
Hybrid Systems in TLA+

Leslie Lamport
Digital Equipment Corporation

Systems Research Center
lamport@src.dec.com

6 April 1993

To appear in: Hans Rischel and Anders P. Ravn, editors, Hybrid Systems, Lecture
Notes in Computer Science, Berlin, 1993. Springer-Verlag. (Proceedings of a
Workshop on Theory of Hybrid Systems, held 19–21 October 1992 at Lyngby,
Denmark.)

Hybrid Systems in TLA+

Leslie Lamport

Digital Equipment Corporation
Systems Research Center

Abstract. TLA+ is a general purpose, formal specification language
based on the Temporal Logic of Actions, with no built-in primitives for
specifying real-time properties. Here, we use TLA+ to define operators
for specifying the temporal behavior of physical components obeying
integral equations of evolution. These operators, together with previously
defined operators for describing timing constraints, are used to specify
a toy gas burner introduced by Ravn, Rischel, and Hansen. The burner
is specified at three levels of abstraction, each of the two lower-level
specifications implementing the next higher-level one. Correctness proofs
are sketched.

1 Introduction

TLA+ is a formal specification language based on TLA, the Temporal Logic
of Actions [5]. We use TLA+ to specify and verify a toy hybrid system—a gas
burner described by Ravn, Rischel, and Hansen (RRH) [8]. The TLA+ specifi-
cation and proof can be compared with the one by RRH that uses the Duration
Calculus.

We do not expect TLA+ to permit the best possible specification of this or
any other particular example. The specification of a gas burner is likely to be
simpler in a formalism devised expressly for the class of hybrid systems that
includes the gas burner. The specification of a Modula-3 procedure is likely to
be simpler in a formalism for specifying Modula-3 procedures. But, while TLA+

may not be the best method for specifying any particular system, we believe it
is quite good for specifying a very wide class of systems, including gas burners
and Modula-3 procedures.

There are two reasons for using TLA+ instead of a language tailored to
the specific problem. First, specialized languages often have limited realms of
applicability. A language that permits a simple specification for one gas burner
might require a very complicated one for a different kind of burner. The Duration
Calculus seems to work well for real-time properties; but it cannot express simple
liveness properties. A formalism like TLA+ that, with no built-in primitives for
real-time systems or procedures, can easily specify gas burners and Modula-3
procedures, is not likely to have difficulty with a different kind of gas burner.

The second reason for using TLA+ is that formalisms are easy to invent,
but practical methods are not. A practical method must have a precise language
and robust tools. Building tools is not easy. It is hard to define a language that
is powerful enough to handle practical problems and yet has a precise formal

2

semantics. Such a language is a prerequisite for any sound, practical method.
The advantage of not having to implement a new method for every problem
domain is obvious.

An important criterion for choosing a formalism is how good it is for formal
verification. A method based on a logic has an advantage over one based on an
abstract programming language (such as CSP) because one does not have to
translate from the specification language to a logic for reasoning. But, not all
logics are equal. TLA works well in practice because most of the reasoning is in
the domain of actions, which is the realm of “ordinary” mathematical reasoning.
The use of temporal logic is minimal and highly ritualized. The temporal struc-
ture of the proofs are the same, regardless of whether one is reasoning about a
mutual exclusion algorithm or a gas burner.

Modal logics, such as temporal logic and the Duration Calculus, are more
difficult to use than ordinary logic. One reason is that the deduction principle,
from which one deduces P ⇒ Q by assuming P and proving Q, is invalid for
most modal logics. In our work on the mechanical verification of TLA [4], we
have found formalizing temporal logic reasoning to be much more difficult than
formalizing ordinary mathematical reasoning. Temporal logic proofs that look
simple when done by hand can be tedious to check mechanically. We believe that
mechanical verification of TLA proofs is feasible largely because it involves very
little temporal logic. One should be skeptical of claims that reasoning in a modal
logic is easy in the absence of experience with mechanically checked proofs.

TLA+ is a complete language, with a precise syntax and formal semantics.
At the moment, only a few syntactic issues remain unresolved. Because it is
completely formal, some things are a little more awkward to express in TLA+

than in “semi-formal” methods. For example, most semi-formal methods, such as
Unity [2] and the temporal logic of Manna and Pnueli [7], allow Boolean-valued
variables; TLA+ does not. In TLA+, one cannot declare x to be a Boolean
variable and write ✷x, one must instead write something like ✷(x = “T”).
Although seemingly innocuous, Boolean variables pose the following problem. A
specification may require an array x[1], . . . , x[17] of flexible variables. Formally,
such an array is a variable x whose value is a function with domain {1, . . . , 17}.
If one can declare Boolean variables, then one should also be able to declare
that x is a Boolean-valued array variable, with index set {1, . . . , 17}. One can
then write the formula ✷(x[14]). One can also write the formula ✷(x[i2 − 23]).
In general, one could write the formula ✷(x[e]) for an arbitrary integer-valued
expression e. Formalizing Boolean arrays presents the following options:

– Define the meaning of ✷(x[e]) for any value of e. Does one consider x[e] to
have some special undefined value ⊥ if e is not in the domain of x? If so,
what is the meaning of ✷⊥? Is the formula ✷(⊥ ⇒ ⊥) valid?

– Declare ✷(x[e]) not to be a wff (well formed formula) if e is not in the index
set of x. This leads to two possibilities:
• The class of expressions e that can appear in the formula x[e] are re-
stricted so it is syntactically impossible for the value of e not to be in
the index set of x. This leads to unnatural restrictions on formulas.

3

• Whether or not a formula is a wff becomes a semantic rather than syntac-
tic property. It is a strange formalism in which it is undecidable whether
a formula is a wff.

TLA+ avoids this problem by not having Boolean-valued variables. Neither
Manna and Pnueli [7] nor Misra and Chandy [2], in books that are hundreds
of pages long, indicate how they formalize Boolean arrays.

There are dozens of similar issues that must be resolved in designing a com-
plete language. A simple informal specification might not look so simple if it had
to be written formally. Of particular concern are formalisms based on a type
system. It is easy to introduce the informal notation that Length(s) denotes the
length of the sequence s. But, will the type system really allow a formal language
in which the user can define Length(s) to denote the length of any sequence s?
It is easy to define such a Length operator in TLA+. However, this ability is
based on a distinction between a function and an operator—a distinction one
won’t find in semi-formal methods.

Despite being completely formal, TLA+ is simple enough for practical appli-
cations. A general treatment of hybrid systems requires continuous mathematics.
Specifying the gas burner requires defining the Riemann integral

∫ b

a
f of the func-

tion f over the closed interval [[a, b]]. Assuming only the set of real numbers with
the usual arithmetic operations and ordering relations, the entire definition takes
about 15 lines. Our example is a toy one, and we do not claim to have formal-
ized any significant fraction of the mathematics that will be needed in practical
applications. We do claim that a language that can define the Riemann integral
in 15 lines is powerful enough to express any mathematical concepts likely to
arise in real specifications.

TLA+ specifications are written in ASCII. We hope eventually to write a
program that converts an ASCII specification to input for a text formater that
produces a “pretty-printed” version. The user will specify how individual oper-
ators are formated—for example, declaring that the Integral operator should
be formated so Integral(a, b, f) is printed as

∫ b

a
f , and that [|s|] should

be printed as |s|. We have simulated such a program to produce pretty-printed
TLA+ specifications.

2 Representing Hybrid Systems with TLA

This section describes the generic operators that can be used to specify hybrid
systems. The precise TLA+ definitions of some operators is deferred to Section 3.
Figure 1 contains a complete list of all the predefined TLA+ constant operators—
the ones that describe data structures. The only additional operators are TLA’s
action operators (such as Enabled) and temporal operators (such as ✷). The
syntax and formal semantics of these operators, which fit on one page, can be
found in [5].

