
Chapter on Distributed Computing

Leslie Lamport and Nancy Lynch

February 3, 1989

Contents

1 What is Distributed Computing? 1

2 Models of Distributed Systems 2
2.1 Message-Passing Models . 2

2.1.1 Taxonomy . 2
2.1.2 Measuring Complexity 6

2.2 Other Models . 8
2.2.1 Shared Variables . 8
2.2.2 Synchronous Communication 9

2.3 Fundamental Concepts . 10

3 Reasoning About Distributed Algorithms 12
3.1 A System as a Set of Behaviors 13
3.2 Safety and Liveness . 14
3.3 Describing a System . 14
3.4 Assertional Reasoning . 17

3.4.1 Simple Safety Properties 17
3.4.2 Liveness Properties . 20

3.5 Deriving Algorithms . 25
3.6 Specification . 26

4 Some Typical Distributed Algorithms 27
4.1 Shared Variable Algorithms 28

4.1.1 Mutual Exclusion . 28
4.1.2 Other Contention Problems 31
4.1.3 Cooperation Problems 32
4.1.4 Concurrent Readers and Writers 33

4.2 Distributed Consensus . 34
4.2.1 The Two-Generals Problem 35
4.2.2 Agreement on a Value 35
4.2.3 Other Consensus Problems 38
4.2.4 The Distributed Commit Problem 41

4.3 Network Algorithms . 41
4.3.1 Static Algorithms . 42
4.3.2 Dynamic Algorithms 44
4.3.3 Changing Networks 47
4.3.4 Link Protocols . 48

i

4.4 Concurrency Control in Databases 49
4.4.1 Techniques . 50
4.4.2 Distribution Issues . 51
4.4.3 Nested Transactions 52

ii

Abstract

Rigorous analysis starts with a precise model of a distributed system; the
most popular models, differing in how they represent interprocess commu-
nication, are message passing, shared variables, and synchronous communi-
cation. The properties satisfied by an algorithm must be precisely stated
and carefully proved; the most successful approach is based on assertional
reasoning. Algorithms for solving particular problems in a distributed sys-
tem can then be designed and analyzed. Typical of the problems that have
been addressed are concurrently accessing shared data, achieving consensus,
analyzing network topology, obtaining consistent global information, and
controlling database transactions.

1 What is Distributed Computing?

In the term distributed computing, the word distributed means spread out
across space. Thus, distributed computing is an activity performed on a spa-
tially distributed system. Although one usually speaks of a distributed sys-
tem, it is more accurate to speak of a distributed view of a system. A hard-
ware designer views an ordinary sequential computer as a distributed system,
since its components are spread across several circuit boards, while a Pas-
cal programmer views the same computer as nondistributed. An important
problem in distributed computing is to provide a user with a nondistributed
view of a distributed system—for example, to implement a distributed file
system that allows the client programmer to ignore the physical location of
his data.

We use the term model to denote a view or abstract representation of a
distributed system. We will describe and discuss models informally, although
we do present formal methods that can be used to reason about them.

The models of computation generally considered to be distributed are
process models, in which computational activity is represented as the con-
current execution of sequential processes. Other models, such as Petri
nets [Thi85], are usually not studied under the title of distributed comput-
ing, even though they may be used to model spatially distributed systems.
We therefore restrict our attention to process models.

Different process models are distinguished by the mechanism employed
for interprocess communication. The process models that are most obviously
distributed are ones in which processes communicate by message passing—
a process sends a message by adding it to a message queue, and another
process receives the message by removing it from the queue. These models
vary in such details as the length of the message queues and how long a delay
may occur between when a message is sent and when it can be received.
There are two significant assumptions embodied in message-passing models:

• Message passing represents the dominant cost of executing an algo-
rithm.

• A process can continue to operate correctly despite the failure of other
processes.

The first assumption distinguishes the use of message passing in distributed
computing from its use as a synchronization mechanism in nondistributed
concurrent computing. The second assumption characterizes the important

1

subfield of fault-tolerant computing. Some degree of fault tolerance is re-
quired of most real distributed systems, but one often studies distributed
algorithms that are not fault tolerant, leaving other mechanisms (such as
interrupting the algorithm) to cope with failures.

Other process models are considered to be distributed if their interpro-
cess communication mechanisms can be implemented efficiently enough by
message passing, where efficiency is measured by the message passing costs
incurred in achieving a reasonable degree of fault-tolerance. Algorithms ex-
ist for implementing virtually any process model by a message passing model
with any desired degree of fault tolerance. Whether an implementation is
efficient enough, and what constitutes a reasonable degree of fault toler-
ance are matters of judgement, so there is no consensus on what models are
distributed.

2 Models of Distributed Systems

2.1 Message-Passing Models

2.1.1 Taxonomy

A wide variety of message-passing models can be used to represent dis-
tributed systems. They can be classified by the assumptions they make
about four separate concerns: network topology, synchrony, failure, and
message buffering. Different models do not necessarily represent different
systems; they may be different views of the same system. An algorithm for
implementing (or simulating) one model with another provides a mechanism
for implementing one view of a system with a lower-level view. The entire
goal of system design is to implement a simple and powerful user-level view
with the lower-level view provided by the hardware.

Network Topology The network topology describes which processes can
send messages directly to which other processes. The topology is described
by a communication graph whose nodes are the processes, and where an
arc from process i to process j denotes that i can send messages directly
to j. Most models assume an undirected graph, where an arc joining two
processes means that each can send messages to the other. However, one
can also consider directed graph models in which there can be an arc from
i to j without one from j to i, so i can send messages to j but not vice
versa. We use the term link to denote an arc in the communication graph;

2

a message sent directly from one process to another is said to be sent over
the link joining the two processes.

In some models, each process is assumed to know the complete set of pro-
cesses, and in others a process is assumed to have only partial knowledge—
usually the identity of its immediate neighbors. The simplest models, em-
bodying the strongest assumptions, are ones with a completely connected
communication graph, where each nonfaulty process knows about and can
send messages directly to every other nonfaulty process. Routing algorithms
are used to implement such a model with a weaker one.

Synchrony In the following discussion, all synchrony conditions are as-
sumed to apply only in the absence of failure. Failure assumptions are
treated separately below.

A completely asynchronous model is one with no concept of real time. It
is assumed that messages are eventually delivered and processes eventually
respond, but no assumption is made about how long it may take.

Other models introduce the concept of time and assume known upper
bounds on message transmission time and process response time. For sim-
plicity, in our examples we will use the simplest form of this assumption,
that a message generated in response to an event at any time t (such as the
receipt of another message) arrives at its destination by time t+ δ, where δ
is a known constant.

Processes need some form of real-time clock to take advantage of this
assumption. The simplest type of clock is a timer, which measures elapsed
time; the instantaneous values of different processes’ timers are independent
of one another. Timers are used to detect failure, the assumption made
above implying that a failure must have occurred if the reply to a message
is not received within 2δ seconds of the sending of that message.

Some models make the stronger assumption that processes have syn-
chronized clocks that run at approximately the correct rate of one second
of clock time per second of real time. The simplest such assumption, which
we use in our discussion, is that at each instant, the clocks of any two pro-
cesses differ by at most ε for some known constant ε. Algorithms can use
synchronized clocks to reduce the number of messages that need to be sent.
For example, if a process is supposed to send a message at a known time
t, then the receiving process knows that there must have been a failure if
the message did not arrive by approximately time t + δ + ε on its clock—
the δ due to delivery time and the ε due to the difference between the two

3

processes’ clocks. Thus, one can test for failure by sending a single message
rather than the query and response required with only timers. It appears
to be a fundamental property of distributed systems that algorithms which
depend upon synchronized clocks incur a delay proportional to the bound
on clock differences (taken to be ε in our discussion).

Given a bound on the ratio of the running rates of any two processes’
timers, and the assumed bound on message and processing delays, algo-
rithms exist for constructing synchronized clocks from timers. These algo-
rithms are discussed later.

The most strongly synchronous model is one in which the entire com-
putation proceeds in a sequence of distinct rounds. At each round, every
process sends messages, possibly to every other process, based upon the
messages that it received in previous rounds. Thus, the processes act like
processors in a single synchronous computer. This model is easily simulated
using synchronized clocks by letting each round begin δ + ε seconds after
the preceding one.

Failure In message-passing models, one can consider both process failures
and communication failures. It is commonly assumed that communication
failure can result only in lost messages, although duplication of messages is
sometimes allowed. Models in which incorrect messages may be delivered are
seldom studied because it is believed that in practice, the use of redundant
information (checksums) allows the system to detect garbled messages and
discard them.

Models may allow transient errors that destroy individual messages, or
they may consider only failures of individual links. A link failure may cause
all messages sent over the link to be lost or, in a model with timers or clocks,
a failed link may deliver messages too late. Since algorithms that use timers
or clocks usually discard late messages, there is little use in distinguishing
between late and lost messages. Of particular concern in considering link
failures is whether or not one considers the possibility of network partition,
where the communication graph becomes disconnected, making it impossible
for some pairs of nodes to communicate with each other.

The weakest assumption made about process failure is that failure of one
process cannot affect communication over a link joining two other processes,
but any other behavior by the failed process is possible. Such models are
said to allow Byzantine failure.

More restrictive models permit only omission failures, in which a faulty

4

process fails to send some messages. (Since late messages are usually dis-
carded, failures that cause a process to send messages too late can be con-
sidered omission failures.)

The most restrictive models allow only halting failures, in which a failed
process does nothing. In the subclass of fail-stop models, other processes
know when a process has failed [SA86].

In addition to the actual failure mode, some models make assumptions
about how a failed process may be restarted. Models that allow only halting
failures often assume some form of stable storage that is not affected by a
failure. A failed process is restarted with its stable storage in the same state
as before the failure and with every other part of its state restored to some
initial values.

Failure models are problematic because it is difficult to determine how
accurately they describe the behavior of real systems. It seems to be a
widely held view among implementers of distributed systems that message
loss and link failure adequately represent intercomputer communication fail-
ures. Whether or not a particular model of process failure is suitable depends
upon the degree of reliability one requires of the system. There is general
agreement that halting failure represents the most common type of com-
puter failure—the familiar “system crash”. It seems to provide a suitable
model when only modest reliability is required. Omission faults, caused by
unusual demand slowing down a computer’s response time, should probably
be considered when greater reliability is required. When extremely high
reliability is required—especially when failure of the entire system could be
life threatening—it seems necessary to assume Byzantine failures.

As we describe later, algorithms that tolerate Byzantine failures are more
costly than ones that tolerate only more restricted failures. Less costly
algorithms can be achieved by strengthening Byzantine failure models to
allow digital signatures [DH79]. It is assumed that given an arbitrary data
item D, any nonfaulty process i can generate a digital signature S(i,D) such
that any other process can determine whether a particular value v equals
S(i,D) for a given D, but no other process can generate S(i,D). Although
digital signatures are a cryptographic concept, in practical fault-tolerant
algorithms they are implemented with redundancy. It is believed that, by
the careful use of redundancy, the assumption made about digital signatures
can be achieved with high enough probability to allow the use of the model
even when extremely high reliability is required.

5

Message Buffering In message-passing models, there is a delay between
when a message is sent and when it is received. Such a delay implies that
there is some form of message buffering. Models may assume either finite
or infinite buffers. With finite buffers, any link may contain only a fixed
maximum number of messages that have been sent over that link but not
yet received. When the link’s buffer is full, attempts to send an additional
message over the link either fail and produce some error response to the
sending process or else cause the sending process to wait until there is room
in the buffer. With infinite buffers, there may be arbitrarily many unreceived
messages in a link’s buffer, and the sender can always send another message
over the link. Although any real system has a finite capacity, this capacity
may be large enough to make infinite buffering a reasonable abstraction.

If a link’s buffer can hold more than one message, it is possible for
messages to be received in a different order than they were sent. Models with
FIFO (first-in-first-out) buffering assume that messages that are not lost are
always received in the same order in which they were sent. Many algorithms
for asynchronous systems work only under the assumption of FIFO buffering.
In most algorithms for systems with timers or synchronized clocks, a process
does not send a message to another process until it knows that the previous
message to that process has either been delivered or lost, so FIFO buffering
need not be assumed. At the lowest level, real distributed systems usually
provide FIFO buffering. This need not be the case at higher levels, where
messages may be routed to their destination along multiple possible paths.
However, if it is not provided by the underlying communication mechanism,
FIFO buffering can be implemented by numbering the messages.

2.1.2 Measuring Complexity

There are two basic complexity measures for distributed algorithms: time
and message complexity. The time complexity of an algorithm measures
the time needed both for message transmission and for computation within
the processes. However, computations performed by individual processes
are traditionally ignored, only message-passing time being counted. This is
a reasonable approximation for current computer networks in which mes-
sage delivery time is usually several milliseconds or more, while computer
operations are measured in microseconds. However, a millisecond is only
a thousand microseconds, and a practical algorithm should not perform
millions of extra calculations to save a few messages. Moreover, the large
difference between message delivery time and processing time should not

6

be taken for granted. Although it takes much longer for electromagnetic
signals to travel within a processor than between processors in a spatially
distributed system, current processing speed is limited primarily by circuit
delays rather than transmission speed. With current technology, the high
cost of sending a message is an artifact of the way systems are designed,
since electrical signals can travel a kilometer in a few microseconds.

The usual measure of message-passing time for an algorithm is the length
of the longest chain of messages that occurs before the algorithm terminates,
where each message in the chain except the first is generated by the receipt
of the previous one. For completely asynchronous models, where no as-
sumptions are made about message delivery times, this seems to be the only
reasonable way to measure worst-case message-passing time; for synchronous
models that operate in rounds, it is just the number of rounds. The mea-
sure can be refined to take account of more precise timing assumptions—for
example, if transmission delays are different for different links. Of course,
processing time should be included in the time complexity if it is significant.

The most common measure of message complexity is the total number
of messages transmitted. If messages contain on the order of a few hundred
bits or more, then the total number of bits sent might be a better measure
of the cost than the number of messages. In many algorithms, a process
broadcasts the same message to n other processes. Depending upon the
implementation details of the system, such a broadcast might cost as much
as sending n separate messages, or it might cost no more than sending a
single message.

