
Fairness and Hyperfairness

Leslie Lamport

26 May 2000

Abstract

The notion of fairness in trace-based formalisms is examined. It is argued
that, in general, fairness means machine closure. The notion of hyperfairness
introduced by Attie, Francez, and Grumberg is generalized to arbitrary action
systems. Also examined are the fairness criteria proposed by Apt, Francez,
and Katz.

Contents

1 Introduction 1

2 Fairness and Machine Closure 1

3 Fairness for Action Systems 4

4 Generalizing Weak and Strong Fairness 6

5 The Criteria of Apt, Francez, and Katz 10
5.1 The Criteria Redefined . 10
5.2 The Criteria Re-examined . 11
5.3 Hyperfairness and the AFK Conditions 13

6 Conclusion 14

1 Introduction

Fairness in concurrent systems has been discussed for decades. There is even
a book on the subject [8]. The best-known attempt to characterize fairness
was probably Apt, Francez, and Katz’s definition of three criteria for fairness
notions [5]. We have learned much about trace-based formalisms since then,
and I believe the definition of fairness is now fairly obvious. While any
precise formalization of a vague concept is open to dispute, there does seem to
be only one language-independent definition that distinguishes fairness from
liveness. That definition appears to have been mentioned only by Abadi and
Lamport [2, page 89] and Schneider [17, pages 254–257]. My purpose here
is to re-examine the question of fairness in light of what has been learned in
the last ten years.

Fairness for properties in an arbitrary trace-based formalism is defined
in Section 2. Fairness usually appears in the guise of fairness conditions on
actions in action systems. Section 3 reviews action systems—a simple ab-
straction that covers programs and many kinds of specifications—and recalls
the definition of weak and strong fairness for actions. Section 4 generalizes
weak and strong fairness and defines hyperfairness, a very strong form of
fairness for actions. Hyperfairness generalizes the concept of the same name
introduced by Attie, Francez, and Grumberg [6]. Section 5 extends the crite-
ria of Apt, Francez, and Katz to arbitrary action systems and discusses these
criteria. A concluding section muses upon what it all means.

Much of the material presented here is a review of well-known concepts;
its presentation is quite terse. More loquacious expositions can be found in
the cited literature. Proofs of the new results are not hard and are left mostly
to the reader.

2 Fairness and Machine Closure

I assume a trace-based semantics in which a behavior is a sequence1 of states
and a property is a predicate on behaviors. Everything translates easily to a
formalism (such as I/O automata [13]) in which a behavior has action names
attached to each state transition.2 In the informal discussion, I identify a

1Infinite sequences must be allowed; it doesn’t matter if finite sequences are.
2An easy way to make the translation is to introduce a state variable whose value is

the name of the transition just completed.

1

property with the set of behaviors satisfying it, so R ⇒ T and R ⊆ T are
two ways of asserting that if a behavior satisfies property R, then it satisfies
property T . However, formally, a property is a predicate on behaviors. Prop-
erties can be expressed as formulas in a temporal logic, but in this section, I
make no assumption about how they are expressed.

The meaning of a system specification3 is a property—namely, the set
of behaviors representing a correct system execution. Any statement about
specifications that is independent of the particular language in which the
specification is written must be a statement about properties.

A safety property is one that is satisfied by an infinite behavior iff it is
satisfied by each finite prefix of the behavior [4].4 With the standard topology
on sequences,5 safety properties are closed sets. Let C(R) be the closure of
property R in this topology, so C(R) is the strongest safety property implied
by R.

A property L is a liveness property iff any finite prefix of a behavior can be
extended to an infinite behavior that satisfies L. In the standard topology on
sequences, liveness properties are dense sets. A theorem of topology implies
that every property can be written as the conjunction of a safety property
and a liveness property [4].

A pair 〈S ,L〉 of properties is machine closed [1] iff S is equivalent to
C(S ∧ L). This means that 〈S ,L〉 is machine closed iff every finite sequence
satisfying S can be extended to an infinite sequence satisfying S ∧ L.

Most methods for writing specifications, including CCS, Unity, and I/O
automata, use some form of automaton to specify a safety property. The
automaton asserts the property S consisting of all state sequences that the
automaton can generate. In some of these methods, one also specifies a
liveness property L—either implicitly (as in Unity), or by writing L explicitly
(as in I/O automata). I will call the specification machine closed iff 〈S ,L〉
is machine closed.

