , a). The TLA+ construct [f except ! [x] = e] denotes a
function g that is the same as f except with g [x] equal to e. Thus, the
second conjunct asserts that the element 〈d , a 〉 is appended to out [i], and
out [j] is unchanged for j in the set Proc \ {i} of other processors.

MemWrite Action MemWrite(i) corresponds to the state machine event
MWi(d , a) when 〈d , a 〉 is the head of out [i], which is the only case in which
that event is allowed. Letting d be Head(out [i])[1] and a be Head(out [i][2])
(so 〈d , a 〉 is the head of out [i]), the action asserts that out [i] is nonempty,
its head is removed, the triple 〈d , a, “∗”〉 is appended to in[i], the pair 〈d , a 〉
is appended to all the other queues in[j], and mem[a] is set to d .

CacheUpdate Action CacheUpdate(i) similarly corresponds to state ma-
chine event CUi(d , a) when the head of in[i] is 〈d , a 〉 or 〈d , a, “∗”〉, the

6There is no notion of a sender or a receiver, so it might be better to say that the step
represents a v event on channel x .

13

only case in which the event is allowed. The tuple is removed from the head
of in[i] and the cache c[i] is updated accordingly.

MemRead A step allowed by action MemRead(i) corresponds to a state
machine event MRi(d , a) for some d and a. This event is allowed only when
a is an address and d equals mem[a]. It appends the pair 〈mem[a], a 〉 to
in[i] and leaves everything else unchanged.

CacheInval A step allowed by action CacheInval(i) corresponds to a CIi
state machine event. It sets c[i] to some restriction of its original value.

2.2.4 The Complete Specification

The definitions described thus far capture all the information explicit in
Figure 3 except for the fairness condition. To write the complete TLA
specification, we must also express what is implicit in that figure—the range
of i , d , a and the fact that those six events are the only ones allowed.

The TLA specification corresponding to a state machine has the canon-
ical form I ∧✷[N]v ∧ L, where I is the initial predicate, N is the next-state
action, v is the tuple of all relevant variables, and L is a fairness condition.
A behavior satisfies this formula iff I holds in the initial state, every succes-
sive pair of states is a step that either satisfies N or else leaves v unchanged,
and the fairness condition L is satisfied. (The reason for allowing “stutter-
ing steps” that do not change v is explained in [10].) For the lazy caching
algorithm, I is the initial predicate Init . We next describe the next-state
action N , which describes all possible events of the state machine—that is
all steps that change v .

We first describe all possible processor i events—ones subscripted by i
in Figure 3. These events correspond to steps of action Next(i) of mod-
ule LazyCache. A step satisfies this action iff it satisfies Read(i , d , a) or
Write(i , d , a) for some d in Data and a in Addr , or satisfies CacheUpdate(i),
MemWrite(i), MemRead(i), or CacheInval(i). Our specification should as-
sert that every nonstuttering step is a Next(i) step, for some processor i .
Thus, it equals Init ∧✷[∃ i ∈ Proc : Next(i)]vars ∧L, where vars is the tuple
of relevant variables and L expresses the desired fairness conditions. We
now describe L.

Gerth required that all the events in Figure 3 except CIi satisfy a weak
fairness condition—that is, if the event is continuously enabled, then it
must eventually occur. Weak fairness is expressed in TLA with the formula
WFv (A), which asserts that if an A action that changes v is continuously

14

enabled, then a step satisfying that action must eventually occur. We find
it unnatural to require processors to keep executing operations forever, so
we place no fairness requirements on the Read and Write actions. Because
of the simplifications Gerth made to the algorithm, fairness of MR events is
not needed to prove its correctness. We therefore place no fairness require-
ment on MemRead actions. We require weak fairness of only the actions
CacheUpdate(i) and MemWrite(i), for every processor i .7

The complete specification of the lazy caching algorithm is given by
formula Spec of module LazyCache.

Observe that there are no type declarations in TLA+. Type correctness
of our specification Spec is expressed by the following theorem, which asserts
that the variables c, in, out , and mem are always elements of the proper
set. (Module Sequences defines Seq(S) to be the set of all finite sequences of
elements in S , and ✷ is the usual “always” operator of temporal logic [21].)

Spec ⇒ ✷ (∧ mem ∈ [Addr → Data]
∧ c ∈ [Proc → [Addr → Data ∪ {NotData}]]
∧ in ∈ [Proc → Seq((Data × Addr) ∪ (Data × Addr × {“∗”}))]
∧ out ∈ [Proc → Seq(Data × Addr)])

This theorem is easy to prove; the proof steps are similar to the ones per-
formed in conventional type checking.

3 Sequential Consistency

We now specify sequential consistency for an arbitrary database. (A mem-
ory is a database in which the only operations are reading and writing.) We
specify a serial database in Section 3.1 and use that specification in Sec-
tion 3.2 to specify a sequentially consistent database. In Section 3.3, we
give an equivalent specification in the spirit of Gerth’s.

3.1 A Serial Database

Module SerialDB of Figure 9 specifies a serial database that communicates
with its environment by means of a communication channel. The mod-
ule first imports module ChannelInterface, where the operator ChanOp is
defined. It then declares the following parameters: a variable dch that rep-
resents the communication channel; a constant Op that represents the set of

7Gerth has separate fairness requirements on CUi(d , a) and MWi(d , a) for each d
and a, but we find it more convenient just to require fairness of CacheUpdate(i) and
MemWrite(i). It is not hard to show that the two sets of conditions are equivalent.

15

module SerialDB
extends ChannelInterface

variable dch
constant Op, InitDB ,OKOp(, ,)

INext(mem) ∆= ∃ o ∈ Op : ChanOp(dch, o) ∧ OKOp(o,mem,mem ′)
ISpec(mem) ∆= (mem ∈ InitDB) ∧ ✷[INext(mem)]〈mem, dch 〉
Spec ∆= ∃∃∃∃∃∃mem : ISpec(mem)

Figure 9: Module SerialDB .

possible database operations; a constant InitDB that represents the set of
legal initial values of the database; and an operator OKOp that describes the
legal database operations. We interpret OKOp(o, old ,new) equal to true
to mean that operation o is a legal operation when the value of the database
before the operation is old and the value after the operation is new . Module
CacheCorrectness in Figure 16 (Section 4.1) defines OKOp for a memory.

The module next defines ISpec(mem) to be a formula in the canonical
form I ∧✷[N]v that specifies a serial database whose state is represented by
the variable mem. (Since database operations need never occur, there is no
fairness requirement.) Action OKOp(o,mem,mem ′) asserts that operation
o is allowed to change the database from the old value mem to the new
value mem ′. The next-state action INext(mem) therefore asserts that some
operation o in Op is sent on channel dch and makes a legal change to the
database value mem.

Formula ISpec(mem) contains the free variable mem. The specification
of our database should describe only the sequence of operations sent on
channel dch; it should not mention any other variable. Hence, dch is the only
variable parameter of module SerialDB , which is why we had to introduce
mem as a formal parameter of ISpec. Our specification of the serial database
is formula ISpec(mem) with the variable mem hidden. In TLA, variables are
hidden with the temporal existential quantifier ∃∃∃∃∃∃ . Formula Spec of module
SerialDB therefore specifies a serial database with channel dch described by
the constant parameters Op, InitDB , and OKOp.

16

module SeqDBParams
extends Naturals, Sequences

variable ch
constant N , POp, InitDB , OKOp(, ,)

Proc ∆= 1 . . N
Op ∆= union {POp[i] : i ∈ Proc}

assume NAssump ∆= (N ∈ Nat) ∧ (N > 0)
assume OpsDisjoint ∆= ∀ i , j ∈ Proc : (i 	= j) ⇒ (POp[i] ∩ POp[j] = {})

Figure 10: Parameters for the specifications of a sequentially consistent
database.

3.2 Our Specification of Sequential Consistency

3.2.1 Common Parameters

We put declarations and definitions that are common to both specifications
of sequential consistency into module SeqDBParams, shown in Figure 10.
The parameters InitDB and OKOp have the same interpretation as in mod-
ule SerialDB . Module SeqDBParams’s other parameters are: a variable ch
that represents an array of channels, where processor i communicates with
the database over channel ch[i]; a constant N that represents the number of
processors; and a constant POp representing an array of sets, where POp[i]
is the set of operations that can be performed by processor i .

The module defines Proc to be the set {1, . . . ,N } of processors and Op
to be the set of all operations—that is, the union of the sets POp[i], for all
processors i . The set Op plays the role of the parameter of the same name
in module SerialDB .

The module next states two assumptions. Assumption NAssump asserts
that N is a positive natural. For convenience, we assume that the operations
sent by different processors are different. Formally, this means that POp[i]
and POp[j] are disjoint sets of operations, if i and j are different processors.
Module SeqDBParams asserts, and assigns the name OpsDisjoint to, this
assumption.

17

❄
dch

❄

q [1]

❄
ch[1]

❄

q [2]

❄
ch[2]

� � �

❄

q [N]

❄
ch[N]

Serial Database

Figure 11: A state machine for specifying sequential consistency.

3.2.2 Sequential Consistency

Intuitively, sequential consistency means that there is some interleaving of
the operations sent on channels ch[1], . . . , ch[N] that forms a correct se-
quence of operations for a serial database. The idea behind our specification
is illustrated by Figure 11. Consider a state machine that performs the fol-
lowing operations, for each processor i :

Enq Send an operation from POp[i] on channel ch[i] and append that op-
eration to the tail of queue q [i].

Deq Remove the operation from the head of q [i] and send it on channel dch.

Let the state machine satisfy weak fairness of the Deq action for each i , which
implies that every operation that is put into a queue by an Enq operation
is eventually removed by a Deq . It is clear that the operations sent on the
channels ch[i] are sequentially consistent if the sequence of operations sent
on channel dch satisfies the specification of a serial database. Moreover, for
any sequentially consistent operations sent on the ch[i], there is some way of
performing the Deq operations that makes the operations sent on dch form
a correct execution of the serial database. In other words, the operations
on the ch[i] are sequentially consistent iff there is some sequence of values
assumed by the queues q [i] and the channel dch that is a correct execution
of the state machine and satisfies the specification of the serial database. Let
QSpec be the TLA formula describing the state machine, and let Spec be the
specification of the serial database from module SerialDB . The operations
on the ch[i] are sequentially consistent iff the formula ∃∃∃∃∃∃ dch, q : QSpec ∧ Spec
is satisfied. This formula is the TLA specification of sequential consistency.

