
Marching to Many Distant Drummers

Leslie Lamport and Timothy Mann

Mon 26 May 1997 [18:27]



c©Digital Equipment Corporation 1996

This work may not be copied or reproduced in whole or in part for any com-
mercial purpose. Permission to copy in whole or in part without payment
of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that
such copying is by permission of the Systems Research Center of Digital
Equipment Corporation in Palo Alto, California; an acknowledgment of the
authors and individual contributors to the work; and all applicable portions
of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Systems Research
Center. All rights reserved.



Abstract

We address the problem of determining the time in a network where a node
may obtain information indirectly from primary time sources via intermedi-
ate nodes. Our key idea is to transmit and store each time datum as a pair,
consisting of a time interval and a “failure predicate”, a boolean expression
that indicates precisely which combinations of node failures could invalidate
the interval. We describe some techniques based on this idea, but not a
complete system design or implementation.





Contents

1 Introduction 1

2 A Calculus of Time Data 1
2.1 Node predicates . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Time data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Extracting failure knowledge from time data . . . . . 5
2.2.2 Extracting one time datum from many . . . . . . . . . 5

2.3 Fault-tolerance versus reliability: a digression . . . . . . . . . 7

3 Manipulating Time Data 8
3.1 Maintaining time data at a node . . . . . . . . . . . . . . . . 8
3.2 Transmitting time data between nodes . . . . . . . . . . . . . 9
3.3 Retransmitting data . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 Refining knowledge by retransmission . . . . . . . . . 10
3.3.2 Detecting failures through retransmission . . . . . . . 11

3.4 When to combine time data . . . . . . . . . . . . . . . . . . . 12
3.5 Discarding data . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5.1 Discarding stale data . . . . . . . . . . . . . . . . . . . 13
3.5.2 Discarding data that has gone too far . . . . . . . . . 14
3.5.3 Discarding the worst data . . . . . . . . . . . . . . . . 14
3.5.4 Using MLMj,k to discard information . . . . . . . . . 16

3.6 The duration of node names . . . . . . . . . . . . . . . . . . . 17
3.7 Byzantine failures . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Complexity 25
4.1 Space: representing the information . . . . . . . . . . . . . . 26

4.1.1 Representing the intervals . . . . . . . . . . . . . . . . 26
4.1.2 Representing the failure predicates . . . . . . . . . . . 27
4.1.3 Representing the failure knowledge . . . . . . . . . . . 27

4.2 Computation costs . . . . . . . . . . . . . . . . . . . . . . . . 28

5 A Sample Configuration 29





1 Introduction

Published algorithms for fault-tolerant clock synchronization assume a fixed
set of primary time sources, which are read directly by a node seeking to
determine the current time [1, 3, 4]. Here, we address the problem of deter-
mining the time in a network when a node may obtain information indirectly
from primary time sources via intermediate nodes.

We assume that a client of a time service is provided with an interval
that is supposed to contain UT , the correct time according to some time
standard. The time service has failed if it provides a client with an interval
that does not contain UT .

To appreciate the problem, suppose a node A obtains two intervals I1
and I2 directly from two primary time sources. Node A can conclude that,
in the absence of more than one failure, UT is in at least one of the two
intervals. By providing a client with an interval that contains both I1 and
I2, the node A implements a time service that can tolerate a single failure.

However, suppose that those two intervals did not come directly from the
two primary time sources, but were both relayed by a single intermediate
node. Then failure of that intermediate node could make both intervals
incorrect. Hence, the two intervals do not provide node A with enough
information to implement a time service that can tolerate a single failure.

To implement a practical distributed time service, one must make a
number of choices based on the characteristics of the network. Instead of
presenting particular algorithms, we develop a mathematical foundation for
deriving these algorithms. Section 2 introduces a simple calculus of time
data for keeping track of information about the correct time and of the
source of that information. Section 3 describes techniques for using time
data in a distributed time service. The following two sections analyze the
costs of these techniques.

In the following discussion, we consider “fault” and “failure” to be syn-
onymous.

2 A Calculus of Time Data

2.1 Node predicates

Assume a set of nodes, each with a unique name. A node predicate is a
positive Boolean combination of node names—that is, a boolean formula
without negation. In writing node predicates, we denote conjunction by ·
and disjunction by +, so if A, B, and C are node names, then A ·(B+A ·C),

1



which equals A · B + A · C, is a node predicate. We denote true by 1 and
false by 0.

We interpret a node name as an elementary proposition asserting that
the node has failed. Thus, the node predicate A ·B+A ·C asserts that both
A and B have failed or both A and C have failed.

A term is the product of node names—for example, A · B. A node
predicate is in normal form if it is the sum of a minimal number of terms—
for example, A · B + A · C. There is a unique normal form for any node
predicate. A linear node predicate is one whose normal form is the sum of
node names—for example, A+ C + E.

The degree deg(T ) of a term T is the number of distinct nodes in T . We
consider 1 to be a term of degree 0 and consider 0 to be a term of degree∞.
The degree deg(F ) of a nonzero node predicate F is the minimum degree of
the terms in its normal form. Thus, deg(A + B · C) equals 1. The degree
deg(F ) of F is the smallest number of node failures that can make F true.

For any node predicates F and G with G �= 0, we define deg(F |G), the
degree of F relative to G, to equal deg(F ·G)−deg(G). Thus, deg(F |G) more
node failures are required to make both F and G true than are required to
make G true. Observe that deg(F |1) = deg(F ).

For any node predicate F and term T , define F [1/T ] and F [0/T ] to be F
with 1 or 0, respectively, substituted for all the nodes in the term T . Then
deg(F [1/T ]) and deg(F [0/T ]) are the number of failures needed to make F
true assuming that the nodes in T all have, or all have not, already failed.

Suppose we interpret a node predicate F as an ordinary polynomial in
the node names. If, in this polynomial, we substitute for each node name A
an a priori probability that A fails, then the result is the probability that
F is true—ignoring terms of order greater than deg(F ). For example, the
probability that the node predicate A · C + B · C is true is given by the
polynomial A · C + B · C − A · B · C; it differs from A · C + B · C by a
polynomial of degree 3, which equals deg(A · C + B · C) + 1. (This follows
from the fact that if events e1 and e2 have probability p1 and p2, then e1 or
e2 occurs with probability p1 + p2 − p1p2.)

For the purpose of computing failure probabilities, we make the following
assumptions:

• The a priori probability that a node is faulty, without its failure being
detected, is at most p.

• The number of distinct node names that appear in the node predicates
under consideration is at most N , where Np� 1.

2



Let ‖F‖ equalmpdeg(F ), wherem is the number of distinct terms of order
deg(F ) in the normal form of F . Under our assumptions, ‖F‖ is, to within a
factor of (1+Np), the a priori probability that F is true. We define ‖F |G‖
to be ‖F ·G‖/‖G‖, the approximate probability that F is true given that G
is true.

Note that pdeg(F ) ≤ ‖F‖ ≤ (Np)deg(F ), so ‖F |G‖ ≤ (Np)deg(F |G)Ndeg(G).
We will usually assume that N is so much smaller than 1/p that we can
ignore factors of N and take pdeg(F |G) to be the probability that F is true
given that G is true. We therefore use deg(F |G) rather than ‖F |G‖ to
measure the likelihood that F is true given that G is true. This assumption
is not deeply embedded in our algorithms, and it would be easy to replace
our use of degrees by the use of probabilities, but we feel that this will
seldom be necessary.

To explain why we can usually ignore factors of N in this way, recall
that p is not the probability that a node has failed—which is all too large
with current systems—but that the node has failed without its failure be-
ing detected. Such undetected failures are much less likely than ordinary
“crashes”, which are easily detected, so we expect p to be quite small. Ac-
tually, it is not even necessary to detect crashes—the failure of a node to
do anything—in our algorithms, since nodes that do nothing cannot lead to
errors. As for N , even though there may be many thousands of nodes in the
entire network, only a small number of them will take part in calculating
the value provided to any individual client. The names of only those nodes
that take part in the calculation will appear in the node predicates.

For greater generality, we could assume a degree d(A) for each node A
such that the a priori failure probability for each node is pd(A). We would
then have to change our definitions of degree for pdeg(F |G) to remain the
approximate probability of F given G. This would make the calculations
more complicated. Since we do not expect useful information about actual
failure probabilities to be available in a real network, we will not pursue this
generalization.

