
Composition: A Way to Make Proofs Harder

Leslie Lamport

24 December 1997

Appeared in Compositionality: The Significant Difference
(Proceedings of the COMPOS’97 Symposium), Willem-
Paul de Roever, Hans Langmaack, and Amir Pnueli edi-
tors. Lecture Notes in Computer Science, number 1536,
(1998), 402–423.

Table of Contents

1 Introduction . 402

2 The Mathematical Laws of Composition 403

3 Describing a System with Mathematics 403
3.1 Discrete Dynamic Systems . 404
3.2 An Hour Clock . 404
A First Attempt . 404
Stuttering . 405
Fairness . 406

3.3 An Hour-Minute Clock . 407
The Internal Specification . 407
Existential Quantification . 407

3.4 Implementation and Implication 408
3.5 Invariance and Step Simulation 410
3.6 A Formula by any Other Name 410

4 Invariance in a Pseudo-Programming Language 410
4.1 The Owicki-Gries Method . 411
4.2 Why Bother? . 413

5 Refinement . 414
5.1 Refinement in General . 414
5.2 Hierarchical Refinement . 414
5.3 Interface Refinement . 415

6 Decomposing Specifications . 415
6.1 Decomposing a Clock into its Hour and Minute Displays 416
6.2 Decomposing Proofs . 417
6.3 Why Bother? . 419
6.4 When a Decomposition Theorem is Worth the Bother 421

7 Composing Specifications . 421

8 Conclusion . 422

References . 422

Composition: A Way to Make Proofs Harder

Leslie Lamport

Systems Research Center, Digital Equipment Corporation

Abstract. Compositional reasoning about a system means writing its
specification as the parallel composition of components and reasoning
separately about each component. When distracting language issues are
removed and the underlying mathematics is revealed, compositional rea-
soning is seen to be of little use.

1 Introduction

When an engineer designs a bridge, she makes a mathematical model of it and
reasons mathematically about her model. She might talk about calculating rather
than reasoning, but calculating

√
2 to three decimal places is just a way of

proving |√2−1.414| < 10−3. The engineer reasons compositionally, using laws of
mathematics to decompose her calculations into small steps. She would probably
be mystified by the concept of compositional reasoning about bridges, finding it
hard to imagine any form of reasoning that was not compositional.
Because computer systems can be built with software rather than girders and

rivets, many computer scientists believe these systems should not be modeled
with the ordinary mathematics used by engineers and scientists, but with some-
thing that looks vaguely like a programming language. We call such a language a
pseudo-programming languages (PPL). Some PPLs, such as CSP, use constructs
of ordinary programming languages. Others, like CCS, use more abstract nota-
tion. But, they have two defining properties: they are specially designed to model
computer systems, and they are not meant to implement useful, real-world pro-
grams.
When using a pseudo-programming language, compositional reasoning means

writing a model as the composition of smaller pseudo-programs, and reasoning
separately about those smaller pseudo-programs. If one believes in using PPLs
to model computer systems, then it is natural to believe that decomposition
should be done in terms of the PPL, so compositionality must be a Good Thing.
We adopt the radical approach of modeling computer systems the way en-

gineers model bridges—using mathematics. Compositionality is then a trivial
consequence of the compositionality of ordinary mathematics. We will see that
the compositional approaches based on pseudo-programming languages are anal-
ogous to performing calculations about a bridge design by decomposing it into
smaller bridge designs. While this technique may occasionally be useful, it is
hardly a good general approach to bridge design.

403

2 The Mathematical Laws of Composition

Mathematical reasoning is embodied in statements (also called theorems) and
their proofs. The reasoning is hierarchical—the proof of a statement consists of
a sequence of statements, each with its proof. The decomposition stops at a level
at which the proof is sufficiently obvious that it can be written as a short, simple
paragraph. How rigorous the proof is depends on what “obvious” means. In the
most rigorous proofs, it means simple enough so that even a computer can verify
it. Less rigorous proofs assume a reader of greater intelligence (or greater faith).
We will use the notation introduced in [10] to write hierarchical proofs.
Two fundamental laws of mathematics are used to decompose proofs:

∧-Composition A ⇒ B
A ⇒ C

A ⇒ B ∧C

∨ -Composition A ⇒ C
B ⇒ C

A ∨ B ⇒ C

Logicians have other names for these laws, but our subject is compositionality,
so we adopt these names. A special case of ∨-composition is:

Case-Analysis A ∧ B ⇒ C
A ∧ ¬B ⇒ C

A ⇒ C

The propositional ∧- and ∨-composition rules have the following predicate-logic
generalizations:

∀ -Composition (i ∈ S) ∧ P ⇒ Q(i)
P ⇒ (∀ i ∈ S : Q(i))

∃ -Composition (i ∈ S) ∧ P(i)⇒ Q
(∃ i ∈ S : P(i))⇒ Q

Another rule that is often used (under a very different name) is

Act-Stupid A ⇒ C
A ∧ B ⇒ C

We call it the act-stupid rule because it proves that A∧B implies C by ignoring
the hypothesis B . This rule is useful when B can’t help in the proof, so we need
only the hypothesis A. Applying it in a general method, when we don’t know
what A and B are, is usually a bad idea.

3 Describing a System with Mathematics

We now explain how to use mathematics to describe systems. We take as our
example a digital clock that displays the hour and minute. For simplicity, we
ignore the fact that a clock is supposed to tell the real time, and we instead just
specify the sequence of times that it displays. A more formal explanation of the
approach can be found in [9].

404

3.1 Discrete Dynamic Systems

Our clock is a dynamic system, meaning that it evolves over time. The classic way
to model a dynamic system is by describing its state as a continuous function of
time. Such a function would describe the continuum of states the display passes
through when changing from 12:49 to 12:50. However, we view the clock as a
discrete system. Discrete systems are, by definition, ones we consider to exhibit
discrete state changes. Viewing the clock as a discrete system means ignoring
the continuum of real states and pretending that it changes from 12:49 to 12:50
without passing through any intermediate state. We model the execution of a
discrete system as a sequence of states. We call such a sequence a behavior. To
describe a system, we describe all the behaviors that it can exhibit.

3.2 An Hour Clock

A First Attempt To illustrate how systems are described mathematically, we
start with an even simpler example than the hour-minute clock—namely, a clock
that displays only the hour. We describe its state by the value of the variable
hr . A typical behavior of this system is

[hr = 11] → [hr = 12] → [hr = 1] → [hr = 2] → · · ·
We describe all possible behaviors by an initial predicate that specifies the pos-
sible initial values of hr , and a next-state relation that specifies how the value
of hr can change in any step (pair of successive states).
The initial predicate is just hr ∈ {1, . . . , 12}. The next-state relation is the

following formula, in which hr denotes the old value and hr ′ denotes the new
value.