18

module SeqDB1
extends SeqDBParams, ChannelInterface, Sequences

SDB(dch) ∆= instance SerialDB

Enq(i , dch, q) ∆= ∃ o ∈ POp[i] :
∧ ChanOp(ch[i], o)
∧ q [i]′ = q [i] ◦ 〈o 〉
∧ unchanged dch
∧ ∀ j ∈ Proc \ {i} : unchanged 〈q [j], ch[j]〉

Deq(i , dch, q) ∆= ∧ q [i] 	= 〈 〉
∧ ChanOp(dch,Head(q [i]))
∧ q [i]′ = Tail(q [i])
∧ unchanged ch[i]
∧ ∀ j ∈ Proc \ {i} : unchanged 〈q [j], ch[j]〉

QSpec(dch, q) ∆= ∧ ∀ i ∈ Proc : q [i] = 〈 〉
∧ ✷[∃ i ∈ Proc : Enq(i , dch, q) ∨ Deq(i , dch, q)]〈ch,dch,q 〉
∧ ∀ i ∈ Proc : WF〈ch,dch,q 〉(Deq(i , dch, q))

Spec ∆= ∃∃∃∃∃∃dch, q : QSpec(dch, q) ∧ SDB(dch)!Spec

Figure 12: A specification of sequential consistency.

The TLA+ version of the specification appears in module SeqDB1 of
Figure 12. The module imports SeqDBParams, which contains the specifi-
cation’s parameters, the assumption OpsDisjoint , and the definition of Op.
It also imports modules ChannelInterface (for the definition of ChanOp)
and Sequences (for the definitions of operations on sequences).

Our specification uses the specification of a serial database, which ap-
pears in module SerialDB . Simply importing that module would import
its parameters dch and Op, which should not be parameters of SeqDB1.
(Channel dch is an internal variable of the sequentially consistent database;
the set Op is defined in terms of POp, so it is not a parameter.) Instead,
we want to include the definitions from SerialDB with the module’s param-
eters instantiated as follows: Op instantiated with the set of the same name
defined in the imported module SeqDBParams; InitDB and OKOp instan-
tiated with the parameters of the same name imported from SeqDBParams;
and dch replaced by an explicit formal parameter. The statement

SDB(dch) ∆= instance SerialDB

19

includes the definitions from module SerialDB , with the names of all defined
operators prefixed by “SDB(dch)!”, and with the aforementioned instantia-
tions.8 For example, SDB(d)!INext(m) equals

∃ o ∈ Op : SDB(d)!ChanOp(d , o) ∧OKOp(o,m,m ′)

for any expressions d and m, where SDB(d)!ChanOp equals the operator
ChanOp (imported by module SerialDB) from module ChannelInterface.
The symbols Op and OKOp are not prefixed by “SDB(. . .)!” because they
are parameters, not defined operators.

Module SeqDB1 next defines the TLA formula that specifies the state
machine pictured in Figure 11, excluding the box labeled “Serial Database”.
Since the variables dch and q are not parameters of the module, they
must be explicit parameters of the definition. Formula QSpec(dch, q) is
the canonical-form TLA formula that describes the state machine.

Finally, formula Spec is the complete specification of sequential consis-
tency. More precisely, it specifies the sequentially consistent system with
array ch of channels described by the parameters Proc, POp, InitDB , and
OKOp.

3.2.3 A Closer Look at the Specification

Our specification Spec of module SeqDB1 looks deceptively simple. However,
we shall now show that it cannot be written as a conventional state machine.

Expanding the definition of SDB(dch)!Spec shows that Spec equals

∃∃∃∃∃∃ dch, q : (QSpec(dch, q) ∧ ∃∃∃∃∃∃mem : SDB(dch)!ISpec(mem))

Since mem does not occur in QSpec(dch, q), this is equivalent to

∃∃∃∃∃∃dch, q ,mem : (QSpec(dch, q) ∧ SDB(dch)!ISpec(mem))

Formulas QSpec(dch, q) and SDB(dch)!ISpec(mem) are both in canonical
form. Since ✷ distributes over conjunction, a straightforward calculation
allows us to rewrite QSpec(dch, q)∧SDB(dch)!ISpec(mem) in the canonical
form I ∧ ✷[N]v ∧ L, where the next-state action N is

∃ i ∈ Proc : ∨ Enq(i , dch, q) ∧ (mem ′ = mem)
∨ Deq(i , dch, q) ∧ SDB(dch)!INext(mem)

8In the absence of explicit instantiation, a parameter is instantiated by the symbol
of the same name. We have chosen our names to avoid having to introduce the TLA+

construct for explicit instantiation of parameters.

20

v is the tuple 〈ch, dch, q ,mem 〉, and L is the conjunction of weak fairness
conditions on Deq(i , dch, q) actions.

Formula I ∧ ✷[N]v is the TLA representation of the state machine of
Figure 11, including the “Serial Database” box. However, L does not cor-
respond to any conventional fairness condition on state machines. The
next-state action N allows a Deq action to occur only when it is also an
SDB(dch)!INext(mem) action. In other words, a Deq step can occur only if
it sends a correct serial database operation on dch. However, weak fairness
on Deq(i , dch, q) requires that this operation must eventually be performed
if q [i] is nonempty, regardless of whether or not doing so would violate the
serial database specification for dch. This requirement is not a conventional
state-machine fairness condition. TLA formulas are more expressive than
state machines.

Viewed as a machine, our specification is bizarre. The machine is al-
lowed to perform any arbitrary operation on ch[i], regardless of its legality.
However, when the operation reaches the head of q [i], it must eventually
be a correct operation for the serial database. In the case of a sequentially
consistent memory, a read of address a on ch[i] may return any arbitrary
value d . However, at some time after the read operation reaches the head of
q [i], the value of mem[a] must equal d . That value could have been written
by an operation on another channel ch[j] that occurred after the read.

In the terminology of [1], our specification is not machine closed. Con-
ventional state-machine specifications are always machine closed. Machine
closure is a necessary condition for a specification to be executable in prac-
tice. The description of an algorithm should be machine closed, but a high-
level specification need not be.

3.3 A Gerth-Like Specification of Sequential Consistency

3.3.1 Channels

Gerth specified sequential consistency directly in terms of the sequence of
values transmitted over a channel. TLA formulas are written in terms of
variables that describe the current state. To express Gerth’s specification
in TLA, we must introduce a history variable for each channel to record
the sequence of values that have been sent over the channel. This is done
in module ChannelInterface of Figure 13, which defines the following two
operators.

21

module ChannelInterface
extends Sequences, Naturals

ChanOp(c, v) ∆= c′ = 〈v , if c[2] = “a” then “b” else “a”〉
ChanHist(c, h) ∆= ∧ h = 〈 〉

∧ ✷[h′ = if c′ 	= c then h ◦ 〈c′[1]〉 else h]〈h,c 〉

Figure 13: Module ChannelInterface

ChanOp A step satisfying action ChanOp(c, v) must represent the event of
sending the value v on a channel represented by the variable c. The obvious
way to represent this event is by setting the value of c to v . However,
this won’t work because sending the same value v again would result in
no change to c, and no change to c must represent nothing being sent on
the channel. We therefore define ChanOp(c, v) to set c to a pair 〈v , . . .〉,
where the second component is chosen to ensure that the new value of c
does not equal its old value. There are any number of ways to do this. In
module ChannelInterface, we let ChanOp(c, v) set the second component
alternately to “a” and “b”. More precisely, ChanOp(c, v) asserts that c′

equals 〈v , “a”〉 unless the second component of c equals “a”, in which case
c′ equals 〈v , “b”〉.9

ChanHist The temporal formula ChanHist(c, h) asserts that the value of
h always equals the sequence of values that have been sent over c. Two
alternative definitions are

(h = 〈 〉) ∧ ✷[∃ v : ChanOp(c, v) ∧ (h ′ = h ◦ 〈v 〉)]〈h,c 〉

(h = 〈 〉) ∧ ✷

[
∧ ∀ v : ChanOp(c, v) ⇒ (h ′ = h ◦ 〈v 〉)
∧ (c′ = c) ⇒ (h ′ = h)

]
〈h,c 〉

Using the TLA proof rules [14, Figure 5], it is easy to show that the formula
✷[∃ v : ChanOp(c, v)]c , which asserts that every change to c is a ChanOp
event, implies that all three definitions are equivalent.

Representing Channels Our method of representing channels is artifi-
cial; the use of pairs and the values “a” and “b” were completely arbitrary.
The definition of ChanOp is artificial because the interface itself does not

9In TLA+, c[2] is some value—even if 2 is not in the domain of c. Hence, a specification
need not specify any initial value for the channel.

22

correspond to any real form of communication. Asynchronous communica-
tion requires two separate events—the sending of a value and its acknowl-
edgement. In a real memory, a read operation consists of a processor re-
quest (which may cause the cache to be updated) followed by the memory’s
response. The more realistic interface has a more natural representation.
Gerth chose the artificial interface to simplify the problem. The simpler
interface makes it impossible to specify some correctness properties of a
real memory—in particular, the property that every request is eventually
followed by a reply.

A more elegant description of a channel can be obtained by writing
axioms for ChanOp instead of defining it explicitly. However, lists of axioms
are notoriously difficult to understand. It is easy to write an incomplete
specification by omitting axioms. Few people would think of including the
axiom ChanOp(c, v) ⇒ (c′ 	= c) when specifying ChanOp. We believe that
a clear, inelegant definition is better than an obscure, elegant list of axioms.

3.3.2 The Gerth-Like Specification

Gerth’s specification of a sequentially consistent database with array ch of
channels essentially asserts that there exists a serial database with channel
dch such that, for each processor i , the sequence of operations sent on
ch[i] equals the sequence of operations from processor i sent on dch. Since
ChanHist(c, h) asserts that h is the history of operations sent on channel c,
if SDB(dch)!Spec is the specification of a serial database with channel dch,
then Gerth’s specification is10

∃∃∃∃∃∃ dch : ∧ SDB(dch)!Spec
∧ ∀ i ∈ Proc : ∀∀∀∀∀∀hch, hdch :

ChanHist(dch, hdch) ∧ ChanHist(ch[i], hch) ⇒ G

where G asserts the appropriate relation between the history variable hch
for ch[i] and the history variable hdch for dch. Our problem is writing G in
temporal logic.

Since channel dch is internal, it doesn’t matter when the operations ap-
pear there. Without loss of generality, we can let G require that operations
not appear on dch before they appear on ch[i]. Gerth’s specification is then
obtained by requiring that the sequence of operations sent at any time on
channel ch[i] eventually equals the sequence of operations by processor i

10Universal quantification over flexible variables is defined by ∀∀∀∀∀∀ x : F
∆
= ¬∃∃∃∃∃∃ x : ¬F .

