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1. INTRODUCTION

Partial correctness is a relation between the program states before and after execu-
tion of an entire program. For reasoning about concurrent programs, the appropri-
ate generalization of partial correctness is invariance, which is a relation between
the program states before and after the execution of each atomic operation of a
program. The appropriate generalization of the Hoare triple {P}S {Q} is the as-
sertion that S leaves a predicate I invariant [13]. Because the invariant I describes
the program state during execution, it must depend upon the control state as well
as on the values of ordinary program variables.
The predicate transformers wlp (the weakest liberal precondition) and sp (the

strongest postcondition) for proving partial correctness properties of sequential pro-
grams were developed in the early 1970’s by de Bakker and others [3; 4] and popu-
larized by Dijkstra [5]. Here, we generalize them to the predicate transformers win
(the weakest invariant) and sin (the strongest invariant) for proving safety proper-
ties of concurrent programs. Some of the ideas presented here originally appeared
in [12], but with a different notation.
The wlp and sp operators are useful because they allow one to encode partial
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correctness information in a predicate. A predicate containing the wlp or sp oper-
ator can be used in a program annotation to prove a partial correctness property.
While it is well known that the ability to express such predicates is necessary for a
logic of Hoare triples to be complete [1], the practical utility of these predicates in
proving partial correctness properties is not widely appreciated.
In an analogous fashion, the predicate transformers win and sin are useful for

proving invariance properties of concurrent programs because predicates they can
appear in an invariant. We have discovered two applications of these predicate
transformers: reasoning about programs that are not decomposed into their atomic
operations, and transforming certain behavioral reasoning into more rigorous as-
sertional reasoning.
We give two examples of reasoning about nonatomic operations. The first shows

that, when the atomicity of an operation is obviously irrelevant, we can reason
directly about the nonatomic operation instead of pretending that it is atomic.
While not having to introduce unnecessary atomicity is aesthetically pleasing, it of-
fers little practical benefit. The second example, a correctness proof of the bakery
algorithm [9], is more compelling. The bakery algorithm is a mutual exclusion algo-
rithm that makes no atomicity assumptions about its operations. Our proof reveals
that the algorithm has a subtle bug—more precisely, its correctness depends upon
unstated assumptions. Correctness proofs of the bakery algorithm have appeared
in [9] and [10], and a proof of a variant, requiring the same assumptions, appeared
in [11]. The fact that none of these other proofs revealed the hidden assumption
indicates the utility of the approach presented here.
Our final example illustrates a different use of the predicate transformers. As-

sertional reasoning, based upon invariance, has proved to be more reliable than
behavioral reasoning, which argues directly about the sequence of operations ex-
ecuted by the program. However, there have been examples in which a purely
assertional proof was more complicated than a hybrid proof—one using a behav-
ioral argument to show that the given algorithm is equivalent to a simpler one whose
correctness is proved assertionally. It appears that the win and sin operators can
be used in these examples to replace the hybrid proof with a simple, assertional one.
This is illustrated by a distributed algorithm abstracted from part of a well-known
algorithm for computing a minimum spanning tree [6].
This paper is primarily concerned with applications of win and sin rather than

with their formal properties. The treatment of the formalism is brief, and no at-
tempt is made to develop a complete proof system. We hope to present completeness
results in a future paper.
Our approach is semantic rather than syntactic, meaning that we deal not with

pieces of program text but with the mathematical objects represented by those
pieces of text. For example, we view the expression x > 0 as a boolean-valued
function on the program state (a function that depends only on the value of the
variable x) rather than as a string of characters generated by some grammar. By
eschewing syntax, we hope to focus attention on the underlying concepts.
The definitions and properties of the predicate transformers win and sin are inde-

pendent of a programming language. They can be applied to concurrent programs
written in any imperative language, regardless of whether processes communicate
through shared memory, synchronous or asynchronous message passing, or remote
procedure call. However, our major examples involve a generalization of the Owicki-
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var num: array 1. . .n of nonnegative integer;

cobegin i=1...n

loop ncsi: 〈noncritical section〉;
βi: 〈num[i] := 1 + max{num [j] : j �= i}〉;
δi: cobegin j �=i

ηij : 〈await i� j〉
coend;

csi: 〈critical section〉;
ρi: 〈num[i] := 0〉

endloop
coend

Fig. 1. A simplified version of the bakery algorithm.