((hr = 12) ∧ (hr ′ = 1)) ∨ ((hr �= 12) ∧ (hr ′ = hr + 1))

This kind of formula is easier to read when written with lists of conjuncts or
disjuncts, using indentation to eliminate parentheses:

∨ ∧ hr = 12
∧ hr ′ = 1

∨ ∧ hr �= 12
∧ hr ′ = hr + 1

There are many ways to write the same formula. Borrowing some notation from
programming languages, we can write this next-state relation as

hr ′ = if hr = 12 then 1 else hr + 1

This kind of formula, a Boolean-valued expression containing primed and un-
primed variables, is called an action.
Our model is easier to manipulate mathematically if it is written as a single

formula. We can write it as

∧ hr ∈ {1, . . . , 12}
∧ ✷ (hr ′ = if hr = 12 then 1 else hr + 1)

(1)

405

This is a temporal formula, meaning that it is true or false of a behavior. A
state predicate like hr ∈ {1, . . . , 12} is true for a behavior iff it is true in the first
state. A formula of the form ✷N asserts that the action N holds on all steps of
the behavior.
By introducing the operator ✷, we have left the realm of everyday mathe-

matics and entered the world of temporal logic. Temporal logic is more compli-
cated than ordinary mathematics. Having a single formula as our mathematical
description is worth the extra complication. However, we should use temporal
reasoning as little as possible. In any event, temporal logic formulas are still
much easier to reason about than programs in a pseudo-programming language.

Stuttering Before adopting (1) as our mathematical description of the hour
clock, we ask the question, what is a state? For a simple clock, the obvious
answer is that a state is an assignment of values to the variable hr . What about
a railroad station with a clock? To model a railroad station, we would use a
number of additional variables, perhaps including a variable sig to record the
state of a particular signal in the station. One possible behavior of the system
might be

hr = 11
sig = “red”
...

 →

hr = 12
sig = “red”
...

 →

hr = 12
sig = “green”
...

 →

hr = 12
sig = “red”
...

 →

hr = 1
sig = “red”
...

 → · · ·

We would expect our description of a clock to describe the clock in the railroad
station. However, formula (1) doesn’t do this. It asserts that hr is incremented
in every step, but the behavior of the railroad station with clock includes steps
like the second and third, which change sig but leave hr unchanged.
To write a single description that applies to any clock, we let a state consist

of an assignment of values to all possible variables. In mathematics, the equation
x + y = 1, doesn’t assert that there is no z . It simply says nothing about the
value of z . In other words, the formula x + y = 1 is not an assertion about some
universe containing only x and y. It is an assertion about a universe containing
x , y, and all other variables; it constrains the values of only the variables x
and y.
Similarly, a mathematical formula that describes a clock should be an asser-

tion not about the variable hr , but about the entire universe of possible variables.
It should constrain the value only of hr and should allow arbitrary changes to
the other variables—including changes that occur while the value of hr stays the
same. We obtain such a formula by modifying (1) to allow “stuttering” steps

406

that leave hr unchanged, obtaining:

∧ hr ∈ {1, . . . , 12}
∧ ✷

(∨ hr′ = if hr = 12 then 1 else hr + 1
∨ hr′ = hr

) (2)

Clearly, every next-state relation we write is going to have a disjunct that leaves
variables unchanged. So, it’s convenient to introduce the notation that [A]v
equals A ∨ (v ′ = v), where v ′ is obtained from the expression v by priming
all its free variables. We can then write (2) more compactly as

∧ hr ∈ {1, . . . , 12}
∧ ✷[hr ′ = if hr = 12 then 1 else hr + 1]hr

(3)

This formula allows behaviors that stutter forever, such as

[hr = 11] → [hr = 12] → [hr = 12] → [hr = 12] → · · ·

Such a behavior describes a stopped clock. It illustrates that we can assume all
behaviors are infinite, because systems that halt are described by behaviors that
end with infinite stuttering. But, we usually want our clocks not to stop.

Fairness To describe a clock that doesn’t stop, we must add a conjunct to (3)
to rule out infinite stuttering. Experience has shown that the best way to write
this conjunct is with fairness formulas. There are two types of fairness, weak
and strong, expressed with the WF and SF operators that are defined as follows.

WFv (A) If A ∧ (v ′ �= v) is enabled forever, then infinitely many A ∧ (v ′ �= v)
steps must occur.

SFv (A) If A∧(v ′ �= v) is enabled infinitely often, then infinitely many A∧(v ′ �=
v) steps must occur.

The v ′ �= v conjuncts make it impossible to use WF or SF to write a formula
that rules out finite stuttering.
We can now write our description of the hour clock as the formula Π , defined

by
N ∆= hr ′ = if hr = 12 then 1 else hr + 1

Π
∆= (hr ∈ {1, . . . , 12}) ∧ ✷[N]hr ∧ WFhr (N)

The first two conjuncts of Π (which equal (3)), express a safety property. In-
tuitively, a safety property is characterized by any of the following equivalent
conditions.

– It asserts that the system never does something bad.

– It asserts that the system starts in a good state and never takes a wrong
step.

407

– It is finitely refutable—if it is violated, then it is violated at some particular
point in the behavior.

The last conjunct of Π (the WF formula) is an example of a liveness property.
Intuitively, a liveness property is characterized by any of the following equivalent
conditions.

– It asserts that the system eventually does something good.

– It asserts that the system eventually takes a good step.

– It is not finitely refutable—it is possible to satisfy it after any finite portion
of the behavior.

Formal definitions of safety and liveness are due to Alpern and Schneider [4].
Safety properties are proved using only ordinary mathematics (plus a couple

of lines of temporal reasoning). Liveness properties are proved by combining
temporal logic with ordinary mathematics. Here, we will mostly ignore liveness
and concentrate on safety properties.

3.3 An Hour-Minute Clock

The Internal Specification It is now straightforward to describe a clock with
an hour and minute display. The two displays are represented by the values of
the variables hr andmin. To make the specification more interesting, we describe
a clock in which the two displays don’t change simultaneously when the hour
changes. When the display changes from 8:59 to 9:00, it transiently reads 8:00
or 9:59. Since we are ignoring the actual times at which state changes occur,
these transient states are no different from the states when the clock displays
the “correct” time.
Figure 1 defines a formula Φ that describes the hour-minute clock. It uses an

additional variable chg that equals true when the display is in a transient state.
Action Mm describes the changing of min; action Mh describes the changing
of hr . The testing and setting of chg by these actions is a bit tricky, but a
little thought reveals what’s going on. Action Mh introduces a gratuitous bit
of cleverness to remove the if/then construct from the specification of the new
value of hr . The next-state relation for the hour-minute clock is Mm ∨ Mh ,
because a step of the clock increments either min or hr . Since 〈hr , min chg 〉′
equals 〈hr ′, min ′, chg ′ 〉, it equals 〈hr , min, chg 〉 iff hr , min, and, chg are all
unchanged.

