
Proving Possibility Properties

Leslie Lamport

Digital Equipment Corporation, 130 Lytton Avenue, Palo Alto, California 94303,
USA

Abstract

A method is described for proving “always possibly” properties of specifications in
formalisms with linear-time trace semantics. It is shown to be relatively complete
for TLA (Temporal Logic of Actions) specifications.

Key words: Branching time, linear time, temporal logic.

1 Introduction

Does proving possibility properties provide any useful information about a
system? Why prove that it is possible for a user to press q on the keyboard
and for a q subsequently to appear on the screen? We know that the user can
always press the q key, and what good is knowing that a q might appear on
the screen? Isn’t it enough to prove that no q appears on the screen unless a
q is typed (a safety property), and that, if a q is typed, then a q eventually
does appear (a liveness property)?

Although possibility properties may tell us nothing about a system, we do not
reason about a system; we reason about a mathematical model of a system. A
possibility property can provide a sanity check on our model. Proving that it is
always possible for a press(q) action to occur tells us something useful about
the model. In general, we want to prove that a model allows the occurrence
of actions representing events that the system cannot prevent.

We present a method for proving that it is always possible for some state or
action eventually to occur. This is the simplest class of possibility properties
and seems to be the most useful. (The simpler requirement that it is always
possible for an action to occur may also be useful, but it just asserts that
the action is always enabled, so it is a safety property and not a possibility
property.) We first describe the general approach, which applies to any formal-
ism with a linear-time semantics. We then show how the method is used with

Preprint submitted to Elsevier Preprint 9 March 1998

TLA, the Temporal Logic of Actions [8], and prove a relative completeness
result.

Possibility properties pose no problem in formalisms based on branching-time
semantics [4]. However, it is impossible to assert in linear-time temporal logic
that something is always possible [6]. It is therefore not obvious how to prove
possibility properties in the formalisms that we consider, which are based on
linear-time semantics.

We are concerned with proofs, not finite-state model checking. Model check-
ing begins by writing (or rewriting) a specification as a transition system. A
finite-state linear-time specification should yield the same transition system
as the corresponding branching-time specification, and hence the same model
checking algorithm.

2 Possibility and Closure

2.1 Closure and Safety

We begin by reviewing some basic concepts of linear-time temporal logic [10].
A behavior is an infinite sequence of states or of events—for now, it doesn’t
matter which. The meaning [[Π]] of a temporal-logic formula Π is a Boolean-
valued function on behaviors. We say that the behavior σ satisfies Π iff (if
and only if) [[Π]](σ) equals true. Formula Π is valid, written |= Π, iff every
behavior satisfies Π. To use temporal logic to specify (a mathematical model
of) a system, we consider states to represent possible system states and events
to represent possible system actions, so a behavior represents a conceivable
execution of a system. A system is specified by a formula Π that is satisfied
by precisely those behaviors that represent a legal system execution.

Boolean operations on formulas are defined in the obvious way; for example,
[[Π∧Φ]](σ)

∆
= [[Π]](σ)∧ [[Φ]](σ). We define ✷Π to be the formula that is satisfied

by a behavior σ iff every suffix of σ satisfies Π, and we define ✸Π to be satisfied
by σ iff some suffix of σ satisfies Π. The operators ✷ and ✸ are read always
and eventually, respectively. We define ❀ by Π ❀ Φ

∆
= ✷(Π ⇒ ✸Φ).

Let S∞ be the set of all behaviors, let S∗ be the set of all finite behaviors
(finite prefixes of elements of S∞), let “·” be concatenation of sequences, and
let ρ ❁ σ mean that ρ is a nonempty finite prefix of the behavior σ. The
closure C(Π) of a formula Π is defined by

[[C(Π)]](σ)
∆
= ∀ρ ❁ σ : ∃τ ∈ S∞ : [[Π]](ρ · τ) (1)

2

where ∀ρ ❁ σ is universal quantification over all finite prefixes ρ of σ. Thus,
a behavior σ satisfies C(Π) iff every finite prefix of σ can be extended to a
behavior that satisfies Π. The following proposition follows easily from (1).