Gries method [10; 14], and we describe this method only for programs that can be
written in a very simple language.

2. ASSERTIONAL REASONING

We begin with a review of the traditional approach to concurrent program verifica-
tion that will serve to introduce some notation and describe our view of concurrent
programs. We take as an example the program of Figure 1. In this program, the
body of the outer cobegin is executed concurrently as n separate processes, each
with a different value substituted for i, and the body of the inner cobegin similarly
“forks” n − 1 subprocesses. (Here and throughout this paper, the range of values
of the variables i and j is assumed to be the set {1, . . . , n}. To avoid having to
define the meaning of an empty cobegin statement, we assume that n > 1 for this
program and its variants that appear later.) The await operation can be executed
only when its condition is true, in which case it is equivalent to a skip. Angle
brackets enclose atomic operations, and the predicate i � j is defined to equal

(num[j] = 0) ∨ (num[i] < num[j]) ∨ (num[i] = num[j] ∧ i < j) (1)

Since we are concerned only with safety properties [10], it does not matter what
fairness assumptions are made about when an operation must be executed. Thus,
the inner cobegin could be implemented by a for loop, with the subprocesses
executed one after the other.
This program is a simplified version of the bakery algorithm—a mutual exclusion

algorithm described in [9]. The critical and noncritical sections are represented by
atomic operations, which are assumed not to modify the variables num[i], and the
original bakery algorithm is trivialized by making the operations βi and ηij atomic.

2.1 States and Predicates

In our semantic approach, a program consists of a set S of states and a set Π
of atomic operations.1 Here, we describe the set of states; atomic operations are
defined in Section 2.2.

1If we were considering liveness properties as well as safety properties, a program would also have
to include fairness conditions.
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States
A state of a program is a mapping from the set of program variables to some set of
values—in other words, a state consists of an assignment of values to the program’s
variables. In addition to ordinary program variables, we also introduce control
variables that describe the control state of the program.
For simple cobegin programs, such as the simplified bakery algorithm of Fig-

ure 1, the control variables consist of variables at(ξ), for every atomic operation ξ
in Π. The variable at(ξ) is a boolean-valued variable whose value is true iff (if and
only if) control is at operation ξ. For the simplified bakery algorithm, the variables
are num[i], at(ncs i), at(βi), at(ηij), at(cs i), and at(ρi), for all i, j = 1, . . . , n with
i �= j. A state of this program is an assignment of nonnegative integers to the
variables num[i] and booleans to the at variables.
We restrict the set S of states to allow only valid assignments of values to the

control variables. For simple cobegin programs, we require that the values of the
at variables do not declare control to be at two places in the same process—except
where a nested cobegin splits the process into subprocesses. For example, in the
simplified bakery algorithm, at(ηij) and at(cs i) are not both assigned the value
true in any state.
The set S of program states may include ones we don’t expect to occur during an

execution. For example, the simplified bakery algorithm contains states with at(ηij)
true and num[i] = 0, even though βi sets num[i] to a nonzero value. Similarly, there
are states in which at(cs1) and at(cs2) both have the value true, even though this
is a correct mutual exclusion algorithm, and control will never be simultaneously
at the critical sections of two different processes while executing the program.

Definition of sx1
v1

···
···
xm
vm

Let x1, . . . , xm be distinct variables, and let v1, . . . , vm be values. For any state
s, we define sx1

v1
···
···
xm
vm

to be the assignment of values to variables that is the same
as s except that each xp is assigned the value vp. Note that sx1

v1
······ xm
vm

need not be a
state if one or more of the xi are control variables.

State Functions and Predicates
A state function is a function whose domain is the set of states, and a predicate is a
boolean-valued state function. If P is a predicate, we write s |= P instead of P (s)
and define |= P to equal ∀s ∈ S: s |= P . Thus, |= P asserts that P is true for all
program states.
A variable is a state function whose value on a state is the value of the variable

in that state. In particular, a boolean-valued variable is a predicate.