Existential Quantification Formula Φ of Figure 1 contains the free variables
hr , min, and chg. However, the description of a clock should mention only hr and
min, not chg. We need to “hide” chg. In mathematics, hiding means existential
quantification. The formula ∃ x : y = x 2 asserts that there is some value of
x that makes y = x 2 true; it says nothing about the actual value of x . The
formula describing an hour-minute clock is ∃∃∃∃∃∃ chg : Φ. The quantifier ∃∃∃∃∃∃ is a
temporal operator, asserting that there is a sequence of values of chg that makes
Φ true. The precise definition of ∃∃∃∃∃∃ is a bit subtle and can be found in [9].

408

InitΦ
∆= ∧ hr ∈ {1, . . . , 12}

∧ min ∈ {0, . . . , 59}
∧ chg = false

Mm
∆= ∧ ¬((min = 0) ∧ chg)

∧ min ′ = (min + 1) mod 60
∧ chg ′ = (min = 59) ∧ ¬chg
∧ hr ′ = hr

Mh
∆= ∧ ∨ (min = 59) ∧ ¬chg

∨ (min = 0) ∧ chg
∧ hr ′ = (hr mod 12) + 1
∧ chg ′ = ¬chg
∧ min ′ = min

Φ
∆= ∧ InitΦ

∧ ✷[Mm ∨ Mh]〈hr ,min,chg 〉
∧ WF〈hr ,min,chg 〉(Mm ∨ Mh)

Fig. 1. The internal specification of an hour-minute clock.

3.4 Implementation and Implication

An hour-minute clock implements an hour clock. (If we ask someone to build a
device that displays the hour, we can’t complain if the device also displays the
minute.) Every behavior that satisfies the description of an hour-minute clock
also satisfies the description of an hour clock. Formally, this means that the
formula (∃∃∃∃∃∃ chg :Φ)⇒ Π is true. In mathematics, if something is true, we should
be able to prove it. The rules of mathematics allow us to decompose the proof
hierarchically. Here is the statement of the theorem, and the first two levels of
its proof. (See [10] for an explanation of the proof style.)

Theorem1. (∃∃∃∃∃∃ chg : Φ)⇒ Π

〈1〉1. Φ ⇒ Π
〈2〉1. InitΦ ⇒ hr ∈ {1, . . . , 12}
〈2〉2. ✷[Mm ∨Mh]〈hr ,min,chg 〉 ⇒ ✷[N]hr
〈2〉3. Φ ⇒WFhr (N)
〈2〉4. Q.E.D.

Proof: By 〈2〉1–〈2〉3 and the ∧-composition and act-stupid rules.
〈1〉2. Q.E.D.

Proof: By 〈1〉1, the definition of Φ, and predicate logic1, since chg does
not occur free in Π .

1 We are actually reasoning about the temporal operator ∃∃∃∃∃∃ rather than ordinary
existential quantification, but it obeys the usual rules of predicate logic.

409

Let’s now go deeper into the hierarchical proof. The proof of 〈2〉1 is trivial,
since InitΦ contains the conjunct hr ∈ {1, . . . , 12}. Proving liveness requires
more temporal logic than we want to delve into here, so we will not show the
proof of 〈2〉3 or of any other liveness properties. We expand the proof of 〈2〉2
two more levels as follows.
〈2〉2. ✷[Mm ∨ Mh]〈hr ,min,chg 〉 ⇒ ✷[N]hr
〈3〉1. [Mm ∨ Mh]〈hr ,min,chg 〉 ⇒ [N]hr
〈4〉1. Mm ⇒ [N]hr
〈4〉2. Mh ⇒ [N]hr
〈4〉3. (〈hr ,min, chg 〉′ = 〈hr ,min, chg 〉)⇒ [N]hr
〈4〉4. Q.E.D.

Proof: By 〈4〉1–〈4〉3 and the ∨-composition rule.
〈3〉2. Q.E.D.

Proof: By 〈3〉1 and the rule A ⇒ B
✷A ⇒ ✷B

.

The proof of 〈4〉1 is easy, sinceMm implies hr ′ = hr . The proof of 〈4〉3 is equally
easy. The proof of 〈4〉2 looks easy enough.
〈4〉2. Mh ⇒ [N]hr

Proof: Mh ⇒ hr ′ = (hr mod 12) + 1
⇒ hr ′ = if hr = 12 then 1 else hr + 1
∆= N

However, this proof is wrong! The second implication is not valid. For example,
if hr equals 25, then the first equation asserts hr ′ = 2, while the second asserts
hr ′ = 26. The implication is valid only under the additional assumption hr ∈
{1, . . . , 12}.
Define Inv to equal the predicate hr ∈ {1, . . . , 12}. We must show that Inv is

true throughout the execution, and use that fact in the proof of step 〈4〉2. Here
are the top levels of the corrected proof.
〈1〉1. Φ ⇒ Π
〈2〉1. InitΦ ⇒ hr ∈ {1, . . . , 12}
〈2〉2. InitΦ ∧ ✷[Mm ∨ Mh]〈hr ,min,chg 〉 ⇒ ✷Inv
〈2〉3. ✷Inv ∧ ✷[Mm ∨ Mh]〈hr ,min,chg 〉 ⇒ ✷[N]hr
〈2〉4. ✷Inv ∧ Φ ⇒WFhr (N)
〈2〉5. Q.E.D.

Proof: By 〈2〉1–〈2〉4, and the ∧-composition and act-stupid rules.
〈1〉2. Q.E.D.

Proof: By 〈1〉1, the definition of Φ, and predicate logic, since chg does not
occur free in Π .

The high-level proofs of 〈2〉2 and 〈2〉3 are
〈2〉2. InitΦ ∧ ✷[Mm ∨ Mh]〈hr ,min,chg 〉 ⇒ ✷Inv

〈3〉1. InitΦ ⇒ Inv
〈3〉2. Inv ∧ [Mm ∨ Mh]〈hr ,min,chg 〉 ⇒ Inv ′

〈3〉3. Q.E.D.
Proof: By 〈3〉1, 〈3〉2 and the rule P ∧ [A]v ⇒ P ′

P ∧ ✷[A]v ⇒ ✷P
.

〈2〉3. ✷Inv ∧ ✷[Mm ∨ Mh]〈hr ,min,chg 〉 ⇒ ✷[N]hr

410

〈3〉1. Inv ∧ [Mm ∨Mh]〈hr ,min,chg 〉 ⇒ [N]hr
〈3〉2. Q.E.D.

Proof: By 〈3〉1 and the rules A ⇒ B
✷A ⇒ ✷B

and ✷(A∧B) ≡ ✷A∧✷B .

The further expansion of the proofs is straightforward and is left as an exercise
for the diligent reader.