23

module SeqDB2
extends SeqDBParams, Sequences, ChannelInterface, Naturals

SDB(dch) ∆= instance SerialDB

Proj (i , s) ∆= let Test(e) ∆= e ∈ POp[i] in SelectSeq(s,Test)

Spec ∆= ∃∃∃∃∃∃dch : ∧ SDB(dch)!Spec
∧ ∀ i ∈ Proc : ∀∀∀∀∀∀ hch, hdch :

ChanHist(dch, hdch) ∧ ChanHist(ch[i], hch) ⇒
∀ os : ✷((hch = os) ⇒ ✸(os = Proj (i , hdch)))

Figure 14: A history-based specification of sequential consistency.

module DB1equivDB2
extends SeqDBParams

DB1 ∆= instance SeqDB1
DB2 ∆= instance SeqDB2
theorem Thm ∆= DB1!Spec ≡ DB2!Spec

Figure 15: The two specifications of sequential consistency are equivalent.

that have been sent on dch. This assertion can be written

∀ os : ✷((hch = os) ⇒ ✸(os = Proj (i , hdch)))

where Proj (i , σ) is the subsequence of operations in σ sent by processor i ,
and ✸ is the usual temporal operator meaning eventually [21]. The complete
specification appears as formula Spec of module SeqDB2 in Figure 14. It
uses the operator SelectSeq , which is defined in module Sequences so that
SelectSeq(s,Test) is the subsequence of s consisting of all elements e with
Test(e) equal to true.

3.3.3 Relating the two Specifications

We hope it is intuitively clear that the two specifications of sequential consis-
tency, formulas Spec of modules SeqDB1 and SeqDB2, both allow the same
sets of behaviors for the array ch of channels. Formally, this means that the
two formulas are equivalent. Their equivalence is expressed in TLA+ by the
theorem named Thm of module DB1equivDB2 in Figure 15.

24

We will prove that the lazy caching algorithm implements our specifi-
cation of sequential consistency. Formally, this means proving that formula
Spec of module LazyCache implies formula Spec of module SeqDB1. To
prove that the algorithm also implements the Gerth-like specification, it
suffices to prove that formula Spec of module SeqDB1 implies formula Spec
of module SeqDB2, which is half of the theorem in module DB1equivDB2.

4 The Proof

Our goal here is not to convince the reader that the lazy caching algorithm
is correct, but to indicate how a convincing proof is obtained. Naive readers
may be convinced by a nonrigorous proof, but published “proofs” of incorrect
concurrent algorithms have demonstrated the need for rigor. Rigorous proofs
are long, detailed, and tedious. They are difficult to present on paper and
are best suited to hypertext. We therefore just describe how the proof is
obtained. Section 4.1 states our result formally and describes the outline of
the proof. Sections 4.2–4.4 specify two intermediate algorithms and sketch
the more interesting parts of the proof.

4.1 Outline of the Proof

We might expect sequential consistency to mean that the algorithm’s spec-
ification, formula Spec of module LazyCache, implies formula Spec of mod-
ule SeqDB1, which is our specification of sequential consistency. However,
those two formulas have different parameters. The algorithm’s memory is
described by the parameters Data, InitData, and Addr , while sequential
consistency is defined in terms of a more general database specified by the
parameters POp, InitDB , and OKOp. Module CacheCorrectness in Fig-
ure 16 imports and declares the same parameters as the LazyCache module,
and then includes module LazyCache as LC . It next defines the constants
POp, OKOp, and InitDB and includes SeqDB1 as DB1, implicitly substi-
tuting these three constants for the parameters of the same name in SeqDB1.
The module then asserts theorem LCimpliesDB1, which expresses formally
the sequential consistency of the lazy caching algorithm.

We split the proof of theorem LCimpliesDB1 into two parts by intro-
ducing an intermediate algorithm, called the complete cache. The complete
cache is specified by formula Spec of module CCache, which appears in Sec-
tion 4.2 below. The CacheCorrectness module includes this module and
then asserts that the lazy caching algorithm implements the complete cache

25

module CacheCorrectness
extends MemParams

variable c, in, out ,mem

LC ∆= instance LazyCache

POp ∆= [i ∈ Proc �→ {i} × {“Rd”, “Wr”} × Data ×Addr]
OKOp(o, old ,new) ∆= ∨ ∧ o[2] = “Rd”

∧ o[3] = old [o[4]]
∧ new = old

∨ ∧ o[2] = “Wr”
∧ new = [old except ! [o[4]] = o[3]]

InitDB ∆= [Addr → InitData]

DB1 ∆= instance SeqDB1
theorem LCimpliesDB1 ∆= LC !Spec ⇒ DB1!Spec

CC (cc, cin, cout) ∆= instance CCache

theorem LCimpliesCC ∆=
LC !Spec ⇒ (∃∃∃∃∃∃ cc, cin, cout : CC (cc, cin, cout)!Spec)

theorem CCimpliesDB1 ∆=
∀∀∀∀∀∀ cc, cin, cout : CC (cc, cin, cout)!Spec ⇒ DB1!Spec

ACC (cc, cin, cout , vcq , vrq , vdch) ∆= instance ACCache

theorem CCequivACC ∆=
∀∀∀∀∀∀ cc, cin, cout : CC (cc, cin, cout)!Spec ≡

(∃∃∃∃∃∃ vcq , vrq , vdch : ACC (cc, cin, cout , vcq , vrq , vdch)!ASpec)

theorem ACCimpliesDB1 ∆=
∀∀∀∀∀∀ cc, cin, cout , vcq , vrq , vdch :

ACC (cc, cin, cout , vcq , vrq , vdch)!ASpec ⇒ DB1!Spec

Figure 16: The theorems constituting the correctness proof.

26

(theorem LCimpliesCC) and that the complete cache is sequentially consis-
tent (theorem CCimpliesDB1). The complete cache specification has three
additional variable parameters, cc, cin, and cout , that are instantiated by
parameters and are quantified in the statements of the theorems. As with
ordinary first-order quantification, the formula ∀∀∀∀∀∀ x : F is valid iff F is. (The
∀∀∀∀∀∀ is needed in theorem CCimpliesDB1 because module parameters are the
only free variables allowed by TLA+ in a theorem.) By simple logic, theo-
rems LCimpliesCC and CCimpliesDB1 imply theorem LCimpliesDB1.

We sketch the proof of the more interesting of these two theorems,
CCimpliesDB1. The temporal existential quantifiers in the definition of
DB1!Spec mean that the proof requires a refinement mapping [1]. To de-
fine the refinement mapping, we add to the complete cache three auxiliary
variables, vcq , vrq , and vdch. The complete cache with auxiliary variables
is specified by formula ASpec of module ACCache, which appears in Sec-
tion 4.3. The CacheCorrectness module includes this module and then as-
serts two theorems. The first, CCequivACC , states that formula ASpec with
the auxiliary variables hidden is equivalent to the complete cache specifica-
tion. This is what it means for vcq , vrq , and vdch to be auxiliary variables.
The second theorem states the sequential consistency of the complete cache
with auxiliary variables. These two theorems imply CCimpliesDB1.

To prove that the lazy caching algorithm is sequentially consistent, we
must prove theorems LCimpliesCC , CCequivACC , and ACCimpliesDB1
of module CacheCorrectness. Proving this for a Gerth-like definition of
sequential consistency requires also proving the implication DB1!Spec ⇒
DB2!Spec of Thm in module DB1equivDB2 (Figure 15). The equivalence of
the two specifications of sequential correctness, while interesting, has noth-
ing to do with caching algorithms. For reasons discussed below, the imple-
mentation of the complete cache by the lazy caching algorithm is not as inter-
esting as the sequential consistency of the complete cache. We will therefore
consider here only the proofs of CCequivACC and ACCimpliesDB1.

4.2 The Complete Cache

The subtle aspect of the lazy caching algorithm is its handling of read and
write requests. The invalidation and refreshing of cache entries (actions
CacheInval(i) and MemRead(i)) are standard. We construct the complete
cache algorithm that describes the execution of read and write requests, but
not the invalidation and refreshing of cache entries. We can then prove that
the complete cache is implemented by the lazy caching algorithm (theorem
LCimpliesCC) and implements the specification of sequential consistency

27

(theorem CCimpliesDB1).
In the complete cache algorithm, each cache is a complete memory (a

total function from locations to data values); there is no shared memory
and no cache invalidation or refresh action. The algorithm is pictured as a
state machine in Figure 17. To simplify the proof, we replace the queues
out [i] and in[i] of the lazy caching algorithm with queues cout [i] and cin[i]
containing complete operations 〈i , op, d , a 〉, where i is the processor that
issued the operation, op is the operation (“Rd” or “Wr”), d , is the data
value, and a is the address. A ∗-ed entry in c[i] becomes an operation
in cin[i] whose first component equals i . Some of these components are
redundant—in particular, the queues contain only write operations, and
cout [i] contains only operations of processor i . All the caches cc[i] have
the same initial memory contents, and the cin and cout queues are initially
empty. The TLA+ specification of this state machine appears in module
CCache of Figure 18.

Theorem LCimpliesCC of module CacheCorrectness, which asserts that
the lazy caching algorithm implements the complete cache, essentially proves
the correctness of the algorithm’s cache invalidation and refreshing opera-
tions. Since these operations are standard, the proof of the theorem does not
reveal anything interesting about the lazy caching algorithm. Here, we con-
sider only the proof of theorem CCimpliesDB1, which asserts the sequential

✻

✻

✻

❄

❄

✻

✻

✻

❄

❄

cin[1] cout [1]

cc[1]

ch[1]

Processor 1 Processor N

cin[N] cout [N]

cc[N]

ch[N]

� � �

Figure 17: The state machine CCache describing the complete cache algo-
rithm, where cc[i] is a complete cache, and cout [i] and cin[i] are queues of
〈processor , operation, data , address〉 tuples.