Machine closure of an automaton-based specification means that, as long
as the automaton behaves correctly (keeps its safety property S satisfied), it

3I take the term specification to include any kind of precise description of a reactive
system. For example, a program is a specification of what it means for the program to be
executed correctly on a computer.

4In a formalism where behaviors are infinite sequences, a finite sequence satisfies a
property R iff it is the prefix of some infinite sequence that satisfies R.

5This topology is defined by the distance function in which two sequences are a distance
of 1/n apart if they are the same up to but not including their nth states.

2

can never reach a state in which it is impossible to satisfy S ∧ L. In other
words, the automaton can never “paint itself into a corner.” A specifica-
tion that purports to describe an implementation should be machine closed.
However, one sometimes writes high-level specifications that are not machine
closed. (An example is the specification of a serializable database in [10].)

In a number of methods, liveness is specified with so-called fairness con-
ditions on the automaton. The common feature of all these conditions is that
they produce machine-closed specifications. The only sensible definition of
fairness that is independent of any specification language seems to be:

Definition 1 A property L is a fairness property for property S iff 〈S ,L〉
is machine closed.

In this definition, the safety property6 S plays the role of the automaton
(or program) that appears, sometimes implicitly, in traditional notions of
fairness.

We choose a fairness property L for a property S in order to write the
specification S ∧ L. We can replace L by any other property ̂L such that
S ∧ ̂L is equivalent to S ∧ L. (In this case, ̂L is a fairness property for S iff
L is.) The strongest such ̂L is S ∧ L; the weakest is ¬S ∨ L. It follows from
simple results of topology that if 〈S ,L〉 is machine closed, then ¬S ∨ L is
a liveness property. Since, we can always replace a fairness property L with
the liveness property ¬S ∨ L, we could require that a fairness property be
a liveness property—as most are in practise. However, it is simpler not to
make this requirement.

Any property L is a fairness property for some safety property—in par-
ticular, for the safety property C(L). We are interested in whether L is a
fairness property for a given safety property S . We don’t care that there
exists some other safety property for which L is a fairness property.

In the rest of this paper, we are concerned only with safety properties
that are generated by action systems. Augmented with a method of hiding
variables, action systems can express any safety property. However, we re-
strict our attention to fairness for action systems without hiding, which can
express only a much more limited class of safety properties.

6The definition of machine closure implies that, if 〈S ,L〉 is machine closed, then S is a
safety property.

3

3 Fairness for Action Systems

An action system7 consists of an initial state predicate Init and a set of
predicates Ai on pairs of states. The Ai are called system actions. An action
system expresses the safety property consisting of every behavior 〈s0, s1, . . .〉
whose initial state s0 satisfies Init and whose every pair 〈sn , sn+1 〉 of succes-
sive states satisfies some system action.

I will describe action systems in terms of TLA (The Temporal Logic of
Actions) [12]; it should be easy to translate the definitions and results into
any other suitably expressive formalism. TLA assumes an underlying logic
for writing state predicates and actions. An action is a predicate on pairs
of states; it is written as a formula in which unprimed variables refer to the
first state and primed variables refer to the second. Action A is defined to
be a predicate on behaviors by letting 〈s0, s1, . . .〉 satisfy A iff its initial step
〈s0, s1 〉 satisfies A. TLA includes the usual ✷ (forever) operator of linear-
time temporal logic [14].

The safety property of an action system with initial predicate Init and
system actions Ai is written in TLA as Init ∧ ✷[∃ i : Ai]v , where v is the
tuple of all variables occurring in Init or in the Ai .

8 For example, consider
the action system with initial condition x = y = 0 and the two actions A1,
which increments x by 1, and A2, which increments y by 1. These actions
are defined formally by:

A1
∆
= (x ′ = x + 1) ∧ (y ′ = y) A2

∆
= (y ′ = y + 1) ∧ (x ′ = x) (1)

The safety property specified by this action system is:

(x = y = 0) ∧ ✷[A1 ∨A2]〈x ,y 〉

The subscript v (which equals 〈x , y 〉 in the example) permits “stuttering”
steps that do not change any relevant variables. This subscript is crucial for
refinement and composition, but it is irrelevant when considering only a
single specification. I will therefore omit all subscripts, and write [A] instead
of [A]v , for an action A. The reader familiar with TLA should be able to
figure out how to re-introduce the subscripts. However, it is important that

7The term “action system” was introduced in 1983 by Back and Kurki-Suonio [7], but
the concept is much older.