3.5 Invariance and Step Simulation

The part of the proof shown above is completely standard. It contains all the
temporal-logic reasoning used in proving safety properties. The formula Inv sat-
isfying 〈2〉2 is called an invariant. Substep 〈3〉2 of step 〈2〉3 is called proving
step simulation. The invariant is crucial in this step and in step 〈2〉4 (the proof
of liveness). In general, the hard parts of the proof are discovering the invari-
ant, substep 〈3〉2 of step 〈2〉2 (the crucial step in the proof of invariance), step
simulation, and liveness.
In our example, Inv asserts that the value of hr always lies in the correct set.

Computer scientists call this assertion type correctness, and call the set of correct
values the type of hr . Hence, Inv is called a type-correctness invariant. This is the
simplest form of invariant. Computer scientists usually add a type system just
to handle this particular kind of invariant, since they tend to prefer formalisms
that are more complicated and less powerful than simple mathematics.
Most invariants express more interesting properties than just type correct-

ness. The invariant captures the essence of what makes an implementation cor-
rect. Finding the right invariant, and proving its invariance, suffices to prove the
desired safety properties of many concurrent algorithms. This is the basis of the
first practical method for reasoning about concurrent algorithms, which is due
to Ashcroft [5].

3.6 A Formula by any Other Name

We have been calling formulas like Φ and Π “descriptions” or “models” of a
system. It is customary to call them specifications. This term is sometimes re-
served for high-level description of systems, with low-level descriptions being
called implementations. We make no distinction between specifications and im-
plementations. They are all descriptions of a system at various levels of detail.
We use the terms algorithm, description, model, and specification as different
names for the same thing: a mathematical formula.

4 Invariance in a Pseudo-Programming Language

Invariance is a simple concept. We now show how a popular method for prov-
ing invariance in terms of a pseudo-programming language is a straightforward
consequence of the rules of mathematics.

411

4.1 The Owicki-Gries Method

In the Owicki-Gries method [8, 11], the invariant is written as a program annota-
tion. For simplicity, let’s assume a multiprocess program in which each process i
in a set P of processes repeatedly executes a sequence of atomic instructions S (i)

0 ,
. . . , S (i)

n−1. The invariant is written as an annotation, in which each statement
S (i)
j is preceded by an assertion A(i)

j , as shown in Figure 2.

S (i)
0

S (i)
n−1

{A(i)
n−1}

❄

❄
...

❄

{A(i)
0 }

Fig. 2. An Owicki-Gries style annotation of a process.

To make sense of this picture, we must translate it into mathematics. We first
rewrite each operation S (i)

j as an action, which we also call S (i)
j . This rewriting is

easy. For example, an assignment statement x : = x + 1 is written as the action
(x ′ = x + 1) ∧ (〈. . .〉′ = 〈. . .〉), where “. . . ” is the list of other variables. We
represent the program’s control state with a variable pc, where pc[i] = j means
that control in process i is immediately before statement S (i)

j . The program and
its invariant are then described by the formulas Π and Inv of Figure 3.
We can derive the Owicki-Gries rules for proving invariance by applying the

proof rules we used before. The top-level proof is:

Theorem 2. (Owicki-Gries) Π ⇒ ✷I

〈1〉1. Init ⇒ Inv
〈1〉2. Inv ∧ [N]〈vbl,pc 〉 ⇒ Inv ′

〈2〉1. Inv ∧ N ⇒ Inv ′

〈2〉2. Inv ∧ (〈vbl , pc 〉′ = 〈vbl , pc 〉)⇒ Inv ′

〈2〉3. Q.E.D.
Proof: By 〈2〉1, 〈2〉2, and the ∨-composition rule.

〈1〉3. Q.E.D.
Proof: By 〈1〉1, 〈1〉2, and the rule P ∧ [A]v ⇒ P ′

P ∧ ✷[A]v ⇒ ✷P
.

412

Init ∆= ∧ ∀ i ∈ P : pc[i] = 0
∧ . . . [The initial conditions on program variables.]

Go(i)
j

∆= ∧ pc[i] = j
∧ pc[i]′ = (j + 1) mod n
∧ ∀ k ∈ P : (k �= i)⇒ (pc[k]′ = pc[k])

N ∆= ∃ i ∈ P, j ∈ {0, . . . ,n−1} : Go(i)
j ∧ S (i)

j

vbl ∆= 〈. . .〉 [The tuple of all program variables.]

Π
∆= Init ∧ ✷[N]〈vbl,pc 〉

Inv ∆= ∀ i ∈ P, j ∈ {0, . . . ,n−1} : (pc[i] = j)⇒ A(i)
j

Fig. 3. The formulas describing the program and annotation of Figure 2.

The hard part is the proof of 〈2〉1. We first decompose it using the ∀ - and
∃ -composition rules.
〈2〉1. Inv ∧ N ⇒ Inv ′

〈3〉1.

∧ i ∈ P
∧ j ∈ {0, . . . ,n−1}
∧ Inv ∧ Go(i)

j ∧ S (i)
j

 ⇒ Inv ′

〈4〉1.

∧ i ∈ P
∧ j ∈ {0, . . . ,n−1}
∧ k ∈ P
∧ l ∈ {0, . . . ,n−1}
∧ Inv ∧ Go(i)

j ∧ S (i)
j

⇒ ((pc[k]′ = l)⇒ (A(k)
l)

′)

〈4〉2. Q.E.D.
Proof: By 〈4〉1, the definition of Inv , and the ∀ -composition rule.

〈3〉2. Q.E.D.
Proof: By 〈3〉1, the definition of N , and the ∃ -composition rule.

We prove 〈4〉1 by cases, after first using propositional logic to simplify its state-
ment. We let j ⊕ 1 equal (j+1) mod n.

〈4〉1.

∧ i , k ∈ P
∧ j , l ∈ {0, . . . ,n−1}
∧ pc[k]′ = l
∧ Inv ∧ Go(i)

j ∧ S (i)
j

 ⇒ (A(k)

l)
′

〈5〉1. Case: i = k

〈6〉1.

∧ i ∈ P
∧ j ∈ {0, . . . ,n−1}
∧ A(i)

j ∧ S (i)
j

 ⇒ (A(i)

j⊕1)
′

〈6〉2. Q.E.D.
Proof: By 〈6〉1, the level-〈5〉 assumption, the definition of Inv , and

413

the act-stupid rule, since (pc[i]′ = l) ∧Go(i)
j implies (l = j ⊕ 1).

〈5〉2. Case: i �= k

〈6〉1.

∧ i , k ∈ P
∧ j , l ∈ {0, . . . ,n−1}
∧ A(i)

j ∧ A(k)
l ∧ S (i)

j

 ⇒ (A(k)

l)
′

〈6〉2. Q.E.D.
Proof: By 〈6〉1, the level-〈5〉 assumption, the definition of Inv , and
the act-stupid rule, since (pc[k]′ = l) ∧ Go(i)

j implies (pc[k] = l), for

k �= i , and (pc[k] = l) ∧ Inv implies A(k)
l .