State Function Not Accessing a Set of Variables
We say that a state function f does not access a set {x1, . . . , xm} of variables iff
f(s) = f(sx1

v1
···
···
xm
vm

) for every state s and all values v1, . . . , vm such that sx1
v1

···
···
xm
vm

is a state. Intuitively, f does not access a set of variables iff the value of f can be
computed without knowing the values of those variables.2

2One might expect that a state function does not access a set {x1, . . . , xm} of variables iff it does
not access each singleton set {xi}. However, this is not true. For example, in the simplified bakery
algorithm, taking any state and changing the value of either at(csi) or at(ρi) by itself cannot yield

a valid control state. Hence, every state function does not access the set {at(cs i)} and does not
access the set {at(ρi)}. However, at(csi) is a state function that accesses (does not not access)
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A control predicate is a predicate that does not access the set of all variables
other than control variables.

2.2 Actions and Atomic Operations

Actions

An action is a relation on the set of states—that is, a set of pairs of states. The
possible executions of an atomic operation are represented by an action ξ, where
(s, t) ∈ ξ means that executing the atomic operation starting in state s can produce
state t.
An action ξ is deterministic iff for each state s there is at most one t such that

(s, t) ∈ ξ. Any deterministic action can be written in the following form, where the
xp are distinct program variables, b is a predicate, and the ep are state functions:

b −→



x1

...
xm


 :=



e1
...
em


 (2)

This describes the set of all pairs (s, sx1
e1(s)

···
···
xm

em(s)) such that s |= b equals true. In
other words, it is an action that can be executed only if b is true, and it has the
effect of first evaluating the expressions ep and then setting the xp, all in one step.
Although we do not assume that actions are deterministic, we will not discuss the
representation of nondeterministic actions.
For the simplified bakery algorithm of Figure 1, statement βi describes the action

at(βi) −→

num[i]

at(βi)
at(ηij)


 :=


1 + max{num[j] : j �= i}

false
true, for all j �= i




and statement ηij describes the action

at(ηij) ∧ i � j −→
(
at(ηij)
at(cs i)

)
:=

(
false∧
k �=i,j ¬at(ηik)

)

Action Modifying or Not Accessing Variables

We say that an action ξ modifies a variable x iff there exists a pair (s, t) in ξ such
that x has different values in states s and t. We say that ξ does not access the set
{x1, . . . , xm} of variables iff ξ does not modify any of the xp and for any (s, t) ∈ ξ
and any values v1, . . . , vm, if sx1

v1
···
···
xm
vm

is a state then (sx1
v1

···
···
xm
vm

, tx1
v1

···
···
xm
vm

) ∈ ξ.
Intuitively, x does not access a set of variables iff ξ can be executed without reading
or writing any of those variables.
The action (2) does not modify any variables other than the xp; it does not access

any set of variables that does not contain the xp and is not accessed by any of the
ep. In the simplified bakery algorithm, the action described by β2 modifies only
the variables num[2], at(β2), and at(η2j) for all j �= 2; it does not access the set
{at(β1), at(η12)} (as well as many other sets of variables).

the set {at(cs i), at(ρi)}. What all this means is that there is no unique definition of the set of
variables that are accessed by a state function.
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Atomic Operations

An atomic operation ξ of a program consists of an action together with control
predicates at(ξ) and after(ξ). Intuitively, at(ξ) asserts that control is at a point
where ξ can be executed, and after(ξ) asserts that control is at a point that can be
reached by executing ξ. In the simplified bakery algorithm,

after(ncs i) ≡ at(βi)

after(βi) ≡
∧
j �=i

at(ηij)

after(ηij) ≡ at(cs i) ∨

¬at(ηij) ∧

∨
k �=i,j

at(ηik)




after(ρi) ≡ at(ncs i)

The at predicates are program variables and are not defined in terms of anything
else.
We will identify an atomic operation with its action. Thus, if ξ is an atomic

operation, (s, t) ∈ ξ means that the pair of states (s, t) is an element of the action
of ξ. Similarly, we say that an atomic operation does not modify a variable iff its
action does not modify the variable.
Our informal statement, that at(ξ) holds iff control is at ξ and after(ξ) holds

iff control is immediately after ξ, is formalized as the following assumption about
atomic operations.