8In TLA, an action system is expressed as a formula within the logic, rather than as a
semantic restriction on the set of possible behaviors.

4

the safety property of an action system allow halting, which is represented
by a behavior ending in an infinite sequence of stuttering steps. The action
[A] is true for any stuttering step.

For the rest of this section and for Section 4, let us assume a fixed action
system with initial predicate Init and system actions Ai , and let us define N
and S by

N
∆
= ∃ i : Ai S

∆
= Init ∧ ✷[N] (2)

Formula S is the system’s safety property, and action N is called its next-state
relation.

An action A is enabled in a state s iff there exists a state t such that
〈s , t 〉 satisfies A. The operators WF and SF are defined by

WF(A)
∆
= ✸✷(Enabled A)⇒ ✷✸A

SF(A)
∆
= ✷✸(Enabled A)⇒ ✷✸A

where Enabled A is the predicate asserting that A is enabled. Formula
WF(A), called weak fairness on A, asserts that if A eventually becomes
enabled forever, then infinitely many A steps must occur. Formula SF(A),
called strong fairness on A, asserts that if A is infinitely often enabled—even
though it may also be infinitely often disabled—then infinitely many A steps
must occur. Since eventually forever implies infinitely often, SF(A) implies
WF(A) for any action A, so strong fairness is stronger than weak fairness.

Almost all fairness conditions for action systems that arise in real ex-
amples can be easily expressed as weak or strong fairness on actions. For
example, the requirement

If any of the actions A1, . . . , Ak is ever enabled infinitely often,
then a step satisfying one of those actions must eventually occur.

is just SF(A1 ∨ . . . ∨ Ak). The following proposition, proved by Abadi and
Lamport [3], shows that if A implies the next-state relation N , then weak
and strong fairness on A are indeed fairness properties.

Proposition 1 If S is defined by (2) and L is a finite or countably infinite
conjunction of formulas of the form WF(A) and/or SF(A), where each A
implies N , then 〈S ,L〉 is machine closed.

5

4 Generalizing Weak and Strong Fairness

Operators GWF and GSF that generalize weak and strong fairness can be
defined by replacing Enabled A with an arbitrary predicate P in the defi-
nitions of WF and SF:

GWF(P ,A)
∆
= ✸✷P ⇒ ✷✸A

GSF(P ,A)
∆
= ✷✸P ⇒ ✷✸A

(The concept of generalized fairness seems to have been defined first by
Francez and Kozen [9].) Although these operators are not used in ordinary
TLA specifications, they occur implicitly in TLA reasoning. When proving
that a specification T 1 implies another specification T 2, we must substitute
state functions for bound (hidden) variables of T 2. Let F denote the result
of performing such a substitution on a formula F . Proving T 1 ⇒ T 2 requires
proving that the fairness conditions of T 1 imply the barred fairness condi-
tions of T 2, which may include formulas like WF(B). Since barring (which is
just substitution) distributes over ordinary operators like ⇒, ✷, and ✸, the
formula WF(B) equals GWF(Enabled B ,B). However, it need not equal
WF(B) because barring does not distribute over Enabled , so Enabled B
does not necessarily equal Enabled B [12]. The same situation arises with
SF formulas. Hence, we must prove that the WF and SF properties of T 1

imply the GWF and GSF properties of T 2. The standard TLA rules for
reasoning about WF and SF contain the appropriate barred formulas [12,
Figure 5]. Those rules have straightforward generalizations in which all for-
mulas of the form WF(C) and SF(C) are replaced by formulas GWF(P ,C)
and GSF(P ,C), for arbitrary predicates P .

The properties GWF(P ,A) and GSF(P ,A) are not always fairness prop-
erties, even when A implies the next-state relation N . For example,
GWF(true,A) and GSF(true,A) equal ✷✸A. This property, called “un-
conditional fairness” on A, is not, in general, a fairness property. For exam-
ple, 〈S , ✷✸false〉 is machine closed iff S equals false.

