
1A COMPLETENESS THEOREM FOR TLA

Preface: A Quick Introduction to TLA
-------------------------------------

Here ′s a quick and dirty informal definition and semantics for TLA.
A more precise one is given later. If you are already familiar
with the new, improved TLA (defined a little differently than in
SRC Report No. 57) you can skip to the Introduction.

Values:
I assume a set of values, big enough to contain all the constants
of interest. It includes the values 1, TRUE, NAT (the set of all
naturals), {n ∈ NAT : n a prime}, etc.

State, Variable:
A variable is something that assigns a value to every state. I let
s.x, denote the value state s assigns to variable s. Or maybe a
state s is something that assigns a value s.x to a variable x.
Take your pick.

State Function:
An expression made from variables and constants, such as x2 + 3*y.
A state function f assigns a value s.f to every state s. For
example,

s.(x2 +3*y) = (s.x)2 + 3*(s.y).

Predicate:
A boolean-valued state function--for example,

x2 < 3*y

Action:
A Boolean expression involving variables, primed variables and
constants--for example, x + 1 < 2*y ′. An action maps pairs of
states to Booleans. Letting s.A.t denote the value that action A
assigns to the pair (s,t), I define

s.(x + 1 < 2*y ′).t = (s.x) + 1 < 2*(t.y)

In other words, the unprimed variables talk about the left-hand
state, and the primed variables talk about the right-hand state.
Think of s.A.t = TRUE as meaning that an A-step can take state s to
state t. An action is valid, written |= A, iff s.A.t is true for
all states s and t.

Enabled(A):
For any action A, the predicate Enabled(A) is defined by

s.Enabled(A)
∆= ∃ t : s.A.t

f ′=f:
For any state function f, the action f ′=f, which is sometimes
written Unchanged(f), is defined by

s.(f ′=f).t ∆= (t.f) = (s.f)

[A]f:
The action [A]f is defined by

[A]f
∆= A ∨ (f ′=f)

An [A]f step is either an A step or leaves f unchanged.

<A>f:
The action <A>f is defined by

<A>f
∆= ¬[¬A]f



2It equals A ∧ (f ′=/f). An <A>f step is an A step that changes f.

The Raw Logic:
A Raw Logic formula is any formula made from actions using
logical operators and the unary ✷ operator--for example

A ∨ ✷(B ∧ ✷¬✷¬A)

where A and B are actions. A Raw Logic formula is a Boolean-valued
function on infinite sequences of states. An infinite sequence of
states is called a BEHAVIOR. An action A is interpreted as the
temporal formula asserting that first step of the behavior is an A
step. The formula ✷A asserts that every step is an A step. In
general, let s0, s1, ... |= F denote the value that formula F
assigns to the sequence s0, s1, .... The semantics of Raw Logic
formulas is defined as follows, where A is any action and F and G
are any formulas:

s0, s1, s2, ... |= A
∆= s0.A.s1

s0, s1, s2, ... |= ✷F
∆= ∀ n ≥ 0 : sn, sn+1, sn+2, ... |= F

s0, s1, s2, ... |= ¬F ∆= ¬(s0, s1, s2, ... |= F)

s0, s1, s2, ... |= F ∨ G
∆= etc.

A formula F is valid, written |= F, iff it is true for all
behaviors.

TLA:
The Raw Logic is wonderfully simple, but it is too expressive. It
allows you to assert that something is true of the next state,
which ruins any effort to heierarchically refine programs. We
define TLA to be the subset of Raw Logic formulas obtained by
application of ✷ and logical operators starting not from arbitrary
actions, but from predicates and actions of the form [A]f. For
example:

P ⇒ ¬✷¬✷[A]f ∨ ✷(Q ⇒ ✷[B]g)

Observe that ✷[A]f asserts that every step is either an A step
or else leaves f unchanged.

As is usual in temporal logic, we define ✸ and ❀ by

✸F
∆= ¬✷¬F

F ❀ G
∆= ✷(F ⇒ ✷G)

The Raw formula ✸A is a TLA formulas iff A is a predicate or an
action of the form ✸<A>f.