CTL1. For any atomic operation ξ: if (s, t) ∈ ξ then s |= at(ξ) and t |= after(ξ).

For simple cobegin programs like the simplified bakery algorithm, there is a
variable at(ξ) for each atomic operation ξ in the set Π of the program’s atomic
operations. For programs written in a different language, the at predicates might
be defined in terms of other control variables.

2.3 The Hoare Logic of Actions

Definition of Hoare Triples

Let ξ be an action and let P and Q be predicates. We define the Hoare triple
{P} ξ {Q} to mean ∀(s, t) ∈ ξ: (s |= P ) ⇒ (t |= Q). In other words, {P} ξ {Q}
asserts that if P is true in state s and executing ξ in state s can yield state t, then
Q is true in state t. While this definition is superficially the same as the usual
one for ordinary Hoare triples, it is different in two respects: (i) ξ is an action (a
set of pairs of states), not a program statement, and (ii) the state includes control
variables, not just ordinary program variables.

Proving Hoare Triples

The language-independent rules for reasoning about ordinary Hoare triples [8] ap-
ply to our Hoare triples as well. Because our states include control variables, we
do not need a separate axiom or proof rule for every language construct. Instead,
we can use the simple rule that, if ξ is the action (2), then {P} ξ {Q} is equiva-
lent to |= (P ∧ b) ⇒ Qx1

e1
···
···
xm
em

, where Qx1
e1

···
···
xm
em

is the predicate defined by letting
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s |= Qx1
e1

···
···
xm
em

equal sx1
e1(s)

···
···
xm

em(s) |= Q, for any state s.3 This rule follows from the
definitions of {P} ξ {Q} and of action (2). As an example, the reader can derive
{(num[i] > 0) ∨ ¬at(ηij)} ηij {i � j} from this rule and the definition of i � j.

Action Leaving a Predicate Invariant or Unchanged
We say that a predicate P is an invariant of an action ξ, or that ξ leaves P invariant,
iff {P} ξ {P} holds. In other words, P is an invariant of ξ iff any execution of ξ
from a state in which P is true yields a state in which P is true.
We say that ξ leaves P unchanged iff it leaves both P and ¬P invariant, which

is true iff (s |= P ) ≡ (t |= P ) for all (s, t) ∈ ξ.

Properties of Invariance
We now list some simple properties that are useful for reasoning about invariance,
where ξ is an arbitrary atomic operation and P and the Ph are predicates.

AC1. If P does not access the set of variables modified by ξ, then ξ leaves P
unchanged.

AC2. If ξ leaves each Ph invariant, then it leaves
∧
h Ph and

∨
h Ph invariant.

AC3. If |= P ⇒ ¬at(ξ) then ξ leaves P invariant.
AC4. ξ leaves P invariant iff it leaves (at(ξ) ∨ after(ξ)) ∧ P invariant.

Properties AC1 and AC2 follow from the definitions of what it means for an action
to leave a predicate invariant or unchanged. Properties AC3 and AC4 follow from
the definition of invariance and assumption CTL1.
Remember that an atomic operation ξ consists of an action together with the

control predicates at(ξ) and after(ξ). Properties of atomic operations that do not
mention control predicates, such as properties AC1 and AC2, hold for any action.

2.4 Properties of a Program

Executions
An execution of the program consists of a finite or infinite sequence s0, s1, . . . of
states such that each pair (sm, sm+1) is in some action of Π.4 In other words, an
execution is any sequence of states obtained by starting in an arbitrary state and
executing program actions. Properties of the program are expressed as assertions
about the set of executions.
We do not assume any particular starting state for the execution, so the simplified

bakery algorithm has executions beginning in a state with all processes at their
critical sections. In our formalism, the usual assumption that the program starts
in a proper initial state appears as a hypothesis in the property to be proved.
We can consider two programs to be equivalent if they have the same set of

executions. A pair of states is in an action of Π iff it is in the union of all the
actions of Π. (Since actions are sets of pairs, the union of actions is just ordinary
set union.) The set of executions of a program depends only on the set S of states
and the union of the actions in Π. Thus, two programs may be considered equivalent