I now give some necessary and sufficient conditions for GWF and GSF
formulas to yield fairness properties. These conditions are not pretty, and
expressing them requires some additional notation. Let “·” be action com-
position, defined by letting 〈s , t 〉 satisfy A · B iff there exists a state u such
that 〈s , u 〉 satisfies A and 〈u, t 〉 satisfies B . Define A∗ · B by

A∗ · B ∆
= B ∨ (A · B) ∨ (A ·A · B) ∨ (A · A · A · B) ∨ . . .

6

We now define three operators:9

h(N ,A)
∆
= Enabled (N ∗ · (N ∧A))

gw(P ,N ,A)
∆
= P ⇒ (h(N ,A) ∨ Enabled (N ∗ · ¬P))

gs(P ,N ,A)
∆
= P ⇒ (h(N ,A) ∨ Enabled (N ∗ · ¬Enabled (N ∗ · P)))

Since P implies Enabled (N ∗ · P), the monotonicity of Enabled implies
gs(P ,N ,A)⇒ gw(P ,N ,A).

The following proposition provides a necessary and sufficient condition
for a GWF or GSF formula to be a fairness property.

Proposition 2 If S is defined by (2) and L equals either GWF(P ,A) or
GSF(P ,A), for state predicate P and action A, then 〈S ,L〉 is machine closed
iff S implies ✷gw(P ,N ,A).10

While not difficult, the proof of this proposition may help explain the rather
obscure definitions of h and gw , so we sketch it here.

1. If 〈S ,GSF(P ,A)〉 is machine closed, then so is 〈S ,GWF(P ,A)〉.
Proof: By the general result that 〈S ,F 〉 machine closed and F ⇒ G
imply 〈S ,G 〉 machine closed.

2. If 〈S ,GWF(P ,A)〉 is machine closed, then S ⇒ ✷gw(P ,N ,A).
Proof: Assume S does not imply ✷gw(P ,N ,A). Then there exists a
finite behavior τ satisfying S whose last state τ f satisfies ¬h(N ,A) ∧
¬Enabled (N ∗ · ¬P). Since τ f satisfies ¬h(N ,A), by definition of h,
this implies that every extension of τ satisfying ✷N has no more A steps.
Since τ f satisfies ¬Enabled (N ∗ · ¬P), predicate P is forever true in ev-
ery extension of τ satisfying ✷N . Hence every extension of τ satisfying S
satisfies ¬GWF(P ,A), contradicting the machine-closure assumption.

3. If S ⇒ ✷gw(P ,N ,A), then 〈S ,GSF(P ,A)〉 is machine closed.
Proof: Let τ be a finite behavior satisfying S , with last state τ f . The
assumption means that τ f satisfies either (i) ¬P ∨Enabled (N ∗ · ¬P) or
(ii) Enabled (N ∗ · (N ∧ A)). In case (i), we can extend τ to a behavior
satisfying S ∧ GSF(P ,A) by taking a finite (possibly null) sequence of N

9The “P ⇒” in the definition of gw is redundant and is included for symmetry. All
these operators can be expressed in terms of the weakest invariant operator win [11], since
Enabled (N ∗ · B) is equivalent to ¬win(N , ¬Enabled B), for any action B . A state
predicate Q is considered to be an action by letting 〈s , t〉 satisfy Q iff s does.

10For a state predicate Q , the formula S ⇒ ✷Q asserts that Q holds for every state of
every behavior satisfying S .

7

steps, and then stuttering forever. In case (ii), we can extend τ with a
finite sequence of N steps followed by an N ∧A step, and then repeat the
construction, obtaining an infinite extension satisfying S ∧GSF(P ,A).

A specification usually requires the conjunction of fairness conditions for
a set of actions, not just fairness for a single action. There seems to be
no simple, weakest requirement for an arbitrary conjunction of GWF and
GSF formulas to be a fairness property. However, the following is a rather
powerful generalization of Proposition 1. Its proof is based on essentially the
same construction used in step 3 in the proof above, except that τ must be
repeatedly extended to satisfy the fairness properties for the different actions.
This means that the stuttering construction can’t be used, so we need the
stronger gs formula for GSF properties. The detailed proof is similar to that
of Proposition 1 and is omitted.

Proposition 3 If S is defined by (2) and L is a finite or countably infinite
conjunction of formulas, each of which is either (i) of the form GWF(P ,A)
where S implies ✷gw(P ,N ,A) or (ii) of the form GSF(P ,A) where S implies
✷gs(P ,N ,A), then 〈S ,L〉 is machine closed.