We list the following simple results for later use, where F and G are any
node predicates and T is any term. These results are all simple consequences
of the definitions.

deg(F )− deg(G) ≤ deg(F |G) ≤ deg(F ) (1)

deg(F [1/T ]) ≤ deg(F ) ≤ deg(F [1/T ]) + deg(T ) (2)

(F +G)[1/T ] = F [1/T ] +G[1/T ] (3)

(F ·G)[1/T ] = F [1/T ] ·G[1/T ] (4)

3



deg(F |T ·G) = deg(F [1/T ] |G[1/T ]) (5)

2.2 Time data

A time interval I is an interval on the real line of the form [L,R], with
L ≤ R. We consider a time interval I to represent the assertion UT ∈ I,
that the correct time lies in the interval I. For any time intervals I1 and I2,
we have1:

I1 ∧ I2 = I1 ∩ I2 (6)

I1 ∨ I2 = I1 ∪ I2 (7)

false = ∅ (8)

In other words, UT is in both intervals iff it is in their intersection; it is in
one of the intervals iff it is in their union; and the assertion that UT is in
the empty interval is false.

A time datum is a pair (I, F ), where I is a time interval and F is a
node predicate. We call F the failure predicate of the datum. The datum
represents the logical formula I ∨ F , which asserts that UT is in I or F
is true. (More precisely, it asserts that UT is in I or node failures have
occurred that make F true.)

From now on, we introduce the following conventions, where j is any
natural number:

• I and Ij denote time intervals.

• F and Fj denote node predicates.

• Dj denotes the time datum (Ij , Fj).

We now consider how to infer information from time data. Most of our
inferences will be based on the following two tautologies, which are simple
consequences of (6–8) and the definitions.

D1 ∧D2 ⇒ (I1 ∩ I2, F1 + F2) (9)

D1 ∧D2 ⇒ (I1 ∪ I2, F1 · F2) (10)

1Only in node predicates do we use the boolean algebra notation +, ·, and 0 for ∨, ∧,
and false.

4



2.2.1 Extracting failure knowledge from time data

From (9) and (10), we see that if I1∩I2 is empty, thenD1∧D2 implies F1+F2.
In other words, if two time data make contradictory assertions about the
value of UT , then one of their failure predicates is true. We generalize
this observation to make the following definition of FK (D1, . . . ,Dn), which
represents the knowledge about failures that can be inferred from the data
Dj . (In these definitions, we ignore the possibility that some of the time
intervals may be empty. Time data with empty intervals do not arise.)

FK (D1)
∆= 1 (11)

FK (D1,D2)
∆=

{
F1 + F2 if I1 ∩ I2 = ∅
1 otherwise

(12)

If n > 2, FK (D1, . . . ,Dn)
∆=

∏
i,j

FK (Di,Dj) (13)

From (9) and (10) we infer

D1 ∧ . . . ∧Dn ⇒ FK (D1, . . . ,Dn)

2.2.2 Extracting one time datum from many

We now consider how to deduce information from a collection of time data.
Given a collection D1, . . . ,Dn of time data, we want to extract a single “best”
datum D that is implied by D1 ∧ . . . ∧ Dn. A time datum (I, F ) is made
“better” (containing more information) by making the interval I narrower
and by making F stronger. Thus, there are two natural measures of quality
of the time datum: the width of I, and the degree deg(F |FK ), where FK
is the failure knowledge. (In general, the failure knowledge FK will equal
G · FK (D1, . . . ,Dn), where G is knowledge that might have been obtained
from other sources.) Making I narrower means specifying the value of UT
more precisely. Raising deg(F |FK ) makes it more likely that the value of
UT specified by I is correct (by making it less likely that the number of
node failures needed to make F true have occurred). Because of these two
different measures of quality of a time datum, trying to combine data into
a single “best” datum in general involves a compromise between precision
(width of I) and reliability (deg(F |FK )).

The following two rules provide useful cases in which two time data
can be combined into one with no loss of information. They are simple
consequences of the definitions and (6–8).

5



If F1 ⇒ F2 and I1 ⊆ I2 thenD1 ∧D2 = D1 (14)

If F1 = F2 thenD1 ∧D2 = (I1 ∩ I2, F1) (15)

We now give a more general method of combining the data D1, . . . ,Dn

into a single datum D. The method involves separately combining the infor-
mation in the left and right endpoints of the intervals Ij. For this derivation,
let Ij be the interval [Lj , Rj ], for each j.

The left endpoint L of an interval contains the information that UT ≥ L.
Thus, a left endpoint is “better” iff it is bigger. Let b be a permutation of
the integers 1, . . . , n such that Lb(j) is the jth best left endpoint among all
the Li. In other words,

Lb(1) ≥ Lb(2) ≥ . . . ≥ Lb(n) (16)

Similarly, we define e(k) to be the kth best right endpoint, so

Re(1) ≤ Re(2) ≤ . . . ≤ Re(n) (17)

(If some of these endpoints are equal, so b and e are not uniquely deter-
mined, choose any such b and e. We will see later that this choice makes no
difference.)

By repeated application of (10), we find for 1 ≤ j ≤ n and 1 ≤ k ≤ n:

Db(1) ∧ . . . ∧Db(j) ⇒ (Ib(1) ∪ . . . ∪ Ib(j), Fb(1) · · ·Fb(j))

De(1) ∧ . . . ∧De(k) ⇒ (Ie(1) ∪ . . . ∪ Ie(k), Fe(1) · · ·Fe(k))

Since D1 ∧ . . . ∧Dn implies both Db(1) ∧ . . . ∧Db(j) and De(1) ∧ . . . ∧De(k),
we infer

D1 ∧ . . . ∧Dn ⇒
(Ib(1) ∪ . . . ∪ Ib(j), Fb(1) · · ·Fb(j)) ∧ (Ie(1) ∪ . . . ∪ Ie(k), Fe(1) · · ·Fe(k))

Applying (9) then gives

D1 ∧ . . . ∧Dn ⇒ (I, Fb(1) · · ·Fb(j) + Fe(1) · · ·Fe(k)) (18)

where we define

I
∆= (Ib(1) ∪ . . . ∪ Ib(j)) ∩ (Ie(1) ∪ . . . ∪ Ie(k))

6



From (16) and (17), it follows that the left endpoint of Ib(1) ∪ . . . ∪ Ib(j)
is Lb(j) and the right endpoint of Ie(1) ∪ . . . ∪ Ie(k) is Re(k). Therefore,
I ⊆ [Lb(j), Re(k)], so (18) gives

D1 ∧ . . . ∧Dn ⇒ ([Lb(j), Re(k)], Fb(1) · · ·Fb(j) + Fe(1) · · ·Fe(k)) (19)

We define

MLMj,k(D1, . . . ,Dn)
∆= ([Lb(j), Re(k)], Fb(1) · · ·Fb(j) + Fe(1) · · ·Fe(k)),

so (19) becomes

D1 ∧ . . . ∧Dn ⇒ MLMj,k(D1, . . . ,Dn).

Increasing j and k makes the failure predicate of MLMj,k(D1, . . . ,Dn)
stronger (making the time interval more likely to be correct), but it widens
the time interval (making it contain less information about UT ). Thus,
choosing j and k involves a tradeoff between the precision and the relia-
bility of the information about UT contained in the datum. To combine
a collection D1, . . . ,Dn of time data into a single datum, one chooses the
smallest j and k so that the failure predicates Fb(1) · · ·Fb(j) and Fe(1) · · ·Fe(k)

have large enough degrees relative to the failure knowledge FK .
We now show that, if b and e are not uniquely determined because some

of the endpoints are equal, then the choices for b and e do not matter.
Suppose the jth through (j + m)th best left endpoints are equal. Then
MLMj+m,k(D1, . . . ,Dn) has the same interval as MLMj,k(D1, . . . ,Dn) and
a failure predicate that is at least as strong, so

MLMj+m,k(D1, . . . ,Dn)⇒ MLMj,k(D1, . . . ,Dn)

In this case, there is never any reason to use MLMj,k(D1, . . . ,Dn) rather
than MLMj+m,k(D1, . . . ,Dn). This implies that the choice of permutation
b does not matter. A similar comment applies to right endpoints and the
permutation e.