Tradeoffs between time and message complexity are often possible. The
minimal-time algorithm is usually simple, with more complex algorithms
saving messages, but taking longer to terminate. It is often possible to
“improve” algorithms by reducing their message complexity at the expense
of their time complexity. However, many distributed systems contain few
enough processes that an algorithm with a message complexity proportional
to the square of the number of processes is quite practical and is often better
than a more complicated one that uses fewer messages but takes longer.

As with sequential algorithms, there is also the question of whether to
measure worst-case or average behavior—for example, whether to measure
the maximum number of messages that can be sent or the expected number
(in the sense of probability theory). When high reliability is required, worst-
case behavior is usually the appropriate measure. In other cases, the average
cost may be more important. Average costs have been derived mainly for
probabilistic algorithms, in which processes make random choices.

7

2.2 Other Models

Other models of concurrent systems are usually described in terms of lan-
guage constructs for interprocess communication. This can lead to the con-
fusion of underlying concepts (what one says) with language issues (how one
says it), but we know of no simple alternative for classifying the standard
models.

2.2.1 Shared Variables

In the earliest models of concurrency, processes communicate through global
shared variables—program variables that can be read and written by all pro-
cesses. Initially, the shared variables were accessed by the ordinary program
operations of expression evaluation and assignment; later variations included
synchronization primitives such as semaphores [Dij68] and monitors [Hoa74]
to control access to shared variables. Global shared variable models provide
a natural representation of multiprocessing on a single computer with one
or more processors connected to a central shared memory.

The most natural and efficient way to implement global shared variables
with message passing is to have each shared variable maintained by a sin-
gle process. That process can access the variable locally; it requires two
messages for another process to read or write the variable. A read requires
a query and a response with the value; a write requires sending the new
value and receiving an acknowledgement that the operation was done—the
acknowledgement is required because the correctness of shared-variable al-
gorithms depends upon the assumption that a write is completed before the
next operation is begun.

Such an implementation of global shared variables is not at all fault
tolerant, since failure of the process holding the variable blocks the progress
of any other process that accesses it. A fault-tolerant implementation must
maintain multiple copies of the variable at different processes, which requires
much more message passing. Hence, global shared variable models are not
generally considered to be distributed.

A more restrictive class of models permits interprocess communication
only through local shared variables, which are shared variables that are
“owned” by individual processes. A local shared variable can be read by
multiple processes, but it can be written only by the process that owns it.
Reading a variable owned by a failed process is assumed to return some
default value.

8

2.2.2 Synchronous Communication

Synchronous communication was introduced by Hoare in his Communicating
Sequential Processes (CSP) language [Hoa78]. In CSP, process i sends a
value v to process j by executing the output command j!v; process j receives
that value, assigning it to variable x, by executing the input command i?x.
Unlike the case of ordinary message passing, the input and output commands
are executed synchronously. Execution of a j!v operation is delayed until
process i is ready to execute an i?x operation, and vice versa. Thus, a
CSP communication operation waits until a corresponding communication
operation can be executed in another process.

There is an obvious way to implement synchronous communication with
message passing. Process i begins execution of a j!v command by sending
a message to j with the value v; when process j is ready to execute the
corresponding i?x command, it sends an acknowledgement message to i and
proceeds to its next operation. Process i can continue its execution when it
receives the acknowledgement.

Many concurrent algorithms require that a process be prepared to com-
municate with any one of several processes, but actually communicate with
only one of them before doing some further processing. With synchronous
communication primitives, this means that a process must be prepared to
execute any one of a set of input and/or output commands. If each process
could be waiting for an arbitrary set of communication commands, then
deciding which communications should occur could require a complicated
distributed algorithm. For example, consider a network of three processes,
each of which is ready to communicate with either one of the other two. Any
pair of them can execute their corresponding communication actions, but
only one pair may do so, and deciding upon that pair requires a distributed
algorithm. To get around this difficulty, CSP allows a process to wait for an
arbitrary set of input commands, but it may not be waiting for any other
communication if it is ready to perform an output command. The choice
of which communication to perform can then be made within a process, so
each communication action requires only two messages.

Although CSP allows an efficient implementation with message passing,
it does not permit fault tolerant algorithms. A process i that is waiting to
execute a j!v command cannot continue unless process j executes a corre-
sponding i?x command. The failure of process j therefore halts the execution
of process i. (This could be avoided if i could wait to communicate with
any one of several processes, which CSP prohibits.) Despite this difficulty,

9

CSP is often considered a distributed model.
Closely related to synchronous communication is the remote procedure

call or rendezvous. A remote procedure call is executed just like an ordinary
procedure call, except the procedure is executed in another process. It can
be implemented with two messages: one to send the arguments of the call in
one message and another to return the result. Halting and omission failures
can be handled by having the procedure call return an error result or raise an
exception if no response to the first message is received. Remote procedure
call is currently the most widely used language construct for implementing
distributed systems without explicit message-passing operations.

2.3 Fundamental Concepts

The theory of sequential computing rests upon fundamental concepts of
computability that are independent of any particular computational model.
If there are any such fundamental formal concepts underlying distributed
computing, they have yet to be developed. At present, the field seems to
consist of a collection of largely unrelated results about individual models.
Nevertheless, one can make some informal observations that seem to be
important.

Underlying almost all models of concurrent systems is the assumption
that an execution consists of a set of discrete events, each affecting only part
of the system’s state. Events are grouped into processes, each process being
a more or less completely sequenced set of events sharing some common
locality in terms of what part of the state they affect. For a collection of
autonomous processes to act as a coherent system, the processes must be
synchronized.

From the original work on concurrent process synchronization emerged
two distinct classes of synchronization problem: contention and cooperation.
The archetypical contention problem is the mutual exclusion problem, in
which each process has a critical section and processes must be synchronized
so that no two of them execute their critical section at the same time [Dij65].
As originally stated, this problem includes the requirement that a process be
allowed to halt when not executing its critical section or its synchronization
protocol. With this requirement, solutions are possible in shared-variable
models but not in asynchronous message-passing models, which require that
a process receive a message from every other process before it can enter
its critical section. However, the mutual exclusion problem without this
requirement has been studied in asynchronous message-passing systems.

10

The classic problem in cooperation is the bounded buffer problem, in
which an unbounded sequence of values are transmitted in order from a
sender process to a receiver process, using a fixed-length array of registers
as a buffer. The receiver must wait when the buffer is empty, and the
sender must wait when the buffer is full. This problem is best viewed as a
symmetrical one, in which the sender generates filled buffer elements for use
by the receiver and the receiver generates empty buffer elements for use by
the sender.

The fundamental difference between these two forms of synchronization
is that in contention problems a process must be able to make unlimited
progress even if other processes fail to progress, while in cooperation prob-
lems the progress of one process depends upon the progress of another. For
example, in the mutual exclusion problem, a process may enter its crit-
ical section an unlimited number of times while other processes are not
requesting entrance, but in the bounded buffer problem, after the producer
has filled the buffer it cannot proceed until the consumer creates an empty
buffer element.

Problems of contention and cooperation appear in all models of concur-
rency. A class of problem that has arisen in the study of message-passing
models is that of global consistency. For example, in a distributed banking
system, one would like all branches of the bank to have a consistent view
of the balance of any single account. In general, one would like to describe
a distributed system in terms of its current global state. The global con-
sistency problem is to ensure that all processes have a consistent view of
the state. In the banking example, the amount of money currently in each
account is part of the state.

To define a global state, there must be a total ordering of all transac-
tions—to determine if there is enough money in my account for a withdrawal
request to be granted, one must know if a deposit action occurred before or
after the request. In an asynchronous message-passing model, there is no
natural total ordering of events, only the partial ordering among events de-
fined by letting event a precede event b if there is information flow permitting
a to affect b. The definition of a global state requires completing the par-
tial ordering of events, defined by the causality relation, to a total ordering.
Achieving global consistency can be reduced to the problem of guaranteeing
that all processes choose the same total ordering of events, thereby having
the same definition of the global system state. One method of achieving this
common total ordering is through the use of logical clocks [Lam78]. A logical
clock is a counter maintained by each process with the property that if event

11

a precedes event b, then the time of event a precedes the time of event b,
where the time of an event is measured on the logical clock of the process
at which the event occurred. Logical clocks are implemented by attaching
a timestamp, containing the current value of the sender’s logical clock, to
each message.

Because there is no unique definition of a global state in a message-
passing model, it is sometimes mistakenly argued that one should not use
the global state in reasoning about such models. The absence of a unique
definition of the global state does not mean that we cannot reason in terms
of an arbitrarily chosen definition. The method of reasoning we describe
below, which involves reasoning about the state of a system, is useful for all
concurrent models, including message-passing ones.

Another way of viewing the global consistency problem is in terms of
knowledge. The problem exists because it is impossible for a process to
know the current global state, since the concurrent activity of other pro-
cesses can render its knowledge obsolete. It is rather natural to think about
distributed algorithms in terms of what each process knows, and reasoning
about the limitations on a process’s knowledge forms the basis for proofs of
many of the impossibility results described below. However, only recently
has there been an attempt to perform this reasoning within formal theories
of knowledge. [HM84]. These theories of knowledge provide a promising
approach to a fundamental theory of distributed processing, but, at this
writing, it is too early to know how successful they will prove to be.

3 Reasoning About Distributed Algorithms

Concurrent algorithms can be deceptive; an algorithm that looks simple
may be quite complex, allowing unanticipated behavior. Rigorous reasoning
is necessary to determine if an algorithm does what it is supposed to, and
rigorous reasoning requires a formal foundation.

Here, we discuss verification—proving properties of concurrent algo-
rithms. In verification, the properties to be proved are stated in terms of the
algorithm itself—that is, in terms of the algorithm’s variables and actions.
The related field of specification, in which the properties to be satisfied are
expressed in higher-level, implementation-independent terms, is considered
briefly in Section 3.6. Specification methods must deal with the subtle ques-
tion of what it means for a lower-level algorithm to implement a higher-level
description. This question does not arise in the verification methods that

12

we discuss, since the description of the algorithm and the properties to be
proved are expressed in terms of the same objects.

3.1 A System as a Set of Behaviors

We have already seen that there are a wide variety of computational models
of concurrent systems. However, they can almost all be described in terms of
a single formal model, which forms the basis for our discussion of verification.
In this model, we represent a concurrent system by a triple consisting of a
set S of states, a set A of actions, and a set Σ of behaviors, each behavior
being a finite or infinite sequence of the form

s0
α1→ s1

α2→ s2 . . . (1)

where each si is a state and each αi is an action. (If the sequence is finite,
then it ends with a state sn.) A state describes the complete instantaneous
state of the system, an action is a system operation that is taken to be
indivisible, and a behavior represents an execution of the system whose ith

action αi takes the system from state si−1 to state si. The set Σ represents
the set of all possible system executions.

Most verification methods regard a behavior as either a sequence of states
or a sequence of actions. Having states and actions in a behavior allows our
discussion to apply to both approaches.

To reason about a system, one must first describe the triple S, A, Σ that
represents it—for example, by a program in some programming language.
Properties of the system are expressed by assertions about the set Σ. Here
are three examples to indicate, very informally, how this is done.

mutual exclusion For every state si of every behavior of Σ, in si there is
at most one process in its critical section. (For a state to be a complete
description of the instantaneous state of the system, it must describe
which processes are in their critical section.)

lockout-freedom: (This property asserts that a process that wants to enter
its critical section eventually does so.) For every behavior of the form
(1) in Σ and every i ≥ 0, if si is a state in which a process is requesting
entry to its critical section, then there is some j > i such that sj is a
state in which that process is in its critical section.

bounded message delay: If αi is the action of sending a message, si−1 is
a state in which the time is T , and sj is a state in which the time is

13

greater than T + δ, then there is a k with i < k < j such that αk is
the action of receiving that message. (This assumes that the current
time is part of the state.)

3.2 Safety and Liveness

Any model is an abstraction that represents only some aspects of the system,
and the choice of model restricts the class of properties one can reason about.
Most formal reasoning about concurrent systems has been aimed at proving
two kinds of properties: safety and liveness. Intuitively, a safety property
asserts that something bad does not happen, and a liveness property asserts
that something good eventually does happen.

In sequential computing, the most commonly studied safety property is
partial correctness—if the program is started with correct input, then it
does not terminate with the wrong answer, and the most commonly studied
liveness property is termination—the program eventually terminates. A
richer variety of safety and liveness properties are studied in concurrent
computing; for example, mutual exclusion and bounded message delay are
safety properties and lockout-freedom is a liveness property.

There are other classes of properties besides safety and liveness that are
of interest—for example, the assertion that there is a .99 probability that the
transmission delay is less than δ is neither a safety nor a liveness property.
However, safety and liveness are the major classes of properties for which
there are well developed methods of formal reasoning, so we will restrict our
attention to them.

A safety or liveness property is an assertion about an individual behavior.
It is satisfied by the system if it is true for all behaviors in Σ. A safety
property is one that is false for a behavior if and only if it is false for
some finite initial prefix of the behavior. (Intuitively, if something bad
happens, then it happens after some finite number of actions.) A liveness
property is one in which any finite behavior can be extended to a finite or
infinite behavior (not necessarily a behavior of the program) that satisfies
the property [AS85]. (Intuitively, after any finite portion of the behavior, it
must still be possible for a good thing to happen.)

3.3 Describing a System

To give a formal description of a system, one must define the sets of states S,
actions A, and behaviors Σ. A state is defined to be an assignment of values

14

to some set of variables, where the variables may include ordinary program
variables, message buffers, “program counters”, and whatever else is needed
to describe completely the instantaneous state of the computation. The set
of actions is usually explicitly enumerated—for example, it may include all
actions of the form i sends m to j for particular processes i and j and a
particular message m. Actions represent internal operations of the system
as well as input and output operations.

There are two general approaches to describing the set Σ. They may be
called the constructive and axiomatic approaches, though we shall see that
these names are misleading. In the constructive approach, one describes
Σ by a program, where Σ is defined to be the set of all possible behaviors
obtained by executing the program. The program may be written in a
conventional programming language, or in terms of a formal model such
as I/O automata [LT87] or Unity [CM88]. In the axiomatic approach, one
describes Σ by a set of axioms, where Σ is defined to be the set of all
sequences of the form of formula (1) that satisfy the axioms. The axioms may
be written in a formal system—some form of temporal logic [Eme, Pnu77]
being a currently popular choice—or in a less formal mathematical notation.