It would seem appropriate to reserve the term hyperfairness for the strongest
general fairness condition on an action that is a fairness property. This would
mean finding, for an action A, the weakest predicate P for which GSF(P ,A)
is a fairness property. However, such a P does not, in general, exist. For
example, define

S
∆
= (x = 0) ∧ ✷(x ′ = x + 1)

A
∆
= x ′ = −7

Q(i)
∆
= x < i

Q
∆
= ∃ i ∈ Nat : Q(i)

Any finite behavior satisfying S can be extended to one satisfying S ∧
✸✷¬Q(i), hence satisfying S ∧ GSF(Q(i),A), for any number i . Thus,
GSF(Q(i),A) is a fairness property. Suppose there were a weakest P such
that GSF(P ,A) is a fairness property. Then each Q(i) must imply P , so
Q implies P . Hence, because GSF is antimonotonic in its first argument,
GSF(P ,A) implies GSF(Q ,A), so GSF(Q ,A) must be a fairness property.
(See step 1 in the proof of Proposition 2.) But, S implies ✷Q ∧✷¬A, which
implies ¬GSF(Q ,A), so GSF(Q ,A) is not a fairness property. Hence, there
can be no weakest P for which GSF(P ,A) is a fairness property.

While there is no strongest fairness property GSF(P ,A) for an arbitrary
A, Proposition 2 and the definition of gw suggest taking P to be h(N ,A).

8

We therefore define the hyperfairness operator HF by

HF(N ,A)
∆
= GSF(h(N ,A),A)

While not in general the strongest possible fairness property for action A,
it is still quite strong. It asserts that infinitely many A steps must occur if,
infinitely often, a state is reached in which some possible sequence of N steps
could enable A. Proposition 3 implies that the conjunction of any finite or
countably infinite collection of hyperfairness properties is a fairness property.

The definitions of S and h(N ,A) imply that, for any behavior 〈s0, s1, . . .〉
satisfying S and for any n, if sn satisfies h(N ,A), then sm satisfies h(N ,A)
for every m < n. This implies:

Proposition 4 If S is defined by (2), then S implies that ✷✸h(N ,A) is
equivalent to ✷h(N ,A), for any action A.

This proposition shows that S implies the equivalence of GSF(h(N ,A),A)
and GWF(h(N ,A),A), so it doesn’t matter whether we use GSF or GWF in
the definition of HF.

Attie, Francez, and Grumberg defined a tiny toy programming language
called IP , based on multi-party CSP-style synchronization, and they defined
hyperfairness for IP programs as follows [6]:

Definition (Hyperfairness). If P is an IP program in which
every top-level interaction is conspiracy-resistant, then an infinite
computation π is hyperfair iff If P is an IP program in which
not every top-level interaction is conspiracy-resistant, then every
computation π of P is hyperfair.

The “. . . ” is a condition that, in the context of the definition, is equivalent
to the conjunction of hyperfairness properties for certain actions. It is in this
sense that HF generalizes their definition of hyperfairness.

Hyperfairness asserts that something must happen infinitely often if it
is infinitely often possible, where the “something” is a step that satisfies an
action. Predicate reachability fairness, introduced by Queille and Sifakis [8,
16], makes the same assertion, except the “something” is the truth of a state
predicate. Predicate reachability fairness is the special case of hyperfairness
when the action is a state predicate (an action that depends only on the
initial state).

9

5 The Criteria of Apt, Francez, and Katz

Apt, Francez, and Katz (henceforth called AFK) gave three “appropriate-
ness” criteria for fairness notions in a programming language: feasibility,
equivalence robustness, and liveness enhancement [5]. Although their ab-
stract promised to consider “relations among various languages and mod-
els for distributed computation”, they discussed mainly programs written in
CSP-like languages with multi-party interactions. I now generalize their cri-
teria to arbitrary action systems, remaining as faithful as possible to AFK’s
intentions and notation. Afterwards, I discuss the criteria and show that
they are satisfied by a large class of hyperfairness properties.

5.1 The Criteria Redefined

For any action system P, let NP and SP be the action N and property S
defined by (2), and let comp(P) be the property SP ∧WF(NP). Assume
some class A of action systems. A fairness notion F is a mapping that
assigns a subset F(P) of SP to every system P in A such that F(P) contains
all finite computations in SP.