3In a syntactic approach, one would define Qx1
e1

······
xm
em when Q and the ep are formulas rather

than state functions. Given formulas for Q and the ep, the formula for Qx1
e1

······
xm
em is obtained by

simultaneously substituting ep for xp, for p = 1, . . . , m.
4Since we are concerned only with safety properties, we need not disallow finite sequences that
end in nonhalting states.
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if they have the same set of states and the unions of their atomic operations are
the same.
There can be many different sets Π that have the same union and thus define

equivalent programs. For example, suppose a program has an atomic operation ξ
that sends a message to some process p and an atomic operation µ that sends a
message to some other process q. Replacing these two atomic operations by the
single atomic operation ξ ∪ µ that sends a message to either p or q results in a new
set Π that defines an equivalent program. (We define at(ξ ∪ µ) to be at(ξ) ∨ at(µ)
and after(ξ ∪ µ) to be after(ξ)∨after(µ).) The action ξ∪µ will be nondeterministic
if there exists a state in which the program can send a message to either p or q.

Properties
A property is a boolean-valued function on the set of sequences of states. The
program is said to satisfy a property P , written |= P , iff P is true for every program
execution.
If P and Q are predicates, we define P ⇒ ✷Q to be the property that is true of

a sequence s0, s1, . . . iff ¬(s0 |= P )∨ (∀m: sm |= Q). Thus, |= P ⇒ ✷Q asserts that
Q is true for every state of every program execution that starts in a state with P
true.
We consider only properties of the form P ⇒ ✷Q. Partial correctness is expressed

in this form by letting P be the initial condition and Q the predicate asserting that
the termination condition (which is a control predicate) implies that the answer
is correct. The mutual exclusion property of the simplified bakery algorithm is
expressed as P ⇒ ✷Q where P is

∧
i at(ncs i) and Q is

∧
i�=j ¬(at(cs i) ∧ at(csj)).

Program Invariants
A predicate is said to be a program invariant iff it is an invariant of every action of
Π, or, equivalently, iff it is an invariant of the union of all actions of Π. A predicate
I is a program invariant iff |= I ⇒ ✷I. It is clear that |= P ⇒ I, |= I ⇒ ✷I, and
|= I ⇒ Q together imply |= P ⇒ ✷Q. Hence, to prove |= P ⇒ ✷Q, it suffices
to find a program invariant I such that |= P ⇒ I and |= I ⇒ Q. This reduces
the proof of a safety property, which is an assertion about executions, to reasoning
about predicates and individual actions.

2.5 Simple cobegin Programs

We will describe the Owicki-Gries method only for programs that can be written in
a simple language of nested cobegins. We now describe these programs and make
some definitions that pertain only to them and not to arbitrary programs.

The Programs and Their Control Predicates
A simple cobegin program is one that can be written in a language consisting
of elementary statements (such as assignment and await statements), concate-
nation (“;”), nonterminating loop—endloop statements, and cobegin—coend
statements. We require that any “loop” keywords must precede every “;”. Each
elementary statement is enclosed in angle brackets, indicating that it represents an
atomic operation.
The control variables of a simple cobegin program consist of the variables at(ξ)

for all its atomic operations ξ. The after predicates can be defined in terms of the
at variables by a simple recursion on the program structure; we will not bother
giving the general definition.
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var num: array 1. . .n of nonnegative integer;

cobegin i=1...n

loop ncsi: 〈noncritical section〉;
βi: 〈num[i] := 1 + max{num[j] : j �= i}〉 {num[i] > 0};
δi: cobegin j �=i

{num[i] > 0} ηij : 〈await i� j〉 {(num[i] > 0) ∧ (i� j)}
coend;

{(num[i] > 0) ∧ ∧
j �=i

(i� j)}
csi: 〈critical section〉;
ρi: 〈num[i] := 0〉

endloop
coend

Fig. 2. An annotation of the simplified bakery algorithm.

Atomic Operations Belonging to Different Processes
We say that two atomic operations belong to different processes iff they occur in
different clauses of the same cobegin statement. For example, in the simplified
bakery algorithm of Figure 1, ηij and ηik belong to different processes if j �= k,
while βi and ηij do not belong to different processes. The Owicki-Gries method is
based upon the following property of simple cobegin programs.