Axiomatic descriptions lead directly to a method of reasoning. If S is
the set of axioms that describe Σ, and C is a property expressed in the
same formal system as S, then the system satisfies C if and only if the
formula S � C is valid. On the other hand, constructive descriptions are
often more convenient than axiomatic ones, since programming languages
are designed especially for describing computations while formal systems are
usually chosen for their logical properties.

In a constructive description, one specifies the possible state transitions
s

α→ t caused by each action α of A. A behavior of the form (1) is in Σ
only if: (i) each transition si−1

αi→ si is a possible state transition of αi, and
(ii) it is either infinite or it terminates in a state in which no further action
is possible.

Formally, one defines a relation Γ(α) on S for each action α of A, where
(s, t) ∈ Γ(α) if and only if executing the action α in state s can produce
state t. The action α is said to be enabled in state s if there exists some
state t with (s, t) ∈ Γ(α). For example, the operation send m to j in process
i’s code is represented by the action α such that (s, t) is in Γ(α) if and only
if s is a state in which control in process i is at operation α and t is the
same as s except with m added to the queue of messages from i to j and
with control in process i at the next operation after α; this action is enabled
if and only if control is at the operation and the message queue is not full.

15

The behavior (1) is in Σ only if: (i) (si−1, si) ∈ Γ(αi) for all i, and (ii) the
sequence is either infinite or ends in a state sn in which no action is enabled.
Observe that condition (i) is a safety property.

In this definition, we include in Σ behaviors that start in any arbitrary
state, including intermediate states one expects to encounter only in the
middle of a computation and states that cannot occur in any computation.
The properties one proves are of the form: if a behavior starts in a certain
initial state, then For example, the set Σ for a mutual exclusion al-
gorithm includes behaviors starting with several processes in their critical
section. It is customary to include in the description a set of valid initial
states, and to include in Σ only those behaviors starting in such a state.
However, we find it more convenient not to assume any preferred starting
states because, as we shall see, when proving liveness properties one must
reason about the system’s behavior starting from a point in the middle of
the computation.

In addition to satisfying the two conditions above, sequences in Σ are
usually required to satisfy some kind of fairness condition. For example, one
may require that the sequence contain infinitely many actions from every
process unless a point is reached after which no further actions of the process
are enabled. This condition is expressed more formally by requiring that for
every process k, either infinitely many of the αi are actions of k or else there
is some n such that no action of k is enabled in any state si with i > n.
Fairness conditions are liveness properties.

In practice, fairness conditions do not affect the safety properties of a
system. This means that if all behaviors in the set Σ described by a program
satisfy a safety property C, then all behaviors satisfying only condition (i),
with no fairness requirement, also satisfy C. Intuitively, safety properties
are assertions about any arbitrarily long finite portion of the behavior, while
liveness properties restrict only the infinite behavior. One can easily devise
fairness conditions that affect safety properties—for example, the fairness
requirement that every process executes infinitely many actions implies the
safety property that no process ever reaches a halting state. However, such
fairness conditions are unnatural and are never assumed in practice.

For reasoning about safety properties, one can therefore ignore condition
(ii) and fairness conditions and consider only the relations Γ(α) defined by
the actions. (In fact, (ii) really is a fairness condition.) Conversely, formal
models that do not include fairness conditions are suitable only for studying
safety properties, not liveness properties.

One can express conditions (i) and (ii) and the fairness conditions in a

16

suitably chosen formal system. Expressing them in this way provides an ax-
iomatic semantics for constructive descriptions, meaning that every program
description in the form of a program can be translated into a collection of
axioms. Thus, constructive descriptions can be viewed as a special class of
axiomatic ones. In particular, we can adopt the simple approach to formal
reasoning in which a program satisfies a property C if and only if S � C is
valid, where S is the translation of the program as a set of axioms. While
this approach provides a formal definition of what it means for a program
to satisfy a property, it does not necessarily provide a practical method for
reasoning about programs because the axioms derived from conditions (i)
and (ii) may be too complicated.

3.4 Assertional Reasoning

Verifying that a system satisfies a property C means showing that every
behavior satisfying the definition of system behaviors also satisfies C. The
obvious way of doing this is to reason directly about sequences, using either
a temporal logic or direct mathematical reasoning about sequences. The
problem with such an approach is that concurrent systems can exhibit a
wide variety of possible behaviors. Reasoning directly about behaviors can
become quite complex, with many different cases to consider. It is not clear
if there are satisfactory methods for coping with this complexity.

Assertional methods attempt to overcome this difficulty by reducing
the problem of reasoning about concurrent systems to that of reasoning
separately about each individual action. In an assertional method, attention
is concentrated on the states. A behavior is considered to be a (finite or
infinite) sequence of states s0 → s1 → s2 → · · · and properties are expressed
in terms of state predicates—boolean-valued functions on the set of states.
Safety and liveness properties are handled by separate techniques.

3.4.1 Simple Safety Properties

It is convenient to introduce a bit of temporal logic to express properties.
We interpret a state predicate P as an assertion about behaviors by defining
P to be true for a behavior if and only if it is true for the first state of the
behavior. We define ✷P to be the assertion that is true for a behavior if
and only if P is true for all states in the behavior, so ✷P asserts that P is
“always” true.

Traditional assertional methods prove safety properties of the form P ⇒

17

✷Q for state predicates P and Q. Most safety properties that have been
considered are of this form, with P being the predicate asserting that pro-
gram control is at the beginning and all program variables have their correct
initial values. For example, partial correctness is expressed by letting Q be
the predicate asserting that if control is at the end then the variables have
the correct final values, and mutual exclusion is expressed by letting Q be
the predicate asserting that no two processes are in their critical sections.
Proving such a property means showing that a certain class of states in S,
namely the states in which Q is false, do not appear in any behaviors in Σ
that begin in a state with P true.

We say that a state predicate I is an invariant of a system if no action
in A can make I false. More formally, I is an invariant if and only if for
every action α in A and every pair (s, t) in Γ(α): if I(s) is true then I(t)
is true. A simple induction argument shows that if I is an invariant then
I ⇒ ✷I is true for every behavior in Σ. (What we call an invariant is also
called a stable property, and the term “invariant” is often used to mean a
stable property that is true of the initial state.)

In assertional methods, one proves P ⇒ ✷Q by finding a predicate I
such that (i) I is an invariant, (ii) P implies I, and (iii) I implies Q. Since
the invariance of I means that I ⇒ ✷I is true for every sequence in Σ, it
follows easily from (ii) and (iii) that P ⇒ ✷Q is true for every sequence in
Σ.

As a simple example, consider the two-process program in Figure 1,
where each process cycles repeatedly through a loop composed of three state-
ments, the angle brackets enclosing atomic actions. This program describes
a common hardware synchronization protocol that ensures that the two pro-
cesses alternately execute their critical sections. (For simplicity the critical
sections are represented by atomic actions.) We prove that this algorithm
guarantees mutual exclusion, which means that control is not at the critical
section statements in both processes at the same time.1 Mutual exclusion
is expressed formally as the requirement P ⇒ ✷Q, where the predicates P
and Q are defined by

P ≡ at(α) ∧ at(λ)
Q ≡ ¬(at(β) ∧ at(µ)) ,

at(α) is the predicate asserting that control in the first process is at state-
1This protocol does not solve the original mutual exclusion problem because one process

cannot progress if the other halts.

18

variables x, y : boolean;
cobegin loop α: 〈 await x = y 〉;

β: 〈 critical section 〉;
γ: 〈x := ¬x 〉

end loop

loop λ: 〈 await y �= x 〉;
µ: 〈 critical section 〉;
ν: 〈 y := ¬y 〉

end loop
coend

Figure 1: A simple synchronization protocol.

ment α, and the other “at” predicates are similarly defined.
The invariant I used to prove this property is defined by

I ≡ ((at(β) ∨ at(γ)) ⇒ (x = y)) ∧ ((at(µ) ∨ at(ν)) ⇒ (x �= y))

If the critical sections do not change x or y, then executing any atomic action
of the program starting with I true leaves I true, so I is an invariant. It is
also easy to check that P ⇒ I and I ⇒ Q, which imply P ⇒ ✷Q.

The method of proving safety properties of the form P ⇒ ✷Q can be
generalized to prove properties of the form P ∧✷R⇒ ✷Q for predicates P ,
Q, and R. Such properties are used in proving liveness properties. We say
that a predicate I is invariant under the constraint R if any action executed
in a state with I ∧ R true leaves I true or makes R false. If I is invariant
under the constraint R, then I ∧ ✷R ⇒ ✷I is true for every behavior in
Σ. One can therefore prove P ∧ ✷R ⇒ ✷Q by finding a predicate I such
that (i) I is an invariant under the constraint R, (ii) P implies I, and (iii) I
implies Q. Thus, the ordinary assertional method for proving P ⇒ ✷Q
is extended to prove properties of the form P ∧ ✷R ⇒ ✷Q by replacing
invariance with invariance under the constraint R.

The hard part of an assertional proof is constructing I and verifying that
it is an invariant (or an invariant under a constraint). The predicate I can
be quite complicated, and finding it can be difficult. However, proving that
it is an invariant is reduced to reasoning separately about each individual
action.

19

Experience has indicated that this reduction is usually simpler and more
illuminating than reasoning directly about the behaviors for proving safety
properties that are easily expressed in the form P ⇒ ✷Q. However, reason-
ing about behaviors has been more successful for proving properties that are
not easily expressed in this form. It is usually the case that safety proper-
ties one proves about a particular algorithm are of the form P ⇒ ✷Q, while
general properties one proves about classes of algorithms are not.

Because the invariant I can be complicated, one wants to decompose
it and further decompose the proof of its invariance. This is done by the
Owicki-Gries method [OG76], in which the invariant is written as a pro-
gram annotation with predicates attached to program control points. In
this method, I is the conjunction of predicates of the form “If program
control is at this point, then the attached predicate is true.” The decom-
position of the invariance proof is based upon the following principle: if I
is an invariant and I ′ is invariant under the constraint I then I ∧ I ′ is an
invariant.

A number of variations of the Owicki-Gries method have been pro-
posed, usually for the purpose of handling particular styles of interpro-
cess communication[AFdR80, LG81]. These methods are usually described
in terms of proof rules—the individual steps one goes through in proving
invariance—without explicitly mentioning I or the underlying concept of
invariance. This has tended to obscure their simple common foundation.

3.4.2 Liveness Properties

If P and Q are predicates, then P ❀ Q is defined to be true if, whenever a
state is reached in which P is true, then eventually a state will be reached
in which Q is true. More precisely, P ❀ Q is true for the sequence (1) if
for every n, if P (sn) is true then there exists an m ≥ n such that Q(sm) is
true. Most liveness properties that one wishes to prove about systems are
expressible in the form P ❀ Q. For example, termination is expressed by
letting P assert that the program is in its starting state and letting Q assert
that the program has terminated; lockout-freedom is expressed by letting
P assert that some process k is requesting entry to its critical section and
letting Q assert that k is in its critical section.

The basic method of proving liveness properties is by a counting argu-
ment, using a well-founded set—one with a partial ordering relation � such
that there are no infinite chains of the form ei � e2 � Suppose we
construct a function w from the set of states to a well-founded set with the

20

following property: if the system is in a state s in which Q(s) is false, then it
must eventually reach a state t in which either Q(t) is true or w(s) � w(t).
Since the value of w cannot decrease forever, this implies that Q must even-
tually become true.

To prove P ❀ Q, we construct such a function w and prove that it has
the required property—namely, that its value must keep decreasing unless
Q becomes true. In this proof, we may assume the truth of any predicate R
such that P ⇒ ✷R is true for all behaviors in Σ. This is a generalization of
the usual method for proving termination of a loop in a sequential program,
in which w decreases with each iteration of the loop and R asserts that the
loop invariant2 is true if control is at the start of the loop.

One still needs some way of proving that w must decrease unless Q
becomes true, assuming the truth of a predicate R that satisfies P ⇒ ✷R.
The simplest approach is to prove that each action in A either decreases
the value of w or else makes Q true—in other words, that for every action
α and every (s, t) ∈ Γ(α): R(s)∧¬Q(s) implies w(s) � w(t)∨Q(t)∨¬R(t).

This approach works only if the validity of the property P ❀ Q does not
depend upon any fairness assumptions. To see how it can be generalized to
handle fairness, consider the simple fairness assumption that if an action is
continuously enabled, then it must eventually be executed—in other words,
for every behavior (1) and every n > 0: if α is enabled in all states si with
i ≥ n, then α = αi for some i > n. Under this assumption, it suffices to show
that every action either leaves the value of w unchanged or else decreases it,
and that there is at least one action α whose execution decreases w, where
α remains enabled until it is executed. Again, this need be proved only
under the assumption that Q remains false and R remains true, where R is
a predicate satisfying P ⇒ ✷R.

The problem with this approach is that the precise rules for reasoning
depend upon the type of fairness assumptions. An alternative approach
uses the single framework of temporal logic to reason about any kind of
fairness conditions. We have already written the liveness property to be
proved (P ❀ Q) and the safety properties used in its proof (properties of
the form P ⇒ ✷R) as temporal logic formulas. The fairness conditions are
also expressible as a collection of temporal logic formulas. Logically, all that
must be done is to prove, using the rules of temporal logic, that the fairness

2A loop invariant is not an invariant according to our definition, since it asserts only
what must be true when control is at a certain point, saying nothing about what must be
true at the preceding control point.

21

conditions and the safety properties imply the desired liveness property. The
problem is to decompose this proof into a series of simple steps.

The decomposition is based upon the following observation. Let A be a
well-founded set of predicates. Suppose that, using safety properties of the
form P ⇒ ✷R, for every predicate A in A we can prove that

A❀ (Q ∨ ∃A′ ∈ A : A � A′)

The well-foundedness of A then implies that Q must eventually become true.
This decomposition is indicated by a proof lattice3 consisting of Q and the
elements of A connected by lines, where downward lines from A to A1, . . . ,
An denotes the assertion A ❀ A1 ∨ . . . ∨An.