2.3 Fault-tolerance versus reliability: a digression

Fault-tolerance of an algorithm is usually measured in terms of the number
of failures that it can tolerate. Suppose a time server correctly deduces a
datum (I, F ) and reports to a client that UT is in the interval I. The datum
implies that the value reported to the client is correct unless deg(F ) failures
have occurred, so the algorithm would be said to tolerate deg(F ) failures.

7



However, the purpose of fault-tolerance is to guarantee a sufficiently
low probability that the service provides an incorrect value. Under our
assumptions about a priori failure probabilities, the datum (I, F ) allows us
to conclude that, in the absence of other information, the probability that I
is an incorrect interval is, neglecting factors of N , of order pdeg(F ). However,
additional information may be present. If we have failure knowledge FK ,
then the probability that I is incorrect is of order pdeg(F |FK ), not pdeg(F ).
This is because, once we know that deg(FK ) failures have occurred, the
probability that k more failures will occur is of order pk, not pdeg(FK )+k.

Many of the fault-tolerant algorithms in the literature are predicated on
the assumption that there will be at most some fixed number k of faults.
If k faults are observed to have occurred, then the algorithms can act as if
no further faults are possible. This assumption of at most k faults can be
justified because it produces simpler algorithms, but it does not yield the
most reliable algorithms. A more reliable algorithm is one that attempts
to detect faults and, after a fault has been detected, can tolerate k more
faults. This is the type of algorithm that we are aiming for. Thus, we have
taken deg(F |FK ) rather than deg(F ) as the measure of reliability of the
time information provided by the datum (I, F ).

3 Manipulating Time Data

Time data contains information about UT . Unlike most ordinary data,
information about UT tends to degrade both with the passage of time and
when the information is transmitted from one place to another. We now
study this degradation.

First, we introduce some notation. For any interval I = [L,R] and real
numbers t and w, with w ≥ 0, define Tt,w(I) to equal [L + t − w,L + t +
w]. Thus, Tt,w shifts an interval t units to the right, and widens it by 2w
units. We extend Tt,w to a mapping on time data by letting Tt,w((I, F )) =
(Tt,w(I), F ).

3.1 Maintaining time data at a node

A time datum (I, F ) asserts that UT ∈ I. Since UT is changing, the datum
is expected to be correct only at some specific instant. We first examine
what we can deduce from the knowledge that a datum was correct at an
earlier instant.

We assume that each node has its own local clock. Let us suppose that
the rate of a nonfaulty node’s clock is known to be accurate to plus or minus

8



ρ seconds per second. (This is part of the definition of what makes a node
nonfaulty.) If the local clock has advanced by t seconds, then UT is known
to have advanced by t±ρt seconds. Thus, if a node knows that a time datum
D is correct, then after t seconds have elapsed on its local clock, it knows
only that the datum Tt,ρt(D) is correct. The uncertainty in its knowledge
of UT has increased by 2ρt.

In light of this, a datum is stored at a node as a triple (I, F, c), where c
is the time on the node’s local clock when it knew the datum (I, F ) to be
correct.

3.2 Transmitting time data between nodes

Nodes exchange information by sending messages. For our purposes, it does
not matter if a node requests that data be sent to it or just passively receives
the data. To exchange time information, nodes must be able to determine
not only the contents of a message, but also the length of time the message
was in transit. Uncertainty in transmission time leads to the degradation
of time information when it is sent from one node to another. To transmit
a time interval with a message, a node must be able to determine bounds
on the message’s transmission time. If node A sends an interval IA to B
in a message whose transmission time is known by B to be t± w, then the
interval IAB received by B is approximately Tt,w(IA).

We will not consider how bounds on message transmission time are de-
termined. We simply assume that when A sends an interval IA to B, if
UT ∈ IA and both A and B are nonfaulty, then B obtains an interval IAB

with UT ∈ IAB . (We take this to be part of the definition of “nonfaulty”.)
Node B uses the information received from A and its knowledge of trans-
mission delay bounds or measurement of round-trip time to compute the
interval IAB .

We also assume that node A can send ordinary information, such as node
predicates to B, and B will receive that information correctly unless A or
B is faulty. Combined with the preceding assumption, this means that if A
sends a datum (IA, FA) to B saying that it is correct, then B knows that
(IAB , A+B+FA) is a correct datum. The correctness of (IAB , A+B+FA)
is based on the assumption that a nonfaulty node will never assert that an
incorrect datum is correct. Hence, if (IA, FA) is incorrect, then (IAB , A +
B + FA) is correct because A is faulty, so A = 1.

There is little point to having a node participate in a time service if it
believes itself to be faulty. (A node that believes itself to be faulty is faulty,
since a nonfaulty node is assumed not to believe something that is not

9



correct.) Therefore, in executing a time-service algorithm, a node assumes
itself to be correct. Thus, a node B can replace any datum (I, F ) by the
datum (I, F [0/B]). In particular, when A sends the datum (IA, FA) to B,
node B takes the datum (IAB , A+ FA[0/B]) to be correct.

However, a node should use the information it receives from other nodes
to check itself for failure. For the purposes of such checking, when B receives
the datum from A, it assumes only that (IAB, A+B + FA) is correct.

Time information originates at primary time sources and is transmitted
between nodes. If data are not combined (except through (14) and (15)),
then each retransmission of a datum adds a single node name to its failure
predicate. Thus, when data are not combined, their failure predicates are
linear.

3.3 Retransmitting data

Let A and B be two nodes, and suppose that their local clocks have errors
in their running rates of plus or minus ρA and ρB , respectively. Suppose
node A sends a datum (I1A, FA) to node B, and tA seconds later sends
“another copy of the same” datum (I2A, FA) to B, meaning that I2A is the
“time-shifted” version TtA,ρAtA(I1A) of I1A.

Upon receiving the second datum, node B will have two data having the
same failure predicate: the one it just received and its “time-shifted” version
of the first datum. These two data can be combined using (15)—that is,
B just takes the intersection of the two intervals. Node A’s retransmission
of “the same” data will improve B’s knowledge if its time-shifted version of
the first datum is not a subset of the newly received datum.

Retransmission of data in this way can be used to improve B’s knowledge
of UT or as a check for failures. We consider these two uses separately.

3.3.1 Refining knowledge by retransmission

Assume that A and B are nonfaulty. A simple analysis indicates that re-
transmission is likely to improve B’s knowledge in the following cases:

1. The transmission delays were smaller the second time the datum was
sent. This is most likely to improve B’s datum if tA is small. In other
words, when there is significant variability in transmission delays, it
can help to transmit the same datum several times in close succession.

2. The actual running rate of the two clocks differs by more than ρA−ρB .
There are two cases of interest:

10



(a) ρA � ρB . In other words, if A’s clock is more accurate than
B’s, then B can probably get better information by having A
retransmit the value than by using the one it received earlier. In
this case, B can maintain more precise information about UT
by “storing its data on A”—sending the data to A and having A
send it back from time to time. However, doing so adds A to the
data’s failure predicate.

(b) ρA ≈ ρB . In this case, continual retransmission of the data will
make B’s copy widen at the rate of 2ρB − ε rather than 2ρB ,
where ε is the difference in the two clocks’ rates. By “sharing
their data,” A and B can use the differences in their clock rates
to reduce the rate at which they lose knowledge of UT . This
can help only when the two clocks run at different rates, which
means that at least one of them deviates from the correct rate
(one second of clock time per second of UT ). Sharing data in
this way will not help if both clocks happen to run at exactly the
same rate.

3.3.2 Detecting failures through retransmission

A failure has occurred if B’s time-shifted version of the first interval it
receives is disjoint from the second interval it receives. This is most likely
to happen if the initial interval I1A sent by A consists of a single point.
Although we can analyze this situation in terms of intervals, we instead
consider the sending of local clock values. The calculations given below can
be recast into the framework of node B checking for the empty intersection
of two intervals I1AB and I2AB received from node A, where the first interval
I1A sent by A is a single point. However, it is simpler to think in terms of
local clock values.

Assume that A sends a message with its local clock value c1A to B, and
B deduces that the message was sent at time c1B ± w1 on its own local
clock. Some time later, A sends another such message with its local clock
value c2A, which B deduces was sent at time c2B ± w2. Neglecting higher
order terms, node B can deduce that an error has occurred if

|(c2B − c1B)− (c2A − c1A)| > (ρA + ρB) · |c2A − c1A|+ w1 + w2 (20)

We expect gross failures that result in garbled information to be de-
tectable by other means. We are concerned here with failures of the nodes’
local clocks. We believe that two kinds of failures are most likely in a local

11



clock: discontinuous jumps (perhaps caused by missing a clock interrupt),
and running at a rate that lies outside its error bound (perhaps caused by
a failure in the clock circuitry, or in the air conditioning).