CTL2. If atomic operations ξ and µ in Π belong to different processes, then ξ leaves
at(µ) and after(µ) unchanged.

Predecessors
We say that an atomic operation µ is a predecessor of an atomic operation ξ iff
control can reach ξ by executing µ. In the simplified bakery algorithm, βi is the only
predecessor of each ηij , and each ηij is the only predecessor of csi. Our restriction
that a “loop” cannot follow a “;” implies that an atomic operation has more than
one predecessor only if it immediately follows a “coend”. If the body of a loop
statement consists of a single atomic operation ξ, then ξ is its own predecessor.

2.6 The Owicki-Gries Method

Decomposing the Invariant
One can prove directly that a predicate I is a program invariant by proving {I} ξ {I}
for every atomic operation ξ, as proposed by Ashcroft [2]. However, in the Owicki-
Gries method [10; 14], the proof is decomposed into smaller steps by writing I as a
conjunction of simpler predicates. For our cobegin programs, I is written in the
form ∧

ξ∈Π

(at(ξ) ⇒ Iξ) ∧ (after(ξ) ⇒ I ′ξ) (3)

for predicates Iξ and I ′ξ. Intuitively, I is the predicate asserting that, for every
atomic operation ξ, if control is at ξ then Iξ is true, and if control is immediately
after ξ then I ′ξ is true. We represent I as a program annotation, where {Iξ} is
written immediately before and {I ′ξ} immediately after ξ, omitting predicates that
are identically true. We say that the annotation is invariant iff the predicate I
represented by the annotation is a program invariant.
Figure 2 shows such an annotation for the simplified bakery algorithm. For the
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predicate I defined by this annotation, it is easy to see that |= ∧
i at(ncsi) ⇒ I,

and some predicate calculus reasoning shows that the definition of i � j implies
|= I ⇒ ∧

i�=j ¬(at(cs i) ∧ at(csj)). Hence, to prove the mutual exclusion property
for this algorithm, we need prove only the invariance of I.

The Owicki-Gries Conditions

One proves the invariance of an annotation by proving the following two Owicki-
Gries conditions.

Sequential Correctness:
(a) For every action ξ ∈ Π: {Iξ} ξ {I ′ξ}.
(b) For every action ξ ∈ Π: if µ1, . . . , µm are the predecessors of ξ, then

|= (at(ξ) ∧ ∧
p I

′
µp
) ⇒ Iξ.

Interference Freedom: For every pair of distinct atomic operations ξ, µ in Π that
belong to different processes: {Iµ ∧ Iξ}µ {Iξ} and {Iµ ∧ I ′ξ}µ {I ′ξ}.

The proof that these conditions imply the invariance of (3) uses properties CTL1,
CTL2, and AC2, the definition of a Hoare triple, and properties of the control
structure of simple cobegin programs.
We urge the reader who is not familiar with the Owicki-Gries method to use it

to prove the invariance of the annotation of Figure 2.

3. THE WEAKEST AND STRONGEST INVARIANTS

3.1 More About Actions

The Composition of Actions

Let ξµ denote the composition of the actions ξ and µ, which is defined to be the
action {(s, u) : ∃t: ((s, t) ∈ ξ)∧((t, u) ∈ µ)}. Thus, ξµ is executed by first executing
ξ then executing µ, all as a single action. The composition of two actions in Π, the
set of atomic operations of the program, is usually not an element of Π.
The composition ξ1 · · · ξm of any finite, nonempty sequence of actions is defined

in the obvious way, and the composition of the null sequence of actions is defined
to be the identity action {(s, s) : s ∈ S}. Thus, any element in Π∗, the set of finite
sequences of atomic operations in Π, is defined to be an action.