An argument using a proof lattice A of predicates is completely equiva-
lent to a counting argument using a function w with values in a well-founded
set; either type of argument is easily translated into the other. These count-
ing arguments work well for proving liveness properties that do not depend
upon fairness assumptions. When fairness is required, it is convenient to use
more general proof lattices containing arbitrary temporal logic formulas, not
just predicates.

To illustrate the use of such proof lattices, we consider the mutual ex-
clusion algorithm of Figure 2. For simplicity, the noncritical sections have
been eliminated and the critical sections are represented by atomic actions,
which are assumed not to modify x or y. Under the fairness assumption
that a continuously enabled action must eventually be executed, this algo-
rithm guarantees that the first process eventually enters its critical section.
(However, the second process might remain forever in its while loop.) The
proof that the algorithm satisfies the liveness property at(α) ❀ at(γ) uses
the proof lattice of Figure 3. The individual ❀ relations represented by the
lattice are numbered and are explained below.

1. at(α) ❀ (at(β)∧x) follows from the fairness assumption, since action
α is enabled when at(α) is true.

2. This is an instance of the temporal logic tautology

P ❀ (Q ∨ (P ∧ ✷¬Q))

which is valid because Q either eventually becomes true or else re-
mains forever false. (We are using linear-time temporal logic [Eme,
section 2.3].)

3The term “proof lattice” is used even though A need not be a lattice.

22

variables x, y : boolean;
cobegin loop α: 〈x := true 〉;

β: 〈 await ¬y 〉;
γ: 〈 critical section 〉;

〈x := false 〉
end loop

loop 〈 y := true 〉;
while 〈 x 〉 do 〈 y := false 〉;

λ: 〈 await ¬x 〉;
〈 y := true 〉

od
〈 critical section 〉;
〈 y := false 〉

end loop
coend

Figure 2: A simple mutual exclusion algorithm.

23

at(α)

1

at(β) ∧ x
2 2✧
✧✧

❜
❜

❜❜at(β) ∧ x ∧ ✷(¬at(γ))
3

✷(at(β) ∧ x)
4

✷(at(β) ∧ x) ∧ at(λ) ∧ ¬y
5

✷(at(β) ∧ ¬y)
6

false

✧
✧

✧✧
7 ❜
❜❜

at(γ)

Figure 3: Proof lattice for mutual exclusion algorithm.

24

3. This ❀ relation is actually an implication, asserting that if the first
process is at statement β with x true and never reaches γ, then it
must remain forever at β with x true. This implication is of the form
(P ∧ ✷R) ⇒ ✷Q and is proved by finding an invariant under the
constraint R, as explained in Section 3.4.1.

4. If x remains true forever, then the fairness assumption implies that
control in the second process must eventually reach λ with y false. A
formal proof of this assertion would use another proof lattice in which
each ❀ relation represents a single step of the second process.

5. This is another property of the form (P ∧ ✷R) ⇒ ✷Q, proved by
finding an invariant under the constraint R.

6. Action β is enabled when at(β) ∧ ¬y holds, so by the fairness as-
sumption, ✷(at(β) ∧ ¬y) implies that β must eventually be executed,
making at(β) false. Since ✷at(β) asserts that at(β) is never false, this
is a contradiction.

7. false implies anything.

The proof lattice formalizes a simple style of intuitive reasoning. Further
examples of the use of proof lattices can be found in [OL82].

Temporal logic appears to be the best method for proving liveness prop-
erties that depend upon fairness assumptions. There seems little reason to
use less formal methods for reasoning about behaviors, since such reasoning
can be expressed compactly and precisely with temporal logic. However, the
verification of liveness properties has received less attention than the ver-
ification of safety properties, and any conclusions we draw about the best
approach to verifying liveness properties must be tentative.

3.5 Deriving Algorithms

We have discussed methods for reasoning about algorithms, without regard
to how the algorithms are developed. There is increasing interest in meth-
ods for deriving correct algorithms. Exactly what is meant by “deriving” an
algorithm varies. It may consist of simply developing the correctness proof
along with the algorithm. Such an approach, based upon assertional meth-
ods and the Unity language, is taken by Chandy and Misra [CM88]. At the
other extreme are approaches in which the program is derived automatically
from a formal specification [Eme, section 7.3].

25

An appealing approach to the development of correct algorithms is by
program transformation. One starts with a simple algorithm whose correct-
ness is obvious, and transforms it by a series of refinement steps, where each
step yields an equivalent program. Perhaps the most elegant instance of this
approach is Milner’s Calculus of Communicating Systems (CCS) [Mil80],
where refinement steps are based upon simple algebraic laws. However, the
simplicity and elegance of CCS break down in the presence of fairness, so
CCS is not well suited for developing algorithms whose correctness depends
upon fairness.

Methods for deriving concurrent algorithms are comparatively new and
have thus far had only limited success. Automatic methods can derive only
simple, finite-state algorithms. While informal methods can often provide
elegant post hoc derivations of existing algorithms, it is not clear how good
they are at deriving new algorithms. Finding efficient algorithms—whether
efficiency is judged by theoretical complexity measures or by implementation
in a real system—is still an art rather than a science. We still need to verify
algorithms independently of how they are developed.

3.6 Specification

To determine whether an algorithm is correct, we need a precise specification
of the problem it purports to solve. In the classical theory of computation,
a problem is specified by describing the correct output as a function of the
input. Such an input/output function is inadequate for specifying a problem
in concurrency, which may involve a complex interaction of the system and
its environment.

As discussed above, a behavior of a concurrent system is usually modeled
as a sequence of states and/or actions. A specification of a system—that
is, a specification of what the system is supposed to do—consists of the
set of all behaviors considered to be correct. Another approach, taken by
CCS [Mil80], is to model a concurrent system as a tree of possible actions,
where branching represents nondeterminism. The specification is then a
single tree rather than a set of sequences.

With any specification method, there arises the question of exactly what
it means for a particular system to implement a specification. This is a very
subtle question. Details that are insignificant for sequential programs may
determine whether or not it is even possible to implement a specification of
a concurrent system. Some of the issues that must be addressed are:

• No system can function properly in the face of completely arbitrary

26

behavior by the environment. How can an implementation specify ap-
propriate constraints on the environment (for example, that the envi-
ronment not change the program’s local variables) without “illegally”
constraining the environment (for example, by preventing it from gen-
erating any input)?

• The granularity of action of the specification is usually much coarser
than that of the implementation—for example, sending a message may
be a single specification action, while executing each computer in-
struction is a separate implementation action. What does it mean to
implement a single specification action by a set of lower-level actions?

• The granularity of data in the specification may be coarser than in
the implementation—for example, messages versus computer words.
What does it mean to implement one data structure with another?

Space does not permit a description of proposed specification methods and
how they have addressed (or failed to address) these issues. We can only
refer the reader to a small selection from the extensive literature on specifi-
cation [LS84, Lam89, LT87, SM82].

4 Some Typical Distributed Algorithms

In this section, we discuss some of the most significant algorithms and impos-
sibility results in this area. We restrict our attention to four major categories
of results: shared variable algorithms, distributed consensus algorithms, dis-
tributed network algorithms and concurrency control. Although we are ne-
glecting many interesting topics, these four areas provide a representative
picture of distributed computing.

In early work, algorithms were presented rather informally, without for-
mal models or rigorous correctness proofs. The lack of rigor led to errors,
including the publication of incorrect algorithms. The development of for-
mal models and proof techniques such as those discussed in Section 3, as well
as a generally higher standard of rigor, has made such errors less common.
However, algorithms are still published with inadequate correctness proofs,
and synchronization errors are still a major cause of “crashes” in computer
systems.

27

4.1 Shared Variable Algorithms

Shared variable algorithms represent the beginnings of distributed comput-
ing theory, and many of the ideas that are important elsewhere in the area
first appear here. Today, programming languages provide powerful synchro-
nization primitives and multiprocess computers provide special instructions
to simplify their implementation, so the early synchronization algorithms are
seldom used. However, higher-level contention and cooperation problems
still exist, and these early algorithms provide insight into these problems.

4.1.1 Mutual Exclusion

The prototypical contention problem is that of mutual exclusion. Dijkstra
[Dij65] presents a mutual exclusion algorithm which uses indivisible read
and write operations on shared variables. In addition to ensuring mutual
exclusion, the algorithm ensures the liveness property that some process
eventually enters its critical section if there are any contending processes.
Lockout freedom is not guaranteed; the system might grant the resource
repeatedly to the same process, excluding another process forever. This
algorithm is significant because prior to its discovery, it was not even clear
that the problem could be solved.

Dijkstra’s algorithm inspired a succession of additional solutions to the
mutual exclusion problem. Some of this work improves upon his algorithm
by adding the requirement that the solution be fair to individual processes.
Fairness can take several forms. The strongest condition usually stated is
FIFO (first-in first-out), while the weakest is lockout freedom. There are
intermediate possibilities: there might be an upper bound on the number
of times one process can be bypassed by another while it is waiting for
the resource (“bounded waiting”), or, the time for a process to obtain the
resource might be bounded in terms of its own step time. (These last two
conditions are very different: the former is an egalitarian condition which
tends to cause all processes to move at the same speed, while the latter tends
to allow faster processes to move ahead of slower processes.) The work on
mutual exclusion includes a collection of algorithms satisfying these various
fairness conditions.

An interesting example of a mutual exclusion algorithm is Lamport’s
“bakery algorithm” [Lam74], so called because it is based on the processes
choosing numbers, much as customers do in a bakery. The bakery algorithm
was the first FIFO solution, and it was the first solution to use only local

28

shared variables (see Section 2.2.1). It also has the fault-tolerance property
that if a process stops during its protocol, and its local shared variables sub-
sequently revert to their initial values, then the rest of the system continues
correctly without it. This property permits a distributed implementation
that tolerates halting failures.

The most important property of the bakery algorithm is that it was the
first algorithm to implement mutual exclusion without assuming lower-level
mutual exclusion of read and write accesses to shared variables. Accesses
to shared variables may occur concurrently, where reads that occur con-
currently with writes are permitted to return arbitrary values. Concurrent
reading and writing is discussed in Section 4.1.4.

Peterson and Fischer [PF77] contribute a complexity-theory perspective
to the mutual exclusion area. They describe a collection of algorithms which
include strong fairness and resiliency properties, and which also keep the size
of the shared variables small. Of particular interest is their “tournament
algorithm”, which builds an n-process mutual exclusion algorithm from a
binary tree of 2-process mutual exclusion algorithms. They also describe a
useful way to prove bounds on time complexity for asynchronous parallel
algorithms: assuming upper bounds on the time for certain primitive occur-
rences (such as process step time and time during which a process holds the
resource), they infer upper bounds on the time for occurrences of interest
(such as the time for a requesting process to obtain the resource). Their
method can be used to obtain reasonable complexity bounds, not only for
mutual exclusion algorithms, but also for most other types of asynchronous
algorithms.

The development of many different fairness and resiliency conditions,
and of many complex algorithms, gave rise to the need for rigorous ways
of reasoning about them. Burns et al. [BJL*82] introduce formal models
for shared-variable algorithms, and use the models not only to describe
new memory-efficient algorithms, but also to prove impossibility results and
complexity lower bounds. The upper and lower bound results in [BJL*82]
are for the amount of shared memory required to achieve mutual exclusion
with various fairness properties. The particular model assumed there allows
for a powerful sort of access to shared memory, via indivisible “test and set”
(combined read and write) operations. Even so, Burns and his coauthors are
able to prove that Ω(n) different values of shared memory are required to
guarantee fair mutual exclusion. More precisely, guaranteeing freedom from
lockout requires at least n/2 values, while guaranteeing bounded waiting
requires at least n values.

29

The lower bound proofs in [BJL*82] are based on the limitations of “local
knowledge” in a distributed system. Since processes’ actions depend only
on their local knowledge, processes must act in the same way in all com-
putations that look identical to them. The proofs assume that the shared
memory has fewer values than the claimed minimum and derive a contra-
diction. They do this by describing a collection of related computations
and then using the limitation on shared memory size and the pigeonhole
principle to conclude that some of these computations must look identical
to certain processes. But among these computations are some for which the
problem specification requires the processes to act in different ways, yield-
ing a contradiction. The method used here—proving that actions based on
local knowledge can force two processes to act the same when they should
act differently—is the fundamental method for deriving lower bounds and
other impossibility results for distributed algorithms.

The lower bound results in [BJL*82] apply only to deterministic algo-
rithms—that is, algorithms in which the actions of each process are uniquely
determined by its local knowledge. Recently, randomized algorithms, in
which processes are permitted to toss fair coins to decide between possible
actions, have emerged as an alternative to deterministic algorithms. A ran-
domized algorithm can be thought of as a strategy for “playing a game”
against an “adversary”, who is usually assumed to have control over the
inputs to the algorithm and the sequence in which the processes take steps.
In choosing its own moves, the adversary may use knowledge of previous
moves. A randomized algorithm should, with very high probability, perform
correctly against any allowable adversary.

One of the earliest examples of such a randomized algorithm was devel-
oped by Rabin [Rab82] as a way of circumventing the limitations proved in
[BJL*82]. The shared memory used by Rabin’s algorithm has only O(logn)
values, in contrast to the Ω(n) lower bound for deterministic algorithms.
Rabin’s algorithm is also simpler than the known deterministic mutual ex-
clusion algorithms that use O(n)-valued shared memory. A disadvantage
is that Rabin’s algorithm is not solving exactly the same problem—it is
not absolutely guaranteed to grant the resource to every requesting process.
Rather, it does so with probability that grows with the amount of time the
process waits. Still, in some situations, the advantages of simplicity and
improved performance may outweigh the small probability of failure.

The mutual exclusion problem has also been studied in message-passing
models. The first such solution was in [Lam78], where it was presented as a
simple application of the use of logical clocks to totally order system events

30

(see Section 2.3). Mutual exclusion was reduced to the global consistency
problem of getting all processes to have a consistent view of the queue of
waiting processes. More recently, several algorithms have been devised which
attempt to limit the number of messages required to solve the problem. A
generalization to k-exclusion, in which up to k processes can be in their
critical section at the same time has also been studied.

The reader can consult the book by Raynal [Ray86] for more information
and more pointers into the extensive literature on mutual exclusion.