4

Logic
true false ∧ ∨ ¬ ⇒ ⇔
∀x : p ∃ x : p ∀x ∈ S : p ∃ x ∈ S : p
choose x : p [Equals some x satisfying p]

Sets
= 	= ∈ /∈ ∪ ∩ ⊆ \ [set difference]
{e1, . . . , en} [Set consisting of elements ei]
{x ∈ S : p} [Set of elements x in S satisfying p]
{e : x ∈ S} [Set of elements e such that x in S]
subset S [Set of subsets of S]
union S [Union of all elements of S]

Functions
domain f f [e] [Function application]
[x ∈ S �→ e] [Function f such that f [x] = e for x ∈ S]
[S → T] [Set of functions f with f [x] ∈ T for x ∈ S]

[f ; e1 �→ e2] [Function f̂ equal to f except f̂ [e1] = e2]

[f ; e : S] [Set of functions f̂ equal to f except f̂ [e] ∈ S]

Records
e.x [The x-component of record e]
[[x1 �→ e1, . . . , xn �→ en]] [The record whose xi component is ei]
[[x1 : S1, . . . , xn : Sn]] [Set of all records with xi component in Si]
[[r; x �→ e]] [Record r̂ equal to r except r̂.x = e]
[[r; x :S]] [Set of records r̂ equal to r except r̂.x ∈ S]

Tuples
e[i] [The ith component of tuple e]

〈e1, . . . , en〉 [The n-tuple whose ith component is ei]

S1 × . . . × Sn [The set of all n-tuples with ith component in Si]

Miscellaneous
“c1 . . . cn” [A literal string of n characters]
if p then e1 else e2 [Equals e1 if p true, else e2]
case p1 → e1, . . . , pn → en [Equals ei if pi true]

let x1
∆
= e1 . . . xn

∆
= en in e [Equals e in the context of the definitions]

Fig. 1. The constant operators of TLA+.

5

module RealTime
import Reals

parameters
now : variable
∞ : constant

assumption

InfinityUnReal
∆
= ∞ /∈ R

temporal

RT (v)
∆
= ∧ now ∈ Real

∧ ✷[∧ now ′ ∈ {r ∈ R : r > now}
∧ v′ = v]now

VTimer(x : state fcn, A : action, δ, v : state fcn)
∆
=

∧ x = if Enabled〈A〉v then now + δ
else ∞

∧ ✷[x′ = if (Enabled〈A〉v)′ then if 〈A〉v then now ′ + δ
else x

else ∞]〈x, v〉

MaxTimer(x)
∆
= ✷[(x 	= ∞) ⇒ (now ′ ≤ x)]now

MinTimer(x : state fcn, A : action, v : state fcn)
∆
= ✷[〈A〉v ⇒ (now ≥ x)]v

Fig. 2. The RealTime module.

2.1 Real Time in TLA

A method for writing real-time specifications in TLA is described in [1]. We now
review this approach and introduce TLA+ by defining the operators from [1] in
the TLA+ module RealTime of Figure 2.

The RealTime module first imports the module Reals , which is assumed to
define the setR of real numbers with its usual arithmetic operators.1 The module
declares two parameters: the (flexible) variable now and the constant ∞. The
value of now represents the current time, which can assume any value in R. The
constant∞ is the usual infinity of mathematicians. (All symbols that appear in
a module’s formulas are either parameters or symbols that are defined in terms
of parameters. The import statement includes the parameters of the module
Reals as parameters of RealTime.)

Next comes an assumption, named InfinityUnReal , which asserts that ∞ is
not a real number. The keyword temporal heads a list of definitions of temporal
formulas. The first definition in the list defines RT(v) to be a formula asserting
1 Some people mistakenly think that, because the reals are uncountable, letting time

be a real number complicates proofs. The axioms about the real numbers needed
to prove such real-time properties as the correctness of Fischer’s protocol [1] form a
decidable theory.

6

that now is initially in R, and every step either (i) sets the new value of now
to a real number greater than its current value and (ii) leaves the value of v
unchanged, or else it leaves now unchanged. (A list of formulas bulleted with ∧
denotes their conjunction. The formula [A]w is defined to equal A ∨ (w′ = w);
a [A]w step is thus either an A step or a step that leaves w unchanged.) In
representing a system by a TLA formula, the discrete variables of the system
are considered to change instantaneously, meaning that when they change, now
remains unchanged. This is asserted by the formula RT (v) when v is the tuple
whose components are the system’s discrete variables.

In [1], timing constraints are expressed through the use of timer variables.
The formula VTimer (x,A, δ, v) asserts that x is a timer whose value is initially
either (i) δ greater than the initial value of now or (ii)∞, depending on whether
or not action 〈A〉v is enabled. The value of x is set to now + δ when either
(i) 〈A〉v becomes enabled or (ii) an 〈A〉v step occurs that leaves 〈A〉v enabled,
and it is set to ∞ when 〈A〉v becomes disabled.2 (The action 〈A〉v is defined
to equal A ∧ (v′ �= v); an 〈A〉v step is thus an A step that changes v.) The
formula MaxTimer (x) asserts that changing now cannot make it greater than
x. Thus, the formula VTimer(x,A, δ, v) ∧ MaxTimer (x) implies that an 〈A〉v
action cannot be continuously enabled for more than δ seconds without having
occurred. The formula MinTimer (x,A, v) asserts that an 〈A〉v action cannot
occur unless now ≥ x, so VTimer (x,A, δ, v) ∧MinTimer (x,A, v) implies that
an 〈A〉v action must be enabled for at least δ seconds before it can occur.

The definitions of VTimer and MinTimer explicitly indicate the sorts of the
parameters. When no sort is specified, the sort state fcn, denoting a mapping
from states to values, is assumed—except in the definitions of constants, where
the default sort is constant, denoting a constant value.

There are many ways of defining timers for expressing real-time constraints,
and they are all easily expressed in TLA+. The method used in [1] is probably
not optimal for the gas burner example. Although we might be able to simplify
the specifications in this example by defining a new kind of timer, in practice one
would use a fixed set of operators defined in a standard module like RealTime.
To make the example more realistic, we have used a pre-existing set of operators.

2.2 Hybrid Systems

To represent hybrid systems in TLA, continuous system variables are repre-
sented by variables that change when now does. The gas-burner specification of
RRH can be expressed using only the timers introduced in [1]. However, RRH’s
specification is somewhat artificial, apparently chosen to avoid reasoning with
continuous mathematics. Instead of the natural requirement that the concentra-
tion of unburned gas never exceeds some value, RRH require that unburned gas
never be released for more than 4 seconds out of any 30-second period. Because
it poses an interesting new challenge for TLA+, we specify the more natural
requirement and prove that it is implied by the requirement of RRH.

2 Another type of timer is also defined in [1], but it is not needed here.

7

The gas concentration g will satisfy an integral equation of the form

g(t) =
∫ t

t0

F (g(t)) dt

where the function F depends on the discrete variables. A more general situation
is a continuous variable f that satisfies an equation of the form

f(t) = f0 +
∫ t

t0

G(f(t), t) dt (1)

A further generalization is to let f be a function whose range is the set of n-tuples
of reals. However, this generalization is straightforward and is omitted.

For specifying hybrid systems, we define a TLA formula, pretty-printed as
[x=c+

∫
G | A, v], having the following meaning:

– Initially, x equals c.
– In any step that changes now , the new value x′ of x equals f(now ′), where
f is the solution to f(t) = x+

∫ t

now G(f(s), s) ds.
– Any step that leaves now unchanged leaves x unchanged, unless it is an 〈A〉v
step, in which case x′ equals zero.