Proposition 1 For any formulas Π and Φ:

(1) |= Π ⇒ C(Π)
(2) |= Π ⇒ Φ implies |= C(Π) ⇒ C(Φ)

A safety formula is one that equals its closure. Thus, a safety formula Π is
satisfied by a behavior σ iff every prefix of σ can be extended to a behavior
satisfying Π. Intuitively, a safety property Π constrains only the finite behavior
of a system—any behavior that fails to satisfy Π fails at some specific instant.
More precisely, Π is a safety property (equals its closure) iff

∀σ ∈ S∞ : [[¬Π]](σ) ≡ ∃ρ ❁ σ : ∀τ ∈ S∞ : [[¬Π]](ρ · τ) (2)

2.2 Possibility

We now define a class of possibility properties and relate them to closure. The
properties are of the form always possibly P , meaning that at all times during
an execution of the system, it is possible for P eventually to become true. In
linear-time temporal logic, it is impossible to write a formula whose meaning
is always possibly P [6]. However, for any particular system, we can write a
formula asserting that always possibly P holds for behaviors of that system.
More precisely, we can define a formula P

Π
(P) such that always possibly P

holds for the system specified by Π iff P
Π
(P) is valid.

Intuitively, always possibly P holds for a system iff, at any point during any
execution of the system, it is possible to choose some particular way of con-
tinuing the execution that makes P eventually hold. In other words, if ρ is the
prefix of a behavior satisfying the system’s specification Π, then there exists
a behavior τ such that ρ · τ satisfies Π, and P holds at some point in τ . We
can therefore define P

Π
(P) by

[[P
Π
(P)]](σ)

∆
= [[Π]](σ) ⇒ ∀ρ ❁ σ : ∃τ : [[Π]](ρ · τ) ∧ [[✸P]](τ) (3)

Our method of proving possibility properties is based on the following result.
It and all subsequent propositions are proved in the appendix.

Proposition 2 If ¬P is a safety property, then

|= (C(Π) ⇒ C(C(Π) ∧ ✷✸P)) ⇒ P
Π
(P)

3

We will use this result when [[P]](σ) depends only on the first one or two
elements of σ. By (2), ¬P is a safety property for such a P .

3 Proving Possibility Properties in TLA

3.1 TLA

To apply Proposition 2, we need to compute closures. One can write TLA
specifications in a way that makes computing the closure easy. We now give a
thumbnail review of TLA; see [8] for a real explanation of the logic.

In TLA, behaviors are infinite sequences of states, where a state is an assign-
ment of variables to values. We let S be the set of all states. Formulas are
built from actions, Boolean operators, and the temporal operator ✷. An ac-
tion is a Boolean expression containing primed and unprimed variables. For
states s and t , we define [[A]](s, t) to equal true iff A holds with values from
s substituted for unprimed variables and with values from t substituted for
primed variables. We consider action A to be a temporal formula by letting
[[A]](s0, s1, s2, . . .) equal [[A]](s0, s1).

A state predicate P is an action with no primed variables; we write [[P]](s)
instead of [[P]](s, t), which is independent of t . For an action A, we define
the predicate Enabled A by [[Enabled A]](s)

∆
= ∃t ∈ S : [[A]](s, t). A state

function is a nonBoolean expression containing no primed variables. For any
state function v , we let [A]v

∆
= A ∨ (v ′ = v) and 〈A〉v ∆

= A ∧ (v ′ �= v), where
v ′ is the expression obtained by priming the free variables in v .

The canonical form of a TLA formula is Init ∧✷[N]v ∧F , where Init is a state
predicate, N an action, v a state function, and F the conjunction of formulas
of the form WFv(A) (weak fairness) or SFv(A) (strong fairness), with

WFv(A)
∆
= ✷✸¬Enabled 〈A〉v ∨ ✷✸〈A〉v

SFv(A)
∆
= ✸✷¬Enabled 〈A〉v ∨ ✷✸〈A〉v

For example, a system that starts with x and y both 0, and repeatedly either
increments x by ±1 or, if x equals 0, increments y by ±1, is specified by the

4

following formula Πxy . 1

Nxy
∆
= ∨ ∧ x ′ ∈ {x + 1, x − 1}

∧ y ′ = y

∨ ∧ x = x ′ = 0

∧ y ′ ∈ {y + 1, y − 1}

Πxy
∆
= (x = y = 0) ∧ ✷[Nxy]〈x ,y 〉 ∧ WF〈x ,y 〉(Nxy)

The fairness condition WF〈x ,y 〉(Nxy) asserts that the system never stops.