4.1.2 Other Contention Problems

The dining philosophers problem [Dij71] is an important resource alloca-
tion problem in which each process (“philosopher”) requires a specific set of
resources (“forks”). In the traditional statement of the problem, the philoso-
phers are arranged in a circle, with a fork between each pair of philosophers.
To eat, each philosopher must have both adjacent forks. Dijkstra’s solution
is based on variables (semaphores) shared by all processes, and thus is best
suited for use within a single computer.

One way to restrict access to the shared variables is by associating each
variable with a resource, and allowing only the processes that require that
resource to access the variable. This arrangement suggests solutions in which
processes simply visit all their resources, attempting to acquire them one at
a time. Such a solution permits deadlock, where processes obtain some
resources and then wait forever for resources held by other processes. In the
circle of dining philosophers, deadlock arises if each one first obtains his left
fork and then waits for his right fork.

The traditional dining philosophers problem is symmetrical if processes
are identical and deterministic and all variables are initialized in the same
way. If processes take steps in round-robin order, the system configuration
is symmetrical after every round. This implies that, if any process ever
obtained all of its needed resources, then every process would, which is
impossible. Hence, there can be no such completely symmetric algorithm.
The key to most solutions to this problem is their method for breaking
symmetry.

There are several ways of breaking symmetry. First, there can be a single
“token” that is held by one process, or circulated around the ring. To resolve
a conflict, the process with the token relinquishes its resources in exchange
for a guarantee that it can have them when they next become available.
Second, alternate processes in an even-sized ring can attempt to obtain

31

their left or right resources first; this strategy can be used not only to avoid
deadlock, but also to guarantee a small upper bound on waiting time for each
process. Third, Chandy and Misra [CM84] describe a scheme in which each
resource has a priority list, describing which processes have stronger claims
on the resource. These priorities are established dynamically, depending
on the demands for the resources. Although the processes are identical,
the initial configuration of the algorithm is asymmetric: it includes a set
of priority lists that cannot induce cycles among waiting processes. The
rules used in [CM84] to modify the priority lists preserve acyclicity, and so
deadlock is avoided.

Finally, Rabin and Lehmann [RL81] describe a simple randomized al-
gorithm that uses local random choices to break symmetry. Each process
chooses randomly whether to try to obtain its left or right fork first. In
either case, the process waits until it obtains its first fork, but only tests
once to see if its second fork is available. If it is not, the process relinquishes
its first fork and starts over with another random choice. This strategy
guarantees that, with probability 1, the system continues to make progress.

These symmetry-breaking techniques avoid deadlock and ensure that the
system makes progress. They provide a variety of fairness and performance
guarantees.

4.1.3 Cooperation Problems

For shared-variable models, cooperation problems have received less atten-
tion than contention problems. The only cooperation problems that have
been studied at any length are producer-consumer problems, in which pro-
cesses produce results that are used as input by other processes. The
simplest producer-consumer problem is the bounded buffer problem (Sec-
tion 2.3). A very general class of producer-consumer problem involves the
simulation of a class of Petri nets known as marked graphs [CHEP71], where
each node in the graph represents a process and each token represents a
value. An example of this class is the problem of passing a token around
a ring of processes, where the token can be used to control access to some
resource.

An interesting problem that combines aspects of both contention and
cooperation is concurrent garbage collection, in which a “collector” process
running asynchronously with a “mutator” process must identify items in the
data structure that are no longer accessible by the mutator and add those
items to a “free list”. This is basically a producer-consumer problem, with

32

the collector producing free-list items and the mutator consuming them.
However, the problem also involves contention because the mutator changes
the data structure while the collector is examining it.

In shared-variable models, cooperation problems have not been studied
as extensively as contention problems, probably because they are easier to
solve. For example, in concurrent garbage collection algorithms, it is the
contention for access to the data structure rather than the cooperative use
of the free list that poses the challenge. However, there is one important
property that is harder to achieve in cooperation problems than in con-
tention problems—namely, self-stabilization. An algorithm is said to be
self-stabilizing if, when started in any arbitrary state, it eventually reaches
a state in which it operates normally [Dij74]. For example, a self-stabilizing
token-passing algorithm can be started in a state having any number of
tokens and will eventually reach a state with just one token that is be-
ing passed around. It is generally easy to devise self-stabilizing contention
problems because processes go through a “home” state in which they are
reinitialized—for example, a process in the dining philosopher problem even-
tually reaches a state in which it is not holding or requesting any forks—and
the whole algorithm is reinitialized when every process has reached its home
state. On the other hand, cooperation problems do not have such a home
state. For example, the symmetry in the bounded buffer problem means
that an empty buffer and a full buffer are symmetric situations, and neither
of them can be considered a “home” state. Dijkstra’s self-stabilizing token-
passing algorithms [Dij74] are currently the only published self-stabilizing
cooperation algorithms.

Self-stabilization is an important fault-tolerance property, since it per-
mits an algorithm to recover from any transient failure. This property has
not received the attention it deserves.

4.1.4 Concurrent Readers and Writers

With the exception of the bakery algorithm, all of the work we have de-
scribed so far assumes that processes access shared memory using primitive
operations (usually read and write operations), each of which is executed
indivisibly. The ability to implement multiple processors with a single inte-
grated circuit has rekindled interest in shared memory models that do not
assume indivisibility of reads and writes. Rather, they assume that opera-
tions on a shared variable have duration, that reads and writes that do not
overlap behave as if they were indivisible, but that reads and writes that

33

overlap can yield less predictable results [Lam86]. The bakery algorithm
assumes safe shared variables—ones in which a read that is concurrent with
a write can return an arbitrary value from the domain of possible values for
the variable. Another possible assumption is a regular shared variable, in
which a read that overlaps a write is guaranteed to return either the old
value or the one being written; however, two successive reads that overlap
the same write may obtain first the new value then the old one. A still
stronger assumption is an atomic shared variable, which behaves as if each
read and each write occurred at some fixed time within its interval.

Using safe, regular, or atomic shared variables, it is possible to simulate
shared variables having indivisible operations, so that algorithms designed
for the stronger models can be applied in the weaker models. This work
has evolved from the traditional readers-writers algorithms based on mutual
exclusion [CHP71], through nontraditional algorithms that allow concurrent
reading and writing [Pet83], to more recent algorithms for implementing one
class of shared variable with a weaker class [Lam86, BP87, Blo88].

Recently, Herlihy [Her88] has considered atomic shared variables that
support operations other than reads and writes. He has shown that read-
write atomic variables cannot be used to implement more powerful atomic
shared variables such as those supporting test-and-set operations. He has
also shown that other types of atomic variables are “universal”, in the sense
that they can be used to implement atomic shared variables of arbitrary
types. Herlihy’s impossibility proof proceeds by showing that atomic read-
write shared variables cannot be used to solve a version of the distributed
consensus problem discussed in the following subsection.

4.2 Distributed Consensus

Achieving global consistency requires that processes reach some form of
agreement. Problems of reaching agreement in a message-passing model
are called distributed consensus problems. There are many such prob-
lems, including agreeing (exactly or approximately) on values from some
domain, synchronizing actions of different processes, and synchronizing soft-
ware clocks. Distributed consensus problems arise in areas as diverse as
real-time process-control systems (where agreement might be needed on the
values read by replicated sensors) and distributed database systems (where
agreement might be needed on whether or not to accept the results of a
transaction). Since global consistency is what makes a collection of pro-
cesses into a single system, distributed consensus algorithms are ubiquitous

34

in distributed systems.
Consensus problems are generally easy to solve if there are no failures;

in this case, processes can exchange information reliably about their local
states, and thereby achieve a common view of the global state of the system.
The problem is considerably harder, however, when failures are considered.
Consensus algorithms have been presented for almost all the classes of failure
described in Section 2.1.1.

Distributed consensus problems have been a popular subject for theoret-
ical research recently, because they have simple mathematical formulations
and are surprisingly challenging. They also provide a convenient vehicle for
comparing the power of models that make different assumptions about time
and failures.

4.2.1 The Two-Generals Problem

Probably the first distributed consensus problem to appear in the literature
is the “two-generals problem” [Gra78], in which two processes must reach
agreement when there is a possibility of lost messages. The problem is
phrased as that of two generals, who communicate by message, having to
agree upon whether or not to attack a target. The following argument
can be formalized to show that the problem is unsolvable when messages
may be lost. Reaching at least one of the two possible decisions, say the
decision to attack, requires the successful arrival of at least one message.
Consider a scenario Σ in which the fewest delivered messages that will result
in agreement to attack are delivered, and let Σ′ be the same scenario as Σ
except that the last message delivered in scenario Σ is lost in Σ′, and any
other messages that might later be sent are also lost. Suppose this last
message is from general A to general B. General A sees the same messages
in the two scenarios, so he must decide to attack. However, the minimality
assumption of Σ implies that B cannot also decide to attack in scenario Σ′,
so he must make a different decision. Hence, the problem is unsolvable.

4.2.2 Agreement on a Value

The agreement problem requires that processes agree upon a value. Com-
munication is assumed to be reliable, but processes are subject to failures
(either halting, omission, or Byzantine). Each of the processes begins the
algorithm with an input value. After the algorithm has completed, each
process is to decide upon an output value. There are two constraints on the

35

solution: (a) (Agreement) all nonfaulty processes must agree on the out-
put, and (b) (Validity) if all nonfaulty processes begin with the same input
value, that value must be the output value of all nonfaulty processes. For
the case of Byzantine faults, this problem has been called the Byzantine
generals problem. (Other, equivalent formulations of the problem have also
been used.)

In the absence of failures, this problem is easy to solve: processes could
simply exchange their values, and each could decide upon the majority value.
The following example shows the kinds of difficulties that can occur, when
failures are considered. Consider three processes, A, B and C. Suppose
that A and B begin with input 0 and 1 respectively. Suppose that C is a
Byzantine faulty processor, which acts toward A as if C were nonfaulty and
started with 0, but as if B were faulty. At the same time, C acts toward
B as if C were nonfaulty and started with 1, but as if A were faulty. Since
A’s view of the execution is consistent with A and C being nonfaulty and
starting with the same input, 0, A is required to decide 0. Analogously, B
is required to decide 1. But this means that A and B have been made to
disagree, violating the agreement requirement of the problem. This example
can be elaborated into a proof of the impossibility of reaching agreement
among 3t processes if t processes might be faulty.

The problem of reaching agreement on a value was studied by Pease,
Shostak, and Lamport [PSL80, LSP82] in a model with Byzantine failures
and computation performed in a sequence of rounds. (They also described
the implementation of rounds with synchronized clocks.) Besides containing
the impossibility proof described in the last paragraph, these papers also
contain two subtle algorithms. The first is a recursive algorithm that requires
3t+1 processes and tolerates Byzantine faults. The second requires only t+1
processes, but assumes digital signatures (Section 2.1.1). Both algorithms
assume a completely connected network.

Dolev [Dol82] considers the same problem in an arbitrary network graph.
For t Byzantine failures, he shows how to implement an algorithm similar
to that of [LSP82], provided that the network is at least 2t + 1-connected
(and has at least 3t+1 processes). He also proves a matching lower bound.

A series of results, starting with [FL81] and culminating in [DM86],
shows that any synchronous algorithm for reaching agreement on a value,
in the presence of t failures—even the simple halting failures—requires at
least t + 1 rounds of message exchange in the worst case. As usual, these
arguments are based on the limitations caused by local knowledge in dis-
tributed algorithms; by assuming fewer rounds, a “chain” of computations

36

is constructed that leads to a contradiction. In the first computation in
the chain, nonfaulty processes are constrained by the problem statement to
decide 0, while in the last computation in the chain, nonfaulty processes
are constrained to decide 1. Further, any two consecutive computations in
the chain share a nonfaulty process to which the two computations look
the same; this process therefore reaches the same decision in both compu-
tations. Hence, all nonfaulty processes decide upon the same value in every
computation in the chain, which yields the required contradiction.

Dwork and Moses [DM86] provide explicit, intuitive definitions for the
“knowledge” that individual processes have at any time during the execution
of an algorithm. Their problem statements, algorithms, and lower bound
proofs are based on these definitions. This work suggests that formal models
and logics of knowledge may provide useful high-level ways of reasoning
about distributed algorithms.

Bracha [Bra85] is able to circumvent the t + 1 lower bound on rounds
with a randomized algorithm; his solution uses only O(logn) rounds, but
requires cryptographic techniques that rest on special assumptions. More
recently, Feldman and Micali [FM88] have improved Bracha’s upper bound
to a constant. Chor and Coan [CC84] give another randomized algorithm
that requires O(t/logn) rounds, but does not require any special assump-
tions.

The consensus algorithms mentioned above all assume a synchronous
model of computation. Fischer, Lynch, and Paterson [FLP85] study the
problem of reaching agreement on a value in a completely asynchronous
model. They obtain a surprising fundamental impossibility result: if there
is the possibility of even one simple halting failure, then an asynchronous
system of deterministic processes cannot guarantee agreement. This result
suggests that, while asynchronous models are simple, general, and popular,
they are too weak for studying fault tolerance.

The impossibility result is proved by first showing that any asynchronous
consensus protocol that works correctly in the absence of faults must have a
reachable configuration C in which there is a single “decider” process i—one
that is capable, on its own, of causing either of two different decisions to be
reached. If this protocol is also required to tolerate a single process failure,
then, starting from C, all the processes except i must be able to reach a
decision. But, this decision will conflict with one of the possible decisions
process i might reach on its own. (Herlihy used a similar technique to prove
the impossibility result mentioned in the previous subsection.)

There are several ways to cope with the limitation described in [FLP85].

37

One can simply add some synchrony assumptions—the weakest ones com-
monly used are timers and bounded message delay. Alternatively, one can
use an asynchronous deterministic algorithm, but attempt to reduce the
probability that a failure will upset correct behavior. This approach is some-
times used in practice when only modest reliability is needed, but there has
been no rigorous attempt to analyze the reliability of the resulting system.

Another possibility is to use randomized rather than deterministic al-
gorithms. For example, Ben-Or [Ben83] gives a randomized algorithm for
reaching agreement on a value in the completely asynchronous model, allow-
ing Byzantine faults. The algorithm never permits disagreement or violates
the validity condition; however, instead of guaranteeing eventual termina-
tion, it guarantees only termination with probability 1.

