
Critique of the “Lake Arrowhead Three”

Leslie Lamport
Digital Equipment Corporation

20 March 1992

1 The Rules of the Game

This critique compares the three specification methods presented in this
issue, based on their solutions to the database serializability problem. I
have tried to judge the methods rather than the papers, though it is often
hard to separate pedagogical problems from methodological ones. To ensure
that my comments were based on a proper understanding of their work, I
corresponded with the authors before writing this. I have also, on previous
occasions, met with Kurki-Suonio and Broy and discussed their work. For
compactness, the three papers are referred to as Br (for Broy), L&S (Lam
and Shankar), and K-S (Kurki-Suonio).

The methods are compared on seven criteria. While neither complete
nor disjoint, these criteria provide a convenient framework for the compar-
ison. A single article cannot discuss all aspects of specification, and none
of the papers provide a user’s manual for a complete specification method.
In pointing out omissions, my purpose is to elucidate what is and is not
discussed, not to criticize the authors.

2 Fidelity to the Problem

To compare different formal specifications, we must first examine what they
are specifying. All three papers were supposed to specify the same thing; so,
we should see if they did. But first, a discussion of what they were supposed
to specify is in order.

I chose the database serializability problem partly because it is well
known and I thought it had the right degree of complexity. But what really
attracted to me to it was that other specification methods handled it better

1



than the method I was then advocating. (Knowledge comes from examining
one’s failures, not from displaying one’s successes.)

The traditional definition of serializability is most easily expressed in
terms of execution histories. I use an assertional approach to verification,
where one reasons about the current state. Assertional reasoning about his-
tories requires adding a dummy variable to record the execution history. I
found such history variables philosophically unappealing, because I believed
the state should include only information that must be there in a real im-
plementation. When I tried to specify serializability in terms of the “real”
current state, the specification became extremely complicated.

I am no longer bothered by this problem. After posing the problem,
I discovered how to write a specification without dummy variables that I
found satisfactory. A specification for a system in which transactions con-
sist of only a single read-and-modify command appears in [7], and it can be
extended to the Lake Arrowhead problem. Moreover, I am now reconciled
to the need for dummy variables. We have learned that to be complete,
assertional methods for reasoning about specifications must allow dummy
variables (or their equivalent)—not only history variables for recording past
behavior, but prophecy variables for predicting future behavior [1]. If a
method lacks either class of dummy variables, there will be correct imple-
mentations of a specification that the method cannot verify. Logical neces-
sity is a good antidote to philosophy.

But the main reason I am no longer bothered by the problem is that I
now regard it as a bad problem. The usual notion of serializability, which
requires only that the values returned by a transaction be consistent with
some serial execution of the transactions, is too weak. For example, it per-
mits an implementation to throw away all values written by any completed
transaction that only writes and does not read. The resulting execution is
serializable, producing the same results as one in which all such write-only
transactions are done last. A more realistic notion of serializability requires
that if one transaction commits before another begins, then the first trans-
action appears before the second in the serialization order. The difficulty I
encountered specifying the naive definition of serializability stemmed from
the problems with that definition. The more realistic form of serializability
can be specified assertionally without using a variable to record the entire
execution history.

So, in retrospect, the problem is an unfortunate one. A formal specifi-
cation should not be judged harshly because it fails faithfully to formalize

2



an unreasonable informal specification.1 In any case, the two implementa-
tions in the problem statement are quite reasonable, and the inability to
accurately specify either one of them would indicate an inadequacy of the
method.

2.1 K-S

Serializability is achieved by having the system magically predict, at the
beginning of a transaction, the transaction’s position in the final serialization
order. Since the predicted value is an internal parameter that is not revealed
until much later, no real ability to predict the future is required. This
approach is similar to the one I used in [7]. However, while it provides
a reasonable specification, it is not as general as the informal notion of
serializability. Because the transaction’s position is chosen once and for
all, the specification does not allow an implementation in which write-only
transactions are deferred forever.2

The specifications of the implementations are not carried out to the level
stated by the problem. The implementations should describe actual pro-
grams that call the lower-level database, together with a specification of the
lower-level database. Instead, K-S writes intermediate-level specifications
that require an additional refinement to insert the lower-level procedure
calls. This refinement is fairly simple, but it must be taken into account
when comparing the three papers.