Commutativity of Actions

We say that ξ right commutes with µ (or that µ left commutes with ξ) iff ξµ ⊆ µξ.
Hence, ξ right commutes with µ iff (s, t) ∈ ξ and (t, u) ∈ µ imply that there exists
a state t′ with (s, t′) ∈ µ and (t′, u) ∈ ξ. Intuitively, ξ right commutes with µ iff
any state reachable from state s by first executing ξ and then executing µ is also
reachable from s by first executing µ then executing ξ.
Two actions are said to commute iff each of them right commutes with the other—

in other words, iff executing them in either order has the same effect. A semaphore
action P (s) right commutes with a semaphore action V (s) in a different process,
but these two actions do not commute.
The following property is a consequence of the definitions of commutativity and

of what it means for an action not to access a set of variables.
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AC5. Two actions commute if each of them does not access the set of variables
modified by the other.

3.2 The Weakest Liberal Precondition

For any action ξ and predicate Q, we define the predicate wlp(ξ,Q) by letting
s |= wlp(ξ,Q) equal ∀t ∈ S: ((s, t) ∈ ξ) ⇒ (t |= Q). The operator wlp is the
weakest liberal precondition operator [5]. The predicate wlp(ξ,Q) is the weakest one
satisfying {wlp(ξ,Q)} ξ {Q}. Thus, {P} ξ {Q} is equivalent to |= P ⇒ wlp(ξ,Q),
so ξ leaves I invariant iff |= I ⇒ wlp(ξ, I). If ξ is the action defined by (2), then
wlp(ξ,Q) ≡ Qx1

e1
···
···
xm
em

∨ ¬b.
Our definition of wlp(ξ,Q) differs from the usual definition in that (i) ξ is an

action rather than a program statement, and (ii) our predicates may be functions
of control variables, rather than just of ordinary variables. For example, CTL1 and
the definition of wlp imply |= (¬at(ξ)) ⇒ wlp(ξ,Q) for any atomic operation ξ and
predicate Q. This result has no counterpart for the usual definition of wlp.
We will use the following properties of wlp, where P , Q, and the Qh are any

predicates, and ξ and µ are any actions.

WLP0. |= wlp(ξµ,Q) ≡ wlp(ξ,wlp(µ,Q))
WLP1. |= ∧

h wlp(ξ,Qh) ≡ wlp(ξ,
∧
hQh)

WLP2. If |= P ⇒ Q then |= wlp(ξ, P ) ⇒ wlp(ξ,Q).
WLP3. If ξ leaves I invariant and ξ right commutes with µ, then ξ leaves wlp(µ, I)

invariant.
WLP4. If ξ leaves P unchanged, then |= wlp(ξ, P ∨Q) ≡ P ∨ wlp(ξ,Q).
WLP5. If a set of variables is not accessed by ξ and not accessed by Q, then it is

not accessed by wlp(ξ,Q).

Properties WLP0–WLP2 follow easily from the definition of wlp and are well
known. Note that in WLP1, h can range over an infinite set of indices. Prop-
erty WLP3 follows from WLP0 and the easily derived property that α ⊆ β implies
|= wlp(β,Q) ⇒ wlp(α,Q). Property WLP4 can be derived from WLP1 and WLP2,
although it is easier to prove it directly from the definition of wlp. Property WLP5
follows from the definitions of wlp and of what it means for a predicate or an action
not to access a set of variables.

3.3 The Strongest Postcondition

The strongest postcondition operator, sp, is defined by letting t |= sp(ξ, P ) equal
∃s ∈ S: ((s, t) ∈ ξ) ∧ (s |= P ). It follows from this definition that {P} ξ {Q} is
equivalent to |= sp(ξ, P ) ⇒ Q.
As observed by de Bakker and Meertens [4], the operator sp is a dual of wlp; for

every property of wlp there is a corresponding dual property of sp. For example,
the following are the duals of WLP2 and WLP3.

SP2. If |= P ⇒ Q then |= sp(ξ, P ) ⇒ sp(ξ,Q).
SP3. If ξ leaves I invariant and ξ left commutes with µ, then ξ leaves sp(µ, I)

invariant.