28

module CCache
extends MemParams, ChannelInterface, Sequences, Naturals

variable cc, cin, cout

Init ∆= ∧ cc ∈ [Proc → [Addr → InitData]]
∧ ∀ i , j ∈ Proc : cc[i] = cc[j]
∧ cin = [i ∈ Proc �→ 〈 〉]
∧ cout = [i ∈ Proc �→ 〈 〉]

Read(i , d , a) ∆= ∧ cout [i] = 〈 〉
∧ ∀ j ∈ (1 . . Len(cin[i])) : cin[i][j][1] 	= i
∧ cc[i][a] = d
∧ ChanOp(ch[i], 〈i , “Rd”, d , a 〉)
∧ ∀ j ∈ Proc \ {i} : unchanged ch[j]
∧ unchanged 〈cc, cin, cout 〉

Write(i , d , a) ∆= ∧ ChanOp(ch[i], 〈i , “Wr”, d , a 〉)
∧ cout ′ = [cout except ! [i] = cout [i] ◦ 〈〈i , “Wr”, d , a 〉〉]
∧ ∀ j ∈ Proc \ {i} : unchanged ch[j]
∧ unchanged 〈cc, cin 〉

MemWrite(i) ∆= ∧ cout [i] 	= 〈 〉
∧ cout ′ = [cout except ! [i] = Tail(cout [i])]
∧ cin ′ = [j ∈ Proc �→ cin[j] ◦ 〈Head(cout [i])〉]
∧ unchanged 〈cc, ch 〉

CacheUpdate(i) ∆=
∧ cin[i] 	= 〈 〉
∧ cin ′ = [cin except ! [i] = Tail(cin[i])]
∧ cc′ = [cc except ! [i][Head(cin[i])[4]] = Head(cin[i])[3]]
∧ unchanged 〈cout , ch 〉

Next(i) ∆= ∨ ∃ d ∈ Data, a ∈ Addr : Read(i , d , a) ∨Write(i , d , a)
∨ MemWrite(i) ∨CacheUpdate(i)

vars ∆= 〈cc, cin, cout , ch 〉
Spec ∆= ∧ Init

∧ ✷[∃ i ∈ Proc : Next(i)]vars
∧ ∀ i ∈ Proc : WFvars(CacheUpdate(i)) ∧ WFvars(MemWrite(i))

Figure 18: The complete cache algorithm.

29

consistency of the complete cache.

4.3 The Complete Cache with Auxiliary Variables

We now describe how to prove theorem CCimpliesDB1. As we observed in
Section 3.2.3, DB1!Spec is equivalent to

∃∃∃∃∃∃ dch, q ,mem : DB1!QSpec(dch, q) ∧ DB1!SDB(dch)!ISpec(mem)

One proves a theorem of the form ∀∀∀∀∀∀ x : F by simply proving F . Therefore,
the proof of CCimpliesDB1 is reduced to proving a theorem of the form

S1 ⇒ ∃∃∃∃∃∃ dch, q ,mem : S2 (1)

In first-order logic, one proves an existentially quantified formula by finding
instantiations for the quantified variables. For temporal existential quantifi-
cation, the instantiations are called a refinement mapping [1]. We prove (1)
by defining state functions dch, q , and mem in terms of the variables that
appear in S1 and proving S1 ⇒ S2, where F is the formula obtained by
substituting dch for dch, q for q , and mem for mem in F , for any formula F .

Intuitively, S1 ⇒ S2 means that if ch, cc, cin, and cout change the way
S1 allows them to, then dch, q , and mem change the way S2 allows dch,
q , and mem to change. In other words, changes to the variables allowed by
S1 cause changes to the barred variables that simulate the changes to the
unbarred variables allowed by S2. We construct the refinement mapping by
deciding which events allowed by S1 simulate the events allowed by S2.

To define mem, we choose an event in the complete cache state machine
to simulate the sequential consistency state machine’s event of dequeuing
a write operation and updating the database. We let the dequeue event
happen when the last copy of a write is removed from the cin queues. Writes
are performed in the same order to all the caches cc[i]. Hence, simulating the
dequeue when the write is performed to the last cache means that mem will
equal a cache cc[i] to which the fewest writes have been performed. (There
may be several such caches, in which case they will all be equal.) Fewer
writes have been performed to cache cc[i] than to cache cc[j] iff the queue
cin[i] is longer than the queue cin[j]. Letting pMax be some processor such
that the length of cin[pMax] is greater than or equal to the length of cin[j]
for any other processor j , we define mem to equal cc[pMax].

Having defined mem, we quickly see that it is impossible to define dch
and q . The complete cache state machine does not contain the informa-
tion needed to construct the queues q [i] because it does not remember read

30

operations. It does not contain the information needed to define dch be-
cause the write operation that changes mem, which must appear in dch, is
immediately forgotten.

To finish constructing our refinement mapping, we must add auxiliary
variables [1] to the complete cache. Adding an auxiliary variable a to a
specification S means finding a formula Sa such that ∃∃∃∃∃∃ a : Sa is equivalent to
S . In our example, we need two types of auxiliary variables: history variables
and stuttering variables. A history variable records what happened in the
past, but doesn’t affect how other variables change. A stuttering variable
forces stuttering steps—ones in which the other variables are left unchanged.

To define q, we want to add a queue vq such that q [i] equals Proj (i , vq)◦
cout [i], for each processor i . (Recall that Proj (i , vq) is the subsequence of
operations in vq issued by processor i .) A write is appended to the tail
of vq when it is moved to the cin queues by a MemWrite action. It is
removed from vq , and hence from the appropriate queue q [i], when mem
is updated—which is when the last copy of that write is removed from the
cin queues. It follows that the sequence of writes in vq will always equal
cin[pMax].

A read is inserted into vq when it is issued by a Read action; the trick is to
insert it in the right place. A read by processor i returns the value currently
in cc[i], so it should be inserted into vq behind all writes already performed
to cc[i], and in front of all writes not yet performed to cc[i]. Operations by
processor i must appear in vq in the order in which they were issued. A
Read action is enabled only when all writes by i have already been performed
to cc[i]; we ensure that the read is placed behind any preceding reads by
processor i by placing it immediately in front of the first write that has not
yet been performed to cc[i]—or at the end of vq if there is no such write.
There will be exactly Len(cin[i]) writes in vq that have not been performed
to cc[i], so the read is put in front of the Len(cin[i])’th write from the end
of vq—or at the end of vq , if Len(cin[i]) equals zero. Since the sequence
of writes in vq equals cin[pMax], the read is put immediately in front of
the (Len(cin[pMax])− Len(cin[i]) + 1)st write in vq—or at the end of vq if
Len(cin[i]) equals zero.

A write is removed from the head of vq , and hence from the head of some
q [i], by a CacheUpdate step. However, there is no action of the complete
cache that can be used to remove a read from vq . It must be removed by a
stuttering step—one that does not change cc, cin, cout , or ch. We represent
vq as vrq ◦ vcq , where vrq is a possibly empty sequence of reads, and, if vcq
is nonempty, then the head of vcq is a write. We first add vcq as a history
variable, then add vrq as a stuttering variable.

31

Finally, we add a channel vdch as a history variable and let dch equal
vdch. The complete cache algorithm with these auxiliary variables is de-
scribed by formula ASpec of module ACCache in Figures 19 and 20. Corres-
ponding to the four “elementary” actions Read(i , d , a), . . . , CacheUpdate(i)
of module CCache, module ACCache defines the actions ARead(i , d , a), . . . ,
ACacheUpdate(i). Each of these actions equals the corresponding action of
CCache conjoined with (i) an enabling condition asserting that vrq is empty
and (ii) formulas describing the new values of vcq , vrq , and vdch. The next-
state action of ASpec is the disjunction of the A . . . actions with a new action
VRead , which removes a read operation from the head of vrq and sends it
on the vdch channel. This is the action that adds the requisite stuttering
steps to the complete cache.

Module ACCache uses the TLA+ let construct for making definitions
local to an expression, and the construct f [x ∈ S] ∆= e(x) for recursively
defining a function f with domain S .

We prove theorem CCimpliesDB1 of module CacheCorrectness by prov-
ing theorem CCequivACC , which asserts that vcq , vrq , and vdch are aux-
iliary variables, and theorem ACCimpliesDB1, which asserts the sequential
consistency of the complete cache with auxiliary variables.

To prove CCequivACC , we use the propositions of Figure 21. These
propositions provide practical rules for adding history and stuttering vari-
ables; they can be derived from simpler results [2]. Theorem CCequivACC
is proved by adding to the complete cache the history variable vcq , then
the stuttering variable vrq , and then the history variable vdch. Adding an
auxiliary variable a to a specification S means writing a formula Sa such
that ∃∃∃∃∃∃ a : Sa is equivalent to S , so we prove CCequivACC by finding two
formulas BSpec and CSpec such that

Spec ≡ ∃∃∃∃∃∃ vcq : CSpec by Proposition 1

≡ ∃∃∃∃∃∃ vcq : ∃∃∃∃∃∃ vrq : BSpec by Proposition 2

≡ ∃∃∃∃∃∃ vcq : ∃∃∃∃∃∃ vrq : ∃∃∃∃∃∃ vdch : ASpec by Proposition 1

We next describe the proof of ACCimpliesDB1.

4.4 The Proof of Theorem ACCimpliesDB1

It is argued elsewhere that the way to avoid mistakes in proofs is to structure
them hierarchically [15]. This is especially true for correctness proofs of com-
puter systems, where the social process for detecting errors is largely miss-
ing. A hierarchical proof is a sequence of statements and their proofs, each

32

module ACCache
extends CCache, MemParams, ChannelInterface, Sequences, Naturals

variable vcq , vrq , vdch

Op ∆= Proc × {“Rd”, “Wr”} × Data × Addr
AInit ∆= ∧ Init

∧ vcq = 〈 〉
∧ vrq = 〈 〉

pMax ∆= choose i ∈ Proc : ∀ j ∈ Proc : Len(cin[j]) ≤ Len(cin[i])

ARead(i , d , a) ∆=
let Insert [k ∈ Nat , s ∈ Seq(Op)] ∆=

if (s = 〈 〉) ∨ ((k = 0) ∧ (Head(s)[2] = “Wr”))
then 〈〈i , “Rd”, d , a 〉〉 ◦ s
else if Head(s)[2] = “Rd”

then 〈Head(s)〉 ◦ Insert [k ,Tail(s)]
else 〈Head(s)〉 ◦ Insert [k − 1,Tail(s)]

in ∧ vrq = 〈 〉
∧ Read(i , d , a)
∧ ∨ ∧ Len(cin[pMax]) = Len(cin[i])

∧ vrq ′ = 〈〈i , “Rd”, d , a 〉〉
∧ unchanged vcq

∨ ∧ Len(cin[pMax]) 	= Len(cin[i])
∧ vcq ′ = Insert [Len(cin[pMax]) − Len(cin[i]), vcq]
∧ unchanged vrq

∧ unchanged vdch

AWrite(i , d , a) ∆= ∧ Write(i , d , a)
∧ vrq = 〈 〉
∧ unchanged 〈vcq , vrq , vdch 〉

AMemWrite(i) ∆= ∧ MemWrite(i)
∧ vrq = 〈 〉
∧ vcq ′ = vcq ◦ 〈Head(cout [i])〉
∧ unchanged 〈vrq , vdch 〉

Figure 19: The complete cache with auxiliary variables (beginning).