AFK defined the fairness notion F to be feasible iff 〈SP, WF(NP)∧F(P)〉
is machine closed, for every P in A.

AFK defined their second criterion, equivalence robustness, only when
all system actions are deterministic and mutually disjoint. In that case, a
behavior 〈s0, s1, . . .〉 in SP is uniquely determined by the initial state s0 and
the sequence 〈Ak(0), Ak(1), . . .〉 of system actions such that 〈sn , sn+1 〉 satisfies
Ak(n), for each n. We can therefore consider a behavior to consist of an initial
state and a sequence of system actions. For behaviors π and ρ, AFK defined

π ≡ ρ iff π can be obtained from ρ by (possibly infinitely many)
simultaneous transpositions of two independent [system] actions.

where system actions Ai and Aj are independent iff they commute—that is,
iff Ai · Aj is equivalent to Aj · Ai . We can then define a property R to be
equivalence robust for the system P iff, for any pair of behaviors 〈π, ρ〉 such
that π ≡ ρ, behavior π satisfies R iff behavior ρ does. AFK defined F to be
equivalence robust iff F(P) is equivalence robust for P, for all P in A.

To extend this definition to arbitrary action systems, we need to generalize
AFK’s definition of ≡. Without the assumption that system actions are
pairwise disjoint and deterministic, it is not obvious what is meant by the

10

simultaneous transpositions of infinitely many actions. The next paragraph
defines π✄ρ to mean that π differs from ρ by the transposition of two adjacent
actions, defines π → ρ to mean that ρ is obtained from π by a convergent
sequence of such transpositions, and defines π ≡ ρ to mean π → ρ and ρ → π.

Let σi denote state i of a behavior σ, so σ equals 〈σ0, σ1, . . .〉. Define
π✄ρ to mean that there exists a natural number n such that, (i) πm = ρm for
all m �= n +1, and (ii) for any system actions A and B , if 〈ρn , ρn+1 〉 satisfies
A and 〈ρn+1, ρn+2 〉 satisfies B , then 〈πn , πn+1 〉 satisfies B and 〈πn+1, πn+2 〉
satisfies A. This definition is illustrated pictorially below.11

πn = ρn πn+2 = ρn+2

ρn+1

πn+1

✟✟✯A

❍❍❥
B

❍❍❥
B

✟✟✯A
πn−1 = ρn−1 ✲· · · · · ·

Let � mean ✄ or =. Define π → ρ to be true iff there exists an infinite
sequence σ(0), σ(1), . . . of behaviors such that (i) σ(0) = π, (ii) σ(k) � σ(k+1)

for all k , and (iii) for every n there exists an m such that σ(k)
n = ρn for all

k ≥ m. Finally, let π ≡ ρ equal (π → ρ) ∧ (ρ → π)
Having defined≡ for an arbitrary action system, we can define equivalence

robustness as before: property R is equivalence robust for P iff π ≡ ρ implies
that π satisfies R iff ρ does; and F is equivalence robust iff F(P) is equivalence
robust for P, for all P in A.

AFK’s third criterion, liveness enhancement, essentially asserts that there
is some P in A such that comp(P)∧F(P) is not equivalent to comp(P).12

5.2 The Criteria Re-examined

Feasibility of F is almost the same as requiring that F(P) be a fairness
property for SP, for all P in A. The two requirements are not the same
because AFK made WF(NP) an intrinsic assumption about an action system
rather than just a particularly weak fairness property. This accords with the

11This condition implies that A and B commute for the pair 〈ρn , ρn+2〉 of states. We
could further require that A and B simply commute—that is, commute for all pairs of
states. It makes no difference to the ensuing discussion whether or not we change the
definition of ✄, and hence of ≡, in this way.

12AFK actually stated liveness enhancement in terms of terminating programs. As they
observed, their definition is equivalent to this one for the particular class of programs they
were considering.

11

common practice of calling “unfair” an execution of a multiprocess program
that satisfies only this fairness property. While it is fruitless to argue with
a definition, I believe that the fundamental nature of safety and machine
closure suggests that it is unproductive to distinguish WF(NP) from other
fairness properties. Indeed, defining fairness to mean machine closure makes
even true a fairness property. Ad hoc restrictions to rule out such “trivial”
fairness properties seem pointless.