From (20), it follows that discontinuous jumps are most likely to be
detected if the two clock values are sent close together—that is, when |c2A−
c1A| is small—while errors in the running rate are more likely to be detected
if the values are sent far apart—with a large value of |c2A − c1A|.

Error checking is performed by having A send the value cA of its local
clock every time it sends data to B. Node B can use (20) to check a newly
received triple (cA, cB , w) against previous values that it has saved. Node
B should save the previous triple (cA, cB , w) and the two triples having the
largest values of cA − cB + w and cB − cA + w.

If B detects a violation of (20), then it knows that either it or A has
failed. In other words, it knows that A + B equals 1. A decision as to
whether A or B is more likely to have failed must be based on similar checks
that the two nodes perform on their communication with other nodes. For
example, if nodes C and D also detect a failure in their communication with
A (giving failure knowledge A+ B · C ·D), it is unlikely that B, C, and D
are all faulty.

A problematic situation arises if a violation of (20) is detected in com-
munication between A and B, but not in the communication that they have
with their neighbors. This probably means that one of the two nodes’ clocks
is running at a rate that is slightly outside its error bounds. It may be pos-
sible to decide which of them is faulty by seeing how close condition (20) is
to being violated in the nodes’ communications with their neighbors.

3.4 When to combine time data

A node in a time service will continually receive time data from other nodes.
Eventually, the client must be presented with a single interval, which will
be computed from a collection of time data using the function MLMj,k for
suitable j and k. Should this be done as the data arrives or upon receipt of
a client request?

Storing and transmitting a time datum D transform it to Tt,w(D) for
some t and w. If a collection of data D1, . . . ,Dn are stored and transmitted
together, then they are all transformed by the same function Tt,w. The
relation

MLMj,k(Tt,w(D1), . . . , Tt,w(Dn)) = Tt,w(MLMj,k(D1, . . . ,Dn)) (21)

implies that it does not matter when the function MLMj,k is applied.

12



However, it does matter when we compute the failure-knowledge function
FK . Although we have

FK (D1, . . . ,Dn)⇒ FK ((Tt,w(D1), . . . , Tt,w(Dn))

the converse implication does not always hold. As the intervals widen, pre-
viously disjoint intervals can overlap, and information about what failures
have occurred can be lost. Therefore, to retain the maximum amount of in-
formation, the failure knowledge FK (D1, . . . ,Dn) should be computed right
away, before the intervals widen.

While this discussion might suggest that data should be combined as
soon as possible, this is not the case. Although failure knowledge should be
computed as soon as the data are obtained, it is not a good idea to replace
a collection of data D1, . . . ,Dn by a single datum MLMj,k(D1, . . . ,Dn) if
any additional data may become available. Such a replacement destroys
potentially useful information.

Ideally, an algorithm should never combine data with a function MLMj,k

except to provide a single interval to a client. One node should send another
only “raw” data, which have linear failure predicates, together with failure
knowledge no longer obtainable from the data because the intervals have
widened with time.

3.5 Discarding data

To maximize their knowledge, nodes would keep sending each other all their
data and would never discard any old data. This obviously cannot go on
forever; some data must eventually be discarded or combined with other
data. We now consider how that is done.

3.5.1 Discarding stale data

Rule (15) can be applied to replace two data having the same failure pred-
icate with a single datum. A datum’s failure predicate indicates the paths
traveled by the information contained in the datum. For example, if the
datum (I,X + A + B) is known by a node C, where X is a primary time
source, then the fact that UT lies in I was derived by C from information
that it received from X along a path consisting of nodes A and B.

Two data containing information that traveled along the same paths have
the same failure predicate. One datum is probably a more recent version of
the other. If node C has two data (I1,X+A+B) and (I2,X+A+B), then
these are probably derived from data that X sent at two different times.

13



Perhaps (I2,X +A+B) was just received and (I1,X +A+B) is the time-
shifted version of older data. In this case, since I1 has widened with time
(Section 3.1), it is likely to be a subset of I2, so rule (15) becomes a special
case of rule (14) and simply replaces the first datum by the second. Rule
(15) is the means by which fresh data replaces older data.

3.5.2 Discarding data that has gone too far

Rule (14) permits one datum to be discarded in favor of another that has
traveled along a shorter path. Suppose that a node C has two data (I1,X+
A) and (I2,X + A + B). These are probably the same datum sent from
X via two different paths—the first containing just node A and the second
containing nodes A and B. (Perhaps A relayed the second datum from B
before relaying the first directly from X.) Since each retransmission of a
datum widens its interval, it is likely that I1 is a subset of I2, so (14) can
be applied to discard the second datum.

In principle, data could be sent along all possible, arbitrarily long paths.
Rule (14) would prevent data from proliferating by allowing data that trav-
eled along unnecessarily long paths to be discarded. However, in practice, a
time-service algorithm would simply not send data along very long paths.

3.5.3 Discarding the worst data

Rules (14) and (15) provide the only ways to discard data without loss of
information. If information must be lost, it is sensible to discard data that
contain the least information. A datum (I, F ) contains little information if
I is wide or F is likely to equal 1. We consider these cases separately.

Discarding data with wide intervals We consider data with linear
failure predicates—in particular, data that have not been combined with the
MLMj,k function. Consider a datum (I,X+A+B) held by a node C, where
node X is a primary time source. As we saw in Section 3.5.1, this datum is
likely to be discarded by rule (15) if X keeps providing fresh data. However,
suppose the datum does not get refreshed in this way, presumably because
of a failure or loss of communication. Then the datum’s time interval keeps
getting wider. Eventually, the interval becomes so wide that it contains
little information about the value of UT , and it can be discarded. More
precisely, the datum should be discarded when its interval becomes very
wide compared to the intervals in other data possessed by the node. Note

14



that, since all intervals widen with time at the same rate, the interval of one
datum can become relatively wider only if other intervals are “refreshed”.

We will not attempt to determine a precise criterion. However, observe
that a very wide interval can appear to provide useful information. In par-
ticular, this can happen if the wide interval barely overlaps another interval,
as in the following example

I2

I1

where I1 ∩ I2 is much smaller than I2. However, if I1 has widened with
age, then it originally did not intersect I2. In this case, we know I1 or I2
originally contained faulty information, so we can only hope that UT lies in
either I1 or I2; we have no reason to expect UT to lie in their intersection.

Discarding intervals that are likely to be wrong We may want to
discard data whose intervals are likely to be incorrect. The relative degree
of a datum’s failure predicate provides the simplest measure of how likely it
is that a datum’s interval is wrong. As an example, consider four time data
Dj = (Ij , Fj), where

F1 = A+B
F2 = C +D
F3 = C + E
F4 = E + F,

and assume that I1 does not intersect I2, I3, or I4, but I2, I3, and I4 all have a
point in common. Let FK denote the failure knowledge FK (D1,D2,D3,D4).
A straightforward calculation gives

FK = A+B + C ·E + C · F +D ·E

deg(F1|FK ) = 0

deg(F2|FK ) = 1

deg(F3|FK ) = 1

deg(F4|FK ) = 1

This indicates that it is more likely for UT to lie outside I1 than outside any
of the other intervals, making D1 a better candidate to discard than D2.

15



However, suppose that the node obtains the additional information that
E has failed. Then the node’s failure knowledge becomes FK · E, and
deg(Fj |FK · E) equals 0 for all j. Hence, the relative degrees indicate that
UT is as likely to lie in I1 as in any of the other intervals. (This may
seem wrong, since F3 and F4 are known to be true, while F1 and F2 are
not. However, the probability that F1 is true and the probability that F2 is
true are both 1/2, and deg(F |FK ) gives only the order of magnitude of the
probability that F is true given that FK is true.)

In general, it is dangerous to discard a datum based on current failure
knowledge because later information may reveal that discarding it was a
mistake. However, if time data must be discarded, there may be no better
criterion available for choosing which data to discard.