Thus, [x=c+
∫
G | false, v] asserts that x represents the solution to (1) with f0

equal to c and t0 the initial value of now . The general formula [x=c+
∫
G | A, v]

adds the requirement that x is reset to 0 by an 〈A〉v action. The precise definition
of [x=c+

∫
G | A, v] is given later, in the HybridSystems module.

It is often useful to describe the amount of time a predicate P has been true,
which is the integral over time of a step function that equals 1 when P is true
and zero when it is false. The formula [x=0+

∫
χ(P) | false, v] asserts that the

value of x always equals this integral, where the function χ(P) is defined by

χ(P)(r, s) =
{
1 if P = true
0 if P = false

The formal definition of χ appears in the HybridSystems module.

3 The Gas Burner

The example system is the gas burner shown in Figure 3. This is the toy example
of RRH. Our goal is to write a specification that is in the spirit of RRH’s; the
specification of a real gas burner might be much more complex.

The discrete state of the system consists of the states of the gas, the heat-
request signal, the flame, and the ignition—each of which can be either on or
off. These state components are represented by the four variables declared in
the module BurnerParameters of Figure 4. A physical state in which the gas is
turned on or off will be represented by a state in which the value of the variable
gas is the string “on” or “off”. The on and off values of the other variables
are similarly denoted by the strings “on” and “off”. As is customary in TLA

8


✥✥

�
�
�

❅
❅
❅

Gas supply Ignition transformer

Flame detector

✭✭✭✭
❤❤❤❤ Flame

✲Heatreq signal

Fig. 3. The gas burner. (Figure taken from [8].)

module BurnerParameters
import HybridSystems, RealTime

parameters
gas, heatReq , flame, ignition : variables

state function
v

∆
= 〈gas , heatReq , flame, ignition〉

predicates

Gas
∆
= gas = “on”

Flame
∆
= flame = “on”

Heatreq
∆
= heatReq = “on”

Ignition
∆
= ignition = “on”

Fig. 4. Module BurnerParameters

specifications, we define a state function v that equals the tuple of all relevant
variables. (In TLA+, angle brackets 〈 〉 denote tuples.) To make it easier to
compare our specification with theirs, we have also defined state predicates that
correspond to the Boolean variables of RRH.

For convenience, the BurnerParameters module imports the modules Hy-
bridSystems and RealTime that define the operators described above. Since the
RealTime module also imports the real numbers, they are transitively imported
by the BurnerParameters module.

We now specify the requirement that the concentration of gas remains less
than some value MaxCon. We assume that the gas concentration g is described
by the integral equation

g(t) =
∫ t

t0

−δg(t) +
{
ρ if gas on and flame off
0 otherwise

}
dt

where δ is the rate at which gas diffuses away from the burner and ρ is the rate

9

module GasConcentration
import BurnerParameters

parameters
δ, ρ, MaxCon : {r ∈ R : r > 0} const

state function
accumRate[r, s : R]

∆
= (−δ) ∗ r + (if Gas ∧ ¬Flame then ρ else 0)

temporal

Req0
∆
= ∀∀∀∀∀∀ g : [g=0+

∫
accumRate | false, v] ⇒ ✷(g < MaxCon)

Fig. 5. The specification of the gas-concentration requirement

at which gas flows when it is turned on.
Using the TLA formula [x=c+

∫
G | A, v], it is easy to specify the require-

ment that the gas concentration is always less than MaxCon. First, the function
accumRate that is substituted for G is defined as follows.

accumRate[r, s : R] ∆= (−δ) ∗ r + (if Gas ∧ ¬Flame then ρ else 0)

This defines accumRate to be a function whose domain is R × R such that
accumRate[r, s] equals the expression to the right of the ∆=, for every pair 〈r, s〉
in R × R. (In TLA+, square brackets denote function application.)

The formula [g=0+
∫
accumRate | false, v] then asserts that g describes the

gas concentration. As usual, the temporal formula ✷(g < MaxCon) asserts that
g is always less than MaxCon, so the formula

[g=0+
∫
accumRate | false, v] ⇒ ✷(g < MaxCon)

asserts that if g is the gas concentration, then g is always less than MaxCon. We
want this formula to be true for an arbitrarily chosen, “fresh” variable g, so the
desired property is obtained by universally quantifying g.3

The complete definition of this property, which is called Req0 , is given in
module GasConcentration, shown in Figure 5. This module imports the Burn-
erParameters module, which defines Gas and Flame, and declares δ, ρ, and
MaxCon to be constant parameters whose values lie in the set of positive reals.
This “type declaration” is a shorthand for the assumption

(δ ∈ {r ∈ R : r > 0}) ∧ (ρ ∈ {r ∈ R : r > 0}) ∧ (MaxCon ∈ {r ∈ R : r > 0})

Next, we define the three requirements given by RRH. The first requirement
is
3 The symbols ∃∃∃∃∃∃ and ∀∀∀∀∀∀ denote quantification over flexible variables; ∃ and ∀ denote

ordinary quantification over rigid variables.

10

For Safety, gas must never leak for more than 4 seconds in any period of
at most 30 seconds.

This is a requirement for the 30-second interval beginning at time r, for every
real r. It is expressed in terms of an array x of timers, where x[r] is the timer
used to express the requirement for the interval beginning at r. The amount of
gas that has leaked during the interval [[r, r + 30]] is obtained by “integrating”
the function G(r) that is defined by

G(r)[s, t : R] ∆= if Gas ∧ ¬Flame ∧ (t ∈ [[r, r + 30]]) then 1 else 0

This defines G to be an operator such that, for any r, the expressionG(r) denotes
a function with domain R × R.4

Using x[r] as a timer, the requirement for this interval is expressed by

[x[r]=0+
∫
G(r) | false, v] ⇒ ✷(x[r] ≤ 4))

The requirement Req1 is obtained by quantifying over all real numbers r, and
then universally quantifying x. The complete definition is given in module Burn-
erRequirements in Figure 6. (Our formulas Req1 , Req2 , and Req3 correspond to
the formulas ✷Req1, ✷Req2, and ✷Req3 of RRH.)

The second requirement is

Heat request off shall result in the flame being off after 60 seconds.

This condition is expressed by using a variable x that integrates the amount of
time the flame has been on while the heat request was off, and is reset to zero
whenever the flame goes off or the heat request comes back on.5 Such a variable
x satisfies the formula

[x=0+
∫
χ(Flame ∧ ¬HeatReq) |Heatreq ′ ∨ ¬Flame ′, v]

Asserting that x is always less than 60 and quantifying over x yields condition
Req2 of Figure 6.

The final requirement is
4 A function f has a domain; it is an ordinary value. Thus G(7) and G(7)[

√
2, .5] both

denote values; the first is a function, the second a real number. To define a function,
one must specify its domain. However, G is an operator, not a function. It is not a
value, and it does not have a domain; the symbol G by itself is not a syntactically
correct expression. The definition above defines G(r) for any value of r, not just
for real numbers. We had to define G(r) to be a function because it appears as a
function, without any arguments, in subsequent formulas. We could have defined G
to be a function by writing G[r : R][. . .], but there is no need to make G a function,
and we didn’t feel like writing the “: R”. The distinction between operators and
functions is another example of the details that arise in defining a precise language
with a formal semantics. This distinction is what allows one easily to define in TLA+

an operator Length such that Length(s) is the length of any sequence s. One could
not define Length to be a function, since its domain would not be a set. (Its domain
would be isomorphic to the “set” of all sets.)

5 This requirement, which comes from RRH, is satisfied if the heat request is always
off and the flame is always on except for flickering out briefly every 59.9 seconds.