2.2 L&S

The high-level specification is simple and appealing. A history variable
records the entire sequence of operations, and the informal concept of seri-
alizability is defined in a straightforward fashion as a condition on the value
of that variable. The specification does introduce extraneous transaction

1However, I disagree with the criticism of the problem in Section 2 of Br . In the
informal definition of the read operation, the value must be “current” with respect to the
serialization order. Although Broy’s incorrect interpretation is completely understandable
under the circumstances, I believe the intended meaning would have been clear to him
had he been more familiar with the concept of serializability.

2Kurki-Suonio claims that such an implementation is not correct, because it permits
no serialization of the complete set of transactions resulting from an infinite execution.
However, I believe that most people would regard serializability, as specified informally in
the problem statement, to be a safety property—one that constrains only finite prefixes
of an infinite behavior—and would therefore disagree with him.

3



identifiers, which were not part of the informal specification. However, this
appears to be a mistake on the part of the specifiers, not indicative of any
shortcoming of their method. Lam and Shankar could have written a simpler
specification in their method without transaction identifiers.

The implementations are specified essentially as stated in the problem.
I found only one minor discrepancy between the informal and formal speci-
fications, in the two-phase commit protocol.

2.3 Br

The high-level specification apparently does capture the intuitive notion
of serializability in full generality. However, as discussed below, I found
the specification too hard to understand for me to be sure exactly what it
specifies. There is also at least one minor difference between the formal
specification of the interface and the informal description.

The implementations are not specified as required. Instead of specifying
an implementation of the two-phase commit protocol, Br strengthens the
high-level specification to one that would be satisfied by such an implemen-
tation. The timestamp implementation is not specified at all. While the
implementations can undoubtedly be specified with the paper’s method, Br
provides no indication of how formidable a task that would be.

3 Simplicity of the Specification

A formal specification is meant to be read by human beings, so it is natural
to ask how easy it is for them to read and understand the specifications.

3.1 K-S

Today, everyone is first introduced to computers through a programming
language. Because K-S ’s specifications are written in a programming lan-
guage based style, most computerists will find them easy to read. Moreover,
the state-chart descriptions are quite appealing. Similar pictures can be
drawn for most methods. However, if they are drawn by hand, there is no
way to ensure that the pictures correspond to the formal text of the specifi-
cation. Kurki-Suonio informs me that, although the statecharts in the paper
were drawn by hand, tools now exist for deriving them automatically from
the specification.

4



It is not hard to see that the specification implies serializability. However,
it is not obvious that it is equivalent to serializability, which is not surprising,
since we have seen that it isn’t. (It rules out implementations that throw
away write-only transactions.) However, Kurki-Suonio could have written a
high-level specification similar to that of L&S , using a history variable.

3.2 L&S

Although Lam and Shankar describe a method for writing formal specifi-
cations, the specifications they write are not really formal. The problem
is largely syntactic. Explanation and formalism are not separated. It is
impossible to take a pair of scissors to their paper, cut away the informal
prose, and be left with a complete, formal specification.

It should not be hard to write a precise syntax for specifications in this
method, at the level of detail in which the DisCo language is defined in K-S .
Separating formalism from comments would tend to make the specifications
easier to read. However, a formal language would undoubtedly rule out some
informal notation that was used—for example, the convention of dropping
components from a tuple and inferring the complete tuple from the names
would not be allowed in any precisely defined specification language. With-
out seeing a more formal version of the specification, it is hard to judge the
readability of formal specifications written with the method.

3.3 Br

I found this specification the hardest to understand, largely for a very sur-
prising reason. In the method of Br , a system is specified by defining the
sequence of actions that can be produced when the system is executed. The
method would seem naturally to lead to a specification of serializability in
terms of this sequence. Instead, Br specifies serializability in terms of states,
confirming what I had long known—a specification of serializability in terms
of the database state is very difficult.

Considering what Broy was trying to do, it is not surprising that his
specification is so hard to read. The bizarre method of allowing the reuse of
keys does not help matters. Any comparison of this specification with the
ones in the other papers is bound to be misleading, since the other authors
chose an easier route.

5



4 Simplicity of the Semantics

Simplicity of a specification can be deceiving. One can write simple-looking
specifications consisting of pretty pictures, full of friendly bubbles and ar-
rows, that are simple and easy to read, but are devoid of formal meaning.
True simplicity of a formal specification requires that the formal semantics of
the specification language be simple. The real complexity of a specification
must take into account the difficulty in understanding its formal meaning.