Technical point. Since ✷F ∧ ✷G = ✷(F ∧ G) holds for any F and
G, it ′s convenient to let TLA include formulas of the form
✷(P ∧ ✷[A]f) where P is a predicate.

Introduction
------------

This is a relative completeness proof for TLA, a la Cook. It is
not a completeness result for all of TLA, just for the class of
formulas that one is interested in proving. The formulas we ′re
interested in are of the form

Program ⇒ Property



3
A Program has the form

P ∧ ✷[A]f ∧ Fairness

for P a predicate. So far, all the Fairness conditions have
have been conjunctions of the form SFf(B) or WFf(B), where
B implies A and

WFf(B)
∆= ✷ ✸<B>f ∨ ✷ ✸¬Enabled(<B>f)

SFf(B)
∆= ✷ ✸<B>f ∨ ✸ ✷¬Enabled(<B>f)

The theorem allows the more general class of programs in which
Fairness is the conjunction of formulas of the form

✷ ✸¬TACT ∨ ✸ ✷TACT or ✷ ✸¬TACT ∨ ✷ ✸TACT,

where TACT denotes any formula of the form Q ∧ [B]g, so ¬TACT is
a formula of the form Q ∨ <B>g. The Fairness formula must
satisfy the additional requirement that program is machine closed,
meaning that for any safety property S:

If |= (P ∧ ✷[A]f ∧ Fairness) ⇒ S
then |= (P ∧ ✷[A]f) ⇒ S

(The theorem requires this only when S is of the form ✷TACT.)
Machine closure, which was called "feasibility" by Apt, Francez,
and Katz, is a reasonable requirement for any fairness condition.
It can be argued that a condition not satisfying it is not a
fairness condition, since it can ′t be implemented by a memory-less
scheduler.

The Property can have any of the following forms:

Predicate
✷Predicate
Predicate ❀ Predicate
GeneralProgram

where a GeneralProgram is like a Program, except without the
machine-closure requirement on its fairness condition. The absence
of this requirement is important, for the following reason. To
prove that program Π1 implements program Π2, one proves
Π1 ⇒ Φ2, where Φ2 is obtained from Π2 by
substituting state functions for variables. This substitution
preserves the form of the formula Π2, but can destroy
machine-closure.

Proving relative completeness for safety properties in TLA is
pretty much the same as proving it for the Floyd/Hoare method. The
completeness results for Hoare ′s method assumes the expressibility
of the predicate sp(S, P) for program statements S and predicates
P, where sp is the strongest postcondition operator. Assuming such
predicates for arbitrary statements S, which include loops or
recursion, is equivalent to assuming the expressibility of sp(A, P)
and sin(A, P) for atomic actions A, where sin is the strongest
invariant operator.

Proving relative completeness for liveness is somewhat trickier.
It requires induction over well-founded sets. Taking a simple,
intuitive approach leads to a result whose practical interest is
rather doubtful. For example, Mann and Pnueli ("Completing the
Temporal Picture") use the axiom of choice to pull a well-founded



4ordering on the state space out of a hat. Such a construction
requires the assumption that every semantic predicate is
syntactically expressible.

Getting the precise expressibility assumptions, and avoiding
mistakes, required a careful formal exposition.

The Assumptions
---------------
In relative completeness results for Hoare logic, one assumes a
complete system for reasoning about predicates. In TLA, all the
serious reasoning is in the domain of actions. So, we assume a
complete system for reasoning about actions. More precisely,
letting � denote provability, we assume a set ACT of expressible
actions such that (|= A) ⇒ (� A) for any action A in ACT. There
are various simple assumptions about ACT--such as its being closed
under boolean operations. Let PRED denote the set consisting of
all predicates in ACT (remember that a predicate is an action that
doesn ′t mention unprimed variables). The least reasonable
assumption is that for any P in PRED and A in ACT, sin(A, P) and
sp(A, P) are in PRED. Of course, this assumption is what really
puts the "relative" in "relative completeness".

The relatively complete logical system consists of the following:

1. The usual assortment of simple propositional temporal logic
rules and axioms that you ′d expect, since TLA includes
simple temporal logic (the logic that ′s the same as the Raw
Logic except starting with predicates, not arbitrary actions).