11

module BurnerRequirements
import BurnerParameters

temporal

Req1
∆
= let G(r)[s, t : R]

∆
=

if Gas ∧ ¬Flame ∧ (t ∈ [[r, r + 30]]) then 1 else 0

in ∀∀∀∀∀∀ x : ∀ r ∈ R : [x[r]=0+
∫

G(r) | false, v] ⇒ ✷(x[r] ≤ 4))

Req2
∆
= ∀∀∀∀∀∀ x : [x=0+

∫
χ(Flame ∧ ¬HeatReq) |Heatreq ′ ∨ ¬Flame ′, v]

⇒ ✷(x ≤ 60)
actions

IgniteFailAct(y)
∆
= ∧ Gas ∧ Ignition ∧ ¬Flame

∧ y ′ 	= y
∧ unchanged〈v, now 〉

Req3Reset(y)
∆
= Flame ′ ∨ (y′ 	= y) ∨ ¬Heatreq ′

temporal

IgniteFail(y)
∆
= ∃∃∃∃∃∃ z : ∧ ✷[IgniteFailAct(y)]y

∧ VTimer(z, IgniteFailAct(y), 1/2, y)
∧ MaxTimer(z)
∧ MinTimer(z, IgniteFailAct(y), y)

Req3
∆
= ∀∀∀∀∀∀ x, y : ∧ IgniteFail(y)

∧ [x=0+
∫

χ(Heatreq) |Req3Reset (y), 〈v, y〉]
⇒ ✷(x ≤ 60)

Fig. 6. The three requirements of Ravn, Rischel, and Hansen.

.

Heat request shall after 60 seconds result in gas burning unless an ignite
or flame failure has occurred. An ignite failure happens when gas does
not ignite after 0.5 seconds. The flame fails if it disappears while gas is
supplied.

A careful analysis of this condition reveals that replacing “after 60 seconds” by
“within 60 seconds” makes the “or flame failure” redundant. We can therefore
rewrite this requirement as

Heat request shall, within 60 seconds, result in gas burning unless an
ignite failure has occurred.

The obvious approach is to define a variable x that integrates the time during
which the heat request is on and is reset by the presence of a flame, an ignite
failure, or the heat request being turned off. We would then define an IgniteFail
action, define the action Req3Reset to be Flame ′ ∨ IgniteFail ∨ ¬Heatreq ′ and
write the requirement as

∀∀∀∀∀∀ x : [x=0+∫
χ(Heatreq) |Req3Reset , v] ⇒ ✷(x ≤ 60)

12

However, there is no actual IgniteFail action. An ignite failure is not a change
of the discrete state variables; it is something that is caused by the passage of
time. So, we must introduce a variable y that is changed when an ignite failure
occurs. Since y should not be a free variable of the formula, it must be “quantified
away”. We want y to change when the ignition and the gas have been on for
precisely .5 seconds while the flame has been off. This is accomplished with a
.5-second “vtimer” for the action that changes y. We define IgniteFailAct(y)
to be an action that changes y while leaving the other variables unchanged,
and is enabled precisely when the gas and ignition are on and the flame is off.
An ignition failure happens when this action has been continuously enabled for
precisely .5 seconds. So, we let

IgniteFailAct(y) ∆= ∧ Gas ∧ Ignition ∧ ¬Flame
∧ (y ′ �= y) ∧ unchanged 〈v, now〉

where unchanged f denotes f ′ = f . The TLA formula ✷[IgniteFailAct(y)]y
asserts that y changes only when Gas ∧ Ignition ∧¬Flame is true. To assert that
this change occurs only when the IgniteFailAct(y) action has been enabled for
precisely .5 seconds, we add a timer z with both a MaxTimer and MinTimer
condition. The temporal formula IgniteFail(y) defined in Figure 6 asserts that
an ignition failure has occurred iff y has changed. The definition of the formula
Req3 expressing the third requirement is now straightforward and appears in
Figure 6.

We would like to prove the gas concentration condition Req0 from the three
requirements of RRH. This condition actually follows from Req1 . The precise
theorem, expressed in TLA+, is that if

MaxCon ≥ 4 ∗ ρ ∗ (1 + (1/(1− exp[(−30) ∗ δ])))
then RT(v)∧Req1 ⇒ Req0 , where exp is the usual exponential function. Before
proving this, we finish the specification by defining the operators we have been
assuming.

4 The Module HybridSystems

The HybridSystems module involves the solution to an integral equation. Defin-
ing this requires first defining the definite integral. The Riemann integral of a
function f on an interval is the signed area under the graph of f . It is defined as
the limit of approximations obtained by breaking the interval into subintervals,
where the area under the graph of f from p to q is approximated by f(p)(q− p).
The definition of

∫ b

a
f appears in module Integration of Figure 7. The informal

meanings of the defined operators are explained below.

R+ The set of positive reals.
[[a, b]] The closed interval from a to b. This is an “unsigned” interval, where [[a, b]]

equals [[b, a]]. (To avoid writing explicit domains, we have defined [[−,−]] to

13

module Integration
import Reals

constants
R+ ∆

= {r ∈ R : 0 < r}
[[a, b]]

∆
= {r ∈ R : ((a ≤ r) ∧ (r ≤ b)) ∨ ((a ≥ r) ∧ (r ≥ b))}

|r| ∆
= if r < 0 then −r else r

{m . . . n} ∆
= {i ∈ Nat : (m ≤ i) ∧ (i ≤ n)}

Partition(a, b, n, δ)
∆
=

{ p ∈ [{0 . . . n+1} → [[a, b]]] : ∧ (p[0] = a) ∧ (p[n+1] = b)
∧ ∀ i ∈ {0 . . . n} : ∧ ∨ (a ≤ b) ∧ (p[i] ≤ p[i+1])

∨ (a ≥ b) ∧ (p[i] ≥ p[i+1])
∧ |p[i+1] − p[i]| < δ }

Σ(f, p)[n : Nat]
∆
= f [p[n]] ∗ (p[n+1] − p[n])

+ if n = 0 then 0 else Σ(f, p)[n− 1]∫ b

a
f

∆
= choose r : ∧ r ∈ R

∧ ∀ ε ∈ R+ : ∃ δ ∈ R+ : ∀n ∈ Nat :
∀ p ∈ Partition(a, b, n, δ) : |r − Σ(f, p)[n]| < ε

[c+
∫

a
G][r : R]

∆
=

let f
∆
= choose f : ∧ f ∈ [[[a, r]] → R]

∧ ∀ t ∈ [[a, r]] : f [t] = c +
∫ t

a
[s ∈ R �→ G[f [s], s]]

in f [r]
theorem

IntegralOfStepFcn
∆
=

∀G : ∀ a, b, δ ∈ R : ∀n ∈ Nat : ∀ p ∈ Partition(a, b, n, δ) : ∀ f ∈ [R → R] :
(∀ s, t ∈ R : ∀ i ∈ {0 . . . n} : (p[i] < t) ∧ (t < p[i + 1]) ⇒ (G[s, t] = f(p[i])))

⇒ ([c+
∫

a
G][b] = Σ(f, p)[n])

Fig. 7. Defining integration in TLA+.

be an operator, so [[a, b]] equals the expression to the right of the ∆= even if
a and b are not real numbers. However, it has the expected meaning only
when a and b are real numbers. This remark applies to all the operators in
this module.)

|r| The absolute value of r.
{m. . . n} The set of natural numbers from m through n. (We assume that the

set Nat of natural numbers is imported with the Reals module.)
Partition(a, b, n, δ) The set of all possible partitions of the interval [[a, b]] into
n + 1 subintervals each of length less than δ. Formally, a partition of an
interval [[a, b]] into n+1 subintervals is a monotonic function p from {0 . . . n+1}
to [[a, b]] such that p[0] = a and p[n+ 1] = b. ([S → T] denotes the set of all
functions whose domain equals S and whose range is a subset of T .)