4.1 K-S

A possible execution of the system is described as a sequence of externally-
observable state changes, specified by a state/transition system with fairness
conditions on the transitions. The correspondence between the language’s
action definitions and the semantic state transitions is straightforward, mak-
ing it fairly easy to understand how the specification describes a sequence
of state changes.

One hidden complexity in the translation from language to semantics is
caused by the use of objects. The use of objects essentially hides an extra
parameter—the object identity—from most formulas. To understand the
meaning of the formula, one must include that parameter. This is a simple
translation (though not clearly explained in K-S ), and poses no real problem
in understanding a specification. On the other hand, making the parameter
explicit would not have made the specification significantly harder to read
in the first place. Moreover, the inability to refer to the implicit parameter
can sometimes complicate a specification. (In one small example used by
Kurki-Suonio to illustrate his method, the specification can be simplified by
dispensing with objects and working directly with arrays.) I expect that
the use of objects, while appealing to the current fad for object-orientation,
makes little practical difference.

4.2 L&S

A possible execution of the system is described as a sequence of actions,
specified by a state/transition system, either augmented with fairness con-
ditions on the transitions, or with additional invariance and liveness prop-
erties. While each of the concepts is simple, understanding is made more
difficult by the use of different ways of specifying the same thing.

There are two specific instances of redundancy in the method. The first

6



is the distinction between a module and an interface. There is no funda-
mental reason for having both modules and interfaces; semantically, they
are both just sets of sequences of actions. This distinction apparently comes
from the area of communication protocols, interfaces corresponding to “ser-
vice” specifications and modules corresponding to “protocol” specifications.
The second redundant concept is the invariance assumption/guarantee in
an interface specification. Such an invariance property can be expressed
by the state/transition system. Still, the complexity introduced by these
redundant concepts is not great.

4.3 Br

A possible system execution is described as a sequence of actions, specified
by a stream function. The meaning of the stream functions is defined by
the simple, elegant semantics of algebraic specification. The translation
from precise specification language to semantics is as simple as any formal
method is likely to achieve.

Readers who have been intimidated by the formidable mathematics em-
ployed in the literature on algrebraic specification might find my belief in
its simplicity surprising. However, the difficulty of that literature arises be-
cause it addresses fundamental problems that are ignored by much work
on specification, including K-S and L&S . Despite their formal framework,
neither K-S nor L&S considers how all the functions introduced in their
specifications are formally defined. They assume definitions of such things
as set operations, and they do not describe precisely how one defines new
operations. It is quite proper for them to ignore these problems in order
to concentrate on issues particular to concurrent systems. However, the
problems must be solved to provide a specification method with a rigorous
formal semantics. Br , unlike K-S and L&S , contains specifications with
completely defined formal semantics.

5 Help in Structuring the Proof

The problem statement required proofs that two given implementations meet
the specification. “Proof” is a word that admits of many interpretations—
from the informal sketches that commonly appear in mathematical journals,
to complete mechanical verification. Informal proofs are notoriously unreli-
able. The “social process” of mathematics does not operate in the world of
system design [5], and viable formal methods must provide their users with

7



some way of systematizing proofs, allowing them to break large proofs into
small, easily checked pieces.

5.1 K-S

No formal proof method is presented. Instead, the proof is carried out at
the semantic level of sequences of states. Such proofs are at best of limited
value, since a possibility that is overlooked in writing the specification is
likely to be overlooked when writing the proof.

At the end of Section 2.1, it is hinted that DisCo can be formalized in
terms of Back’s refinement calculus [2], which does provide a formal proof
method. However, as explained below, the incompleteness of Back’s proof
system makes it incapable of verifying the implementations in this exam-
ple. Moreover, Back’s method requires a translation of liveness properties,
involving the introduction of counter variables, and it is not clear if it will
be practical for proving liveness properties.

5.2 L&S

The formal proof method provides for structured proofs. Rules B1–B5 and
C1–C8 explicitly decompose proofs of safety properties. Rules B6 and C9
and the proofs in the paper do not indicate how the proofs of liveness prop-
erties are structured. However, they involve standard temporal-logic rea-
soning, and can be decomposed using standard methods.