2. An induction principle, which is what you ′d expect for any
relatively complete system for proving temporal logic
liveness properties.

3. The two TLA axioms:

� (✷P ≡ P ∧ ✷[P ⇒ P ′]P)

� (A ⇒ B) ⇒ � (✷A ⇒ ✷B)

where P is a predicate, and A and B are actions of the form
P ∧ [A]f.

The axioms of 3 are the only ones that mention actions. The axioms
of 1 only mention arbitrary formulas, and the induction principle
of 2 talks only about predicates. These axioms are actually valid
for the Raw logic, and in that logic the second axiom of 3
is a special case of the axiom

� (F ⇒ G) ⇒ � (✷F ⇒ ✷G)

from 1, for arbitrary formulas F and G. However, [A]f ⇒ [B]g
isn ′t a TLA formula (it ′s a formula in the logic of actions, but
not in TLA), so the second axiom of 3 is needed if you want to do
all your reasoning completely within TLA.

The induction axiom 2 is tricky enough to be worth mentioning. To
get it right, we first have to generalize everything to include
logical variables. If you want to describe an n-process algorithm
with a TLA formula, for an arbitrary but fixed n, then n is a
logical variable of the formula. A logical variable represents an
unspecified value that is the same for all states of a behavior.
In the semantics of actions and TLA formulas, Booleans have to be



5replaced by Boolean-valued formulas involving logical variables.
(Formally, Booleans become boolean-valued functions on
interpretations, where an interpretation is an assignment of values
to all logical variables.) Logical variables pop up all the time
when you use TLA in practice. For example, if you have a
distributed algorithm with a set Node of nodes, then Node is a
logical variable. In fact, if you go really overboard in
formalism--as you must to verify things mechanically--then
everything that ′s not a program variable (the kind of variable I
first talked about) or a logical operator is a logical variable.
In the expression x + 3, the + and the 3 are logical variables. We
just happen to have a lot of axioms about the logical variables +
and 3, such as 1+1+1 = 3, while we have just a few axioms about the
logical variable n (for example n ∈ NAT, n > 0).

But, I digress. I was talking about the induction principle. An
induction principle involves induction over a well-founded ordering
on a set. Intuitively, a well-founded ordering on a set S is a
relation > such that there does not exist an infinite sequence
c1 > c2 > c3 > ... . More precisely,

Well-Founded(>, S)
∆= ¬ ∀ i : (i ∈ NAT) ⇒

∃ ci : (ci ∈ S) ∧ (ci > ci+1)

But, what does this formula mean? For me, the most sensible way to
interpret it as a logical formula is to rewrite it as

Well-Founded(v > w, S)
∆= ∀ c : ¬ ∀ i : (i ∈ NAT) ⇒

(c(i) ∈ S) ∧ (c(i) > c(i+1))

where v > w is a formula with free logical variables v and w, and
(c(i) > ci+1)) is the formula obtained by substituting c(i) for v
and c(i+1) for w in the formula v > w. This is a higher-order
formula, involving quantification over a function symbol c.

The completeness result requires, as an assumption, that if the
formulas "v > w" and "v ∈ S" are expressible, then
Well-Founded(v > w, S) is provable if it ′s true. I think that if
you look closely at Manna and Pnueli ′s paper, you ′ll find that they
are implicitly assuming this for any formula "v > w"--not just for
an expressible one.

Anyway, the actual temporal induction principle looks as follows,
where P(w) denotes a formula containing w as free logical
variables, P(v) denotes the result of substituting v for w, and F
is an arbitrary temporal formula.

If � ∃ w ∈ S
w not free in F
� Well-Founded(>, S)
� (F ∧ w ∈ S

⇒ (P(w) ❀ ∃ v : (v ∈ S) ∧ (w > v) ∧ P(v)))
then � ¬F

I ′ve actually lied a bit. I assume this rule when w is a k-tuple
of distinct logical variables, and I assume the provability only of
Well-Founded(v > w, VALk), where v > w is an expressible formula
and VALk denotes the set of k-tuples of values. I could have done



6it the other way by making a few more expressibility
assumptions--such as assuming that "v ∈ VALk" is
expressible--but I think that would have been a little more
complicated.