33

ACacheUpdate(i) ∆=
let vWr ∆= ∀ j ∈ Proc \ {i} : Len(cin[j]) < Len(cin[i])

nRds[s ∈ Seq(Op)] ∆= if (s = 〈 〉) ∨ (Head(s)[2] = “Wr”)
then 0
else 1 + nRds[Tail(s)]

in ∧ vrq = 〈 〉
∧ CacheUpdate(i)
∧ ∨ ∧ vWr

∧ ChanOp(vdch,Head(cin[i]))
∧ vrq ′ = SubSeq(Tail(vcq), 1,nRds[Tail(vcq)])
∧ vcq ′ = SubSeq(Tail(vcq),nRds[Tail(vcq)] + 1,Len(Tail(vcq)))

∨ ∧ ¬vWr
∧ unchanged 〈vcq , vrq , vdch 〉

VRead ∆= ∧ vrq 	= 〈 〉
∧ ChanOp(vdch,Head(vrq))
∧ vrq ′ = Tail(vrq)
∧ unchanged 〈cc, cout , cin, ch, vcq 〉

ANext ∆=
∨ ∃ i ∈ Proc : ∨ ∃ d ∈ Data, a ∈ Addr : ARead(i , d , a) ∨ AWrite(i , d , a)

∨ AMemWrite(i) ∨ ACacheUpdate(i)
∨ VRead

avars ∆= 〈vars, vcq , vrq , vdch 〉
AFair ∆= ∧ ∀ i ∈ Proc : WFvars(CacheUpdate(i)) ∧ WFvars(MemWrite(i))

∧ WFavars(VRead)

ASpec ∆= AInit ∧ ✷[ANext]avars ∧ AFair

Figure 20: The complete cache with auxiliary variables (continued).

of which is either a sequence of statements or else an ordinary paragraph-
style proof. A deeper hierarchy implies a more rigorous proof. One can
obtain any desired degree of rigor—from informal, intuitive reasoning to a
completely rigorous, formal proof—by choosing the depth appropriately. We
describe our proof of theorem ACCimpliesDB1 of module CacheCorrectness
by showing how its hierarchical structure is obtained.

34

Proposition 1 (History Variable) If h and h ′ do not occur in Init, Ai ,
or f, and h ′ does not occur in g i , for all i ∈ I , then

Init ∧ ✷[∃ i ∈ I : Ai]v ≡ ∃∃∃∃∃∃h : ∧ Init ∧ (h = f)
∧ ✷[∃ i ∈ I : Ai ∧ (h ′ = g i)]〈h,v 〉

Proposition 2 (Stuttering Variable) If

1. s and s ′ do not occur in Init, Inv, Ai , f , or g i , and s ′ does not occur
in h, for all i ∈ I .

2. There is a partially ordered set D with (unique) minimum element φ
and well-founded partial order ≺ such that:

(a) Init ⇒ (f ∈ D)

(b) Inv ∧ Inv ′ ∧Ai ⇒ (g i ∈ D)

(c) Inv ∧ (s ∈ D) ∧ (s 	= φ) ⇒ (h ∈ D) ∧ (h ≺ s)

then
✷Inv ⇒ (Init ∧ ✷[∃ i ∈ I : Ai]v

≡ ∃∃∃∃∃∃ s : ∧ Init ∧ (s = f)

∧ ✷

[
∨ (s = φ) ∧ (∃ i ∈ I : (s ′ = g i) ∧ Ai)
∨ (s 	= φ) ∧ (s ′ = h) ∧ (v ′ = v)

]
〈s,v〉

∧ WF〈s,v 〉((s 	= φ) ∧ (s ′ = h) ∧ (v ′ = v)))

Figure 21: Rules for adding history and stuttering variables.

4.4.1 The High Level Outline

To prove theorem ACCimpliesDB1, we must prove

ACC (cc, cin, cout , vcq , vrq , vdch)!ASpec ⇒ DB1!Spec

We now drop the prefixes “ACC (cc, cin, cout , vcq , vrq , vdch)!” and “DB1!”,
so the theorem to be proved is ASpec ⇒ Spec.11 As we observed in Sec-
tion 4.3, this theorem is equivalent to

ASpec ⇒ ∃∃∃∃∃∃ dch, q ,mem : QSpec(dch, q) ∧ SDB(dch)!ISpec(mem)
11The only ambiguous name is Spec, which will mean DB1!Spec rather than the formula

of the same name imported by ACCache from module CCache.

35

which we prove by proving

ASpec ⇒ QSpec(dch, q) ∧ SDB(dch)!ISpec(mem) (2)

where F is obtained by substituting dch, q , mem for dch, q , mem in formula
F , and

q ∆= [i ∈ Proc �→ Proj (i , vrq ◦ vcq) ◦ cout [i]]
mem ∆= cc[pMax]
dch ∆= vdch

When reasoning in a formal logic, the structure of the formula indicates
the structure of the proof. Propositional logic tells us that to prove (2), we
must prove ASpec ⇒ QSpec and ASpec ⇒ SDB(dch)!ISpec(mem). Both of
these formulas have the form

AInit ∧ ✷[ANext]avars ∧ AFair ⇒ Init ∧ ✷[Next]v ∧ L

where L is a fairness condition. (For SDB(dch)!ISpec(mem), formula L is
just true.) The standard TLA proof of such a formula has the following
structure, where Inv is a suitable predicate called the invariant.

1. AInit ∧ ✷[ANext]avars ⇒ ✷Inv
1.1. AInit ⇒ Inv
1.2. Inv ∧ [ANext]avars ⇒ Inv ′

1.3. Q.E.D.
Proof: 1.1, 1.2, and rule INV1 of [14].

2. AInit ⇒ Init
3. ✷Inv ∧ ✷[ANext]avars ⇒ ✷[Next]v

3.1. [Inv ∧ Inv ′ ∧ ANext]avars ⇒ [Next]v
3.2. Q.E.D.

Proof: Rules TLA2 and INV2 of [14].
4. ✷Inv ∧ ✷[ANext]avars ∧ AFair ⇒ L
5. Q.E.D.

Proof: 1–4 and propositional logic.

We combine the proofs for ASpec ⇒ QSpec and ASpec ⇒ SDB(dch)!Spec,
using the fact that barring distributes over all the TLA+ operators of Fig-
ure 1 except WF, SF, and Enabled, to get the following structure for the
proof of (2). (Remember that dch equals vdch.)

1. AInit ∧ ✷[ANext]avars ⇒ ✷Inv
1.1. AInit ⇒ Inv
1.2. Inv ∧ [ANext]avars ⇒ Inv ′

36

1.3. Q.E.D.
Proof: 1.1, 1.2, and rule INV1.

2. AInit ⇒ (∀ i ∈ Proc : q [i] = 〈 〉) ∧ (mem ∈ InitDB)
3. ✷Inv ∧ ✷[ANext]avars ⇒

∧ ✷[∃ i ∈ Proc : Enq(i , vdch, q) ∨ Deq(i , vdch, q)]〈ch,vdch,q 〉
∧ ✷[SDB(vdch)!INext(mem)]〈mem , vdch 〉

3.1. [Inv ∧ Inv ′ ∧ ANext]avars ⇒
∧ [∃ i ∈ Proc : Enq(i , vdch, q) ∨ Deq(i , vdch, q)]〈ch,vdch,q 〉
∧ [SDB(vdch)!INext(mem)]〈mem , vdch 〉

3.2. Q.E.D.
Proof: Rules TLA2 and INV2 of [14].

4. ✷Inv ∧ ✷[ANext]avars ∧ AFair ⇒
∀ i ∈ Proc : WF〈ch,dch,q 〉(Deq(i , dch, q))

5. Q.E.D.
Proof: 1–4 and propositional logic.

Step 2 asserts that the initial state of the complete cache machine imple-
ments a correct initial state of the sequential consistency machine. Its proof
is easy. We now consider the other steps that need to be proved: the two
substeps of step 1, step 3.1, and step 4.

4.4.2 Step 1: The Invariance Proof

As in all assertional reasoning, finding a suitable invariant Inv is the key to
the proof. One first guesses a definition of Inv and then iteratively refines
it—usually making it stronger—until steps 1.2 and 3.1 are both provable.
With experience, one gets fairly good at guessing the invariant, and few
iterations are needed.

Our predicate Inv is the conjunction of five assertions with the following
intuitive meanings.

1. Variables have the type of values we expect them to. (Such a “type
correctness” assertion is a standard part of an invariant.)

2. For every processor i , the queue cin[i] is a suffix of cin[pMax], and cc[i]
equals the memory obtained by applying the first Len(cin[pMax]) −
Len(cin[i]) operations in cin[pMax] to cc[pMax].

3. The sequence of writes in vcq equals cin[pMax].

4. For any read operation 〈i , “Rd”, d , a 〉 in vrq ◦ vcq , if σ is the sequence
of write operations that precede it in vrq ◦ vcq , and m is the memory

37

obtained by updating cc[pMax] with the sequence σ of writes, then
d = m[a].

5. There are no reads by processor i in vcq after the (Len(cin[pMax]) −
Len(cin[i]) + 1)st write.

Conjunct 4 is the key to why the algorithm works. It states that vrq ◦vcq is a
correct sequence of operations for a serial memory whose contents are mem
(which equals cc[pMax]). This sequence is the serialization of all operations
that have not yet been performed to mem and are not still in the cout
queues. Thus, the serialization order of writes is determined by the order
in which MemWrite events move writes from the cout queues to the cin
queues.

The precise definition of Inv is in Figure 22. It uses the following opera-
tors: WriteSel(s) is the subsequence of write operations in s, ApplyOps[s,m]
is the memory contents obtained by applying the sequence s of writes to a
memory with contents m, and InsertPos[k , s] is the index of the (k + 1)st
write in s, or equals Len(s) + 1 if there are at most k writes in s.