Although their method encourages rigorous, carefully structured proofs,
Lam and Shankar do not present such a proof. Some things in the paper lead
me to suspect that they have never carried a proof down to the arduous,
boring level of detail I find necessary to avoid errors. For example, the
version that I read omitted the assumption that null is not an element of
the set values. This assumption is so obvious that it is almost always taken
for granted, and its omission not noticed, when writing journal-style proofs.
But to someone who has written detailed, rigorous proofs, the need for this
assumption is glaringly obvious upon reading the definition of localvalue in
Section 5.1.

I do not mean to single out Lam and Shankar for their failure to provide
an extremely rigorous proof. Such proofs are almost unheard of outside
the mechanical verification community, and I have no reason to believe that
either of the other authors have written them. It is only because their
method is so conducive to rigorous proofs that the absence of one becomes

8



obvious. It may turn out that the only way to get people to write rigorous
proofs is to require machine checking.

5.3 Br

No proofs are given, so it is hard to judge what they would have looked
like. Moreover, as discussed above, no implementation was specified, so one
would even have to speculate about what was to be proved.

6 Completeness of the Proof Method

Completeness of a formal system means that every semantically valid as-
sertion is provable. As Gödel showed, this is too much to hope for. For
a state-based method, the relevant notion is completeness relative to the
underlying formalism for reasoning about states, which means that one can
deduce all valid formulas about specifications by assuming all valid formu-
las about states. Incompleteness of a method often indicates an important
deficiency, indicating that the proof method is not strong enough.

Incompleteness of a method means that a particular valid formula cannot
be proved. There may be a semantically (but not provably) equivalent
formula that can be proved. Thus, even though it may be impossible to
prove that a program implements a certain specification, it may be possible
to prove that it implements an equivalent specification.

6.1 K-S

Since all reasoning in K-S is at the semantic level, it is not possible to
talk about completeness of the method. However, we can discuss complete-
ness of Back’s refinement calculus, which provides a possible logical foun-
dation for the method of K-S . Completeness of a state-based method for
reasoning about execution sequences requires the ability to add two kinds of
dummy variables (or their equivalent): history variables to record the past
and prophecy variables to predict the future. Back’s refinement calculus
lacks prophecy variables, so it is incomplete. Moreover, this incompleteness
is more than just a theoretical curiousity. The high-level specification of se-
rializability in K-S requires an internal prediction of the future, which does
not appear in any real implementation. Hence, a state-based verification
that this specification is satisfied will require a prophecy variable.

9



There is another potential source of incompleteness in Back’s calculus.
In the process of encoding liveness properties in joint-action systems, Back
creates programs that are not machine-closed—a technical property defined
in [1]. The absence of machine closure can be a source of incompleteness
for state-based methods. It is not known whether or not Back’s encoding
actually does introduce incompleteness.

6.2 L&S

This method also lacks anything equivalent to prophecy variables, so it is
incomplete. The method is apparently based on the assumption that specifi-
cations will be written in such a way that prophecy variables are not needed
to verify the correctness of implementations. While possible in principle, it
is not clear how successful this will be in practice.

The highly constrained proof method of L&S results in another, some-
what surprising, source of incompleteness. Safety properties of an interface
can be expressed either in the state transition part or in the invariant. It
turns out that whether or not one can verify (using rules B1–B6 or C1–
C9) that a module “offers” the interface may depend on whether the safety
property is expressed in the state transition part or in the invariant.

6.3 Br

There is no formal separation between the state-based and the sequence-
based part of a specification, so the concept of relative completeness is not
relevant. The ability to reason directly about the execution history means
that the sources of incompleteness in assertional formalisms should be easy
to avoid. In fact, it seems possible to encode within the formalism of Br
the reasoning used in assertional proofs. So, one can add axioms to provide
at least the power of any desired assertional method, and there do exist
relatively complete assertional methods.

7 Structure, Refinement, and Composition

Complicated specifications need some form of structure to be comprehen-
sible. The specification must be broken into separate parts, which can be
understood individually, that are then combined to understand the whole.
There are two “dimensions” to this structuring, which might be called re-
finement and structuring within a level. Refinement changes the grain of

10



atomicity, replacing one action by several. Structuring within a level pre-
serves the grain of atomicity; it structures the description of a system’s
actions, but does not add new ones. Structuring within a level may be by
decomposing a single system, or by composing open subsystems. Decompo-
sition is carried out completely within the context of the given system; in
composition, each subsystem is specified independently.