We are finally left with the two subgoals numbered 〈6〉1. Summarizing, we see
that to prove Init ⇒ ✷Inv , it suffices to prove the two conditions

A(i)
j ∧ S (i)

j ⇒ (A(i)
j⊕1)

′

A(i)
j ∧ A(k)

l ∧ S (i)
j ⇒ (A(k)

l)
′

for all i , k in P with i �= k , and all j , l in {0, . . . ,n−1}. These conditions are
called Sequential Correctness and Interference Freedom, respectively.

4.2 Why Bother?

We now consider just what have has been accomplished by describing by proving
invariance in terms of a pseudo-programming language instead of directly in
mathematics.
Computer scientists are quick to point out that using “ :=” instead of “=”

avoids the need to state explicitly what variables are left unchanged. In prac-
tice, this reduces the length of a specification by anywhere from about 10% (for
a very simple algorithm) to 4% (for a more complicated system). For this minor
gain, it introduces the vexing problem of figuring out exactly what variables
can and cannot be changed by executing x : = x + 1. The obvious requirement
that no other variable is changed would not allow us to implement x as the sum
lh ∗ 232 + rh of two 32-bit values, since it forbids lh and rh to change when x is
incremented. The difficulty of deciding what can and cannot be changed by an
assignment statement is one of the things that makes the semantics of program-
ming languages (both real and pseudo) complicated. By using mathematics, we
avoid this problem completely.
A major achievement of the Owicki-Gries method is eliminating the explicit

mention of the variable pc. By writing the invariant as an annotation, one can
write A(i)

j instead of (pc[i] = j)⇒ A(i)
j . At the time, computer scientists seemed

to think that mentioning pc was a sin. However, when reasoning about a concur-
rent algorithm, we must refer to the control state in the invariant. Owicki and
Gries therefore had to introduce dummy variables to serve as euphemisms for
pc. When using mathematics, any valid formula of the form Init ∧✷[N]v ⇒ ✷P ,
for a state predicate P , can be proved without adding dummy variables.
One major drawback of the Owicki-Gries method arises from the use of the

act-stupid rule in the proofs of the two steps numbered 〈6〉2. The rule was applied

414

without regard for whether the hypotheses being ignored are useful. This means
that there are annotations for which step 〈2〉1 (which asserts N ∧ Inv ⇒ Inv ′) is
valid but cannot be proved with the Owicki-Gries method. Such invariants must
be rewritten as different, more complicated annotations.
Perhaps the thing about the Owicki-Gries method is that it obscures the

underlying concept of invariance. We refer the reader to [6] for an example of
how complicated this simple concept becomes when expressed in terms of a
pseudo-programming language. In 1976, the Owicki-Gries method seemed like a
major advance over Ashcroft’s simple notion of invariance. We have since learned
better.

5 Refinement

5.1 Refinement in General

We showed above that an hour-minute clock implements an hour clock by proving
(∃∃∃∃∃∃ chg : Φ)⇒ Π . That proof does not illustrate the general case of proving that
one specification implements another because the higher-level specification Π
has no internal (bound) variable. The general case is covered by the following
proof outline, where x , y, and z denote arbitrary tuples of variables, and the
internal variables y and z of the two specifications are distinct from the free
variables x . The proof involves finding a function f , which is called a refinement
mapping [1].

Theorem3. (Refinement) (∃∃∃∃∃∃ y : Φ(x , y)) ⇒ (∃∃∃∃∃∃ z : Π(x , z))

Let: z ∆= f (x , y)
〈1〉1. Φ(x , y) ⇒ Π(x , z)
〈1〉2. Φ(x , y) ⇒ (∃∃∃∃∃∃ z : Π(x , z))

Proof: By 〈1〉1 and predicate logic, since the variables of z are distinct
from those of x .

The proof of step 〈1〉1 has the same structure as in our clock example.

5.2 Hierarchical Refinement

In mathematics, it is common to prove a theorem of the form P ⇒ Q by in-
troducing a new formula R and proving P ⇒ R and R ⇒ Q . We can prove
that a lower-level specification ∃∃∃∃∃∃ y : Φ(x , y) implies a higher-level specification
∃∃∃∃∃∃ z :Π(x , z) by introducing an intermediate-level specification ∃∃∃∃∃∃w : Ψ(x ,w) and
using the following proof outline.

Let: Ψ(x ,w) ∆= . . .
〈1〉1. (∃∃∃∃∃∃ y : Φ(x , y)) ⇒ (∃∃∃∃∃∃w : Ψ(x ,w))

Let: w ∆= g(x , y)
. . .

〈1〉2. (∃∃∃∃∃∃w : Ψ(x ,w)) ⇒ (∃∃∃∃∃∃ z : Π(x , z))

415

Let: z ∆= h(x ,w)
. . .

〈1〉3. Q.E.D.
Proof: By 〈1〉1 and 〈1〉2.

This proof method is called hierarchical decomposition. It’s a good way to explain
a proof. By using a sequence multiple intermediate specifications, each differing
from the next in only one aspect, we can decompose the proof into conceptually
simple steps.
Although it is a useful pedagogical tool, hierarchical decomposition does

not simplify the total proof. In fact, it usually adds extra work. Hierarchical
decomposition adds the task of writing the extra intermediate-level specification.
It also restricts how the proof is decomposed. The single refinement mapping f in
the outline of the direct proof can be defined in terms of the two mappings g and
h of the hierarchical proof by f (x , y) ∆= h(x , g(x , y)). The steps of a hierarchical
proof can then be reshuffled to form a particular way of decomposing the lower
levels of the direct proof. However, there could be better ways to decompose
those levels.

5.3 Interface Refinement

We have said that implementation is implication. For this to be true, the two
specifications must have the same free variables. If the high-level specification
describes the sending of messages on a network whose state is represented by
the variable net , then the low-level specification must also describe the sending
of messages on net .
We often implement a specification by refining the interface. For example,

we might implement a specification Σ(net) of sending messages on net by a
specification Λ(tran) of sending packets on a “transport layer” whose state is
represented by a variable tran. A single message could be broken into multiple
packets. Correctness of the implementation cannot mean validity of Λ(tran) ⇒
Σ(net), since Λ(tran) and Σ(net) have different free variables.
To define what it means for Λ(tran) to implement Σ(net), we must first define

what it means for sending a set of packets to represent the sending of a message.
This definition is written as a temporal formula R(net , trans), which is true of
a behavior iff the sequence of values of trans represents the sending of packets
that correspond to the sending of messages represented by the sequence of values
of net . We call R an interface refinement. For R to be a sensible interface re-
finement, the formula Λ(trans)⇒ ∃∃∃∃∃∃net : R(net , trans) must be valid, meaning
that every set of packet transmissions allowed by Λ(trans) represents some set
of message transmissions. We say that Λ(tran) implements Σ(net) under the
interface refinement R(net , trans) iff Λ(tran) ∧ R(net , trans) implies Σ(net).