3.5.4 Using MLMj,k to discard information

It seems reasonable to try to reduce the amount of information sent between
nodes by replacing a collection of data D1, . . . ,Dn with the single datum
MLMj,k(D1, . . . ,Dn), for the “best” choice of j and k. However, this turns
out not to save much space. The problem is that the amount of space needed
to hold the failure predicate of MLMj,k(D1, . . . ,Dn) can be of the same order
of magnitude as the space needed to hold the subset of data from which it is
derived—a subset consisting of up to j+ k elements. Thus, simply applying
the function MLMj,k is not good enough. To reduce the amount of storage
required, we must simplify the failure predicate of MLMj,k(D1, . . . ,Dn).

The space required to hold data is analyzed in Section 4.1 below. The
space required to hold a set of linear node predicates depends on the number
of predicates in the set, the number of terms in each predicate (which equals
the length of the path along which the information has already traveled),
and the total number of distinct nodes in the set of predicates. We indicate
how the number of terms in the predicates and the total number of distinct
nodes can be reduced.

Assume that all nodes are partitioned into classes, with all primary time
sources being in class 1. We adopt the rule that information is sent only
between nodes of the same class or from a node of class i to a node of class
i + 1. A class i node A relays to a class i + 1 node only a single datum,
consisting of an interval derived with an MLMj,k function from the data
it has received, with a failure predicate equal to A—just as if A were the
primary source of the interval.

Suppose that, under our assumptions of a priori failure probabilities, we
want an algorithm to have failure probability of order at most pd. (We are

16



again neglecting factors ofN .) To send data to class i+1 nodes, a class i node
A uses an MLMj,k function to obtain a datum (I, F ) with deg(F |FK ) ≥ d,
where FK is node A’s failure knowledge. Node A then sends the datum to
class i + 1 nodes as if it were a primary time source with knowledge that
UT is in I.

If M classes are used and data travels along paths of about the same
maximum length within each class, then this scheme reduces both the num-
ber of distinct nodes and the length of failure predicates by a factor of 1/M .
It achieves a relative failure probability of order at most pd based on the
nodes’ failure knowledge. However, this is deceptive, since information that
has been discarded might have provided additional failure knowledge that
would have lowered the relative probability.

Another feature of this method is that a node never receives data derived
from data that it transmitted—except for data explicitly identified as such
by the failure predicate.

As a further refinement of this method, we propose that nodes do not
combine data from different primary time sources. Our intuition suggests
that the original source of the information about UT has particular impor-
tance, and should not be discarded. A class i+1 node combines all the data
it receives from class i nodes that originated from the same primary time
source X, and then acts as if it had received the resulting datum directly
from X. Thus a class i + 1 node receives from a class i node A data with
failure predicates X +A, for primary time servers A.

This technique for reducing the amount of data transmitted seems intu-
itively reasonable. It is the best method we have been able to come up with
for combining data before it reaches its final destination. However, we have
no proof that it is in any sense optimal.

3.6 The duration of node names

In a node predicate, a node name A represents the proposition that A is
faulty. But, nodes fail and are repaired, so the value of A can change over
time from 0 to 1 and back to 0. In principle, each occurrence of A in a node
predicate should be subscripted with a timestamp. When A sends a datum
(IA, FA) to a node B, the datum received by B should be (IAB , At + FA),
where t denotes the time at which A sent the datum.

Timestamping node names in this way would create serious problems in
computing with node predicates. We can simplify A + A to A, but what
about At + At′? Intuitively, we should be able to combine these terms if
|t− t′| is small—if A was faulty several seconds earlier it’s likely still to be

17



faulty. However, there is little reason to believe that At and At′ are equal
if |t− t′| is large—the fact that A was faulty several years ago tells us little
about whether it is faulty now.

We eschew timestamping and adopt the approach that a node changes
its name when it has reason to believe that its failure status has changed. Of
course, name changing will be implemented by letting a node name consist
of a node identifier together with an “epoch number,” but we ignore this
detail for now.

A node that detects its own failure is not going to continue participating
in a time-service algorithm, so it does not need a new name. A node will
assign itself a new name when it decides that it has failed and been repaired.

What should happen to data whose failure predicate contains an “obso-
lete” node name A? If a node name changes only after a failure of the node
has been detected, then all actions taken by the node under its old name A
are suspect. This suggests that 1 be substituted for A in all data. Observe
that substituting 1 for A in a datum of the form (I,A + F ) produces the
datum (I, 1), which is useless and can be discarded, since it contains no
information about the value of UT . Of course, such substitution can be
done as soon as the node reports that it has failed, without waiting for it to
choose a new name.

While it seems safe to substitute 1 for A upon learning that the node
named A has failed, this might result in discarding valid information ob-
tained from the node before it failed. For example, suppose that the node
named A obtains a time datum from a primary time source X and relays
that datum to node B. Node B then has a datum (I,A + X). Suppose
that A loses contact with X, and that this leaves B with no current source
of data from X. The datum (I,A + X) may contain information that is
valuable to B—information that should not be discarded carelessly.

If a node B contains a datum whose failure predicate contains the name
A, and B learns that the node named A has failed, it should try to decide
whether the failure occurred before or after A “handled” the data. Nodes
that were in direct communication with node A are in the best position to
decide when A failed. Therefore, we propose that nodes that receive data
directly from A be responsible for deciding if the data remain valid despite
the subsequent discovery that A has failed. If node B decides that data it
had received from A are invalid because of A’s failure, then data it sent to
another node C based on the invalid data from A are also invalid. Node
B should therefore notify node C that this data is invalid. This could lead
node C in turn to notify other nodes of invalid data it had sent, and so on.
We will not consider the precise mechanism for such notification.

18



A node B must determine whether data it had received from a node
A should be invalidated because of a subsequent failure of A. We propose
that the decision be based upon B’s monitoring of A’s local clock, described
in Section 3.3.2 above. If node B detects a sudden jump of A’s clock, it
might deduce that data received before that jump are valid. However, if
node B detects a gradual drift of A’s clock, indicating an incorrect running
rate, then data received from A should be considered invalid if they were
sent after the rate of A’s clock changed. It may be quite difficult for B to
determine just when A’s clock rate exceeded its error bounds.

To attempt to recover information in the case of a clock running at an
incorrect rate, node B could keep versions of the same datum sent by A at
different times. (When node A sends a datum to node B, it can indicate
whether this is a new datum or a retransmission of an old one.) Node B
could keep a history of local clock values received from A to try to determine
when A’s clock began running at the wrong rate. However, the benefit of
doing all this is probably too small to justify the complexity.

3.7 Byzantine failures

We have thus far made no assumptions about the types of failures that can
occur. As we observed in Section 3.2, all the data possessed by a nonfaulty
node is correct, even in the presence of “Byzantine” failures, where a faulty
node can send arbitrary, malicious information to other nodes.

We believe that a robust time service should tolerate Byzantine fail-
ures in the maintenance and transmission of information about time. The
proper management of temporal information requires correct real-time be-
havior, which is more difficult to achieve than correct functional behavior.
Simple failures can result in “Byzantine behavior”. For example, a node that
incorrectly pauses in the middle of broadcasting a time datum can transmit
conflicting data to two different sets of nodes. Thus, Byzantine failures in
handling information about time should not be uncommon.

However, Byzantine failures in transmitting nontemporal information,
such as node predicates, should be much less common. If suitable redun-
dancy is used, the most likely source of mistransmission of a failure predicate
is a programming error. We assume that this aspect of a node’s program
has been checked carefully enough to eliminate such errors. (This assump-
tion implies a faith in programmers that we hope is warranted.) We will
therefore assume that no node incorrectly transmits nontemporal data. But,
before making this assumption, we consider the behavior of our algorithms
in the presence of Byzantine failures in the transmission of node predicates.

19



In Section 3.2, we observed that a Byzantine failure in one node cannot
cause a nonfaulty node to believe an incorrect time datum. Any time datum
that node B receives from node A has a failure predicate of the form A+F ,
so the datum is correct if A is faulty. However, even though the time data
received from nodeA are correct, if that data has incorrect failure predicates,
then failure knowledge derived from the data may be incorrect. We now
show that an MLM-based algorithm that ignores failure knowledge actually
tolerates Byzantine failures. Ignoring failure knowledge means basing fault
tolerance entirely on a priori failure probability, rather than on probability
conditioned upon knowledge of what failures are known to have occurred.
(See Section 2.3 for a discussion of why we prefer algorithms that do use
failure knowledge.) Formalizing this result requires a precise definition of
the concept “an MLM-based algorithm that ignores failure knowledge”. We
start by defining executions and algorithms.