Equivalence robustness of F requires that F(P) be equivalence robust for
P, for every P in A. Unlike fairness, equivalence robustness depends on the
actual action system P, not just on its safety property SP. To show this
dependence, I now construct two action systems P1 and P2 with equivalent
safety properties (so the systems are semantically equivalent) and a property
L that is equivalence robust for one and not the other.

Let P1 be the action system considered in Section 3 that has initial pred-
icate x = y = 0 and actions A1 and A2 defined by (1); let A2> be the action
(x > y) ∧ A2; and let L be the property ✷✸A2>. Let π be the behavior
obtained by alternately performing A1 and A2 actions, starting with an A1

action; and let ρ be the same as π, except starting with an A2 action. Since
π can be obtained from ρ by interchanging each A1 action with the following
A2 action, we have ρ ≡ π. Since x > y holds in π at the beginning of each
A2 step and never holds in ρ, behavior π satisfies L and behavior ρ does not.
Hence, L is not equivalence robust for P1.

Let P2 be the system with the same initial predicate x = y = 0 and
the four actions A1≤, A1>, A2≤, and A2>, where the three new actions are
defined by:

A1≤
∆
= (x ≤ y) ∧ A1 A1>

∆
= (x > y) ∧A1 A2≤

∆
= (x ≤ y) ∧ A2

Property L, which asserts that infinitely many A2> actions occur, is obviously
equivalence robust for P2.

Since NP1
is equivalent to NP2

, the systems P1 and P2 have the same
safety property. Thus, we have two semantically equivalent action systems
and a property that is equivalence robust for one but not the other.

Under extremely weak hypotheses, we can show that for any action system
P, there exists a semantically equivalent action system (one defining the same
safety property) ̂P such that every property is equivalence robust for ̂P. We
simply define ̂P to have a separate system action for every pair of states that
satisfies NP.

12

Since equivalence robustness is not a semantic property of a system,
but depends on how the system is represented, it is unlikely to be a use-
ful concept—except perhaps for action systems expressed in a language that
severely restricts how they can be represented.

Liveness enhancement of F, AFK’s final criterion, asserts that there ex-
ists some P in A for which F(P) is stronger than WF(NP). It rules out the
fairness notion that assigns WF(NP) to every system P, reflecting AFK’s
decision not to consider WF(NP) to be a fairness property. They may also
have been trying to rule out trivial ways of defining a fairness notion that
satisfies all three criteria. However, Attie, Francez, and Grumberg’s defini-
tion of hyperfairness shows that there is a simple way to define F to satisfy
all the criteria: (i) find a subclass of action systems for which there exists
some equivalence-robust fairness property, and (ii) define F(P) to be that
property if P is in the subclass, and to equal true otherwise. For example,
take the subclass consisting of those P for which SP implies that every sys-
tem action is always enabled, and define F(P) to equal ∀ i :✷✸Ai for all P
in this subclass.

5.3 Hyperfairness and the AFK Conditions

Attie, Francez, and Grumberg proved that their definition of hyperfairness
satisfies the three AFK conditions. Let’s see if this is true of my definition
of hyperfairness.

Feasibility follows directly from Proposition 3. To satisfy liveness en-
hancement, we would have to define a class of action systems and some
particular conjunction of hyperfairness formulas for each action system in
that class. This is a simple exercise and is omitted.

We are left with equivalence robustness. The conjunction of properties
is equivalence robust if each conjunct is, so we need consider only individual
hyperfairness formulas. For an arbitrary action A, the hyperfairness formula
h(NP,A) need not be equivalence robust for action system P. For example,
H (NP1

,A2>) is not equivalence robust for P1, where P1 and A2> are the
system and action defined above. However, we can prove the following result:

Proposition 5 If P is an action system and A is the disjunction of system
actions of P, then HF(NP,A) is equivalence robust for P.

To prove the proposition, we assume π → ρ and π satisfies HF(NP,A),
and we prove ρ satisfies HF(NP,A). We do this by proving (i) if π satisfies

13

✷✸h(NP,A) then so does ρ and (ii) if ρ satisfies ✷✸A then so does π. Result
(i) follows easily from Proposition 4; (ii) follows from the observation that,
for any system action Ai and behaviors σ and τ with σ�τ , if infinitely many
τ steps satisfy Ai , then infinitely many σ steps also satisfy Ai . The details
are left as an exercise.