TLA also has an operator ∃∃∃∃∃∃ , where ∃∃∃∃∃∃ x : Π is essentially Π with variable x
hidden. The system specified by ∃∃∃∃∃∃ x : Π satisfies a possibility property iff Π
does—assuming x does not occur free in the property—so we ignore the ∃∃∃∃∃∃
operator here. Using ∃∃∃∃∃∃ , we can express P

Π
(P) and C(Π) as TLA formulas, for

any formulas Π and P . Propositions 1 and 2 can then be proved by temporal-
logic reasoning.

Closures of TLA formulas are computed using the following result.

Proposition 3 If Init is a state predicate, M and N are actions such that M
implies N , and F is the conjunction of countably many formulas of the form
WFv(A) and/or SFv(A), where each 〈A〉v implies M , then

C(Init ∧ ✷[N]v ∧ ✸✷[M]v ∧ F) ≡ Init ∧ ✷[N]v

Since ✷Π implies ✸✷Π, for any Π, substituting Nxy for both N and M in the
proposition proves that C(Πxy) ≡ (x = y = 0) ∧ ✷[Nxy]〈x ,y 〉. For M = N ,
Proposition 3 is a special case of Proposition 2 of [1].

A formula of the form Init∧✷[N]v ∧F is called machine closed [1] if its closure
equals Init∧✷[N]v . Proposition 3 implies that such a formula is machine closed
if F is the conjunction of fairness conditions for actions that imply N . Machine
closure means that F does not rule out any finite prefixes of behaviors. It can
be argued that any specification that models a real implementation should
be machine closed, and that possibility properties need be proved only for a
model of an implementation, not for a high-level specification.

1 A list of formulas bulleted with ∧ or ∨ denotes the conjunction or disjunction of
the formulas; indentation is used to eliminate parentheses. Angle brackets enclose
tuples.

5

3.2 The Proof Method

We now show how to use Propositions 1, 2, and 3 to prove possibility properties
of the form P

Π
(P) for a state predicate P , where Π equals Init ∧ ✷[N]v ∧ F ,

and C(Π) equals Init∧✷[N]v . For any action A, formula P
Π
(A) is equivalent to

P
Π
(Enabled ([N]v ∧A)). Hence, our method can be used to prove properties

P
Π
(A) for arbitrary actions A.

To prove P
Π
(P), we find an action M and a conjunction G of fairness prop-

erties such that

Init ∧ ✷[N]v ∧ ✸✷[M]v ∧G ⇒ ✷✸P (4)

and for which we can use Proposition 3 to prove

C(Init ∧ ✷[N]v ∧ ✸✷[M]v ∧G) ≡ Init ∧ ✷[N]v (5)

We then deduce P
Π
(P) as follows.

1. Init ∧ ✷[N]v ∧ ✸✷[M]v ∧G ⇒ Init ∧ ✷[N]v ∧ ✷✸P

Proof: (4).

2. Init ∧ ✷[N]v ⇒ C(Init ∧ ✷[N]v ∧ ✷✸P)

Proof: (5) and part 2 of Proposition 1.

3. Q.E.D.

Proof: By Proposition 2, since Init ∧ ✷[N]v ≡ C(Π).

For example, to prove P
Πxy

(y = 17), we take

M
∆
= ∨ ∧ ((x > 0) ∧ (x ′ = x − 1)) ∨ ((x < 0) ∧ (x ′ = x + 1))

∧ y ′ = y

∨ ∧ x = x ′ = 0

∧ ((y > 17) ∧ (y ′ = y − 1)) ∨ ((y < 17) ∧ (y ′ = y + 1))

and let G be WF〈x ,y 〉(M) To prove (4), we use the TLA rules from Figure 5
(page 888) of [8].

We now show that this proof method is complete relative to non-temporal
reasoning about actions. This means that if all the necessary valid action
formulas can be proved, then every valid formula P

Π
(P) is provable. We write

� Ψ to mean that formula Ψ is provable from Propositions 1, 2, and 3 and the
rules in [8].

6

Our results assume that valid actions in some class of expressible formulas
are provable. We assume that expressible terms and formulas are closed under
the operations of first-order logic (conjunction, quantification, etc.), priming,
forming tuples, and primitive recursive definitions. Relative completeness re-
sults for programming logics are generally based on some form of predicate
transformer analogous to the sin operator of [7]. For any action A and state
predicate P , the state predicate sin(A,P) can be defined by

[[sin(A,P)]](s)
∆
=

∃s0, . . . , sn ∈ S : (s = sn) ∧ [[P]](s0) ∧ (∀i < n : [[A]](s i , s i+1))

(6)

for all states s. We first show completeness of the TLA rules for proving
invariance properties.