A good survey of the early work in this area appears in [Fis83].

4.2.3 Other Consensus Problems

Other distributed consensus problems have been studied under the assump-
tion that processes can be faulty but communication is reliable. One such
problem is that of reaching approximate, rather than exact, agreement on
a value. Each process begins with an initial (infinite-precision) real value,
and must eventually decide on a real value subject to: (a) (Agreement) all
nonfaulty processes’ decisions must agree to within ε, and (b) (Validity) the
decision value for any nonfaulty process must be within ε of the range of the
initial values of the nonfaulty processes. Processes are permitted to send
real values in messages.

Although the problems of exact and approximate agreement seem to
be quite similar, reaching approximate agreement is considerably easier; in
particular, there are simple deterministic algorithms for approximate agree-
ment in asynchronous models—even in the presence of Byzantine faults. It
seems almost paradoxical that deterministic processes can reach agreement
on real values to within any predetermined ε, but they cannot reach exact
agreement on a single bit.

Another consensus problem is achieving simultaneous action by dis-
tributed processes, in a model with timers in which all messages take ex-
actly the same (known) time for delivery. This problem, sometimes called
the “distributed firing squad problem”, yields results very similar to those
for agreement on a value. In fact, for the case of Byzantine faults, a general
transformation converts any algorithm for agreement to an algorithm for si-
multaneous action. The firing squad algorithm is obtained by running many

38

instances of the agreement algorithm, each deciding whether the processes
should fire at a particular time. The first instance that reaches a positive
decision triggers the simultaneous firing action.

In this transformation, many instances of a Byzantine agreement algo-
rithm are executed concurrently. Those instances that are not actually car-
rying out any interesting computation can be implemented in a trivial way
by letting all of their messages be special “null” messages that are not actu-
ally sent. This trick of sending a message by not sending a message is also
used in [Lam84] to give fault-tolerant distributed simulations of centralized
algorithms.

Another consensus problem is establishing and maintaining synchronized
local clocks in a distributed system. It is closely related to both of the pre-
ceding problems (reaching approximate agreement and achieving simultane-
ous action), since it may be viewed as simultaneously reaching approximate
agreement on a clock value, or as reaching exact agreement on a clock value
at approximately the same instant. The problem is one of implementing
synchronized clocks using timers that run at approximately the same rate,
usually assuming initial synchronization of the clocks. However, it is gener-
ally described in terms of maintaining the synchronization (to within ε) of
the processes’ clocks despite a small, varying difference in their clock rates.

Clock synchronization is difficult to achieve in the presence of faulty
processes. Many algorithms to solve this problem have been suggested,
analyzed, and compared in the literature, and some have been used in im-
plementing systems. In most algorithms for maintaining synchronization
among clocks that are initially synchronized, a new round is begun when
the clocks reach predetermined values. In each round, processes exchange
information about their clock values and use the information to adjust their
own clocks. Synchronization algorithms that do not assume the clocks to
be initially synchronized use other methods, since they cannot depend upon
the clocks to determine when the first round should begin.

Lower bounds and impossibility results have also been proved for clock
synchronization problems. Of particular interest is the result of Dolev,
Halpern, and Strong [DHS84] showing that clock synchronization problems
cannot be solved for 3t processes if t of them can exhibit Byzantine failures.

This impossibility result is reminiscent of the impossibility result de-
scribed earlier for agreement on a value, where the problem cannot be solved
with 3t processes in the presence of t Byzantine failures. In fact, a 3t versus
t impossibility result also holds for many other consensus problems under
Byzantine failures, including approximate agreement and simultaneous ac-

39

✔
✔
✔
✔
✔❚

❚
❚
❚
❚

B C

A

T

❚
❚

❚
❚

❚

✔
✔

✔
✔

✔

✔
✔
✔
✔
✔

❚
❚
❚
❚
❚A A

B C

C B

H

Figure 4: The systems T and H

tion. Furthermore, all of these problems are unsolvable in network graphs
having less than 2t+1-connectivity. These impossibility results do not apply
if authentication is used.

Since all of these bounds are tight, it is apparent that there must be a
common reason for the many similar results. Fischer, Lynch, and Merritt
[FLM86] tie together this large collection of impossibility results with a
common proof technique. We illustrate this technique by proving the 3-
versus-1 impossibility result for reaching agreement on a value. Assume
for the sake of obtaining a contradiction that there is such a solution for
the system T consisting of the three processes A, B, and C arranged in a
triangle. Let H be a new system, consisting of two copies of each of A, B
and C, in the hexagonal arrangement shown in Figure 4. Note that system
H looks locally like the original system T .

Let Σ be a computation of H that results if H is run with each of its
six processes behaving exactly like the corresponding nonfaulty process of
T . Consider any pair of nonfaulty processes in H, say the upper-right-hand
copies of A and B. There is a computation Σ′ of T , with C faulty, in which
A and B receive the same inputs as they do in the computation Σ. By
our assumption, A and B agree on the same value in Σ′. Since the copies
of A and B have the same view in Σ as their namesakes do in Σ′, they
must also agree on the same value. Moreover, if A and B have the same
input value, then that is their output value. Since this proof works for any
pair of adjacent processes in H, this shows that in any computation of H:
(a) all processes must agree upon the same output value, and (b) if adjacent

40

processes have the same input value then that is their output value. Letting
the upper-right-hand copies of A and B have input values of 1 and the
lower-left-hand copies of A and B have input values of 0, this implies that
the output of every process must equal both 0 and 1, which is the required
contradiction. Other impossibility results are proved similarly, using slightly
more complicated systems for H.

4.2.4 The Distributed Commit Problem

The transaction commit problem for distributed databases is the problem
of reaching agreement, among the nodes that have participated in a trans-
action, about whether to commit or abort the transaction. (We say more
about transactions in Section 4.4.) The requirements are: (a) (Agreement)
all nonfaulty processes’ decisions must agree, and (b) (Validity) (i) if any
process’s initial value is “abort”, then the decision must be “abort”, and
(ii) if all processes’ initial values are “commit” and no failure occurs, then
the decision must be “commit”. The problem has traditionally been studied
under the assumption of halting failures and the loss of individual messages.
The impossibility result of [FLP85] implies that the commit problem cannot
be solved in the completely asynchronous model, for even a single faulty
process—even with reliable communication. The impossibility result for the
two-generals problem implies that the commit problem cannot be solved if
messages can be lost, even if message delays are otherwise bounded and
processes are reliable and have synchronized clocks.

Most commit protocols, such as the popular two-phase commit algo-
rithm, have a failure window—a period during the computation when a
single halting failure can prevent termination. Using the assumptions that
the processes have synchronized clocks and there is a known upper bound
on message delivery time, one can construct a commit protocol that has
no failure window from a synchronous algorithm for reaching agreement on
a value. However, the synchronous model does not permit communication
failure, so the loss of a message must be considered to be a failure of either
the sending or receiving process. The three-phase commit protocol of Skeen
[Ske82] is another commit protocol without a failure window; it assumes
reliable message delivery and detectable failures.

41

4.3 Network Algorithms

We now describe a class of algorithms for message-passing models, which
we call network algorithms, in which the behavior of the algorithm depends
strongly on the network topology. Most of these algorithms are designed to
solve problems arising in communication in computer networks. They usu-
ally assume a completely asynchronous, failure-free model. Most of them
can be divided into two categories, which we call static and dynamic. Static
algorithms are assumed to operate in fixed networks and to start with all
their inputs available at the beginning; dynamic algorithms also operate in
fixed networks but receive some of their inputs interactively. Another way of
viewing the distinction is that static algorithms are based upon unchanging
information in the initial states of the processes, while dynamic algorithms
use changing information from the changing state of the application pro-
cesses. A network problem can have both static and dynamic versions, but
the two versions are usually treated separately in the literature. We also
consider some algorithms designed to operate in changing networks, and
some algorithms designed to ensure reliable message delivery over a single
unreliable link.

4.3.1 Static Algorithms

Route-Determination Algorithms In communication networks, it is
often important for processes that have local information about the speed,
bandwidth, and other costs of message transmission to their immediate net-
work neighbors, to determine good routes through the network for commu-
nicating with distant processes. If such routes are to be determined infre-
quently, it may be useful to consider the static problem in which the local
information is assumed to be available initially and fixed during execution
of the route-determination algorithm.

Different applications require different notions of what constitutes a
“good” set of routes through the network. For example, if the routes are
used primarily for broadcasting a single message to all other processes, un-
necessary message duplication can be avoided by establishing a spanning
tree of the network. If a weight is associated with each link in the network
to represent the cost of sending a message over that link, a minimum-weight
spanning tree (MST) can be used to minimize the total cost of the broadcast.

Gallager, Humblet, and Spira [GHS83] present an efficient distributed
algorithm for finding a minimum-weight spanning tree in a network with n

42

nodes and e edges. The algorithm is based upon the following two obser-
vations: if all edge weights are distinct, then the MST is unique; and the
minimum-weight external edge of any subtree of the MST is in the MST.
The algorithm grows the MST by coalescing fragments until the complete
MST is formed. Initially, each node is a fragment, and a fragment coalesces
with the one at the other end of its minimum-weight external edge.

The main achievement of this algorithm is to keep the number of mes-
sages small. Each time a fragment with f nodes computes its minimum-
weight external edge, O(f) messages are required. Naively coalescing frag-
ments could lead to as many as Ω(n2) messages. By using a priority scheme
to determine when fragments are permitted to coalesce, this algorithm gen-
erates only O(nlogn+ e) messages.

Although the basic idea is simple, the algorithm itself is quite compli-
cated. Certain simple “high-level” tasks, such as determining a fragment’s
minimum-weight external edge, are implemented as a series of separate steps
occurring at different processes. The steps implementing different high-
level tasks interleave in complicated ways. The correctness of the algo-
rithm is not obvious; in fact, only recently have careful correctness proofs
appeared. [GC88, WLL88] While these proofs use techniques based upon
those described in Section 3, they are lengthy and difficult to check. In gen-
eral, network algorithms are typically longer and harder to understand than
the other types of distributed algorithms we are considering, and rigorous
correctness proofs are seldom given.

Many other network algorithms are also designed to minimize the num-
ber of messages sent. While message complexity is easy to define and
amenable to clean upper and lower bound results, time bounds may be
more important in practice. However, there have so far been few upper and
lower time bounds derived for network problems.

Other route-determination algorithms have been proposed for finding
MST’s in a directed graph of processes [Hum83] and for determining other
routing structures, such as the set of shortest paths between all pairs of nodes
and breadth-first and depth-first spanning trees. Also, a basic lower bound
of Ω(e) has been proved for the number of messages required to implement
broadcast in an arbitrary network [AGPV88].

Leader Election In this problem, a network of identical processes must
choose a “leader” from among themselves. The processes are assumed to
be indistinguishable, except that they may possess unique identifiers. The

43

difficulty lies in breaking the symmetry. Solutions can be used to implement
a fault-tolerant token-passing algorithm; if the token is lost, the leader-
election algorithm is invoked to decide which process should possess the
token.

Peterson [Pet82] has devised a leader-election algorithm for a completely
asynchronous ring of processes with unidirectional communication; it uses
at most O(n log n) messages in the worst case. On the other hand, Freder-
ickson and Lynch [FL87] have shown that at least Ω(n log n) messages are
required in the worst case, even in a ring having synchronous and bidirec-
tional communication.

These results would characterize the message complexity in the impor-
tant special case of a ring of processes but for an interesting technicality. The
Frederickson–Lynch lower bound assumes that the algorithm uses process
identifiers only in order comparisons, but not in counting or more general
arithmetic operations. Almost all published election algorithms satisfy this
assumption. The lower bound also holds for more general uses of identi-
fiers if, for each ring size, the algorithm satisfies a uniform time bound,
independent of the process identifiers. Without this technical assumption,
the problem can be solved with only O(n) messages by an algorithm taking
an unbounded amount of time [FL87, Vit84]. Although unlikely to be of
practical use, this algorithm provides an interesting extreme time-message
tradeoff.

The election problem has been solved under many different assumptions:
the network can be a ring, a complete graph, or a general graph; the graph
can be directed or undirected; the processes might have unique identifiers
or be identical; the individual processes might or might not know the size
or shape of the network; the algorithm can be deterministic or randomized;
communication can be synchronous, asynchronous, or partially synchronous;
and failures might or might not be allowed. The problem has provided an
opportunity to study a single problem under many different assumptions,
but no general principles have yet emerged.

Other Problems Other static problems include the computation of func-
tions, such as the median and other order statistics, where the inputs are ini-
tially distributed. Attiya et al. [ASW88] and Abrahamson et al. [AAHK86]
have obtained especially interesting upper and lower bound results—many
surprisingly tight—about the number of messages required to compute func-
tions in a ring.

44

4.3.2 Dynamic Algorithms

Distributed Termination In this problem, each process is either active
or inactive. Only an active process can send a message, and an inactive
process can become active only by receiving a message. A termination de-
tection algorithm detects when no further process activity is possible—that
is, when all processes are simultaneously inactive and no messages are in
transit.

This problem was first solved by Dijkstra [DS80] for the special case
in which the application program is a “diffusing computation”—one where
all activity originates from and returns to one controlling process. Other
researchers have addressed the problem of detecting termination in CSP
programs; because CSP programs admit the possibility of deadlock as well
as normal termination, these algorithms must also recognize deadlock. Ter-
mination can also be detected using global snapshot algorithms, discussed
later in this section.

Distributed Deadlock Detection Here, it is assumed that processes re-
quest resources and release them, and there is some mechanism for granting
resources to requesting processes. However, resources may be granted in
such a way that deadlock results—for example, in the dining philosophers
problem, each philosopher may have requested both forks and received only
his right fork, so the system is deadlocked because no one can obtain his
left fork. A deadlock detection algorithm detects such a situation, so ap-
propriate corrective action can be taken—usually forcing some processes to
relinquish resources already granted.

The simplest instance of the problem, in which each process is waiting
for a single resource held by another process, is solved by detecting cycles of
the form “A is waiting for a resource held by B, who is waiting for a resource
. . . held by A.” Straightforward cycle-detection algorithms can be applied,
but they may not be efficient. A more complicated solution is required if
process requests have a more interesting structure, such as “any one of a
set of resources” or “any two from set S and any one from set T”. In such
cases, the problem may involve detecting a knot or other graph structure,
instead of a cycle.