14

module Exponentials
import Integration

constant
exp

∆
= [1+

∫
0
[r, s ∈ R �→ r]]

theorems
ExpFacts

∆
= ∧ exp ∈ [R �→ R]

∧ exp[0] = 1
∧ ∀ r ∈ R : (r > 0) ⇒ (1 − r < exp[−r]) ∧ (exp[−r] < 1)
∧ ∀ r, s ∈ R : exp[r] ∗ exp[s] = exp[r + s]

DiffusionSolution
∆
=

∀ p, q, a, c ∈ R : (p 	= 0) ⇒
[c+

∫
a
[r, s ∈ R �→ (p ∗ r) + q]] =

[t ∈ R �→ c ∗ exp[p ∗ (t − a)] + (q/p) ∗ (exp[p ∗ (t− a)] − 1)]

Fig. 8. The exponential function.

Σ(f, p) This is a function such that, if p is a partition of an interval into n+ 1
subintervals, then Σ(f, p)[n] is the approximation

∑n
i=0 f [p[i]](p[i+1]−p[i])

to the area under f on that interval defined by the partition. We have defined
Σ(f, p) to be a function with domain Nat to permit a recursive definition. (In
TLA+, only functions, not operators, can be defined recursively. A recursive
function definition such as this can be expressed nonrecursively using TLA+’s
choose operator.)∫ b

a f The Riemann integral
6 of the function f is defined to be a real number

r such that, for every ε, there is some δ such that the approximation for
every partition with subintervals of length less than δ lies within ε of r. (The
operator choose denotes Hilbert’s ε operator [6], so choose r : P (r) equals
some value r such that P (r) is true, if such an r exists; otherwise, it has an
unspecified value.)

[c+
∫
aG] The function f such that f [r] equals c+

∫ r

a G[f [t], t] dt. (The expression
[s ∈ S �→ e(s)] denotes the function g with domain S such that g[s] = e(s)
for all s ∈ S.)

Finally, the module asserts the result from elementary calculus that if G is a step
function on the interval [[a, b]], then [c+

∫
aG][b] is equal to its approximation for

the appropriate partition. This theorem is needed for the proof of property Req0 .
Proving Req0 also requires introducing the exponential function exp, where

exp[t] = et. It is defined, and some theorems about exp are asserted, in the
Exponentials module of Figure 8. The theorem named DiffusionSolution asserts

6 Although this integral is commonly written
∫ b

a
f(t) dt, rigorous mathematicians usu-

ally write
∫ b

a
f . For example,

∫ b

a
t2 dt is just an informal way of denoting

∫ b

a
f when

f is the function defined by f(t) = t2.

15

module HybridSystems
import Integration, RealTime

temporal

[x=c+
∫

G | A : action, v]
∆
= ∧ x = c

∧ ✷[x′ = if now ′ = now
then if 〈A〉v then 0 else x
else [x+

∫
now

G][now ′]]〈now , x, v〉
state function

χ(P : predicate)
∆
= if P then 1 else 0

Fig. 9. The HybridSystems module.

that the solution to the equation f(t) = c+
∫ t

a
(pf(t) + q) dt is

f(t) = cep(t−a) +
q

p
(ep(t−a) − 1)

(Such theorems could be proved with the aid of a mathematical package such as
Maple or Mathematica.) The HybridSystems module is now straightforward; it
appears in Figure 9.

5 The Proof of Property Req0

We now sketch the proof of the result mentioned earlier, that Req1 implies Req0 .
The proof requires only the theorems explicitly asserted in the modules defined
above, plus the usual algebraic properties of arithmetic for the real numbers.

The proof is hierarchically structured, using the following notation. The the-
orem to be proved is statement 〈0〉1. The proof of statement 〈i〉j is either an
ordinary paragraph-style proof or the sequence of statements 〈i+ 1〉1, 〈i+ 1〉2,
. . . and their proofs. Within a proof, 〈k〉l denotes the most recent statement
with that number. A statement has the form

Assume: Assumption Prove: Goal
which is abbreviated to Goal if there is no assumption. The assertion Q.E.D.
in statement number 〈i+ 1〉k of the proof of statement 〈i〉j denotes the goal of
statement 〈i〉j. The statement

Case: Assumption
is an abbreviation for

Assume: Assumption Prove: Q.E.D.
Within the proof of statement 〈i〉j, assumption 〈i〉 denotes that statement’s
assumption.

We begin with the high-level proof, which essentially uses standard predicate
logic to reduce the problem to proving a statement with no quantification over
flexible variables. The resulting statement, 〈1〉2, is proved later.

16

Assume: MaxCon ≥ 4 ∗ ρ ∗ (1 + (1/(1− exp[(−30) ∗ δ])))
Prove: RT (v) ∧ Req1 ⇒ Req0

〈1〉1. ∃∃∃∃∃∃x : ∀ r ∈ R : [x[r]=0+
∫
G(r) | false, v]

Proof: Follows from a standard theorem about the validity of adding history
variables [1], which asserts the validity of ∃∃∃∃∃∃x : (x = f) ∧ ✷[x′ = g]w if x does
not occur in f and x′ does not occur in g.

〈1〉2. ∧ now = a
∧ RT (v)
∧ ∀ r ∈ R : [x[r]=0+

∫
G(r) | false, v]

∧ [g=0+∫
accumRate | false, v]

∧ ∀ r ∈ R : ✷(x[r] ≤ 4)
⇒ ✷(g < MaxCon)

Proof: Sketched below.
〈1〉3. Q.E.D.
〈2〉1. ∧ now = a

∧ RT (v)
∧ ∀ r ∈ R : [x[r]=0+

∫
G(r) | false, v]

∧ ∀ r ∈ R : ✷(x[r] ≤ 4)
⇒ ([g=0+

∫
accumRate | false, v]⇒ ✷(g < MaxCon))

Proof: From 〈1〉2 by propositional logic.
〈2〉2. ∧ now = a

∧ RT (v)
∧ ∀ r ∈ R : [x[r]=0+

∫
G(r) | false, v]

∧ ∀ r ∈ R : ✷(x[r] ≤ 4)
⇒ Req0

Proof: 〈2〉1, the definition of Req0 , and predicate logic, since g does not
occur to the left of the ⇒.

〈2〉3. ∧ now = a
∧ RT (v) ∧ Req1
⇒ Req0

Proof: By 〈1〉1, 〈2〉2, the definition of Req1 , and simple predicate logic,
since x does not occur free in RT (v) or Req0 .

〈2〉4. Q.E.D.
Proof: From 〈2〉3 by simple predicate logic, using the validity of ∃ a :
now = a.

Because it involves quantification over flexible variables, this part of the proof
cannot be handled by TLP, the mechanical verification system for TLA based
on the LP theorem prover [4].7 The rest of the proof can, in principle, be verified
using TLP. However, TLP does not yet contain the full definitional capability
of TLA+, so many of the definitions would have to be expanded by hand. In
addition to being a possible source of error, this translation might make the

7 Mechanical checking of this kind of reasoning with quantifiers is not hard. However,
such reasoning is always so simple that we have not felt mechanical verification to
be worth the effort.

17

formulas so long that verification would be impractical. We hope that future
versions of TLP will permit the necessary definitions.