Having defined Inv , we can now continue our proof. Step 1.1 (AInit ⇒
Inv) is straightforward. The structure of Inv leads us to prove 1.2 as follows:

1.2. Inv ∧ [ANext]avars ⇒ Inv ′

1.2.1. Inv ∧ [ANext]avars ⇒ Inv .1′
...

1.2.5. Inv ∧ [ANext]avars ⇒ Inv .5′

1.2.6. Q.E.D.
Proof: 1.2.1–1.2.5, since Inv equals Inv .1 ∧ . . . ∧ Inv .5.

Next, the structure of [ANext]avars tells us how to structure the proofs of
1.2.1–1.2.5. For example, the proof of 1.2.4 is:

1.2.4. Inv ∧ [ANext]avars ⇒ Inv .4′

1.2.4.1. Inv ∧ (i ∈ Proc) ∧ (d ∈ Data) ∧ (a ∈ Addr) ∧ ARead(i , d , a)
⇒ Inv .4′

1.2.4.2. Inv ∧ (i ∈ Proc) ∧ (d ∈ Data) ∧ (a ∈ Addr) ∧ AWrite(i , d , a)
⇒ Inv .4′

1.2.4.3. Inv ∧ (i ∈ Proc) ∧AMemWrite(i) ⇒ Inv .4′

1.2.4.4. Inv ∧ (i ∈ Proc) ∧ACacheUpdate(i) ⇒ Inv .4′

1.2.4.5. Inv ∧ VRead ⇒ Inv .4′

1.2.4.6. Inv ∧ (avars ′ = avars) ⇒ Inv .4′

1.2.4.7. Q.E.D.

38

WriteSel(s) ∆= let test(e) ∆= e[2] = “Wr”
in SelectSeq(s, test)

ApplyOps[s ∈ Seq(Op),m ∈ [Addr → Data]] ∆=
if s = 〈 〉

then m
else ApplyOps[Tail(s), [m except ! [Head(s)[4]] = Head(s)[3]]]

InsertPos[k ∈ Nat , s ∈ Seq(Op)] ∆=
if (s = 〈 〉) ∨ ((k = 0) ∧ (Head(s)[2] = “Wr”))

then 1
else if Head(s)[2] = “Rd”

then 1 + InsertPos[k ,Tail(s)]
else 1 + InsertPos[k − 1,Tail(s)]

Inv ∆=
1.∧ ∧ cc ∈ [Proc → [Addr → Data]]

∧ cin ∈ [Proc → Seq(Proc × {“Wr”} × Data × Addr)]
∧ ∧ cout ∈ [Proc → Seq(Proc × {“Wr”} × Data × Addr)]

∧ ∀ i ∈ Proc : ∀ j ∈ 1 . . Len(cout [i]) : cout [i][j][1] = i
∧ vcq ∈ {s ∈ Seq(Op) : (s 	= 〈 〉) ⇒ (Head(s)[2] = “Wr”) }
∧ vrq ∈ Seq(Proc × {“Rd”} ×Data × Addr)

2.∧ ∀ i ∈ Proc :
∧ cin[i] = SubSeq(cin[pMax], 1 + Len(cin[pMax]) − Len(cin[i]),

Len(cin[pMax]))
∧ cc[i] = ApplyOps[SubSeq(cin[pMax], 1,

Len(cin[pMax]) − Len(cin[i])), cc[pMax]]
3.∧ WriteSel(vcq) = cin[pMax]
4.∧ let s ∆= vrq ◦ vcq

in ∀ n ∈ 1 . . Len(s) :
(s[n][2] = “Rd”) ⇒

(s[n][3] = ApplyOps[WriteSel(SubSeq(s, 1,n − 1)),
cc[pMax]] [s[n][4]])

5.∧ ∀ i ∈ Proc :
∀ j ∈ InsertPos[Len(cin[pMax]) − Len(cin[i]), vcq] . . Len(vcq) :

(vcq [j][1] = i) ⇒ (vcq [j][2] = “Wr”)

Figure 22: The invariant for the correctness proof of the complete cache.

39

Proof: 1.2.4.1–1.2.4.6, the definition of ANext , and simple predicate
logic, since [A]v

∆= A ∨ (v ′ = v), for any A and v .

The proof of all steps 1.2.∗.6 are trivial, since the tuple avars contains all the
variables that appear in Inv . The other 25 steps are the standard ones for an
invariance proof. They show that, starting in a state with the invariant true,
executing one step of the algorithm produces a state in which each conjunct
of the invariant is true. The quadratic number of steps—the number of
disjuncts in the next-state relation times the number of conjuncts of the
invariant—is characteristic of approaches based on invariance, such as the
Owicki-Gries method [22].

Some of the 25 remaining steps in the proof of 1.2 are trivial—for ex-
ample, 1.2.3.2 holds because AWrite(i , d , a) leaves vcq and cin unchanged,
which implies that pMax is unchanged, and thus Inv .3 remains true. Some
steps are routine—for example, the substeps of 1.2.1 require the kind of
simple reasoning performed by a type checker. Some steps go to the heart
of why the algorithm works. We consider one such step: 1.2.4.1. This step
asserts that an ARead event leaves the crucial conjunct Inv .4 true. Its proof
essentially shows that read operations are serializable. Here is an informal
proof, based on the informal statement of Inv given above:

1.2.4.1. Inv ∧ (i ∈ Proc) ∧ (d ∈ Data) ∧ (a ∈ Addr) ∧ ARead(i , d , a)
⇒ Inv .4′

Proof: ARead(i , d , a) implies vrq is empty, so an ARead(i , d , a) step
inserts a read of d from address a just before the (Len(cin[pMax]) −
Len(cin[i])+1)st write in vcq , or at the end if Len(cin[i]) equals zero, and
hence after the first Len(cin[pMax])−Len(cin[i]) writes. Since Inv .4 holds
before the step, it holds after the step if d = m[a], where m is the memory
obtained by updating cc[pMax] with the first Len(cin[pMax])−Len(cin[i])
writes in vcq . By Inv .2, m equals cc[i]. Since ARead(i , d , a) implies
Read(i , d , a), which implies d = cc[i][a], we deduce d = m[a].

This informal reasoning is useful for understanding the algorithm, but it
is not reliable. An off-by-one error in where the read is inserted could
easily pass unnoticed. The proof implicitly assumes that cc and cin are
left unchanged by an ARead step, and incorrect assumptions are hard to
detect if they are not made explicit. Step 1.2.4.1 is a precisely defined
mathematical formula; it can be proved by rigorous mathematical reasoning.
The hierarchical proof structure allows such proofs to be carried down to as
fine a level of detail as necessary to reach any desired degree of reliability.

40

4.4.3 Step 3.1: Step Simulation

The form of step 3.1 immediately leads to this proof outline:

3.1. [Inv ∧ Inv ′ ∧ ANext]avars ⇒
∧ [∃ i ∈ Proc : Enq(i , vdch, q) ∨ Deq(i , vdch, q)]〈ch,vdch,q 〉
∧ [SDB(vdch)!INext(mem)]〈mem , vdch 〉

3.1.1. [Inv ∧ Inv ′ ∧ ANext]avars ⇒
[∃ i ∈ Proc : Enq(i , vdch, q) ∨ Deq(i , vdch, q)]〈ch,vdch,q 〉

3.1.2. [Inv ∧ Inv ′ ∧ ANext]avars ⇒ [SDB(vdch)!INext(mem)]〈mem , vdch 〉
3.1.3. Q.E.D.

Proof: 3.1.1 and 3.1.2.

The structure of the left-hand side of these implications leads to the same
sort of decomposition as for steps 1.2.1–1.2.5. This would lead to steps such
as

3.1.1.1. Inv ∧ Inv ′ ∧ (i ∈ Proc) ∧ (d ∈ Data) ∧ (a ∈ Addr) ∧ ARead(i , d , a)
⇒ [∃ i ∈ Proc : Enq(i , vdch, q) ∨Deq(i , vdch, q)]〈ch,vdch,q 〉

However, we actually prove the stronger result that the left-hand side implies
Enq(i , vdch, q). The decomposition with the stronger results is:

3.1.1. [Inv ∧ Inv ′ ∧ ANext]avars ⇒
[∃ i ∈ Proc : Enq(i , vdch, q) ∨ Deq(i , vdch, q)]〈ch,vdch,q 〉

3.1.1.1. Inv ∧ Inv ′∧ (i ∈ Proc)∧ (d ∈ Data)∧ (a ∈ Addr)∧ARead(i , d , a)
⇒ Enq(i , vdch, q)

3.1.1.2. Inv ∧Inv ′∧(i ∈ Proc)∧(d ∈ Data)∧(a ∈ Addr)∧AWrite(i , d , a)
⇒ Enq(i , vdch, q)

3.1.1.3. Inv ∧ Inv ′ ∧ (i ∈ Proc) ∧AMemWrite(i)
⇒ unchanged 〈ch, vdch, q 〉

3.1.1.4. Inv ∧ Inv ′ ∧ (i ∈ Proc) ∧ACacheUpdate(i)
⇒ Deq(i , vdch, q) ∨ unchanged 〈ch, vdch, q 〉

3.1.1.5. Inv ∧ Inv ′ ∧VRead ⇒ Deq(i , vdch, q)
3.1.1.6. (avars ′ = avars) ⇒ unchanged 〈ch, vdch, q 〉
3.1.1.7. Q.E.D.

Proof: 3.1.1.1–3.1.1.6, the definitions of ANext and [. . .]avars , and sim-
ple predicate logic.

3.1.2. [Inv ∧ Inv ′ ∧ ANext]avars ⇒ [SDB(vdch)!INext(mem)]〈mem , vdch 〉
3.1.2.1. Inv ∧ Inv ′∧ (i ∈ Proc)∧ (d ∈ Data)∧ (a ∈ Addr)∧ARead(i , d , a)

⇒ unchanged 〈mem, vdch 〉
3.1.2.2. Inv ∧Inv ′∧(i ∈ Proc)∧(d ∈ Data)∧(a ∈ Addr)∧AWrite(i , d , a)

⇒ unchanged 〈mem, vdch 〉

41

3.1.2.3. Inv ∧ Inv ′ ∧ (i ∈ Proc) ∧AMemWrite(i)
⇒ unchanged 〈mem, vdch 〉

3.1.2.4. Inv ∧ Inv ′ ∧ (i ∈ Proc) ∧ACacheUpdate(i)
⇒ SDB(vdch)!INext(mem) ∨ unchanged 〈mem , vdch 〉

3.1.2.5. Inv ∧ Inv ′ ∧VRead ⇒ SDB(vdch)!INext(mem)
3.1.2.6. (avars ′ = avars) ⇒ unchanged 〈mem, vdch 〉
3.1.2.7. Q.E.D.

Proof: 3.1.2.1–3.1.2.6, the definitions of ANext and [. . .]avars , and sim-
ple predicate logic.