An execution of an algorithm consists of a finite set E of events and
a partial order → on E representing temporal precedence [2]. We assume
that E is partitioned into sets Ercv of receive events and Esnd of send events,
and that there is a function σ from Ercv to Esnd such that σ(e) → e for all
e ∈ Ercv, where σ(e) is the event that sends the message received at event
e. We assume that an event e consists of a node enode where the event
occurs, a message emsg, and a local state est. (The local state may include
the value of the node’s clock when that event occurs.) We do not require
that emsg = σ(e)msg . Think of an event e for which emsg �= σ(e)msg as the
receipt of a message that was changed in transit.

An algorithm is a set of executions, representing all possible executions
in which all the nodes obey the algorithm.

We now define what it means for an algorithm A to be an MLM-based
algorithm that ignores failure knowledge. The key observation is that the
failure predicate of MLMj,k(D1, . . . ,Dn) is a sum of products of failure pred-
icates of the Di. We therefore define an MLM-based algorithm to be one
in which the failure predicate of any sent message is the sum of products
of failure predicates of messages already received, with the latter predicates
modified as described in Section 3.2.

Formally, an algorithm A is MLM-based iff for every execution E of A,
(1) the message emsg of an event e consists of a time interval eI and a failure
predicate eF , and (2) there exists a mapping ηE from events in Esnd to sets
of sets of events in Ercv such that for every e in Esnd:

• If f is an element of an element of ηE(e), then fnode = enode and f → e.

20



• eF =
∑

S∈ηE (e)

∏
f∈S

(σ(f)node + fF )[0/enode]

(We take this expression to equal 0 if ηE (e) is the empty set.)

For any execution E of an MLM-based algorithm A, any s ∈ Ercv, and
any failure predicate F , we define ∆(E , s, F ) to be the execution obtained
by changing the failure predicate received by s to F , and changing all the
messages sent by the receiver to reflect this change. (No other received
messages are changed.) Formally, ∆(E , s, F ) is the execution such that:

• The events of ∆(E , s, F ) consist of all events e∆ with e ∈ E , where:
– s∆ is the same as s except with s∆F = F .

– If e ∈ Ercv and e �= s, then e∆ = e.
– If e ∈ Esnd, then e∆ is the same as e except

e∆F =
∑

S∈ηE (e)

∏
f∈S

(σ(f)node + f∆
F )[0/enode]

• ∆(E , s, F )rcv and ∆(E , s, F )snd are the sets of all e∆ with e in Ercv and
Esnd, respectively.

• e∆ → f∆ iff e→ f , for all e, f ∈ E .
An MLM-based algorithm A ignores failure knowledge iff ∆(E , s, F ) ∈ A,
for every execution E ∈ A, send event e ∈ Ercv, and failure predicate F .
Thus, an algorithm ignores failure knowledge iff transforming any of its
executions by modifying the failure predicate of a received input value and
then changing only the failure predicates sent by the receiving node yields
a possible execution of the algorithm.

We model the Byzantine failure of a node by allowing the messages sent
by the node to be changed arbitrarily in transit. (It doesn’t matter whether
the faulty behavior occurs in the node or in the wires leading from the node.)
We say that an execution E has at most k Byzantine failures if there exists
a set N containing k nodes such that eF = σ(e)F for all e ∈ Ercv with
σ(e)node /∈ N . The nodes in N are considered faulty, the rest nonfaulty.

Theorem Let A be an algorithm and let A′ be the subset of A consisting
of all executions with no Byzantine failure. If A is an MLM-based algorithm
that ignores failure knowledge and A′ is a correct algorithm (meaning that
P (UT �∈ fI) ≤ (Np)deg(fF ) for each time datum (fI , fF ) sent in A′), then
P (UT �∈ eI) ≤ 2(Np)deg(eF ) for the time datum (eI , eF ) in any message sent
by a nonfaulty node during an execution of A.

21



For simplicity, we prove this result in the case when there can be at most a
single Byzantine failure. The generalization to multiple Byzantine failures is
straightforward. We treat a priori failure probabilities in our usual manner
(Section 2.1).

Assume: 1. A is an MLM-based algorithm that ignores failure knowledge.
2. P (UT �∈ fI) ≤ (Np)deg(fF ) for all events f in A′.
3. There is at most one Byzantine-faulty node.
4. e ∈ Esnd and emsg is nonfaulty.

Prove: P (UT �∈ eI) ≤ 2(Np)deg(eF )

Proof sketch: We define a sequence E = E0, E1, . . . , E\ = E ′ from
the actual execution E to an execution E ′ with no Byzantine failures by
correcting the transmission errors one at a time. We then prove our goal by
relating P (UT �∈ eI) to the probability P (UT �∈ e′I) for the corresponding
event e′ in E ′.
〈1〉1. Define the natural number n and the executions E i and sets Si, for

0 ≤ i ≤ n, inductively as follows.
• E0 ∆= E
• Si ∆= {s ∈ E i

rcv : σ(s)F �= sF }
• If Si = ∅ then n ∆= i, else let s be any element of Si minimal
under → (that is, there exists no t ∈ Si such that t→ s) and let
E i+1 ∆= ∆(E i, s, σ(s)F ).

For each f ∈ E , we define f i ∈ E i inductively by letting f i+1 equal
(f i)∆.

Proof: We must prove that the induction terminates and chooses an n.
Because s is chosen to be a minimal element of Si, and E i+1 differs from
E i only in an event t with si → t, it follows that s /∈ Sj for all j > i.
Hence, at each step in the construction, an element is removed from Si

that does not appear in Sj for any j > i. Since the set of events is finite,
the induction terminates.

〈1〉2. Let E ′ ∆= En. Then E ′ ∈ A′

Proof: By assumption 〈0〉:1 (the hypothesis assumption that A is an
MLM-based algorithm that ignores failure knowledge), a simple induction
shows that each E i is in A. By definition of Si and because Sn = ∅, E ′

has no Byzantine failure, so it is in A′ (by definition of A′).
〈1〉3. For each f ∈ E , if 0 ≤ i ≤ n, then fnode = f i

node, fst = f
i
st, and fI = f i

I .
We define f ′ to equal fn, so f ′ ∈ E ′ for each f ∈ E .

Proof: Immediate from the definitions of f i (step 〈1〉1) and ∆.
〈1〉4. For any node predicates F and G and any node A, if F [1/A] = G[1/A],

22



then deg(G) ≥ deg(F )− 1.
Proof: Since F [1/A] = G[1/A] and deg(A) equals 1, equation (2) implies
that both deg(F ) and deg(G) lie between deg(F [1/A]) and deg(F [1/A]) + 1.

〈1〉5. If A is a Byzantine-faulty node, then eF [1/A] = eiF [1/A] for 0 ≤ i ≤ n.
Assume: A is a Byzantine-faulty node and 0 ≤ i ≤ n.
Prove: eF [1/A] = eiF [1/A]
〈2〉1. eF [1/A] = e0F [1/A]

Proof: By definition (step 〈1〉1), e0 = e.
〈2〉2. Assume: i > 0 and eF [1/A] = e

j
F [1/A], for all j with 0 ≤ j < i.

Prove: eF [1/A] = eiF [1/A]
〈3〉1. F [1/A][0/enode] = F [0/enode][1/A], for any node predicate F .

Proof: A is faulty (assumption 〈1〉) and enode is nonfaulty (assump-
tion 〈0〉:4), so A �= enode.

〈3〉2. Case: ei = ei−1

Proof: eiF [1/A] = e
i−1
F [1/A], which equals eF [1/A] by the induction

hypothesis 〈2〉2.
〈3〉3. Case: ei �= ei−1

〈4〉1. Let f i be the unique element of E i
rcv that is different from the

corresponding element f i−1 in E i−1
rcv . Then f

i is in ηE(ei).
Proof: f i exists by definition of f i (step 〈1〉1) and of ∆. It is in
ηE (ei) by case assumption 〈3〉 and the definition of ei.

〈4〉2. Case: σ(f i)node = A
Proof: Since eiF is defined to equal (e

i−1)∆, the definition of ∆ im-
plies that f i appears only in subexpressions of the form (σ(f i)node+
f i

F )[0/enode], which by the case assumption equals (A+f i
F )[0/enode].