Proposition 4 For any predicates I and Init, state function v, and action
N , if

(1) Every valid expressible action formula is provable.
(2) I , Init, v , N , and sin([N]v , Init) are expressible.
(3) |= Init ∧ ✷[N]v ⇒ ✷I

then � Init ∧ ✷[N]v ⇒ ✷I .

Proposition 4 is essentially the TLA version of the classical completeness re-
sults for Hoare logics [3]. We use it to show completeness of our method for
proving possibility properties:

Proposition 5 If

(1) Every valid expressible action formula is provable.
(2) P, Init, v , N , and sin([N]v , Init) are expressible.
(3) � C(Π) ≡ Init ∧ ✷[N]v
(4) |= P

Π
(P)

then � P
Π
(P).

4 Conclusion

Proving possibility properties provides a way of checking that the mathemat-
ical models we make of our systems are sensible. For real time specifications,
an important possibility property is nonZenoness, which asserts that it is al-
ways possible for time to advance. The relation between possibility and closure

7

was first observed for nonZenoness in [1]. Our method generalizes a method
described there for proving nonZenoness.

Propositions 1 and 2 are independent of TLA. They can be used for prov-
ing possibility properties in any trace-based specification method for which
closures can be computed. It is easy to compute closures when specifications
are written as certain kinds of transition systems. For example, the closure
of (the temporal-logic formula corresponding to) a Büchi automaton [2] with
a strongly connected state graph is the automaton obtained by making ev-
ery state an accepting state. The closure of a specification written as a state
transition system [5,9] is obtained by removing the fairness properties, if those
properties are expressed as fairness conditions on transitions. We do not know
of any practical method for computing the closure of arbitrary temporal-logic
formulas, or of transition systems with arbitrary temporal formulas as fair-
ness requirements. We do not know how to prove possibility properties for
traditional temporal-logic specifications [10].

Acknowledgement

Mart́ın Abadi and Stephan Merz pointed out mistakes in the text of an earlier
version. Fred Schneider suggested some improvements to the presentation.

References

[1] Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real time.
ACM Transactions on Programming Languages and Systems, 16(5):1543–1571,
September 1994.

[2] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.
Distributed Computing, 2(3):117–126, 1987.

[3] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey—part one. ACM
Transactions on Programming Languages and Systems, 3(4):431–483, October
1981.

[4] E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 16, pages 995–
1072. Elsevier and MIT Press, Amsterdam and Cambridge, Massachusetts,
1990.

[5] Simon S. Lam and A. Udaya Shankar. Specifying modules to satisfy interfaces:
A state transition system approach. Distributed Computing, 6(1):39–63, 1992.

8

[6] Leslie Lamport. ‘Sometime’ is sometimes ‘not never’: A tutorial on the
temporal logic of programs. In Proceedings of the Seventh Annual Symposium
on Principles of Programming Languages, pages 174–185. ACM SIGACT-
SIGPLAN, January 1980.

[7] Leslie Lamport. win and sin: Predicate transformers for concurrency. ACM
Transactions on Programming Languages and Systems, 12(3):396–428, July
1990.

[8] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, May 1994.

[9] Nancy Lynch and Mark Tuttle. Hierarchical correctness proofs for distributed
algorithms. In Proceedings of the Sixth Symposium on the Principles of
Distributed Computing, pages 137–151. ACM, August 1987.

[10] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, New York, 1991.

Appendix

We now prove Propositions 2–5. The proofs use a hierarchical style in which
the proof of statement 〈i〉j is either an ordinary paragraph-style proof or the
sequence of statements 〈i+1〉1, 〈i+1〉2, . . . and their proofs. We recommend
reading proofs top-down—reading the proof of a level-k step by first reading
the level-(k+1) statements that form the proof, together with the proof of the
final Q.E.D. step, and then reading the proofs of the level-(k+1) steps in any
order.

A.1 Proof of Proposition 2

To prove the proposition, we must prove that if a behavior σ satisfies C(Π) ⇒
C(C(Π) ∧ ✷✸P), then it satisfies P

Π
(P). By the definition (3) of P

Π
(P), the

proposition is proved as follows.