A difficulty in designing distributed deadlock detection algorithms is
avoiding the detection of “false deadlocks”. Consider a ring of processes
each of which occasionally requests a resource held by the next, but in
which there is no deadlock. An algorithm that simply checks the status of

45

all processes in some order could happen to observe every process when it
is waiting for a resource and incorrectly decide that there is deadlock. The
algorithm of Chandy, Misra, and Haas [CHM83] is a typical algorithm that
does not detect false deadlocks.

Global Snapshots The global state of a distributed system consists of the
state of each process and the messages on each transmission line. A global
snapshot algorithm attempts to determine the global state of a system. A
trivial algorithm would instantaneously “freeze” the execution of the sys-
tem and determine the state at its leisure, but such an algorithm is seldom
feasible. Moreover, as explained in Section 2.3, determining the global state
requires knowing the complete temporal ordering of events, which may be
impossible. Therefore, a global snapshot algorithm is required only to de-
termine a global state that is consistent with the known temporal ordering
of events. This is sufficient for most purposes. This problem was studied
by Chandy and Lamport [CL85], who presented a simple global snapshot
algorithm.

A global snapshot algorithm can be used whenever one wants global in-
formation about a distributed system. In a distributed banking system, such
an algorithm can determine the total amount of money in the bank without
halting other banking transactions. Similarly, one can use a global snapshot
algorithm to checkpoint a system for failure recovery without halting the
system.

A general class of applications is detecting when an invariant property
holds. Recall that an invariant is a property of the state which, once it holds,
will continue to hold in all subsequent states. (Invariants of distributed
systems are often called “stable properties”.) Distributed termination and
deadlock are invariants. If an invariant holds in the consistent state observed
by a global snapshot algorithm, then it also holds in all global states reached
by the system after the snapshot algorithm terminates. Thus, one can de-
tect termination, deadlock, or any other invariant property by obtaining a
consistent global snapshot and checking it for that property.

A global snapshot algorithm can transform an algorithm for solving a
static network problem to one that solves the dynamic version of the same
problem. For example, the static version of the deadlock detection problem,
in which the set of resources held and requests pending never changes, is
easier to solve than the dynamic version because there is no possibility of
detecting false deadlocks. The harder dynamic version can be solved by

46

taking a global snapshot, then running an algorithm for the static problem
on the state determined by that snapshot. It is not necessary to collect the
global snapshot information in one place; the static deadlock detection can
be done with a distributed algorithm. This strategy is used in a deadlock
detection algorithm by Bracha and Toueg [BT87].

Synchronizers Many simple algorithms have been designed for strongly
synchronous networks—ones in which the entire computation proceeds in a
series of rounds. A network synchronizer is a program designed to convert
such an algorithm to one that can run in a completely asynchronous net-
work. Awerbuch [Awe85] has designed a collection of network synchronizers,
varying in their message and time complexity. They have been used to pro-
duce asynchronous algorithms that are more efficient than previously known
ones for breadth-first search and the determination of maximum flows and
shortest paths.

The simplest of the synchronizers transforms an algorithm for a syn-
chronous network into an asynchronous algorithm that has approximately
the same execution time. This seems to imply that any problem can be
solved just as quickly in asynchronous networks as in synchronous networks.
However, Arjomandi, Fischer, and Lynch [AFL83] showed that there are
some problems whose solution requires much more time (greater by a mul-
tiplicative factor of the network diameter) in an asynchronous than in a
synchronous network. A typical problem is for all nodes to perform a se-
quence of outputs, in such a way that every node does its ith output before
any node does its (i + 1)st. A synchronous system can perform r such out-
put rounds in time r, but an asynchronous system requires extra time for
communication between all the nodes in between each pair of rounds.

4.3.3 Changing Networks

The algorithms discussed so far in this subsection are designed to operate
in communication networks that are fixed while the algorithm is being ex-
ecuted. Algorithms for the same problems are also required for the harder
case where network links may fail and recover during execution—that is, for
changing networks.

One can translate any algorithm for a fixed but arbitrary network into
one that works for a changing network as follows. The nodes run the fixed-
network algorithm as long as the network does not appear to change. When-
ever a node detects a change, it stops executing the old instance of the fixed-

47

network algorithm and begins a new instance, this time on the changed net-
work. Thus, there can be many instances of the fixed-network algorithm ex-
ecuting simultaneously. The different instances are distinguished by means
of “instance identifiers” attached to the messages.

It is not difficult to implement this approach using an unbounded num-
ber of instance identifiers, each chosen to be larger than the previous one
used by the node. Afek, Awerbuch, and Gafni [AAG87] have developed a
method that requires only a finite number of identifiers. However, simply
bounding the number of instance identifiers is of little practical significance,
since practical bounds on an unbounded number of identifiers are easy to
find. For example, with 64-bit identifiers, a system that chooses ten per
second and was started at the beginning of the universe would not run out
of identifiers for several billion more years. However, through a transient
error, a node might choose too large an identifier, causing the system to run
out of identifiers billions of years too soon—perhaps within a few seconds. A
self-stabilizing algorithm using a finite number of identifiers would be quite
useful, but we know of no such algorithm.

4.3.4 Link Protocols

Links, joining nodes in a network, are implemented with one or more physical
channels, each delivering low-level messages called “packets”. Packet deliv-
ery is not necessarily reliable. A link protocol is used to implement reliable
message communication using unreliable physical channels. Of course, it is
necessary to make some assumptions about the types of failures permitted
for the physical channels. For example, channels might be assumed to lose
and reorder messages, but not to duplicate or fabricate them. In addition,
some liveness assumption on the physical channel is needed to ensure that
messages are eventually delivered; a common assumption is that if infinitely
many packets are sent, then eventually some message will be delivered.

The Alternating Bit Protocol is a link protocol that assumes the physical
channel may lose packets but cannot reorder them. When a sender wishes
to transmit a message, it assembles a packet consisting of the message and
a single bit “header”, and transmits this packet repeatedly on the physical
channel. Upon receipt of the packet, the receiver sends the header bit back
to the sender. When the sender receives a header bit that is the same as the
one it is currently transmitting, it knows that its current message has been
received and switches to the next message, using the opposite header bit.

This protocol does not work if the physical channels can reorder mes-

48

sages. In fact, Lynch, Mansour, and Fekete [LMF88] showed that no pro-
tocol with bounded headers can work over non-FIFO physical channels, if
the best-case number of packets required to deliver each message must be
bounded. Attiya et al. [AFWZ89] complete the picture by showing that this
latter assumption is necessary—that there is a (not very practical) protocol
using bounded headers if the best-case number of packets required to deliver
one message is permitted to grow without bound.

Baratz and Siegel [BS88] developed link protocols that tolerate “crashes”
of the participating nodes, with loss of information in the nodes’ states.
Their algorithm requires the node at each end of the link to have one bit of
“stable memory” that survives crashes. It is shown in [LMF88] that this bit
of stable memory is necessary.

Aho et al. [AUWY82] have studied the basic capabilities of finite-state
link protocols.

4.4 Concurrency Control in Databases

A database consists of a collection of items that are individually read and
written by the operations of programs called transactions. A concurrency
control algorithm executes each transaction so it either acts like an atomic
action, with no intervening steps of other transactions, or aborts and does
nothing. This condition, called serializability, ensures that the system acts
as if all transactions that are not aborted are executed in some serial order.
This order must be consistent with the order in which any externally visible
actions of the transactions occur. The serializability condition for databases
is very similar to the atomic condition discussed earlier for shared variables.

By making transactions appear atomic, concurrency control makes the
system easier to understand. For this reason, atomic transactions have been
proposed as a basic construct in distributed programming languages and
systems such as Argus [Lis85] and Camelot [STP*87].

Allowing transactions to be aborted permits more efficient concurrency
control algorithms. An algorithm can make scheduling decisions that lead to
faster execution but may produce a nonserializable execution; it aborts any
transaction whose execution would not appear atomic. It is sometimes useful
to abort a transaction for reasons other than maintaining serializability. The
transaction might be running very slowly and holding needed resources, or
the person who submitted the transaction could change his mind and want
it aborted.

The simplest concurrency control algorithm is one that actually runs

49

the transactions serially, one at a time. However, such an algorithm is not
satisfactory because it eliminates the possibility of concurrent execution of
transactions, even if they access disjoint sets of data items.

4.4.1 Techniques

Hundreds of papers have been written about concurrency control algorithms,
and many techniques have been proposed. We discuss only the two most
popular ones: locking and timestamps. We refer the reader to the text-
book by Bernstein, Hadzilacos, and Goodman [BHG87] for a more complete
survey of concurrency control algorithms and an exposition of some of the
underlying theory, and to Lynch et al. [LMWF88, LMWF90] for a general
theory of concurrency control algorithms.

Locking The concurrency control method used most often in commercial
systems is locking. A locking algorithm requires a transaction to obtain a
lock on each data item before accessing it, preventing conflicting operations
on the item by different transactions. There are usually two kinds of locks:
exclusive locks that enable the owner to read or write the item, and shared
locks that enable the owner only to read it. Several transactions can hold
shared locks on the same item, but a transaction cannot have an exclusive
lock while any other transaction holds either kind of lock on that item.

In a classic paper, Eswaran et al. [KPET76] showed that serializability
is guaranteed by two-phase locking, in which a transaction does not acquire
any new locks after releasing a lock—for example, if it requests all locks
at the beginning and releases them all at the end. However, if locks are
acquired one at a time, deadlock is possible in which each member of some
set of transactions is waiting for a lock held by another member of the set.
Such deadlock must be detected, and the deadlock broken by aborting one
or more waiting transactions. The effects of any aborted transaction must
be undone; this may require saving the original values of all data items that
have been modified by transactions which have not yet completed.

The notions of shared and exclusive locks can be generalized to other
kinds of locks, depending on the semantics of the operations on the database—
in particular, on which operations commute. These other classes of locks
lead to more general and efficient concurrency control mechanisms than
ones based only on shared and exclusive locks.

50

Timestamps Instead of using locks, some algorithms use timestamps (de-
scribed in Section 2.3) to control access to data items. A timestamp is as-
signed to each transaction, and the algorithm ensures that transactions not
aborted are executed as if they were run serially in the order specified by
their timestamps. This serial execution order is obtained if operations to
the same item are performed in timestamp order, where the timestamp of
an operation is defined to be that of the transaction to which it belongs.
One way to implement this condition is not to execute an operation on an
item until all operations to that item with smaller timestamps have been
executed. In a distributed database, waiting until no operation with an ear-
lier timestamp can arrive may be expensive. Alternatively, one can abort a
transaction if it tries to access a data item that has already been accessed
by a transaction with a later timestamp.

So far, we have assumed that only a single version of the item is main-
tained. Additional flexibility can be achieved by keeping several earlier
versions as well, since it is no longer necessary to abort a transaction when
it accesses an item that has already been accessed by transactions with later
timestamps. For example, if the transaction is just reading the item, the
serial order can be preserved by reading an earlier version. Some of these
earlier versions might be needed anyway to restore the item’s value if a
transaction is aborted.

While timestamps seem to offer some advantages over locking, almost
all existing database systems use locking. This may be at least partly due
to timestamp algorithms being more complicated than the commonly used
locking methods.

4.4.2 Distribution Issues

In distributed systems, items can be located at multiple sites. A concurrency
control algorithm must guarantee that all sites affected by a transaction
agree on whether or not it is aborted. This agreement is obtained by a
commit protocol (Section 4.2.4).

Copies of an item may be kept at several sites, to increase its availability
in the event of site failure or to make reading the item more efficient. For
transactions to appear atomic, they must provide the appearance of access-
ing a single copy. One method of ensuring this is to require each operation
to be performed on some subset of the copies—a read using the most recent
value from among the copies it reads. Atomicity is guaranteed if the trans-
actions are serialized and the sets of copies of any item accessed by any two

51

operations have at least one element in common—for example, if each read
reads two copies and each write writes all but one copy.

4.4.3 Nested Transactions

The concept of a transaction has been generalized to nested transactions,
which are transactions that can invoke subtransactions as well as execute
operations on items. The nesting is described as a tree; each transaction is
the parent of the subtransactions it invokes, and an added root transaction
serves as the parent of all top-level transactions. Serializability is generalized
to the requirement that for every node in the transaction tree, all its children
appear to run serially. Algorithms based upon locking and timestamps have
been devised for implementing this more general condition.

With nested transactions, failures can be handled by aborting a sub-
transaction without aborting its parent. The parent is informed that its
child has aborted and can take corrective action. Nested transactions ap-
pear as a fundamental concept in the Argus distributed programming lan-
guage [Lis85] and in the Camelot system [STP*87].

The framework presented in [LMWF88] is general enough for modeling
nested transactions as well as ordinary single-level transactions.

References

[AAG87] Y. Afek, B. Awerbuch, and E. Gafni. Applying static network
protocols to dynamic networks. In Proceedings of the 28th IEEE
Symposium on Foundations of Computer Science, pages 358–
370, Los Angeles, California, October 1987.

[AAHK86] Karl Abrahamson, Andrew Adler, Lisa Higham, and David
Kirkpartrick. Probabilistic solitude verification on a ring. In
Proceedings of the Fifth Annual ACM Symposium on Principles
of Distributed Computing, pages 161–173, Calgary, Canada, Au-
gust 1986.

[AFdR80] Krzysztof R. Apt, Nissim Francez, and Willem P. de Roever.
A proof system for communicating sequential processes.
ACM Transactions on Programming Languages and Systems,
2(3):359–385, July 1980.

52

[AFL83] Eshart Arjomandi, Michael J. Fischer, and Nancy A. Lynch.
Efficiency of synchronous versus asynchronous distributed sys-
tems. Journal of the ACM, 30(3):449–456, July 1983.

[AFWZ89] H. Attiya, M. Fischer, D. Wang, and L. Zuck. Reliable com-
munication over an unreliable channel. In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing,
Association for Computing Machinery, 1989.

[AGPV88] B. Awerbuch, O. Goldreich, D. Peleg, and R. Vainish. On the
Message Complexity of Broadcast: Basic Lower Bound. Tech-
nical Memo TM-365, MIT Laboratory for Computer Science,
July 1988.