Since (A + f i
F )[1/A] = 1, 〈3〉1 and equations (3) and (4) imply

eiF [1/A] = e
i−1
F [1/A], which equals eF [1/A] by the induction as-

sumption 〈2〉.
〈4〉3. Case: σ(f i)node �= A

〈5〉1. σ(f i)node is nonfaulty
Proof: Case assumption 〈4〉, assumption 〈1〉 (A is faulty), and
assumption 〈0〉:3 (there is only a single faulty node).

〈5〉2. f0
F [1/A] = σ(f

0)F [1/A]
Proof: σ(f0)node equals σ(f i)node, so it is nonfaulty by 〈5〉1.
Hence, in the original execution E0, the predicate f0

F is not
changed in transit, so f0

F = σ(f
0)F .

〈5〉3. Choose j such that 0 ≤ j < i and σ(f j)F = σ(f i−1)F .
Proof: Tim: I eliminated all parts of the statement except for problem here
what you seemed to be using. The result is nonsense, since this
is trivially satisfied by letting j = i−1. So, I have no idea what’s

23



going on here.
〈5〉4. σ(f0)F [1/A] = σ(f j)F [1/A]

Proof: Induction hypothesis 〈2〉. Tim: This made no sense toproblem here
me, since the induction hypothesis talks about e, so I don’t see
how to derive any conclusion about f .

〈5〉5. σ(f j)F [1/A] = σ(f i−1)F [1/A]
Proof: Step 〈5〉3.

〈5〉6. σ(f i−1)F [1/A] = f i
F [1/A]

Proof: σ(f i−1)F = f i
F by definition of ∆.

〈5〉7. f0
F [1/A] = f

i
F [1/A]

Proof: Steps 〈5〉2, 〈5〉4, 〈5〉5, and 〈5〉6.
〈5〉8. Q.E.D.

Proof: By the definition of eiF (part of the definition of ∆),
equations (3) and (4), and steps 〈3〉1 and 〈5〉7, we have that
eiF [1/A] = e

i−1
F [1/A], which equals eF [1/A] by the induction hy-

pothesis 〈2〉.
〈4〉4. Q.E.D.

Proof: Immediate from 〈4〉2 and 〈4〉3.
〈3〉4. Q.E.D.

Proof: Immediate from 〈3〉2 and 〈3〉3.
〈2〉3. Q.E.D.

Proof: By mathematical induction from 〈2〉1 and 〈2〉2.This is as far as I got.
〈1〉6. deg(e′F ) ≥ deg(eF )− 1

Proof: By steps 〈1〉4 and 〈1〉5, recalling that e′F = enF .
〈1〉7. Q.E.D.

〈2〉1. P (UT �∈ eI |no Byzantine failures) ≤ (Np)deg(eF )

Proof: If there are no Byzantine failures, then E = E ′, so (eI , eF ) =
(e′I , e

′
F ) is a correct datum.

〈2〉2. P (UT �∈ eI |node A has a Byzantine failure) ≤ (Np)deg(eF )−1

Proof: If some node A has a Byzantine failure, then (e′I , e
′
F ), the da-

tum corresponding to e that would have been sent in the absence of
the failure, is correct. Combining this observation with step 〈1〉3 and
step 〈1〉6, P (UT �∈ eI |node A has a Byzantine failure) ≤ (Np)deg(e′F ) ≤
(Np)deg(eF )−1

〈2〉3. Q.E.D.
Proof: Case 〈2〉2 occurs with a priori probability Np. Hence the total
probability P (UT �∈ eI) ≤ (1−Np)(Np)deg(eF ) + (Np)(Np)deg(eF )−1 ≤
2(Np)deg(eF ).

This result is rather weak in that it excludes algorithms that make de-

24



cisions based on partial calculations. However, it can be extended to al-
gorithms that involve decisions, so long as those decisions are based only
on a priori probabilities. For example, consider the algorithm proposed in
Section 3.5.4, in which the datum relayed from a class i node to a class i+1
node is obtained by applying a function MLMj,k, where j and k are chosen
so the datum’s failure predicate F satisfies deg(F |FK ) ≥ d. The correct-
ness of the algorithm rests on the fact that the probability of the resulting
interval being incorrect is approximately pd (neglecting factors of N). Now,
suppose that the method is modified to choose j and k so that deg(F ) ≥ d,
ignoring the failure knowledge FK . Then the computed interval still has
a priori probability pd of being incorrect. The result we just proved shows
that this is still the a priori probability in the presence of Byzantine failures.
(We are neglecting the factor of 2 as well as factors of N .)

This sort of argument breaks down for an algorithm that is based on the
degree deg(F |FK ) of F relative to failure knowledge FK . Recall that our
result rested on the observation that if F is the corrupted version of F ′ pro-
duced by a Byzantine failure, then deg(F ′) ≥ deg(F ) − 1. However, letting
FK be the corrupted version of the failure knowledge FK ′, we can conclude
only that deg(F ′|FK ′) ≥ deg(F |FK )− 2. This implies that Byzantine fail-
ures can corrupt failure knowledge in such a way as to invalidate correctness
claims based on failure probabilities relative to correct failure knowledge. It
suggests that, in the face of Byzantine failures, one cannot take advantage of
failure knowledge to achieve reliability beyond that based on a priori failure
probabilities.

From now on, we ignore the possibility of Byzantine failures in the trans-
mission of nontemporal information. We assume that although faulty nodes
can arbitrarily alter time intervals, they correctly transmit nontemporal in-
formation such as node predicates.

4 Complexity

We now consider the costs in space (message length) and time (computa-
tional complexity) of manipulating time data. We assume that the failure
predicates of the time data are linear. Thus, we assume that if data are
combined using the functions MLMj,k, then the resulting failure predicate
is also simplified as explained in Section 3.5.4.

Rather than writing general expressions for the costs in terms of a mul-
titude of parameters, we assume fixed values for many of the parameters.
It is easy to repeat the derivations using different parameters. However, we

25



believe that substituting other realistic choices of these parameters would
not cause significant changes to the results.

4.1 Space: representing the information

The cost of sending a set of data items from one node to another depends
on the number of bytes occupied by a collection of time data, which we now
calculate.

4.1.1 Representing the intervals

We assume that a time is a 64-bit quantity, representing UT with a granu-
larity of 100 nanoseconds, which equals 10−7 seconds. Thus,

1 sec ≈ 224

1 min ≈ 230

1 hour ≈ 235

An interval can be written as [s − e, s + e]. The value of s can be any
representable time. However, the width of an interval is unlikely to be
known to very great precision, since it is based on the maximum error in
clock rates and the measured transit delays of messages. Moreover, widening
an interval by a fraction of a percent is of little consequence. Thus, it suffices
to maintain e with a precision of one part in 210. A number from 0 to 264

with a precision of one part in 210 requires 2 bytes (using a floating-point
style of representation).

Representing a single interval as [s− e, s+ e] requires 10 bytes—8 for s
and 2 for e. However, the intervals of a set of time data will have values of
s close to one another. Values of s should not differ by more than an hour.
(We should be able to assume that a nonfaulty node knows the correct time
to within an hour, and can therefore discard time data with intervals whose
centers lie too far from what it believes UT to be.) Hence, a set of time
intervals can be represented by a single 64-bit time and 36-bit offsets for
each s. Thus, the time intervals in a set of D time data can be represented
by 8 + 6.5D bytes.

The 64-bit time used in this representation can be the value of the local
clock of the node that is sending the data. Section 3.3.2 discusses the use
of such local clock values in detecting failures.

26



4.1.2 Representing the failure predicates

We are assuming that the failure predicates are linear, so they can be repre-
sented as a list of nodes. Let H be the maximum length of a failure predicate
(so it equals the length of the longest path along which data has traveled);
let D be the total number of time data to be sent; and let N be the total
number of distinct nodes in the data’s failure predicates. (N is at most DH,
but we expect that it will usually be much smaller.)

If B is the number of bits needed to represent a node name, then the
failure predicates can be represented with

NB +HD logN

bits. (Each failure predicate is a list of at most H nodes, each of which
can be identified from among the N nodes by logN bits.) We assume that
logN ≤ 8, so HD logN is at most HD bytes.