6 Decomposing Specifications

Pseudo-programming languages usually have some parallel composition opera-
tor ‖, where S 1‖S 2 is the parallel composition of specifications S 1 and S 2. We

416

observed in our hour-clock example that a mathematical specification S 1 does
not describe only a particular system; rather, it describes a universe containing
(the variables that represent) the system. Composing two systems means en-
suring that the universe satisfies both of their specifications. Hence, when the
specifications S 1 and S 2 are mathematical formulas, their composition is just
S 1 ∧ S 2.

6.1 Decomposing a Clock into its Hour and Minute Displays

We illustrate how composition becomes conjunction by specifying the hour-
minute clock as the conjunction of the specifications of an hour process and
a minute process. It is simpler to do this if each variable is modified by only
one process. So, we rewrite the specification of the hour-minute clock by replac-
ing the variable chg with the expression chgh �= chgm , where chgh and chgm

are two new variables, chgh being modified by the hour process and chgm by
the minute process. The new specification is ∃∃∃∃∃∃ chgh , chgm : Ψ , where Ψ is de-
fined in Figure 4. Proving that this specification is equivalent to ∃∃∃∃∃∃ chg : Φ,

InitΨ
∆= ∧ hr ∈ {1, . . . , 12}

∧ min ∈ {0, . . . , 59}
∧ chgm = chgh = true

N m
∆= ∧ ¬((min = 0) ∧ (chgm �= chgh))

∧ min ′ = (min + 1) mod 60
∧ chg ′

m = if min = 59 then ¬chgm else chgh

∧ 〈hr , chgh 〉′ = 〈hr , chgh 〉
N h

∆= ∧ ∨ (min = 59) ∧ (chgm = chgh)
∨ (min = 0) ∧ (chgm �= chgh)

∧ hr ′ = (hr mod 12) + 1
∧ chg ′

h = ¬chgh

∧ 〈min, chgm 〉′ = 〈min, chgm 〉
Ψ

∆= ∧ InitΨ

∧ ✷[N m ∨ N h]〈hr , min, chgm , chgh 〉
∧ WF〈hr , min, chgm , chgh 〉(N m ∨ N h)

Fig. 4. Another internal specification of the hour-minute clock.

where Φ is defined in Figure 1, is left as a nice exercise for the reader. The
proof that ∃∃∃∃∃∃ chgh , chgm : Ψ implies ∃∃∃∃∃∃ chg : Φ uses the refinement mapping
chg ∆= (chgh �= chgm). The proof of the converse implication uses the refine-
ment mapping

chgh
∆= chg ∧ (min = 59) chgm

∆= chg ∧ (min = 0)

417

The specifications Ψh and Ψm of the hour and minute processes appear in Fig-
ure 5. We now sketch the proof that Ψ is the composition of those two specifi-

Initm
∆= ∧ min ∈ {0, . . . , 59}

∧ chgm = true

Inith
∆= ∧ hr ∈ {1, . . . , 12}

∧ chgh = true

Ψh
∆= Inith ∧ ✷[N h]〈hr , chgh 〉 ∧WF〈hr , chgh 〉(N h)

Ψm
∆= Initm ∧ ✷[N m]〈min, chgm 〉 ∧WF〈min, chgm 〉(N m)

Fig. 5. Definition of the specifications Ψh and Ψm.

cations.

Theorem 4. Ψ ≡ Ψm ∧ Ψh

〈1〉1. InitΨ ≡ Initm ∧ Inith
〈1〉2. ✷[N m ∨ N h]〈hr , min, chgm , chgh 〉 ≡ ✷[N m]〈min, chgm 〉 ∧ ✷[N h]〈hr , chgh 〉
〈2〉1. [N m ∨ N h]〈hr , min, chgm , chgh 〉 ≡ [N m]〈min, chgm 〉 ∧ [N h]〈hr , chgh 〉
〈2〉2. Q.E.D.

Proof: By 〈2〉1 and the rules A ⇒ B
✷A ⇒ ✷B

and ✷(A ∧ B) ≡ ✷A ∧ ✷B .

〈1〉3. ∧ Ψ ⇒ WF〈min, chgm 〉(N m) ∧WF〈hr , chgh 〉(N h)
∧ Ψm ∧ Ψh ⇒ WF〈hr , min, chgm , chgh 〉(N m ∨ N h)

〈1〉4. Q.E.D.
Proof: By 〈1〉1–〈1〉3.

Ignoring liveness (step 〈1〉3), the hard part is proving 〈2〉1. This step is an
immediate consequence of the following propositional logic tautology, which we
call the ∨ ↔ ∧ rule.

N i ∧ (j �= i) ⇒ (v ′
j = v j) for 1 ≤ i , j ≤ n

[N 1 ∨ . . . ∨ N n]〈v1,...,vn 〉 = [N 1]v1 ∧ . . . ∧ [N n]vn

Its proof is left as an exercise for the reader.

6.2 Decomposing Proofs

In pseudo-programming language terminology, a compositional proof of refine-
ment (implementation) is one performed by breaking a specification into the
parallel composition of processes and separately proving the refinement of each
process.
The most naive translation of this into mathematics is that we want to prove

Λ ⇒ Σ by writing Σ as Σ1 ∧ Σ2 and proving Λ ⇒ Σ1 and Λ ⇒ Σ2 sepa-
rately. Such a decomposition accomplishes little. The lower-level specification

418

Λ is usually much more complicated than the higher-level specification Σ, so
decomposing Σ is of no interest.
A slightly less naive translation of compositional reasoning into mathematics

involves writing both Λ and Σ as compositions. This leads to the following proof
of Λ ⇒ Σ.
〈1〉1. ∧ Λ ≡ Λ1 ∧ Λ2

∧ Σ ≡ Σ1 ∧ Σ2

Proof: Use the ∨ ↔ ∧ rule.
〈1〉2. Λ1 ⇒ Σ1

〈1〉3. Λ2 ⇒ Σ2

〈1〉4. Q.E.D.
Proof: By 〈1〉1–〈1〉3 and the ∧-composition and act-stupid rules.