We now prove 〈1〉2. From the definitions in modules HybridSystems and
RealTime, we can write

[x[r]=0+
∫
G(r) | false, v] ∆= (x[r] = 0) ∧ ✷[Nx(r)]〈now ,x[r],v〉

[g=0+
∫
accumRate | false, v] ∆= (g = 0) ∧ ✷[Ng]〈now ,g,v〉

RT (v) ∆= (now ∈ R) ∧ ✷[Nnow]〈now〉

for the appropriate actions Nx(r), Ng, and Nnow . Let

Init ∆= (now = a) ∧ (g = 0) ∧ (now ∈ R) ∧ (∀ r ∈ R : x[r] = 0)
N ∆= [Ng]〈now ,g,v〉 ∧ [Nnow]〈now〉 ∧ (∀ r ∈ R : [Nx(r)]〈now ,x[r],v〉)
J

∆= ∀ r ∈ R : x[r] ≤ 4

Using the commutativity of conjunction and the fact that conjunction distributes
over ✷, statement 〈1〉2 can be rewritten as8

Init ∧ ✷N ∧ ✷J ⇒ ✷(g < MaxCon)

TLA formulas of this form are proved with the aid of an invariant. First, we
define the trivial “type-correctness” part of the invariant:

T
∆= ∧ (now ∈ R) ∧ (g ∈ R)

∧ ∀r ∈ R : (x[r] ∈ R) ∧ (0 ≤ x[r])
The nontrivial part I of the invariant is defined as follows, where we first define
|�r�| to be the largest number less than or equal to r that is some multiple of 30
seconds later than a.

|�r�| ∆= choose s ∈ R : ∧ (s ≤ r) ∧ (r < s+ 30)
∧ |s− a|/30 ∈ Nat

k
∆= (4 ∗ ρ)/(1− exp[−30 ∗ δ])

I
∆= g ≤ (k ∗ exp[−δ ∗ (now − |�now�|)] + ρ ∗ x[|�now�|])

The proof of 〈1〉2 is a standard invariance proof, where we prove ✷I, using the
hypothesis ✷J . The high-level structure of the proof is:

〈2〉1. Init ∧ ✷N ⇒ ✷T
Proof: This is a straightforward invariance proof and is omitted.

〈2〉2. Init ∧ ✷N ∧ ✷(J ∧ T) ⇒ ✷(g < MaxCon)
〈3〉1. Init ⇒ I

Proof: Trivial, because Init implies g = 0.

8 This notation is rather sloppy, since ✷N is not a syntactically correct TLA formula.
We must write ✷[N]w for some state function w. However, it is easy to check that

N equals [N]〈now ,g,X,v〉, where X
∆
= [r ∈ R �→ x[r]].

18

〈3〉2. J ∧ J ′ ∧ T ∧ I ∧N ⇒ I ′

Proof: Sketched below.
〈3〉3. J ∧ I ⇒ (g ≤ MaxCon)

Proof: Follows by simple algebra from the definition of k and assump-
tion 〈0〉.

〈3〉4. Q.E.D.
〈4〉1. ✷(J ∧ T) ∧ I ∧ ✷N ⇒ ✷I

Proof: 〈3〉2 and the standard TLA invariance rule.
〈4〉2. ✷(J ∧ T) ∧ Init ∧ ✷N ⇒ ✷I

Proof: 〈3〉1 and 〈4〉1.
〈4〉3. ✷I ⇒ ✷(g ≤ MaxCon)

Proof: 〈3〉3 and simple temporal logic reasoning.
〈4〉4. Q.E.D.

Proof: 〈4〉2 and 〈4〉3.
〈2〉3. Q.E.D.

Proof: By 〈2〉1 and 〈2〉2.

We have reduced our goal to proving 〈3〉2, which is an assertion of ordinary
mathematics, with no temporal operators. (In the reasoning, primed and un-
primed variables are considered to be separate, unrelated values.) The proof of
〈3〉2 is sketched below. The “algebraic calculations”, which are omitted, consti-
tute the heart of the proof. They are straightforward, but writing them out at
the same level of detail as we have been using would be extremely tedious. Most
mechanical verifiers would probably require that they be broken into extremely
small steps, though they should not be hard to check with a mathematical pack-
age like Mathematica or Maple.

〈3〉2. Assume: J ∧ J ′ ∧ T ∧ I ∧ N
Prove: I ′

let mid ∆= |�now�|+ 30
〈4〉1. Case: now ′ = now

Proof: [Ng]〈now ,g,v〉 ∧ (now ′ = now) implies g′ = g, and (now ′ = now) ∧
∀ r : [Nx(r)]〈now , x[r], v〉 implies x[|�now�|]′ = x[|�now�|], so I ′ equals I.

〈4〉2. Case: (now ′ �= now) ∧ (v′ = v)
〈5〉1. now ′ > now

Proof: By [Nnow]〈now〉 (assumption 〈3〉).
〈5〉2. Case: Gas ∧ ¬Flame

let D(s, t) ∆= s ∗ exp[−δ ∗ t] + (ρ/δ)(1− exp[−δ ∗ t])
〈6〉1. g′ = D(g,now ′ − now)

Proof: By [Ng]〈now ,g,v〉 and Theorem DiffusionSolution of module Ex-
ponentials .

〈6〉2. Case: |�now ′�| = |�now�|
〈7〉1. x′[|�now ′�|] = x[|�now�|] + (now ′ − now)

Proof: Case assumptions 〈5〉 and 〈6〉, [Nx(r)]〈now ,x[r],v〉 with r =
|�now�|, and Theorem IntegralOfStepFcn of module Integration, since
now ∈ [[|�now�|, |�now�|+ 30]].

19

〈7〉2. Q.E.D.
Proof: Algebraic calculation, using 〈6〉1, 〈7〉1, case assumption 〈5〉,
and Theorem ExpFacts of module Exponentials .

〈6〉3. Case: |�now ′�| �= |�now�|
〈7〉1. g′ = D(D(g,mid − now),now ′ −mid)

Proof: By 〈6〉1, since an algebraic calculation using Theorem Exp-
Facts shows that D(D(s, t1), t2) = D(s, t1 + t2) for any s, t1, t2 ∈ R.

〈7〉2. x′[|�now�|] = x[|�now�|] +mid − now
Proof: Case assumption 〈4〉, [Nx(r)]〈now ,x[r],v〉 with r = |�now�|,
and Theorem IntegralOfStepFcn.

〈7〉3. D(g,mid − now) ≤ k
Proof: Algebraic calculation using 〈7〉2, J ′ ∧ I (Assumption 〈3〉),
and Theorem ExpFacts .

〈7〉4. x′[mid] = now ′ −mid
〈8〉1. x′[mid] = min(now ′ −mid , 30)

Proof: Case assumption 〈6〉, [Nx(r)]〈now ,x[r],v〉 with r = mid , and
Theorem IntegralOfStepFcn.

〈8〉2. Q.E.D.
Proof: 〈8〉1 and J ′ (Assumption 〈3〉).

〈7〉5. |�now ′�| = mid
〈8〉1. (now ′ −mid) ≤ 4

Proof: 〈7〉4 and J ′ (assumption 〈3〉).
〈8〉2. Q.E.D.

Proof: 〈5〉1, 〈8〉1, and the definition of mid .
〈7〉6. Q.E.D.

Proof: Algebraic calculation using 〈7〉1, 〈7〉3, 〈7〉4, 〈7〉5, I (assump-
tion 〈3〉), and Theorem ExpFacts .

〈6〉4. Q.E.D.
Proof: 〈6〉2 and 〈6〉3.

〈5〉3. Case: ¬(Gas ∧ ¬Flame)
〈6〉1. g′ = g ∗ exp[−δ ∗ (now ′ − now)]

Proof: By [Ng]〈now ,g,v〉 and Theorem DiffusionSolution.
〈6〉2. Case: |�now ′�| = |�now�|
〈7〉1. x′[|�now�|] = x[|�now�|]

Proof: By [Nx(r)]〈now ,x[r],v〉 with r = |�now�|, case assumption 〈6〉,
and Theorem IntegralOfStepFcn.

〈7〉2. Q.E.D.
Proof: Algebraic calculation using 〈5〉1, 〈6〉1, 〈7〉1, I, and Theorem
ExpFacts .