Assume: 1. [[Π]](σ)
2. [[C(Π) ⇒ C(C(Π) ∧ ✷✸P)]](σ)

Prove: ∀ρ ❁ σ : ∃τ : [[Π]](ρ · τ) ∧ [[✸P]](τ)

〈1〉1. ∀ρ ❁ σ : ∃η ∈ S∞ : [[C(Π)]](ρ · η) ∧ [[✷✸P]](ρ · η)
〈2〉1. [[C(Π)(σ)]]

Proof: Assumption 1 and part 1 of Proposition 1.

〈2〉2. C(C(Π) ∧ ✷✸P)(σ)

9

Proof: 〈2〉1, assumption 2, and the definition of ⇒ for temporal formu-
las.

〈2〉3. Q.E.D.

Proof: 〈2〉2, (1), and the definition of ∧ for temporal formulas.

〈1〉2. ∀ρ ❁ σ : ∃ξ ∈ S∗ : ∧ ∃φ ∈ S∞ : [[Π]](ρ · ξ · φ)

∧ ∀χ ∈ S∞ : [[✸P]](ξ · χ)

〈2〉1. ∀ρ ∈ S∗, η ∈ S∞ : [[✷✸P]](ρ · η) ⇒ ∃η1, η2 : η = η1 · η2 ∧ [[P]](η2)

Proof: By definition of ✷ and ✸.

〈2〉2. ∀η2 ∈ S∞ : [[P]](η2) ⇒ ∃η3 ❁ η2 : ∀χ ∈ S∞ : [[P]](η3 · χ)

Proof: By the hypothesis that ¬P is a safety property and (2) (substi-
tuting ¬P for Π).

〈2〉3. ∀ρ ∈ S∗, η ∈ S∞ : [[✷✸P]](ρ · η) ⇒ ∃ξ ❁ η : ∀χ ∈ S∞ : [[✸P]](ξ · χ)

Proof: By 〈2〉1, 〈2〉2, and the definition of ✸, taking η1 · η3 for ξ.

〈2〉4. ∀ρ ∈ S∗, η ∈ S∞, ξ ❁ η : [[C(Π)]](ρ · η) ⇒ ∃φ ∈ S∞ : [[Π]](ρ · ξ · φ)

Proof: By the definition (1) of C.
〈2〉5. Q.E.D.

Proof: 〈1〉1, 〈2〉3, and 〈2〉4.
〈1〉3. Q.E.D.

Proof: By 〈1〉2, letting τ be ξ · φ and instantiating χ with φ.

A.2 Proof of Proposition 3

We prove the proposition for the special case that F consists of a single WF
or SF formula, which is the only case used here. The general case is handled
much as in the proof of Proposition 2 of [1]. In the following proof, W/SF
denotes either WF or SF.

Assume: 1. |= M ⇒ N
2. |= 〈A〉v ⇒ M
3. σ ∈ S∞

Prove: [[C(Init ∧ ✷[N]v ∧ ✸✷[M]v ∧W/SFv(A))]](σ) ≡ [[Init ∧ ✷[N]v]](σ)

〈1〉1. Assume: ∀ρ ❁ σ : ∃τ : [[Init ∧ ✷[N]v ∧ ✸✷[M]v ∧ W/SFv(A)]](ρ · τ)
Prove: [[Init ∧ ✷[N]v]](σ)

Proof: Assumption 〈1〉 (from this step) implies that Init holds in the first
state of σ and [N]v holds in every pair of successive states of σ, which implies
[[Init ∧ ✷[N]v]](σ) by definition of ✷ and of [[B]] for an action B .

〈1〉2. Assume: 1. [[Init ∧ ✷[N]v]](σ)
2. ρ ❁ σ

Prove: ∃τ : [[Init ∧ ✷[N]v ∧ ✸✷[M]v ∧ W/SFv (A)]](ρ · τ)

10

〈2〉1. Choose states s0, s1, . . . such that ρ = s0, . . . , sn and, for all i ≥ n,

∧ [[Enabled 〈A〉v]](s i) ⇒ [[〈A〉v]](s i , s i+1)

∧ ¬[[Enabled 〈A〉v]](s i) ⇒ (s i+1 = s i)

Proof: The existence of the s i follows from the definition of Enabled .

〈2〉2. [[✷[M]v]](sn , sn+1, . . .)