The use of the act-stupid rule in the final step tells us that we have a problem.
Indeed, this method works only in the most trivial case. Proving each of the im-
plications Λi ⇒ Σi requires proving Λi ⇒ Inv i for some invariant Inv i . Except
when each process accesses only its own variables, so there is no communication
between the two processes, Inv i will have to mention the variables of both pro-
cesses. As our clock example illustrates, the next-state relation of each process’s
specification allows arbitrary changes to the other process’s variables. Hence, Λi

can’t imply any nontrivial invariant that mentions the other process’s variables.
So, this proof method doesn’t work.
Think of each process Λi as the other process’s environment. We can’t prove

Λi ⇒ Σi because it asserts that Λi implements Σi in the presence of arbitrary
behavior by its environment—that is, arbitrary changes to the environment vari-
ables. No real process works in the face of completely arbitrary environment
behavior.
Our next attempt at compositional reasoning is to write a specification E i

of the assumptions that process i requires of its environment and prove Λi ∧
E i ⇒ Σi . We hope that one process doesn’t depend on all the details of the
other process’s specification, so E i will be much simpler than the other process’s
specification Λ2−i . We can then prove Λ ⇒ Σ using the following propositional
logic tautology.

Λ1 ∧ Λ2 ⇒ E1

Λ1 ∧ E1 ⇒ Σ1

Λ1 ∧ Λ2 ⇒ E2

Λ2 ∧ E2 ⇒ Σ2

Λ1 ∧ Λ2 ⇒ Σ1 ∧ Σ2

However, this requires proving Λ ⇒ E i , so we still have to reason about the
complete lower-level specification Λ. What we need is a proof rule of the following
form

Σ1 ∧ Σ2 ⇒ E1

Λ1 ∧ E1 ⇒ Σ1

Σ1 ∧ Σ2 ⇒ E2

Λ2 ∧ E2 ⇒ Σ2

Λ1 ∧ Λ2 ⇒ Σ1 ∧ Σ2

(4)

In this rule, the hypotheses Λ ⇒ E i of the previous rule are replaced by Σ ⇒ E i .
This is a great improvement because Σ is usually much simpler than Λ. A rule
like (4) is called a decomposition theorem.

419

Unfortunately, (4) is not valid for arbitrary formulas. (For example, let the
Λi equal true and all the other formulas equal false.) Roughly speaking, (4)
is valid if all the properties are safety properties, and if Σi and E i modify
disjoint sets of variables, for each i . A more complicated version of the rule
allows the Λi and Σi to include liveness properties; and the condition that Σi

and E i modify disjoint sets of variables can be replaced by a weaker, more
complicated requirement. Moreover, everything generalizes from two conjuncts
to n in a straightforward way. All the details can be found in [2].

6.3 Why Bother?

What have we accomplished by using a decomposition theorem of the form (4)?
As our clock example shows, writing a specification as the conjunction of n
processes rests on an equivalence of the form

✷[N 1 ∨ . . . ∨ N n]〈v1,...vn 〉 ≡ ✷[N 1]v1 ∧ . . . ∧ ✷[N n]vn

Replacing the left-hand side by the right-hand side essentially means changing
from disjunctive normal form to conjunctive normal form. In a proof, this re-
places ∨-composition with ∧-composition. Such a trivial transformation is not
going to simplify a proof. It just changes the high-level structure of the proof
and rearranges the lower-level steps.
Not only does this transformation not simplify the final proof, it may add

extra work. We have to invent the environment specifications E i , and we have
to check the hypotheses of the decomposition theorem. Moreover, handling live-
ness can be problematic. In the best of all possible cases, the specifications E i

will provide useful abstractions, the extra hypotheses will follow directly from
existing theorems, and the decomposition theorem will handle the liveness prop-
erties. In this best of all possible scenarios, we still wind up only doing exactly
the same proof steps as we would in proving the implementation directly without
decomposing it.
This form of decomposition is popular among computer scientists because

it can be done in a pseudo-programming language. A conjunction of complete
specifications like Λ1 ∧ Λ2 corresponds to parallel composition, which can be
written in a PPL as Λ1‖Λ2. The PPL is often sufficiently inexpressive that all the
specifications one can write trivially satisfy the hypotheses of the decomposition
theorem. For example, the complications introduced by liveness are avoided if
the PPL provides no way to express liveness.
Many computer scientists prefer to do as much of a proof as possible in

the pseudo-programming language, using its special-purpose rules, before be-
ing forced to enter the realm of mathematics with its simple, powerful laws.
They denigrate the use of ordinary mathematics as mere “semantic reasoning”.
Because mathematics can so easily express the underlying semantics of a pseudo-
programming language, any proof in the PPL can be translated to a semantic
proof. Any law for manipulating language constructs will have a counterpart
that is a theorem of ordinary mathematics for manipulating a particular class of

420

formulas. Mathematics can also provide methods of reasoning that have no coun-
terpart in the PPL because of the PPL’s limited expressiveness. For example,
because it can directly mention the control state, an invariance proof based on
ordinary mathematics is often simpler than one using the Owicki-Gries method.
Many computer scientists believe that their favorite pseudo-programming

language is better than mathematics because it provides wonderful abstrac-
tions such as message passing, or synchronous communication, or objects, or
some other popular fad. For centuries, bridge builders, rocket scientists, nuclear
physicists, and number theorists have used their own abstractions. They have
all expressed those abstractions directly in mathematics, and have reasoned “at
the semantic level”. Only computer scientists have felt the need to invent new
languages for reasoning about the objects they study.
Two empirical laws seem to govern the difficulty of proving the correctness of

an implementation, and no pseudo-programming language is likely to circumvent
them: (1) the length of a proof is proportional to the product of the length of the
low-level specification and the length of the invariant, and (2) the length of the
invariant is proportional to the length of the low-level specification. Thus, the
length of the proof is quadratic in the length of the low-level specification. To
appreciate what this means, consider two examples. The specification of the lazy
caching algorithm of Afek, Brown, Merritt [3], a typical high-level algorithm,
is 50 lines long. The specification of the cache coherence protocol for a new
computer that we worked on is 1900 lines long. We expect the lengths of the two
corresponding correctness proofs to differ by a factor of 1500.
The most effective way to reduce the length of an implementation proof is to

reduce the length of the low-level specification. A specification is a mathematical
abstraction of a real system. When writing the specification, we must choose the
level of abstraction. A higher-level abstraction yields a shorter specification.
But a higher-level abstraction leaves out details of the real system, and a proof
cannot detect errors in omitted details. Verifying a real system involves a tradeoff
between the level of detail and the size (and hence difficulty) of the proof.
A quadratic relation between one length and another implies the existence of

a constant factor. Reducing this constant factor will shorten the proof. There are
several ways to do this. One is to use better abstractions. The right abstraction
can make a big difference in the difficulty of a proof. However, unless one has
been really stupid, inventing a clever new abstraction is unlikely to help by more
than a factor of five. Another way to shorten a proof is to be less rigorous, which
means stopping a hierarchical proof one or more levels sooner. (For real systems,
proofs reach a depth of perhaps 12 to 20 levels.) Choosing the depth of a proof
provides a tradeoff between its length and its reliability. There are also silly ways
to reduce the size of a proof, such as using small print or writing unstructured,
hand-waving proofs (which are known to be completely unreliable).
Reducing the constant factor still does not alter the essential quadratic nature

of the problem. With systems getting ever more complicated, people who try
to verify them must run very hard to stay in the same place. Philosophically
motivated theories of compositionality will not help.