The proofs of steps 3.1.1.6 and 3.1.2.6 are trivial, since the tuple avars con-
tains all the variables that appear in our formulas. To understand the other
ten steps, remember that the state machine specifying sequential consis-
tency is the composition of two machines: a queue machine with variables
ch, dch, and q that moves operations into and out of the queues, and a serial
database machine with variables dch and mem. Steps 3.1.1.1–3.1.1.5 assert
that every event of the complete cache either simulates a step of the queue
machine or else leaves that machine’s variables unchanged. Steps 3.1.2.1–
3.1.2.5 make the analogous assertions for the serial database machine. These
steps correspond to the step simulation part of a traditional proof that one
state machine simulates another [9, 19]. As usual, some of the proofs are
trivial and some give further insight into the algorithm. An example of the
latter is step 3.1.1.1, which asserts that an ARead event simulates a queue
machine Enq event. The structure of Enq(i , vdch, q) suggests the following
proof outline.

3.1.1.1. Inv ∧ Inv ′ ∧ (i ∈ Proc) ∧ (d ∈ Data) ∧ (a ∈ Addr) ∧ ARead(i , d , a)
⇒ Enq(i , vdch, q)

Assume: Inv∧Inv ′∧(i ∈ Proc)∧(d ∈ Data)∧(a ∈ Addr)∧ARead(i , d , a)
Prove: Enq(i , vdch, q)
3.1.1.1.1. ChanOp(ch[i], 〈i , “Rd”, d , a 〉)
3.1.1.1.2. q [i]′ = q [i] ◦ 〈〈i , “Rd”, d , a 〉〉
3.1.1.1.3. unchanged vdch
3.1.1.1.4. ∀ j ∈ Proc \ {i} : unchanged 〈q[j], ch[j]〉
3.1.1.1.5. Q.E.D.

Proof: 3.1.1.1.1–3.1.1.1.4, the definitions of POp and Enq , and predi-
cate logic.

Here is an informal proof of 3.1.1.1.2.

3.1.1.1.2. q [i]′ = q [i] ◦ 〈〈i , “Rd”, d , a 〉〉
Proof: An ARead(i , d , a) event inserts 〈i , “Rd”, d , a 〉 into either vrq or

42

vcq , and hence into q[i]. We just have to show that it inserts the operation
at the end of q [i]. The operation is inserted into vrq ◦ vcq just before
the (Len(cin[pMax]) − Len(cin[i]) + 1)st write in vcq , or at the end if
Len(cin[i]) equals zero. By Inv .2 and Inv .3, all the writes that follow it
in vrq ◦vcq are in cin[i]. Since ARead(i , d , a) implies Read(i , d , a), which
implies there are no writes by i in cin[i], no writes by i follow the newly
inserted operation in vrq ◦ vcq . By Inv .5, no reads by i follow it. By
definition of q [i], this implies that the operation is inserted at the end
of q [i].

4.4.4 Step 4: Fairness

To prove step 4, we must prove WF〈ch,dch,q 〉(Deq(i , dch, q)) for each pro-
cessor i . This suggests using rule WF2 of [14]. With that rule, one infers
WFw (B) from WFv (A), where A is the action that implements B . However,
as we saw in the proof of 3.1.1, Deq(i , dch, q) is implemented by the two sep-
arate actions ACacheUpdate(i) and VRead . This gives us two ways to prove
step 4: (i) prove that the complete cache specification implies weak fairness
of ACacheUpdate(i) ∨ VRead and apply WF2, or (ii) expand the definition
of WF in the conclusion and apply temporal logic reasoning directly. Either
one works; we use the second.

The formula WFv (A) is defined to equal ✷✸¬Enabled 〈A〉v ∨✷✸〈A〉v ,
for any action A, where 〈A〉v is defined to equal A ∧ (v ′ 	= v) and the
predicate Enabled 〈A〉v asserts that there is some possible step starting in
the current state that satisfies 〈A〉v .

Proofs of fairness are typically by contradiction, deducing F ⇒ G from
F ∧¬G ⇒ G . Expanding the definition of WF leads to the following proof.

4. ✷Inv ∧ ✷[ANext]avars ∧ AFair ⇒
∀ i ∈ Proc : WF〈ch,dch,q 〉(Deq(i , dch, q))

Proof: By predicate logic, it suffices to:
Assume: i ∈ Proc
Prove: ✷Inv ∧ ✷[ANext]avars ∧ AFair ⇒ WF〈ch,dch,q 〉(Deq(i , dch, q))
Let: B ∆= Deq(i , dch, q)

w ∆= 〈ch, dch, q 〉
4.1. ✷Inv ∧ ✷[ANext]avars ∧ AFair ∧ ✷Enabled 〈B 〉w ∧ ✷[¬B]w

⇒ ✷✸〈B 〉w
4.2. ✷Inv ∧ ✷[ANext]avars ∧ AFair ∧ ✸✷Enabled 〈B 〉w ∧ ✸✷[¬B]w

⇒ ✷✸〈B 〉w
4.2.1. AFair ≡ ✷AFair

43

Proof: Definition of AFair , since ✷WF ≡ WF and ✷ distributes
over ∧ and ∀.

4.2.2. ✷Inv ∧ ✷[ANext]avars ∧ ✷AFair ∧ ✷Enabled 〈B 〉w ∧ ✷[¬B]w
⇒ ✷✸〈B 〉w

Proof: 4.1 and 4.2.1.
4.2.3. ✸✷Inv ∧ ✸✷[ANext]avars ∧ ✸✷AFair ∧ ✸✷Enabled 〈B 〉w

∧ ✸✷[¬B]w ⇒ ✸✷✸〈B 〉w
Proof: 4.2.2, since F 1 ⇒ F 2 implies ✸F 1 ⇒ ✸F 2 and ✸(✷F 1 ∧
. . . ∧ ✷Fn) ≡ (✸✷F 1 ∧ . . . ∧ ✸✷Fn), for any formulas F i .

4.2.4. Q.E.D.
Proof: 4.2.3, since ✷F ⇒ ✸✷F and ✸✷✸F ≡ ✷✸F , for any F .

4.3. Q.E.D.
Proof: 4.2 and propositional logic, since WF〈ch,dch,q 〉(Deq(i , dch, q))
is defined to equal ✷✸¬Enabled 〈B 〉w ∨ ✷✸〈B 〉w , which is equivalent
to ✷✸¬Enabled 〈B 〉w ∨✷✸〈B 〉w because barring distributes over all
operators except WF and Enabled , and
¬(✷✸¬Enabled 〈B 〉w ∨ ✷✸〈B 〉w)

≡ ✸✷Enabled 〈B 〉w ∧ ✸✷¬〈B 〉w [✸
∆
= ¬✷¬]

≡ ✸✷Enabled 〈B 〉w ∧ ✸✷[¬B]w [¬〈A〉v ≡ [¬A]v , for any A and v]

so 4.2 shows that ✷Inv ∧ ✷[ANext]avars ∧ AFair ∧ ¬WF...(. . .) implies
WF...(. . .).

The proof of 4.1 has the following structure.

4.1. ✷Inv ∧ ✷[ANext]avars ∧ AFair ∧ ✷Enabled 〈B 〉w ∧ ✷[¬B]w
⇒ ✷✸〈B 〉w

Let: AA ∆= ✷Inv ∧ ✷[ANext]avars ∧ AFair ∧ ✷Enabled 〈B 〉w
∧ ✷[¬B]w

Qrd ∆= (vrq 	= 〈 〉) ∧ (Head(vrq)[1] = i)
Qwr ∆= (vrq = 〈 〉) ∧ (Head(vcq)[1] = i)

4.1.1. AA ⇒ ✸(Qrd ∨ Qwr)
4.1.2. AA ∧ Qrd ⇒ ✷✸〈B 〉w
4.1.3. AA ∧ Qwr ⇒ ✷✸〈B 〉w
4.1.4. Q.E.D.

Proof: 4.1.1–4.1.3 and simple temporal reasoning, since AA ≡ ✷AA.

Steps 4.1.1 and 4.1.2 are proved informally as follows.

4.1.1. AA ⇒ ✸(Qrd ∨ Qwr)
4.1.1.1. Enabled 〈B 〉w ≡ (cout [i] 	= 〈 〉) ∨ (Proj (i , vrq ◦ vcq) 	= 〈 〉)

Proof: Enabled 〈B 〉w equals q [i] 	= 〈 〉, and q [i] is defined to equal

44

Proj (i , vrq ◦ vcq) ◦ cout [i].
4.1.1.2. AA ∧ (cout [i] 	= 〈 〉) ⇒ ✸(Proj (i , vrq ◦ vcq) 	= 〈 〉)

Proof: Weak fairness of MemWrite(i) implies that if cout [i] is non-
empty, then its head (which by Inv .1 is an operation of processor i)
must eventually be removed and appended to vcq .

4.1.1.3. AA ∧ (Proj (i , vrq ◦ vcq) 	= 〈 〉) ⇒ ✸(Qrd ∨ Qwr)
Proof: Weak fairness of VRead implies that any operation in vrq
(which by Inv .1 must be a read) eventually reaches the head of vrq
and is then removed from vrq . By Inv .3, a write is in vcq iff it is in
cin[pMax]. Weak fairness of the CacheUpdate(j) actions and of VRead
therefore implies that any write in vcq eventually reaches the head of
vcq and is then removed from vcq . Therefore, a read by processor i in
vrq ◦ vcq eventually reaches vrq and thus eventually reaches the head of
vrq , making Qrd true. A write by i in vrq ◦ vcq is in vcq (by Inv .1) and
eventually reaches the head of vcq , making Qwr true.

4.1.1.4. Q.E.D.
Proof: 4.1.1.1–4.1.1.3 and temporal logic reasoning, since AA implies
Enabled 〈B 〉w .

4.1.2. AA ∧ Qrd ⇒ ✷✸〈B 〉w
4.1.2.1. AA ∧ Qrd ⇒ ✷Qrd

Proof: Qrd can be made false only by removing a read by processor i
from the head of vrq , which is a nonstuttering B step, and the conjunct
✷[¬B]w of AA asserts that such a step never occurs.

4.1.2.2. AA ∧ ✷Qrd ⇒ ✷✸〈B 〉w
Proof: Qrd implies that VRead is enabled and that a VRead step
is a 〈B 〉w step. Thus, ✷Qrd and weak fairness of VRead imply that
infinitely many such steps occur, proving ✷✸〈B 〉w .