6 Conclusion

Fairness conditions are a way of expressing liveness properties, and liveness
properties are inherently problematic. The question of whether a real sys-
tem satisfies a liveness property is meaningless; it can be answered only by
observing the system for an infinite length of time, and real systems don’t
run forever. Liveness is always an approximation to the property we really
care about. We want a program to terminate within 100 years, but proving
that it does would require the addition of distracting timing assumptions.
So, we prove the weaker condition that the program eventually terminates.
This doesn’t prove that the program will terminate within our lifetimes, but
it does demonstrate the absence of infinite loops.

In practice, almost all reactive systems can be specified using action sys-
tems together with simple weak and strong fairness properties.13 Most spec-
ifications are machine closed. A machine-closed specification can always be
written as an action system together with fairness properties only on disjunc-
tions of system actions. However, in some cases, this requires a complicated
representation of each system operation as the disjunction of infinitely many
actions. For those cases, as well as for writing non-machine-closed specifica-
tions, we can use formulas of the form WF(A) or SF(A) when A is not simply
the disjunction of system actions. The more general properties expressible
with the GWF and GSF operators are rarely needed. A hyperfairness for-
mula HF(N ,A) is a particularly obscure example of such a property, since
h(N ,A) will be impossible to compute in any practical situation, if hyper-
fairness differs from strong fairness. It therefore seems safe to predict that
hyperfairness will be of at most theoretical interest.

13Formally, they can be specified only with action-system formalisms that have some way
of hiding internal state. Without such hiding, it is impossible to specify even simple FIFO
buffering [18]. This theoretical impossibility does not seem to be a practical obstacle [15].

14

Acknowledgments

Mart́ın Abadi helped me formulate the definition of≡. He and Fred Schneider
suggested improvements to the presentation. Nissim Francez pointed out to
me the earlier definition of generalized fairness.

References

[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82(2):253–284, May 1991.

[2] Mart́ın Abadi and Leslie Lamport. Composing specifications. ACM
Transactions on Programming Languages and Systems, 15(1):73–132,
January 1993.

[3] Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real
time. ACM Transactions on Programming Languages and Systems,
16(5):1543–1571, September 1994.

[4] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181–185, October 1985.

[5] Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fair-
ness in languages for distributed programming. Distributed Computing,
2:226–241, 1988.

[6] Paul C. Attie, Nissim Francez, and Orna Grumberg. Fairness and hyper-
fairness in multi-party interactions. Distributed Computing, 6(4):245–
254, 1993.

[7] R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets
with centralized control. In Proceedings of the SEcond Annual ACM
Symposium on Principles of Distributed Computing, pages 131–142. The
Association for Computing Machinery, 1983.

[8] Nissim Francez. Fairness. Texts and Monographs in Computer Science.
Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986.

[9] Nissim Francez and Dexter Kozen. Generalized fair termination. In
Proceedings of the Eleventh Annual ACM Symposium on Principles of
Programming Languages, pages 46–53, January 1984.

15

[10] Leslie Lamport. A simple approach to specifying concurrent systems.
Communications of the ACM, 32(1):32–45, January 1989.

[11] Leslie Lamport. win and sin: Predicate transformers for concurrency.
ACM Transactions on Programming Languages and Systems, 12(3):396–
428, July 1990.

[12] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, May 1994.

[13] Nancy Lynch and Mark Tuttle. Hierarchical correctness proofs for dis-
tributed algorithms. In Proceedings of the Sixth Symposium on the Prin-
ciples of Distributed Computing, pages 137–151. ACM, August 1987.

[14] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag, New York, 1991.

[15] Jayadev Misra. Specifying concurrent objects as communicating pro-
cesses. Science of Computer Programming, 14(2–3):159–184, 1990.

[16] J. P. Queille and J. Sifakis. Fairness and related properties in transi-
tion systems—a temporal logic to deal with fairness. Acta Informatica,
19:195–210, 1983.

[17] Fred B. Schneider. On Concurrent Programming. Graduate Texts in
Computer Science. Springer, 1997.

[18] A. P. Sistla, E. M. Clarke, N. Francez, and A. R. Meyer. Can mes-
sage buffers be axiomatized in linear temporal logic? Information and
Control, 63(1/2):88–112, October/November 1984.

16