〈3〉1. ∀i ≥ n : [[[M]v]](s i , s i+1)

Proof: If [[Enabled 〈A〉v]](s i), this follows from 〈2〉1 and assump-
tion 2. If ¬[[Enabled 〈A〉v]](s i), this also follows from 〈2〉1 because
[[[M]v]](s, s) holds for any state s.

〈3〉2. Q.E.D.

Proof: 〈3〉1 and the definitions of ✷ and of [[B]] for an action B .

〈2〉3. [[W/SFv(A)]](s0, s1, . . .)

Proof: [[✷✸Enabled 〈A〉v]](s0, s1, . . .) implies [[Enabled 〈A〉v]](s i) for
infinitely many i , which by 〈2〉1 implies [[〈A〉v]](s i , s i+1) for infinitely
many i , which implies [[✷✸〈A〉v]](s0, s1, . . .). The result then follows from
the definition of WF and SF, since ¬✷✸Enabled 〈A〉v is equivalent to
✸✷¬Enabled 〈A〉v , which implies ✷✸¬Enabled 〈A〉v .

〈2〉4. [[✷[N]v]](s0, s1, . . .)

〈3〉1. ∀i : [[[N]v]](s i , s i+1)

〈4〉1. Assume: i < n
Prove: [[[N]v]](s i , s i+1)

Proof: 〈2〉1 and assumptions 〈1〉:1 and 〈1〉:2 (from step 〈1〉2).
〈4〉2. Assume: i ≥ n

Prove: [[[N]v]](s i , s i+1)

Proof: By 〈2〉2, the definition of ✷, and assumption 1.

〈4〉3. Q.E.D.

Proof: 〈4〉1 and 〈4〉2.
〈3〉2. Q.E.D.

Proof: 〈3〉1 and the definitions of ✷ and of [[B]] for an action B .

〈2〉5. Q.E.D.

Proof: 〈2〉2, 〈2〉3, 〈2〉4, the definition of [[Init]], and the definition of ✸,
taking sn , sn+1, . . . for τ .

〈1〉3. Q.E.D.

Proof: 〈1〉1, 〈1〉2, and the definition (1) of C.

A.3 Proof of Proposition 4

〈1〉1. � Init ∧ ✷[N]v ⇒ ✷sin([N]v , Init)

〈2〉1. |= Init ⇒ sin([N]v , Init)

Proof: Definition (6) of sin.

11

〈2〉2. |= [N]v ∧ sin([N]v , Init) ⇒ sin([N]v , Init)
′

Proof: Definition (6) of sin.

〈2〉3. � sin([N]v , Init) ∧ ✷[N]v ⇒ ✷sin([N]v , Init)

Proof: 〈2〉2, assumptions 1 and 2, and proof rule INV1.

〈2〉4. Q.E.D.

Proof: 〈2〉1, 〈2〉3, and assumptions 1 and 2.

〈1〉2. � sin([N]v , Init) ⇒ I

〈2〉1. ∀s ∈ S : [[sin([N]v , Init)]](s) ⇒

∃s0, . . . , sn ∈ S : [[Init ∧ ✷[N]v]](s0, . . . , sn , s, s, s, . . .)

Proof: Definition (6) of sin, and the definitions of ✷ and [N]v .

〈2〉2. ∀s, s0, . . . , sn ∈ S : [[Init ∧ ✷[N]v]](s0, . . . , sn , s, s, s, . . .) ⇒ [[I]](s)

Proof: Assumption 3 and definition of ✷I .

〈2〉3. |= sin([N]v , Init) ⇒ I

Proof: 〈2〉1 and 〈2〉2.
〈2〉4. Q.E.D.

Proof: 〈2〉3 and assumptions 1 and 2.

〈1〉3. Q.E.D.

Proof: 〈1〉1, 〈1〉2, and proof rule STL4 of [8].

A.4 Proof of Proposition 5

Let N be the set of natural numbers and let x 1, . . . , xn be the free variables
of P and N . Since [N]v ≡ [[N]v]〈v ,w 〉, by replacing N with [N]v and v with
〈v , x 1, . . . , xn 〉, we can assume:

(5) v is a tuple whose components include all free variables of P and N .

In the following proof, Pn is the predicate that is true iff P can be made true
by taking n N -steps, but with no fewer than n such steps.