〈6〉3. Case: |�now ′�| �= |�now�|
〈7〉1. mid ≤ |�now ′�|

Proof: 〈5〉1 and case assumption 〈6〉.
〈7〉2. g′ = g ∗ exp[−δ ∗ (mid − now)] ∗ exp[−δ ∗ (now ′ −mid)]

Proof: 〈6〉1 and Theorem ExpFacts .

20

〈7〉3. g ∗ exp[−δ ∗ (mid − now)] ≤ k
Proof: Algebraic calculation, using I, J (which implies x[|�now�|] ≤
4), and Theorem ExpFacts (since mid > now).

〈7〉4. Q.E.D.
Proof: Algebraic calculation, using 〈7〉1, 〈7〉2, 〈7〉3, T , and Theorem
ExpFacts .

〈6〉4. Q.E.D.
Proof: 〈6〉2 and 〈6〉3.

〈5〉4. Q.E.D.
Proof: 〈5〉2 and 〈5〉3.

〈4〉3. Q.E.D.
Proof: 〈4〉1, 〈4〉2, and assumption 〈3〉, since [Nnow]now ∧ (now ′ �= now)
implies v′ = v, by definition of Nnow .

6 An Implementation

We now specify an implementation of the gas burner inspired by RRH’s “control
model”. RRH also specify an “architecture”. However, a comparison of Figures
2 and 3 of [8] reveals that this architecture is just the same implementation
expressed in a CSP-like language. A program in a toy language is no closer to a
real program than the corresponding TLA+ or Duration Calculus formula is; it
just has a syntax that can fool some people into thinking it is closer. So, we see
no reason to introduce such a toy programming language.

The control model is described by the state-transition diagram of Figure 10.
In the RRH specification, the states of the control model are abstract states
that are only loosely coupled with states of the physical variables. For example,
the specification of RRH asserts that the ignition and gas are turned on after
the Ignite1 state is reached. The easiest way to duplicate the RRH specifica-
tion would be to translate the state-machine into a simple TLA+ formula, and
then translate the “phase requirements” of RRH into TLA+ using the operators

❄
Idle

✎ �
✍ ✌❍❍❍❍❍❍❥

HeatOn

Ignite1
✎ �
✍ ✌

✛ Out1a
Ignite2

✎ �
✍ ✌
❅
❅�

�
�
�
�
�
�✒

Out1b

FlOn

Burn

✎ �
✍ ✌

✟✟
✟✟
✟✟✯HeatOff ,

FlOff

Purge
✎ �
✍ ✌
�
�✠ Out30

Fig. 10. The control model, adapted from Figures 2 and 3 of [8].

21

from the HybridSystems module. However, we have already presented one level
of specification and verification using the HybridSystems module’s operators, so
this would be more of the same. Moreover, this is not the type of specification
one would naturally write with TLA. In TLA, it is more natural to write lower
level specifications purely in terms of states and transitions. One would draw
a state-transition diagram for the gas and ignition variables—the transitions
being enabled and disabled by changes to the control state—and write a TLA+

specification of the resulting system. This representation would be the first step
in refining the control model to a realistic representation of an actual imple-
mentation. However, developing this specification would take more space than
seems appropriate. Instead, we present a simplified version in which the physi-
cal variables gas and ignition that are under the implementer’s control change
simultaneously with the control state.

The module BurnerControl of Figure 11 describes the time-independent be-
havior of the burner. It is a standard TLA specification; the next-state relation
N is specified as the disjunction of individual actions corresponding to the tran-
sitions in Figure 10. Note that this module has a new parameter—the “internal”
variable state. (Internal variables are ones that are existentially quantified.) The
only surprising part of the specification is that the Out1b action can occur even
if the flame is on. Timing requirements will prevent this action from occurring
if the flame ignites quickly enough.

Next, module BurnerPhaseReqs of Figure 12 specifies the real-time require-
ments on the burner. It contains minimum and maximum delays on each of the
transitions in Figure 10, which are expressed with the operators from the Re-
alTime module. The constraints, and the new parameters ε1 and ε2, are taken
directly from the RRH specification. RRH’s condition Ignite2Req is split into
two parts. The first, Ignite2aReq, asserts that an Out1b action cannot occur
until it has been enabled (state = “Ignite2”) for at least 1 second, and it must
occur if it has been enabled for 1 + ε1 seconds. (The formula Control asserts
that the Out1b action remains enabled until an Out1b or FlOn step occurs.)
The second part, Ignite2bReq, asserts that a FlOn action must be continuously
enabled (state = “Ignite2” and flame on) for at least ε2 seconds before it can
occur, and it must occur if it has been continuously enabled for ε1 seconds.

Next, module BurnerEnvironment in Figure 13 specifies the environment.
The burner controls the gas and ignition variables; the environment controls
the flame and heatReq variables. The specification of the initial condition and
next-state relation are standard TLA. Condition ASM 1 of RRH, that “no gas
results in no flame within 0.1 seconds,” is expressed as usual with a timer. RRH’s
condition ASM 2, that “gas does not ignite when the ignition transformer is not
operating,” is a time-independent property that is encoded in the next-state
relation N .

Finally, the pieces are put together in the ControlModel module of Figure 14.
The assumptions about ε1 and ε2 are the same as RRH’s, except that our simpler
specification is correct with a weaker upper bound on ε1. The statement

include BurnerEnvironment as Env

22

module BurnerControl
import BurnerParameters

parameter
state : variable

predicate

w
∆
= 〈gas , ignition, state〉

Init
∆
= w = 〈“off”, “off”, “Idle”〉

actions
HeatOn

∆
= ∧ HeatReq ∧ (state = “Idle”)

∧ (state ′ = “Purge”) ∧ unchanged 〈gas , ignition〉
Out30

∆
= ∧ (state = “Purge”) ∧ (state ′ = “Ignite1”)

∧ unchanged 〈gas , ignition〉
Out1a

∆
= ∧ (state = “Ignite1”) ∧ (state ′ = “Ignite2”)

∧ (ignition ′ = “on”) ∧ (gas ′ = “on”)

Out1b
∆
= ∧ (state = “Ignite2”) ∧ (state ′ = “Idle”)

∧ (ignition ′ = “off”) ∧ (gas ′ = “off”)

FlOn
∆
= ∧ (state = “Ignite2”) ∧ Flame ∧ (state ′ = “Burn”)

∧ (ignition′ = “off”) ∧ unchanged gas

GoIdle
∆
= ∧ (state = “Burn”) ∧ (¬Flame ∨ ¬HeatReq) ∧ (state ′ = “Idle”)

∧ (gas ′ = “off”) ∧ unchanged ignition

N ∆
= HeatOn ∨ Out30 ∨ Out1a ∨ Out1b ∨ FlOn ∨ GoIdle

temporal

Control
∆
= Init ∧ ✷[N]w

Fig. 11. The Control Actions.

is equivalent to inserting all the definitions from the BurnerEnvironment mod-
ule, with the names of the defined symbols preceded by “Env.”.9 Similarly, the
statement

include BurnerPhaseReqs as Burner(state)

is equivalent to including all the definitions of the BurnerPhaseReqs environ-
ment, with defined symbols renamed by prefacing them with “Burner(state).”.
This makes state a free parameter of all those defined symbols, which must be in-
stantiated when the symbol is used. (Note how it is instantiated with the bound
variable s in the definition of Spec.) The complete specification is the conjunc-
tion of the burner’s complete specification and the environment specification,

9 In contrast to an imported module, whose parameters become parameters of the
importing module, parameters of an included module are instantiated. In this case,
there are no explicit instantiations, so the included module’s parameters are by
default instantiated with parameters of the same name.