We now calculate B, the number of bits needed to represent the name
of a node. Assume a 48-bit node identifier, so the name of a node contains
6 bytes of information. As observed in Section 3.6, a node name will consist
of the node identifier together with an epoch number, which is incremented
cyclically whenever the node fails and is restarted. The number E of epoch
numbers must be large enough so that data will be dropped from the system
(because intervals get wide) before a node will be restarted E times. It
seems adequate to let E be 28, so a node name plus epoch number can be
represented by 7 bytes.

Putting these figures together, we find that the failure predicates can be
represented by 7N + HD bytes. Including the representations of the time
intervals computed above, we see that transmitting a collection of time data
requires at most

8 + (6.5 +H)D + 7N (22)

bytes.

4.1.3 Representing the failure knowledge

Failure knowledge ultimately reduces to knowledge of pairs of intervals with
disjoint intersection. We assume that the data are being passed along with
the failure knowledge derived from them. (Actually, there is no need to
transmit failure knowledge that can be derived from the data themselves—
we need only transmit knowledge that has been lost through widening of
the intervals.)

27



The most likely situation is for some set of data, presumably obtained
through the same faulty node, all to have their intervals disjoint from the
intervals of the remaining data. A reasonably compact representation of the
failure knowledge should therefore be sets of pairs of subsets of the data,
where the pair (S1, S2) indicates that the interval belonging to any datum
in S1 is disjoint from the interval belonging to any datum in S2. Such a
pair can be represented by 2D bits, or D/4 bytes. We expect that there
will be only a small number of such pairs of sets, so the number of bytes
needed to convey the failure knowledge should be a very small multiple of
D—probably less than 2D bytes.

4.2 Computation costs

Given data D1, . . . ,Dn, where Dj equals (Ij , Fj), let MLMj,k(D1, . . . ,Dn)
equal (Ij,k, Fj,k), and let FK denote FK (D1, . . . ,Dn). We consider the cost
of computing Ij,k and deg(Fj,k|FK ) for increasing j and k.

The algorithms start by sorting the intervals Ij by both their left and
right endpoints, which takes O(D logD) time. Since intervals [L,R] and
[L′, R′] are disjoint iff R < L′ or R′ < L, all disjoint pairs of intervals among
the Ij can be found in O(D logD) steps using the sorted lists of endpoints.

After sorting the intervals and finding the disjoint pairs of intervals, the
computation next involves a lot of multiplication of failure predicates. Under
our usual a priori probability assumption, assume that we want to provide
a time service with probability pd of failure. The criterion for selecting
j and k then becomes deg(Fj,k|FK ) ≥ d. By (1), it suffices to calculate
FK and Fj,k ignoring terms of degree deg(FK ) + d and higher. When we
ignore such terms, multiplying m linear failure predicates can be done by a
straightforward algorithm in O(mH · N deg(FK )+d−1) steps, where N is the
total number of distinct nodes in the predicates and H is the maximum
length of the predicates. (The product is stored as a bit vector of length
N deg(FK )+d−1.) Note that deg(FK ) can be found by computing FK ignoring
terms of degree i, for successively larger values of i, until a predicate FK of
degree less than i is obtained.

The calculation of MLMj,k can be done in an obvious manner, where
MLMj+1,k and MLMj,k+1 are calculated using values obtained in the compu-
tation of MLMj,k. The computation of MLMj,k, which includes the computa-
tion of the MLMj′,k′ with j′ < j and k′ < k, takes O((j+k)H·N deg(FK )+d−1)
steps, which is at most

O(HD · N deg(FK )+d−1) (23)

28



The worrisome factor is N deg(FK )+d−1. We expect d to be small (perhaps
2); and deg(FK ) should also be small, since it is the number of nodes, among
the ones participating in the transmission of the data, that are known to
have failed. It seems reasonable for the computational complexity to increase
with the number of failures that occur.

If some node A is known to have failed, so FK = A · FK ′, where FK ′

does not contain A, then (5) implies that deg(F |FK ) = deg(F [1/A]|FK ′).
Particular nodes that are known to have failed can therefore be eliminated
before performing the calculations. Hence, in (23), deg(FK ) represents the
number of known failures for which the failed nodes have not been identified.

5 A Sample Configuration

We now apply these ideas to a simple time service for a network consisting of
a (possibly large) number of interconnected LANs. We assume that all the
nodes in a LAN can communicate directly with one another in the absence
of failures.

Each node contains a clerk process that is responsible for providing
a time interval to clients on that node. We assume a collection of time
providers, nodes that are the primary time sources, scattered throughout
the network. Each LAN has a collection of time server nodes that provide
information to the clerks on that LAN. (A node may be both a time provider
and a time server.) To simplify the discussion, we assume that each time
provider is also a time server. We use the scheme of Section 3.5.4 of par-
titioning nodes into classes, where time servers are class 1 nodes, and all
other nodes are class 2 nodes.

A time server A tries to get time data directly from time providers.
Server A then forwards the data it received from each time provider X to
the other servers on its LAN. This provides each server B with data having
failure predicates of the form X or X + A for a time provider X and a
time server A, where A is on the same LAN as B. Normally, there is no
reason for B to forward this data to another server C, since C will have
received a datum with predicate X + A directly from A. However, such
data may be forwarded again by B, giving failure predicates of the form
X + A + B, if fresh time data are no longer available from provider X
(because of communication failure or the failure of X). There are three
reasons why B might want to send such a datum to C:

• C = A, in which case the reasons for sending the datum back to A
were discussed in Section 3.3.1.

29



• The error rate of B’s clock is smaller than that of A’s clock.

• Node A cannot transmit its datum again because it has failed. (In
fact, the node named C could be the same as the node that used to
be named A.)

Assume that there are five servers on a LAN, and these servers get data
from a total of five time providers. Suppose that the servers may also have
data that originally was relayed by two other servers that have since failed.
(Those two could be earlier incarnations of current servers.) A node will have
to send a maximum of 35 data, each having a failure predicate of length at
most 2, the set of all node predicates containing at most 12 distinct node
names. By formula (22) of Section 4.1.2, this gives about 390 bytes of
information, excluding the failure knowledge, which is unlikely to require
more than 70 bytes.

We now consider the computation performed by a time server to compute
the MLMj,k function before sending data to the clerks on other nodes. A
node has at most 5 ·7 ·5 data with failure predicates of length at most 3. By
formula (23) of Section 4.2, to achieve a failure probability of approximately
pd, a time server must perform at most about 525 · 12deg(FK )+d−1 calcula-
tions. With deg(FK ) equal to 1 and d equal to 2, this is about 1/2 million
calculations. This is a very conservative bound, since it assumes that com-
puting MLMj,k requires examining all of the 175 data, which is extremely
unlikely. The actual number is probably closer to 50,000 calculations.

A clerk on a node that is not a time server will obtain data from several
time servers on its LAN. If the clerk queried all five servers, it would have to
perform at most 50 · (10)deg(FK )+1 computations to reduce its 25 data (one
for each of the 5 time providers from each server) to a single interval with
an MLMj,k function. Again, this is a rather conservative estimate.

A clerk on a time server node will use the data computed by that server.
It will have to further reduce the server’s 5 data (one per time provider)
to a single interval, using an MLMj,k function. The clerk does not get
additional reduced data from other time servers, since that would violate
the principle that class i nodes do not combine data before sending it to
other class i nodes. The rationale for this principle is that the clerk need
not obtain data from other time servers, since the data it receives from the
server on its own node was obtained from data the server obtained from the
other servers—the same data that those servers use to compute the data
they send to clerks. Another way to view this is that clerks query multiple
servers to guard against server failures, but there is little reason for a clerk

30



on the same node as a server to do this. If a server fails, then the clerk on
its node has probably also failed.

Acknowledgements

We thank Fred Schneider for suggesting improvements to an earlier version
of this note. We also wish to thank the participants at the 1996 Dagstuhl-
Seminar on Time Services for their comments.

31



32



References

[1] Danny Dolev, Joe Halpern, and H. Raymond Strong. On the possibility
and impossibility of achieving clock synchronization. In Proceedings of
the Sixteenth Annual ACM Symposium on Theory of Computing, pages
504–511, Washington, D.C., 1984. Association for Computing Machin-
ery.

[2] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[3] Keith A. Marzullo. Maintaining the Time in a Distributed System. PhD
thesis, Stanford University, February 1984.

[4] Fred B. Schneider. Understanding protocols for byzantine clock syn-
chronization. Technical Report TR87-859, Cornell University, August
1987.

33