421

6.4 When a Decomposition Theorem is Worth the Bother

As we have observed, using a decomposition theorem can only increase the total
amount of work involved in proving that one specification implements another.
There is one case in which it’s worth doing the extra work: when the computer
does a lot of it for you. If we decompose the specifications Λ and Σ into n
conjuncts Λi and Σi , the hypotheses of the decomposition theorem become
Σ ⇒ E i and Λi ∧ E i ⇒ Σi , for i = 1, . . . ,n. The specification Λ is broken into
the smaller components Λi . Sometimes, these components will be small enough
that the proof of Λi∧E i ⇒ Σi can be done by model checking—using a computer
to examine all possible equivalence classes of behaviors. In that case, the extra
work introduced by decomposition will be more than offset by the enormous
benefit of using model checking instead of human reasoning. An example of such
a decomposition is described in [7].

7 Composing Specifications

There is one situation in which compositional reasoning cannot be avoided: when
one wants to reason about a component that may be used in several different
systems.
The specifications we have described thus far have been complete-system

specifications. Such specifications describe all behaviors in which both the system
and its environment behave correctly. They can be written in the form S ∧ E ,
where S describes the system and E the environment. For example, if we take
the component to be our clock example’s hour process, then S is the formula Ψh

and E is Ψm . (The hour process’s environment consists of the minute process.)
If a component may be used in multiple systems, we need to write an open-

system specification—one that specifies the component itself, not the complete
system containing it. Intuitively, the component’s specification asserts that it
satisfies S if the environment satisfies E . This suggests that the component’s
open-system specification should be the formula E ⇒ S . This specification allows
behaviors in which the system misbehaves, if the environment also misbehaves. It
turns out to be convenient to rule out behaviors in which the system misbehaves
first. (Such behaviors could never be allowed by a real implementation, which
cannot know in advance that the environment will misbehave.) We therefore
take as the specification the formula E +−� S , which is satisfied by a behavior in
which S holds as long as E does. The precise definition of +−� and the precise
statement of the results about open-system specifications can be found in [2].
The basic problem of compositional reasoning is showing that the composi-

tion of component specifications satisfies a higher-level specification. This means
proving that the conjunction of specifications of the form E +−� S implies another
specification of that form. For two components, the proof rule we want is:

E ∧ S 1 ∧ S 2 ⇒ E1 ∧ E2 ∧ S
(E1

+−� S 1) ∧ (E2
+−� S 2) ⇒ (E +−� S)

422

Such a rule is called a composition theorem. As with the decomposition theorem
(4), it is valid only for safety properties under certain disjointness assumptions; a
more complicated version is required if S and the S i include liveness properties.
Composition of open-system specifications is an attractive problem, having

obvious application to reusable software and other trendy concerns. But in 1997,
the unfortunate reality is that engineers rarely specify and reason formally about
the systems they build. It is naive to expect them to go to the extra effort of
proving properties of open-system component specifications because they might
re-use those components in other systems. It seems unlikely that reasoning about
the composition of open-system specifications will be a practical concern within
the next 15 years. Formal specifications of systems, with no accompanying verifi-
cation, may become common sooner. However, the difference between the open-
system specification E +−� M and the complete-system specification E ∧ M is
one symbol—hardly a major concern in a specification that may be 50 or 200
pages long.

8 Conclusion

What should we do if faced with the problem of finding errors in the design of
a real system? The complete design will almost always be too complicated to
handle by formal methods. We must reason about an abstraction that represents
as much of the design as possible, given the limited time and manpower available.
The ideal approach is to let a computer do the verification, which means

model checking. Model checkers can handle only a limited class of specifications.
These specifications are generally small and simple enough that it makes lit-
tle difference in what language they are written—conventional mathematics or
pseudo-programming languages should work fine. For many systems, abstrac-
tions that are amenable to model checking omit too many important aspects of
the design. Human reasoning—that is, mathematical proof—is then needed. Oc-
casionally, this reasoning can be restricted to rewriting the specification as the
composition of multiple processes, decomposing the problem into subproblems
suitable for model checking. In many cases, such a decomposition is not feasible,
and mathematical reasoning is the only option.
Any proof in mathematics is compositional—a hierarchical decomposition of

the desired result into simpler subgoals. A sensible method of writing proofs will
make that hierarchical decomposition explicit, permitting a tradeoff between
the length of the proof and its rigor. Mathematics provides more general and
more powerful ways of decomposing a proof than just writing a specification
as the parallel composition of separate components. That particular form of
decomposition is popular only because it can be expressed in terms of the pseudo-
programming languages favored by computer scientists.
Mathematics has been developed over two millennia as the best approach to

rigorous human reasoning. A couple of decades of pseudo-programming language
design poses no threat to its pre-eminence. The best way to reason mathemati-
cally is to use mathematics, not a pseudo-programming language.

423

References

1. Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings. Theo-
retical Computer Science, 82(2):253–284, May 1991.

2. Mart́ın Abadi and Leslie Lamport. Conjoining specifications. ACM Transactions
on Programming Languages and Systems, 17(3):507–534, May 1995.

3. Yehuda Afek, Geoffrey Brown, and Michael Merritt. Lazy caching. ACM Trans-
actions on Programming Languages and Systems, 15(1):182–205, January 1993.

4. Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181–185, October 1985.

5. E. A. Ashcroft. Proving assertions about parallel programs. Journal of Computer
and System Sciences, 10:110–135, February 1975.

6. Edsger W. Dijkstra. A personal summary of the Gries-Owicki theory. In Eds-
ger W. Dijkstra, editor, Selected Writings on Computing: A Personal Perspective,
chapter EWD554, pages 188–199. Springer-Verlag, New York, Heidelberg, Berlin,
1982.

7. R. P. Kurshan and Leslie Lamport. Verification of a multiplier: 64 bits and be-
yond. In Costas Courcoubetis, editor, Computer-Aided Verification, volume 697 of
Lecture Notes in Computer Science, pages 166–179, Berlin, June 1993. Springer-
Verlag. Proceedings of the Fifth International Conference, CAV’93.

8. Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans-
actions on Software Engineering, SE-3(2):125–143, March 1977.

9. Leslie Lamport. The temporal logic of actions. ACM Transactions on Program-
ming Languages and Systems, 16(3):872–923, May 1994.

10. Leslie Lamport. How to write a proof. American Mathematical Monthly,
102(7):600–608, August-September 1995.

11. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.
Acta Informatica, 6(4):319–340, 1976.