23

module BurnerPhaseReqs
import BurnerControl , RealTime

parameters
ε1, ε2 : R constants

temporal

IdleReq
∆
= ∃∃∃∃∃∃x, y : ∧ VTimer(x, HeatOn , ε2, w) ∧ MinTimer(x, HeatOn , w)

∧ VTimer(y, HeatOn , ε1, w) ∧ MaxTimer(y)

PurgeReq
∆
= ∃∃∃∃∃∃x, y : ∧ VTimer(x, Out30 , 30, w) ∧ MinTimer(x, Out30 , w)

∧ VTimer(y, Out30 , 30 + ε1, w) ∧ MaxTimer(y)

Ignite1Req
∆
= ∃∃∃∃∃∃x, y : ∧ VTimer(x, Out1a , 1, w) ∧ MinTimer(x, Out1a , w)

∧ VTimer(y, Out1a , 1 + ε1, w) ∧ MaxTimer(y)

Ignite2aReq
∆
= ∃∃∃∃∃∃x, y : ∧ VTimer(x, Out1b, 1, w) ∧ MinTimer(x, Out1b, w)

∧ VTimer(y, Out1b, 1 + ε1, w) ∧ MaxTimer(y)

Ignite2bReq
∆
= ∃∃∃∃∃∃x, y : ∧ VTimer(x, FlOn, ε2, w) ∧ MinTimer(x, FlOn, w)

∧ VTimer(y, FlOn, ε1, w) ∧ MaxTimer(y)

BurnReq
∆
= ∃∃∃∃∃∃x, y : ∧ VTimer(x, GoIdle, ε2, w) ∧ MinTimer(x, GoIdle, w)

∧ VTimer(y, GoIdle, ε1, w) ∧ MaxTimer(y)

PhaseReqs
∆
= IdleReq ∧ PurgeReq ∧ Ignite1Req ∧

Ignite2aReq ∧ Ignite2bReq ∧ BurnReq

Fig. 12. The control model’s timing requirements.

together with the formula RT (v) that describes how now changes and asserts
that v does not change when now does. The burner’s specification is obtained
by hiding the internal state variable in the conjunction of its time-independent
specification, its timing requirements, and the RT -formula asserting that the
internal state does not change when now does.10

The next step is to prove that the Control Model satisfies requirements Req1 ,
Req2 , and Req3 . This means proving that formula Spec of module ControlModel
implies Req1 ∧ Req2 ∧ Req3 . We very briefly sketch the proof that Spec implies
Req1 ; the other proofs are similar.

We first reduce the problem to proving an assertion without quantification
over flexible variables. Let Burner(s).VControl be the formula that is the same
as Burner(s).Control except with the quantifiers ∃∃∃∃∃∃ x, y removed and each x
and y replaced by a unique variable. For example, let xIgnite1 and yIgnite1 be
substituted for x and y in Ignite1Req. Similarly, let Env.VSpec be the formula
obtained by removing the quantifier from Env.Spec and substituting xEnv for x.
Simple predicate logic shows that, to prove Spec ⇒ Req1 , it suffices to assume

10 Note that, since s does not appear in RT (v), the latter formula can be moved inside
the quantifier; and RT (v) ∧ RT (s) is equivalent to RT (〈v, s〉).

24

module BurnerEnvironment
import BurnerParameters

predicate

Init
∆
= 〈flame, heatReq〉 = 〈“off”, “off”〉

actions
ChangeHeatReq

∆
= ∧ heatReq ′ = if HeatReq then “off” else “on”

∧ unchanged flame

FlameOn
∆
= ∧ ¬Flame ∧ Gas ∧ Ignition ∧ (flame′ = “on”)

∧ unchanged heatReq

FlameOff
∆
= Flame ∧ (flame ′ = “off”) ∧ unchanged heatReq

N ∆
= ChangeHeatReq ∨ FlameOn ∨ FlameOff

temporal

Spec
∆
= ∧ Init ∧ ✷[N]〈flame,heatReq〉

∧ ∃∃∃∃∃∃x : ∧ VTimer(x, FlameOff ∧ ¬Gas , 1/10, 〈flame, heatReq〉)
∧ MaxTimer(x)

Fig. 13. Timing assumptions on the environment.

module ControlModel
import BurnerParameters, RealTime

parameters
ε1, ε2 : R constants

assumption

EpsilonAssumption
∆
= (0 < ε1) ∧ (ε2 < ε1) ∧ (ε1 ≤ 2/3)

include BurnerPhaseReqs as Burner (state)

include BurnerEnvironment as Env

temporal

Spec
∆
= ∧ ∃∃∃∃∃∃s : Burner(s).Control ∧ Burner (s).PhaseReqs ∧ RT (s)

∧ Env .Spec
∧ RT (v)

Fig. 14. The complete control model specification.

25

r ∈ R and prove Π ⇒ ✷(z ≤ 4), where

Π
∆= ∧ [z=0+∫

G(r) | false, v]
∧ Burner(s).Control ∧ Burner(s).VPhaseReqs
∧ Env .VSpec
∧ RT(s) ∧ RT (v)

and G is defined by the let in the definition of Req1 .
The proof of Π ⇒ ✷(z ≤ 4) has the same form as the proof of step 〈1〉2

in the proof that RT (v) ∧ Req1 implies Req0 . We first prove Π ⇒ ✷T for a
simple invariant T , which expresses the expected relations among the values of
the variables. For example, one conjunct of T is

(s = “Ignite1”)⇒ ∧ Gas ∧ Ignition
∧ (yIgnite1 ∈ R) ∧ (now ≤ yIgnite1)

We then prove Π ∧ ✷T ⇒ ✷I for the following invariant I.

∧ z ≤ 4
∧ (z > 0)⇒ (z ≤ now − r)
∧ (now ∈ [[r, r + 30]])⇒ ∨ (s = “Idle”)

∨ (s = “Purge”) ∧ ((z > 0)⇒ (xPurge ≥ r + 30))
∨ (s = “Ignite1”) ∧ (z + (yIgnite1 − now) ≤ 1 + ε1)
∨ (s = “Ignite2”) ∧ (z + yIgnite2a − now ≤ 2 + 2ε1)
∨ ∧ (s = “Burn”) ∧ Gas
∧ ∨ Flame ∧ (z ≤ 2 + 2ε1)
∨ ¬Flame ∧ (z + yBurn − now ≤ 2 + 3ε1)

The hard part of provingΠ∧✷T ⇒ ✷I is the analog of step 〈3〉2 in the proof that
RT (v) ∧ Req1 implies Req0 . As usual, this step involves ordinary mathematics,
with no temporal operators.

References

1. Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real time. Research
Report 91, Digital Equipment Corporation Systems Research Center, 1992. An
earlier version, without proofs, appeared in [3, pages 1–27].

2. K. Mani Chandy and Jayadev Misra. Parallel Program Design. Addison-Wesley,
Reading, Massachusetts, 1988.

3. J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, editors. Real-
Time: Theory in Practice, volume 600 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 1992. Proceedings of a REX Real-Time Workshop, held
in The Netherlands in June, 1991.

4. Urban Engberg, Peter Grønning, and Leslie Lamport. Mechanical verification
of concurrent systems with tla. In Logics of Programs, Lecture Notes in Computer
Science, Berlin, Heidelberg, New York, June 1992. Springer-Verlag.

5. Leslie Lamport. The temporal logic of actions. Research Report 79, Digital Equip-
ment Corporation, Systems Research Center, December 1991.

26

6. A. C. Leisenring. Mathematical Logic and Hilbert’s ε-Symbol. Gordon and Breach,
New York, 1969.

7. Zohar Manna and Amir Pnueli. The Temporal Logic of Concurrent Systems.
Springer-Verlag, New York, 1991.

8. Anders P. Ravn, Hans Rischel, and Kirsten M. Hansen. Specifying and verifying
requirements of real-time systems. IEEE Transactions on Software Engineering,
January 1993. to appear.