Let: Pn
∆
= if n = 0 then P

else ∧ ∀i < n : ¬P i

∧ Enabled (N ∧ (v ′ �= v) ∧ P ′
n−1)

M
∆
= N ∧ (∀n : Pn+1 ⇒ P ′

n)

〈1〉1. � Init ∧ ✷[N]v ⇒ ✷(∃n : Pn)

Let: π(s, n)
∆
= ∃s0, . . . , sn : ∧ (s = s0) ∧ [[P]](sn)

∧ ∀i < n : [[N ∧ (v ′ �= v)]](s i , s i+1)

〈2〉1. ∀(s0, s1, . . .) ∈ S∞ :
[[Init ∧ ✷[N]v]](s0, s1, . . .) ⇒ ∀i ∈ N : ∃n ∈ N : π(s i , n)

12

Proof: Assumptions 3 and 4, (3) (the definition of P
Π
(P)), and the

definitions of C and ✸.

〈2〉2. ∀s ∈ S, n ∈ N : [[Pn]](s) ≡ π(s, n) ∧ (∀i < n : ¬π(s, i))

Proof: By induction on n from the definitions of Pn , π, and Enabled .

〈2〉3. ∀s ∈ S : [[∃n : Pn]](s) ≡ (∃n ∈ N : π(s, n))

Proof: 〈2〉2.
〈2〉4. |= Init ∧ ✷[N]v ⇒ ✷(∃n : Pn)

Proof: 〈2〉1, 〈2〉3, and the definitions of ✷ and [[[N]v]].

〈2〉5. Q.E.D.

Proof: 〈2〉4, assumptions 2 and 1, and Proposition 4, since Enabled A
is obtained by existential quantification over the primed variables of A,
so it is expressible if A is, for any action A.

〈1〉2. Assume: k ∈ N
Prove: � ✷[M]v ∧WFv(M) ⇒ (Pk+1 ❀ Pk)

〈2〉1. � Pk+1 ∧ [M]v ⇒ P ′
k+1 ∨ P ′

k

Proof: Definition of M and assumption 5 (which, by induction on k ,
implies Pk+1 ∧ (v ′ = v) ⇒ P ′

k+1).

〈2〉2. � Pk+1 ∧ 〈M 〉v ⇒ P ′
k

Proof: Definition of M .

〈2〉3. � Pk+1 ⇒ Enabled 〈M 〉v
〈3〉1. |= Pk+1 ⇒ ∀n �= (k + 1) : ¬Pn

Proof: Definition of Pn .

〈3〉2. |= Pk+1 ⇒ (M ≡ N ∧ P ′
k)

Proof: 〈3〉1 and definition of M .

〈3〉3. |= Pk+1 ⇒ Enabled 〈M 〉v
Proof: 〈3〉2 and the definition of Pk+1.

〈3〉4. Q.E.D.

Proof: 〈3〉3 and assumption 1.

〈2〉4. Q.E.D.

Proof: 〈2〉1–〈2〉3 and rule WF1 of [8].

〈1〉3. � ✸✷[M]v ∧ WFv(M) ⇒ ✷✸P

〈2〉1. � ✷(∃n : Pn) ∧ ✸✷[M]v ∧ WFv(M) ⇒ ((∃n : Pn) ❀ P)

Proof: 〈1〉2 and the Lattice Rule of [8].

〈2〉2. � ✷F ∧ (F ❀ G) ⇒ ✷✸G , for any temporal formulas F and G .

Proof: ✷F ∧ (F ❀ G) ≡ ✷F ∧ ✷(F ⇒ ✸G) Definition of ❀

≡ ✷(F ∧ (F ⇒ ✸G)) Rule STL5 of [8].

⇒ ✷✸G Rule STL4 of [8].

〈2〉3. Q.E.D.

Proof: 〈2〉1 and 〈2〉2.
〈1〉4. Q.E.D.

13

〈2〉1. � C(Init ∧ ✷[N]v ∧ ✸✷[M]v ∧ WFv(M)) ≡ Init ∧ ✷[N]v
Proof: Proposition 3, since � M ⇒ N by definition of M .

〈2〉2. � Init ∧ ✷[N]v ∧ ✸✷[M]v ∧ WFv(M) ⇒ C(Π) ∧ ✷✸P

Proof: 〈1〉1, 〈1〉3, and assumption 3.

〈2〉3. � C(Π) ⇒ C(C(Π) ∧ ✷✸P)

Proof: 〈2〉1, 〈2〉2, assumption 3, and part 2 of Proposition 1.

〈2〉4. Q.E.D.

Proof: 〈2〉3 and Proposition 2.

14