7.1 K-S

Breaking the system into individual actions is the primary form of struc-
turing used in K-S . Additional structuring is provided by language mecha-
nisms for extending previously defined objects. Structuring is by extending
objects with new components and refining existing actions to describe how
they change these components. This is decompositional. Composition is
not discussed, except for the composition of the system and its environ-
ment. The joint action systems on which the method is based do permit
composition, so composition should be possible. However, composing spec-
ifications that have liveness properties is a delicate matter, and cannot be
taken for granted.

Refinement is provided by adding new actions and objects, in conjunction
with the extension of existing objects. This type of refinement can be used
to derive an implementation from a specification, which is most likely to
occur when the specification is written as part of the process of designing a
lower-level implementation.

There is a more general class of refinement that is not supported by
the language—refinement in which the state structure is altered, not just
extended with new components. Such a refinement is likely to be necessary
when the higher-level specification is a generic one, such as an industry
standard, not written with a particular implementation in mind. With such
a refinement, establishing a relation between the higher- and lower-level
specifications requires a “refinement mapping” [1] from lower-level objects
to higher-level ones. As presented in K-S , the language does not include
provision for such refinement mappings, so they can appear only at the
semantic level when proving the correctness of the implementation.

7.2 L&S

Breaking a transition system into actions is the only method of structuring
provided by the method. This is decompositional structuring. The method

11



has no provision for composition. For example, one cannot show that the
composition of two queues implements a larger queue, as in [6, Section 4.4].
One can only construct a module that “offers” a queue interface “using” two
queue interfaces.

Refinement is provided by the alternating layers of interface specifica-
tions and module specifications. However, there are some annoying restric-
tions on the refinement process.

First, the restriction that an interface cannot have internal events will
complicate some specifications. Nondeterministic external behavior is of-
ten easiest to describe in terms of the nondeterministic ordering of internal
events. For example, the effect of concurrent write requests to the same
memory location is easiest to describe in terms of the ordering of internal
operations to the memory. With the method of L&S , a nondeterministic
choice must be made at the time of the external requests.

Second, the generalization from the linear hierarchy to a tree hierarchy
(mentioned but not described in L&S ) requires that the lower-level interfaces
be disjoint. Thus, it does not allow a situation in which one module is
implemented using two lower-level interfaces, and the implementation of
those lower-level interfaces shares a common interface—for example, a file
system.

7.3 Br

Composition (not discussed in the paper) is through the simple and elegant
mechanism of functional composition applied to the stream functions. Re-
finement could be achieved by applying some form of projection operator to
a stream function. However, unlike methods in which sequences are gener-
ated by state/transition systems, Br allows arbitrary definitions of stream
functions. This generality seems to make refinement less important.

Br offers no explicit method for decomposition. However, it contains a
very convenient and powerful mechanism for decomposing a specification:
mathematical definition. One can describe complex structures in small, sim-
ple steps through the proper use of definitions. On the other hand, their
improper use can lead to an impenetrable maze of formalism. The mathe-
matical elegance of the method should permit well structured specifications.
I don’t know if it encourages them in practice.

12



8 Practical Issues

I have found there to be two basic classes of methods for writing specifica-
tions. In the first class, a system is specified by a collection of properties,
usually called axioms. I believe that such methods are impractical. It is very
hard to understand the meaning of a list of abstract axioms, and I have seen
intelligent computer scientists write incorrect axiomatic specifications of a
simple FIFO queue. In the second class of methods, a system is specified by
an abstract program.3 Successful experiences with such methods are often
attributed to the particular formalism or language that was used, when they
are actually tributes to the power of the programming paradigm.

Although all programming languages are, in some sense, Turing com-
plete, they differ in two important aspects: how elegant they are at program-
ming “in the small” and how practical they are for writing large programs.
The counterparts of these criteria in a specification language are: how sim-
ply can one express the individual components of a specification, and what
support is provided for large specifications. Elegance in the small is more
important for a specification language than for a programming language,
since “coding hacks” to circumvent language deficiencies are less acceptable
in a specification than in a program. Specification in the large is less of
a problem than programming in the large, since specifications should be
considerably smaller than programs.