[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness. Infor-
mation Processing Letters, 21(4):181–185, October 1985.

[ASW88] Hagit Attiya, Marc Snir, and Manfred K. Warmuth. Computing
on an anonymous ring. Journal of the ACM, 35(4):845–875,
October 1988.

[AUWY82] A. V. Aho, J. Ullman, A. Wyner, and M. Yannakakis. Bounds
on the size and tranmission rate of commumication protocols.
Computers and Mathematics with Applications, 8(3):205–214,
1982.

[Awe85] Baruch Awerbuch. Complexity of network synchronization.
Journal of the ACM, 32(4):804–823, October 1985.

[Ben83] Michael Ben-Or. Another advantage of free choice: Completely
asynchronous agreement protocols. In Proceedings of the Second
Annual ACM Symposium on Principles of Distributed Comput-
ing, pages 27–30, Association for Computing Machinery, New
York, August 1983.

[BHG87] Philip A. Bernstein, V. Hadzilacos, and Nathan Goodman. Con-
currency Control and Recovery in Database Systems. Addison-
Wesley, Reading, Massachusetts, 1987.

[BJL*82] James E. Burns, Paul Jackson, Nancy A. Lynch, Michael J.
Fischer, and Gary L. Peterson. Data requirements for imple-
mentation of n-process mutual exclusion using a single shared
variable. Journal of the ACM, 29(1):183–205, January 1982.

53

[Blo88] B. Bloom. Constructing two-writer atomic registers. IEEE
Transactions On Computers, 37(12):1506–1514, 1988.

[BP87] James E. Burns and Gary L. Peterson. Constructing multi-
reader atomic values from non-atomic values. In Proceedings
of the 6th ACM Symposium on Principles of Distributed Com-
puting, pages 222–231, Vancouver, British Columbia, Canada,
August 1987.

[Bra85] Gabriel Bracha. An O(log n) expected rounds randomized
byzantine generals algorithm. In Proceedings of the 17th An-
nual ACM Symposium on Theory of Computing, pages 316–326,
IEEE, May 1985.

[BS88] A. E. Baratz and A. Segall. Reliable link initialization
prodecures. IEEE Transactions on Communications, COM-
36(2):144–152, February 1988.

[BT87] G. Bracha and S. Toueg. Distributed deadlock detection. Dis-
tributed Computing, 2(3):127–138, 1987.

[CC84] B. A. Coan and B. Chor. A simple and efficient randomized
byzantine agreement algorithm. In Proceedings of the Fourth
Symposium on Reliability in Distributed Software and Database
Systems, pages 98–106, IEEE, 1984.

[CHEP71] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked
directed graphs. Journal of Computer and System Sciences,
5(6):511–523, December 1971.

[CHM83] K. Mani Chandy, Laura M. Haas, and Jayadev Misra. Dis-
tributed deadlock detection. ACM Transactions on Computer
Systems, 1(2):144–156, May 1983.

[CHP71] P. J. Courtois, F. Heymans, and David L. Parnas. Concurrent
control with “readers” and “writers”. Communications of the
ACM, 14(10):667–668, October 1971.

[CL85] K. Mani Chandy and Leslie Lamport. Distributed snapshots:
determining global states of a distributed system. ACM Trans-
actions on Computer Systems, 3(1):63–75, February 1985.

54

[CM84] Mani Chandy and Jayadev Misra. The drinking philosophers
problem. ACM Transactions on Programming Languages and
Systems, 6(4):632–646, October 1984.

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design.
Addison-Wesley, Reading, Massachusetts, 1988.

[DH79] Whitfield Diffie and Martin E. Hellman. Privacy and authen-
tication: an introduction to cryptography. Proceedings of the
IEEE, 67(3):397–427, March 1979.

[DHS84] Danny Dolev, Joe Halpern, and H. Raymond Strong. On the
possibility and impossibility of achieving clock synchronization.
In Proceedings of the Sixteenth Annual ACM Symposium on
Theory of Computing, pages 504–511, Association for Comput-
ing Machinery, Washington, D.C., 1984.

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent program-
ming control. Communications of the ACM, 8(9):569, Septem-
ber 1965.

[Dij68] E. W. Dijkstra. The structure of the “the” multiprogramming
system. Communications of the ACM, 11(5):341–346, May 1968.

[Dij71] Edsger W. Dijkstra. Hierarchical ordering of sequential pro-
cesses. Acta Informatica, 1:115–138, 1971.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of dis-
tributed control. Communications of the ACM, 17(11):643–644,
November 1974.

[DM86] Cynthia Dwork and Yoram Moses. Knowledge and common
knowledge in a Byzantine environment i: crash failures. In
J. Halpern, editor, Theoretical Aspects of Reasoning About
Knowledge, Proceedings of the 1986 Conference, pages 149–170,
Morgan-Kaufmann, March 1986. Extended Abstract.

[Dol82] Danny Dolev. The Byzantine generals strike again. Journal of
Alorithms, 3(1):14–30, March 1982.

[DS80] E. W. Dijkstra and C. S. Scholten. Termination detection for dif-
fusing computations. Information Processing Letters, 11(1):1–4,
August 1980.

55

[Eme] E. Allen Emerson. Temporal and modal logic. This Handbook.

[Fis83] Michael J. Fischer. The consensus problem in unreliable dis-
tributed systems (a brief survey). In Marek Karpinski, editor,
Foundations of Computation Theory, pages 127–140, Springer-
Verlag, 1983.

[FL81] Michael J. Fischer and Nancy A. Lynch. A lower bound for the
time to assure interactive consistency. Information Processing
Letters, 14(4):183–186, June 1981.

[FL87] Greg N. Frederickson and Nancy A. Lynch. Electing a leader in
a synchronous ring. Journal of the ACM, 34(1):98–115, January
1987.

[FLM86] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility
proofs for distributed consensus problems. Distributed Comput-
ing, 1(1):26–39, January 1986.

[FLP85] Michael J. Fischer, Nancy Lynch, and Michael S. Paterson.
Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374–382, April 1985.

[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for byzan-
tine agreement. In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, pages 148–161, Chicago,
Illinois, May 1988.

[GC88] Eli Gafni and Ching-Tsun Chou. Understanding and verifying
distributed algorithms using stratified decomposition. In Pro-
ceedings of the 7th annual ACM Symposium on Principles of
Distributed Computing, pages 44–65, Toronto, Ontario, Canada,
August 1988.

[GHS83] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed
algorithm for minimum-weight spanning trees. ACM Trans-
actions on Programming Languages and Systems, 5(1):66–77,
January 1983.

[Gra78] J. N. Gray. Notes on database operating systems. In R. Bayer,
R. M. Graham, and G. Seegmuller, editors, Operating Systems:
An Advanced Course, pages 393–481, Springer-Verlag, Berlin,
Heidelberg, New York, 1978.

56

[Her88] Maurice P. Herlihy. Impossibility and universality results for
wait-free synchronization. In In Proceedings of the 7th an-
nual ACM Symposium on Principles of Distributed Computing,
pages 276–290, Toronto, Ontario, Canada, August 1988.

[HM84] Joseph Y. Halpern and Yoram Moses. Knowledge and com-
mon knowledge in a distributed environment. In Proceedings of
the Third Annual ACM Symposium on Principles of Distributed
Computing, pages 50–61, Association for Computing Machinery,
New York, 1984.

[Hoa74] C. A. R. Hoare. Monitors: An operating system structuring
concept. Communications of the ACM, 17(10):549–557, October
1974.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commu-
nications of the ACM, 21(8):666–677, August 1978.

[Hum83] Pierre A. Humblet. A distributed algorithm for minimum weight
directed spanning trees. IEEE Transactions on Communica-
tions, COM-31(6):756–762, June 1983.

[KPET76] R. A. Lorie K. P. Eswaran, J. N. Gray and I. L. Traiger. The
notions of consistency and predicate locks in a database system.
Communications of the ACM, 19(11):624–633, November 1976.

[Lam74] Leslie Lamport. A new solution of Dijkstra’s concurrent pro-
gramming problem. Communications of the ACM, 17(8):453–
455, August 1974.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7):558–
565, July 1978.

[Lam84] Leslie Lamport. Using time instead of timeout for fault-tolerant
distributed systems. ACM Transactions on Programming Lan-
guages and Systems, 6(2):254–280, April 1984.

[Lam86] Leslie Lamport. On interprocess communication. Distributed
Computing, 1(2):77–101, 1986.

57

[Lam89] Leslie Lamport. A simple approach to specifying concurrent
systems. Communications of the ACM, 32(1):32–45, January
1989.

[LG81] G. M. Levin and D. Gries. A proof technique for communicating
sequential processes. Acta Informatica, 15(3):281–302, 1981.

[Lis85] Barbara Liskov. The argus language and system. In M. Paul and
H. J. Siegert, editors, Distributed Systems: Methods and Tools
for Specification, chapter 7, pages 343–430, Springer-Verlag,
1985.

[LMF88] Nancy A. Lynch, Yishay Mansour, and Alan Fekete. The
data link layer: two impossibility results. In In Proceedings
of the 7th ACM Symposium on Principles of Distributed Com-
putation, pages 149–170, ACM SIGACT and ACM SIGOPS,
Toronto, Canada, August 1988. Also, MIT Technical Memo,
MIT/LCS/TM-355, May 1988.

[LMWF88] Nancy A. Lynch, Michael Merritt, William Weihl, and Alan
Fekete. A theory of atomic transactions. In M. Gyssens, J.
Paredaens, and D. Van Gucht, editors, Second International
Conference on Database Theory, pages 41–71, Springer-Verlag,
Bruges, Belgium, September 1988.

[LMWF90] Nancy A. Lynch, Michael Merritt, William Weihl, and Alan
Fekete. Atomic Transactions. Morgan-Kaufmann, 1990(?). In
preparation.

[LS84] S. S. Lam and A. U. Shankar. Protocol verification via pro-
jections. IEEE Transactions on Software Engineering, SE-
10(4):325–342, July 1984.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The
Byzantine generals problem. ACM Transactions on Program-
ming Languages and Systems, 4(3):382–401, July 1982.

[LT87] Nancy Lynch and Mark Tuttle. Hierarchical correctness proofs
for distributed algorithms. In Proceedings of the Sixth Sympo-
sium on the Principles of Distributed Computing, pages 137–
151, ACM, August 1987.

58

[Mil80] R. Milner. A Calculus of Communicating Systems. Springer-
Verlag, Berlin, Heidelberg, New York, 1980.

[OG76] S. Owicki and D. Gries. An axiomatic proof technique for par-
allel programs i. Acta Informatica, 6(4):319–340, 1976.

[OL82] Susan Owicki and Leslie Lamport. Proving liveness properties
of concurrent programs. ACM Transactions on Programming
Languages and Systems, 4(3):455–495, July 1982.

[Pet82] Gary L. Peterson. AnO(n log n) unidirectional algorithm for the
circular extrema problem. ACM Transactions on Programming
Languages and Systems, 4(4):758–762, October 1982.

[Pet83] Gary L. Peterson. Concurrent reading while writing. ACM
Transactions on Programming Languages and Systems, 5(1):46–
55, January 1983.

[PF77] G. Peterson and M. Fischer. Economical solutions for the crit-
ical section problem in a distributed system. In Proceedings
of the 9th Annual ACM Symposium on Theory of Computing,
pages 91–97, ACM, May 1977.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of
the 18th Symposium on the Foundations of Computer Science,
pages 46–57, ACM, November 1977.

[PSL80] Marshall Pease, Robert Shostak, and Leslie Lamport. Reach-
ing agreement in the presence of faults. Journal of the ACM,
27(2):228–234, April 1980.

[Rab82] Michael O. Rabin. N-process mutual exclusion with bounded
waiting by 4 log n-valued shared variable. Journal of Computer
and System Sciences, 25(1):66–75, 1982.

[Ray86] M. Raynal. Algorithms for Mutual Exclusion. MIT Press, Cam-
bridge, Massachusetts, 1986.

[RL81] Michael Rabin and Daniel Lehmann. On the advantages of free
choice: A symmetric and fully distributed solution to the din-
ing philosophers problem. In Proceedings of the 8th Annual
ACM Symposium on Principles of Programming Languages,
pages 133–138, ACM, Williamsburg, Virginia, January 1981.

59

[SA86] F. B. Schneider and G. R. Andrews. Concepts for concurrent
programming. In J. W. de Bakker, W.-P. de Roever, and G.
Rozenberg, editors, Current Trends in Concurrency, pages 669–
716, Springer-Verlag, Berlin, Heidelberg, New York, 1986.

[Ske82] Marion Dale Skeen. Crash Recovery in a Distributed Database
System. PhD thesis, University of California, Berkeley, May
1982.

[SM82] Richard L. Schwartz and P. Michael Melliar-Smith. From state
machines to temporal logic: specification methods for proto-
col standards. IEEE Transactions on Communications, COM-
30(12):2486–2496, December 1982.

[STP*87] Alfred Z. Spector, Dean Thompson, Randy F. Pausch, Jeffrey L.
Eppinger, Dan Duchamp, Richard Draves, Dean S. Daniels, and
Joshua J. Bloach. Camelot: A Distributed Transaction Facil-
ity for Mach and the Internet—An Interim Report. Technical
Report CMU-CS-87-129, Carnegie Mellon University, June 17
1987.

[Thi85] P. S. Thiagarajan. Some aspects of net theory. In B. T. Denvir,
W. T. Harwood, M. I. Jackson, and M. J. Wray, editors, The
Analysis of Concurrent Systems, pages 26–54, Springer-Verlag,
Berlin, Heidelberg, New York, 1985.

[Vit84] Paul Vitányi. Distributed elections in an archimedean ring of
processors. In Proceedings of the Sixteenth Annual ACM Sym-
posium on Theory of Computing, pages 542–547, Association for
Computing Machinery, New York, April 1984.

[WLL88] Jennifer Welch, Leslie Lamport, and Nancy Lynch. A lattice-
structured proof of a minimum spanning tree algorithm. In
Danny Dolev, editor, Proceedings of the Seventh Annual ACM
Symposium on Principles of Distributed Computing, pages 28–
43, Association for Computing Machinery, Inc., New York, Au-
gust 1988.

60