4.1.2.3. Q.E.D.
Proof: 4.1.2.1 and 4.1.2.2.

The proof of 4.1.3 has the following outline. Informal proofs of the substeps
are similar to the ones above and are left to the reader.

4.1.3. AA ∧ Qwr ⇒ ✷✸〈B 〉w
Let: Qun ∆= ∀ j ∈ Proc \ {pMax} : Len(cin[j]) < Len(cin[pMax])
4.1.3.1. AA ∧ Qwr ⇒ ✸(Qun ∧ Qwr)
4.1.3.2. AA ∧ (Qun ∧ Qwr) ⇒ ✷(Qun ∧Qwr)
4.1.3.3. AA ∧ ✷(Qun ∧ Qwr) ⇒ ✷✸〈B 〉w
4.1.3.4. Q.E.D.

Proof: 4.1.3.1–4.1.3.3 and temporal reasoning.

45

Each of our informal proofs can be replaced by hierarchical ones, which can
be carried down to the point where each step is justified by predicate logic
and TLA proof rules.

4.4.5 Discussion of the Proof

The key to managing any kind of complexity, including the complexity in-
herent in a nontrivial proof, is hierarchical structure. When reasoning in
a formal logic such as TLA, the proof rules and the structure of the for-
mulas determine the structure of the proof. For example, the first three
levels in the proofs of steps 1 and 3 were determined completely syntac-
tically; they could be generated mechanically. Most of the next level is
also determined syntactically—for example, the fact that Inv .2 has the form
∀i ∈ S : F (i)∧G(i) determines the high level outline of the proofs of 1.2.2.1–
1.2.2.5.

Because TLA is a formal logic, every step in the proof hierarchy is a pre-
cisely defined mathematical formula. Prose appears only in the lowest-level
proof. We can obtain a more reliable proof by replacing a prose proof with
one that is hierarchically structured. Ultimately, we would arrive at a proof
in which every step is purely syntactic, justified by the direct application
of a single proof rule—either of TLA or of predicate logic. However, before
that level of detail were reached, we could replace the prose by instructions
to a mechanical theorem prover [7].

Steps 1–3 prove a safety property of the complete cache. They consist
of action reasoning, with essentially no temporal logic. These steps are
the TLA version of the standard invariance and step-simulation proofs of
methods based on toy programming languages [22] and automata [9, 19].
However, our proofs are completely formal.

The proof of fairness in step 4 uses nontrivial temporal logic reasoning.
We know of no better formalism than temporal logic for writing rigorous
proofs of fairness properties. Had we done the proof in more detail, we
would have relied heavily on the TLA rules WF1 and WF2, which use action
reasoning to derive temporal logic formulas. (Rule WF1 is the TLA version
of Manna and Pnueli’s “single-step” rule for “just” transitions [20]. Because
their method is not hierarchical, Manna and Pnueli have no analog of rule
WF2.) Even for fairness properties, action reasoning forms the bulk of a
detailed TLA proof.

When we fill in more levels of detail in our proof, we discover that cer-
tain facts about actions are used in several places. For example, a closer
examination of our informal proof of step 4.1.2.1 reveals that it implicitly

46

uses step 3.1.1.5. Our hierarchical proof style allows the proof of 4.1.2.1 to
invoke step 3, but not any of its substeps [15]. Results that are used in
several steps must either be moved to a higher level in the proof, or else
proved in separate lemmas. We prefer to restructure a proof rather than
adding an array of external lemmas, so the structure of a complete, detailed
proof will differ from that of the proof presented here.

4.5 Epilogue

Structured hand proofs are much more reliable than conventional mathe-
matical proofs, but not as reliable as mechanically checked ones. Writing
such a proof is significantly easier than mechanical verification and we be-
lieve that, when done carefully, it is almost as reliable. The major parts
of the proofs of the theorems in module CacheCorrectness have been car-
ried out to a very detailed level. (All that remains is the low-level proof
of theorem CCequivACC .) We recently tested how good these proofs were
by using two tools under development: a TLA+ parser, being written by
Jean-Charles Grégoire, and the TLC model checker for a subclass of TLA+

specifications, being written by Yuan Yu. We now describe what we found.
The specifications that appear above were all formated in LATEX. The

syntax of TLA+ had changed in the three years since we submitted the
previous version of this article, so we first modified the specifications to
conform to the current syntax. All but one of these modifications were to
the declarations; we had to rewrite one short formula because a construct
had been removed from TLA+.

We manually converted the LATEX version of all the modules to ascii and
ran the parser on them. The parser can detect the usual syntactic errors
as well as undefined or multiply-defined identifiers. The parser found no
errors—except for ones introduced in the translation to ascii.12

We then applied the TLC model checker to the specifications LazyCache,
CCache, and ACCache.13 To use TLC, one describes a finite-state model
by giving explicit values to constant parameters (like the number N of pro-
cessors and the set Addr of addresses) and specifying constraints on the
maximum lengths of queues. When released, TLC should handle these three

12Because of a bug in the parser, a small part of the specification was not checked for
undefined identifiers.

13The specifications SeqDB1 and SeqDB2 do not have the canonical form I ∧✷[N]v ∧L
required by TLC. Although they can be put into that form by simple logical manipulation
(and ignoring hiding), the resulting specifications are not machine closed. TLC uses only
the initial predicate and next-state action, so the reachable states it computes are not all
reachable if the specification is not machine closed.

47

specifications as written, but the current version required us to make many
small modifications to them.

TLC checks for invariance, enumerating all reachable states and report-
ing an error if it finds one that does not satisfy a specified invariant. We
checked all three specifications with the type-correctness invariant. We also
checked ACCache with the invariant Inv defined in Figure 22. We used
models having two processors, two data values, and two addresses, and with
the following maximum queue lengths:

out/cout in/cin vcq vrq

LazyCache 1 2
CCache 2 3
ACCache 1 3 4 2

Checking each of these models involved examining millions of states. We
found one error: the fourth line in the definition of ARead in module
ACCache originally was 〈i , “Rd”, d , a 〉 ◦ s instead of 〈〈i , “Rd”, d , a 〉〉 ◦ s.
A minor problem with the current version of TLC required that we replace
◦ with a prefix operator, and we noticed this error when modifying the ex-
pression. Had we not seen it then, we would have found it quickly when
TLC reported a trace that violated the type-correctness invariant.

Invariance for a finite model does not imply invariance for the actual
specification. Fairly small models are usually enough to catch errors in a
simple type invariant. Our model for ACCache is probably large enough
to have discovered if Inv is not an invariant of the specification. However,
an invariant of a specification is one that is true of all reachable states.
We proved the stronger condition that Inv is an invariant of the next-state
relation—meaning that it is true in any state reachable from a state satisfy-
ing Inv , not just in states reachable from an initial state. TLC cannot check
this property for a large enough model.

These tests suggest that structured hand proofs are effective in elimi-
nating errors in specifications. The absence of syntax errors in about 375
lines of specification and the apparent absence of type-invariance errors in
200 of those lines show that one reads a specification very carefully when
reasoning about it. The proof of invariance of Inv is the largest single part
of our proof, and TLC’s inability to find an error in it speaks well for the
proof method. But the one error we did find reminds us that hand proofs
are not perfect.

48

References

[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82(2):253–284, May 1991.

[2] Mart́ın Abadi, Leslie Lamport, and Stephan Merz. Refining specifica-
tions. To appear.

[3] Yehuda Afek, Geoffrey Brown, and Michael Merritt. Lazy
caching. ACM Transactions on Programming Languages and Systems,
15(1):182–205, January 1993.

[4] E. A. Ashcroft. Proving assertions about parallel programs. Journal of
Computer and System Sciences, 10:110–135, February 1975.

[5] K. Mani Chandy and Jayadev Misra. Parallel Program Design.
Addison-Wesley, Reading, Massachusetts, 1988.

[6] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social
processes and proofs of theorems and programs. Communications of
the ACM, 22(5):271–280, May 1979.

[7] Urban Engberg, Peter Grønning, and Leslie Lamport. Mechanical veri-
fication of concurrent systems with TLA. In G. v. Bochmann and D. K.
Probst, editors, Proceedings of the Fourth International Conference on
Computer Aided Verification, volume 663 of Lecture Notes in Computer
Science, pages 44–55, Berlin, June 1992. Springer-Verlag. Proceedings
of the Fourth International Conference, CAV’92.

[8] Rob Gerth. Introduction to sequential consistency and the lazy caching
algorithm. Distributed Computing, 1995.

[9] Simon S. Lam and A. Udaya Shankar. Protocol verification via projec-
tions. IEEE Transactions on Software Engineering, SE-10(4):325–342,
July 1984.

[10] Leslie Lamport. What good is temporal logic? In R. E. A. Mason,
editor, Information Processing 83: Proceedings of the IFIP 9th World
Congress, pages 657–668, Paris, September 1983. IFIP, North-Holland.

[11] Leslie Lamport. A simple approach to specifying concurrent systems.
Communications of the ACM, 32(1):32–45, January 1989.

49

[12] Leslie Lamport. Hybrid systems in TLA+. In Robert L. Grossman, Anil
Nerode, Anders P. Ravn, and Hans Rischel, editors, Hybrid Systems,
volume 736 of Lecture Notes in Computer Science, pages 77–102, Berlin,
Heidelberg, 1993. Springer-Verlag.

[13] Leslie Lamport. How to write a long formula. Formal Aspects of Com-
puting, 6:580–584, 1994. First appeared as Research Report 119, Digital
Equipment Corporation, Systems Research Center.

[14] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, May 1994.

[15] Leslie Lamport. How to write a proof. American Mathematical Monthly,
102(7):600–608, August-September 1995.

[16] Leslie Lamport. How to make a correct multiprocess program exe-
cute correctly on a multiprocessor. IEEE Transactions on Computers,
46(7):779–782, July 1997.

[17] Leslie Lamport and Stephan Merz. Specifying and verifying fault-
tolerant systems. In H. Langmaack, W.-P. de Roever, and J. Vy-
topil, editors, Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems, volume 863 of Lecture Notes in Computer Science, pages 41–76.
Springer-Verlag, September 1994.

[18] Leslie Lamport and Lawrence C. Paulson. Should your specification
language be typed? Research Report 147, Digital Equipment Corpora-
tion, Systems Research Center, May 1997.

[19] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, San
Mateo, California, 1995.

[20] Zohar Manna and Amir Pnueli. Completing the temporal picture. The-
oretical Computer Science, 83(1):97–130, 1991.

[21] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag, New York, 1991.

[22] S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs I. Acta Informatica, 6(4):319–340, 1976.

50