8.1 K-S

Specifications are abstract programs, so the method should be practical.
The language has been carefully designed to provide elegance in the small.
However, a precise syntax for definitions has not been presented. Seemingly
minor deficiencies, such as an insufficiently general type system, could cause
serious problems in writing practical specifications. Although K-S provides
a promising introduction to a language for specification in the small, it does
not provide a complete description of one.

No consideration has been given to specification in the large. However,
standard programming language concepts for modularizing programs should
be adaptable to DisCo. The necessary enhancements to permit large speci-
fications should be straightforward.

3The two classes of methods are sometimes called “axiomatic” and “operational”, but
those terms are misleading. With an axiomatic semantics for the programming language,
any program is an axiomatic specification.

13



8.2 L&S

Here, module specifications are abstract programs, so they should be practi-
cal. An interface specifications is a combination of an abstract program (the
state transition system) with invariance and progress axioms. My experi-
ence indicates that invariance axioms are fairly benign, but progress axioms
can be quite tricky and can have unforeseen consequences. It is surprisingly
easy to write an innocent-looking progress axiom that makes a specification
unsatisfiable by any execution, so the progress axioms are a potential hazard
for users. Unless practical guidelines for how to write progress axioms are
developed, these axioms can easily lead to errors in complex specifications.

The relational notation for describing state transition systems is a good
one, and is a definite plus for specification in the small. Other language
issues, including the rules for writing the relations, are not considered. (For
example, although other work by the authors suggests that they envision a
strongly-typed language, this is not mentioned in L&S .) There is no mention
of support for specification in the large. I believe that Lam and Shankar
have concentrated their efforts on the basic foundation of their method, and
have deferred consideration of such language issues.

8.3 Br

The fundamental basis of this method is that a specification is a collection
of axioms. This would suggest that the method will be impractical. Indeed,
Broy published a specification of a very simple elevator (lift) system, using
this method, that was incorrect because it permitted undesired behavior [3].
(A corrected version was subsequently published [4].) Unrestricted use of
the method leads to a style of specification that I believe is impractical for
real systems.

However, the method admits a restricted style of specification-writing
that essentially produces abstract programs. In this style, auxiliary func-
tions play the role of program variables. Such a style should lead to practical
specifications. It may also be possible safely to use some nonprogram-like
axioms for the stream functions.

Br presents an extremely elegant approach to specification in the small.
Issues of specification in the large are not treated. For example, practical
specification will require the development of a library of data types. This
will be difficult without some form of polymorphism, and the method’s type
system is not explained. Also, without some form of name hiding, naming

14



conflicts can easily give rise to inconsistent specifications. However, since the
algebraic approach has been extensively developed, I imagine that solutions
to the problems posed by large specifications do exist.

9 Conclusion

Perhaps the most surprising result of the Lake Arrowhead workshop was
how difficult the problem turned out to be. Lam and Shankar and Broy
were the only speakers who made what I regarded to be serious attempts
to address the problem. I am grateful to them and to Kurki-Suonio for
their efforts, and I regret that others did not contribute to this issue. I have
given my view of the three methods’ strengths and weaknesses; the reader
can draw his or her own conclusions. I hope that this exercise will make
everyone working on formal methods better appreciate the difficulty of the
task.

References

[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82(2):253–284, May 1991.

[2] R. J. R. Back. Refinement calculus, part ii: Parallel and reactive pro-
grams. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors,
Stepwise Refinement of Distributed Systems, volume 430 of Lecture Notes
in Computer Science, pages 67–93. Springer-Verlag, May/June 1989.

[3] Manfred Broy. An example for the design of distributed systems in a
formal setting: The lift problem. Technical Report MIP–8802, Fakultät
für Mathematic und Informatik, Univerität Passau, 1988.

[4] Manfred Broy. Requirement and design specification for distributed sys-
tems: the lift problem. In Proceedings of the Workshop on Future Trends
of Distributed Computing Systems in the 1990s, pages 164–173. IEEE
Computer Society Press, 1988.

[5] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social
processes and proofs of theorems and programs. Communications of the
ACM, 22(5):271–280, May 1979.

15



[6] C. A. R. Hoare. Communicating Sequential Processes. Series in Com-
puter Science. Prentice-Hall International, London, 1985.

[7] Leslie Lamport. A simple approach to specifying concurrent systems.
Communications of the ACM, 32(1):32–45, January 1989.

16