The interested reader can derive these and the duals of the other properties of wlp.
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3.4 Nonatomic Operations

Operations and Their Control Predicates
An operation σ consists of a set of atomic operations and two control predicates,
at(σ) and after(σ). The set of operations of σ contains all the atomic operations
that constitute σ, and the predicates at(σ) and after(σ) assert that control is at
the entry and exit point of σ, respectively. For example, in the simplified bakery
algorithm, the operation δi has {ηij : j �= i} as its set of operations, at(δi) ≡∧
j at(ηij), and after(δi) ≡ at(cs i).
We identify an operation σ with its set of atomic operations, writing ξ ∈ σ to

denote that ξ is an element of σ’s set of atomic operations. We can view an operation
as a set of actions plus certain control information, so any concept defined for sets
of actions is also defined for operations. Any property of operations that does not
mention control predicates holds for an arbitrary set of actions.
If σ is an operation, we define the control predicate in(σ) to equal

∨
ξ∈σ at(ξ), so

in(σ) asserts that control is inside σ or at its entry point. We make the following
assumption about the relation between in(σ), after(σ), and the control predicates
for the atomic operations in σ.

CTL3. |= (in(σ) ∨ after(σ)) ≡ ∨
ξ∈σ(at(ξ) ∨ after(ξ))

We identify an atomic operation ξ with the singleton set {ξ}, so an atomic oper-
ation is an operation consisting of a single action. If ξ is an atomic operation, then
in(ξ) is equivalent to at(ξ). Therefore, any rules for reasoning about nonatomic
operations should reduce to rules for atomic operations when in is replaced by at.

The Action 〈σ〉
For an operation σ, we let 〈σ〉 denote the action consisting of all pairs (s, t) such
that an execution of σ starting from state s can terminate in state t. In other
words, 〈σ〉 is the action obtained by considering σ to be an atomic operation,
where nonterminating executions are disallowed. If |= after(σ) ⇒ ¬in(σ) holds, so
σ is not a “self-looping” operation, then we can define the action 〈σ〉 in terms of σ,
at(σ), and after(σ) by

〈σ〉 =
⋃
λ∈σ∗

{(s, t) ∈ λ : (s |= at(σ)) ∧ (t |= after(σ))} (4)

When self-looping operations are allowed, the definition of 〈σ〉 is more complicated
and is omitted.

Hoare Triples, wlp, and sp for Operations
We have defined Hoare triples, wlp, and sp for actions. We extend these definitions
to operations by defining {P} σ {Q} to equal {P} 〈σ〉 {Q}, defining wlp(σ,Q) to
equal wlp(〈σ〉, Q), etc.
These concepts are traditionally defined for program statements. If we view a

program statement as an operation, then our definitions are essentially the same
as the conventional ones—except that our program state includes control infor-
mation. More precisely, if operation σ represents a program statement S, and
the predicate Q does not access the set of control variables, then wlp(σ,Q) equals
wlp(S,Q)∨¬at(σ), where wlp(S,−) denotes the traditional weakest liberal precon-
dition operator for statement S.
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Some Definitions for Sets of Actions
We now extend the definitions of some properties of individual actions to properties
of sets of actions (and hence of operations) by defining them to hold for a set of
actions iff they hold for each action in the set. A set σ of actions is said to leave
a predicate P invariant iff each action in σ leaves P invariant, and to leave P
unchanged iff each action in σ leaves P unchanged. We say that σ modifies a
variable iff some action in σ modifies the variable, and that it does not access a set
of variables iff each of its actions does not access the set of variables. We say that
σ right commutes with a set of actions τ iff every action of σ right commutes with
every action of τ ; the definitions of left commutes and commutes are analogous.

Properties of Operations
We will use the following general properties of operations, where σ and τ are any
operations and P , Q, and the Ph are any predicates. Note that OP1, OP2, and
OP5 hold for arbitrary sets of actions, not just for operations.

OP1. If P does not access the set of variables modified by σ, then σ leaves P
unchanged.

OP2. If σ leaves each Ph invariant, then it leaves
∧
h Ph and

∨
h Ph invariant.

OP3. σ leaves P ∧ ¬in(σ) invariant.
OP4. σ leaves P invariant iff it leaves (in(σ) ∨ after(σ)) ∧ P invariant.
OP5. Operations σ and τ commute if each of them does not access the set of

variables modified by the other.

Properties OP1, OP2, and OP5 are immediate consequences of the correspond-
ingly-numbered properties of actions. Property OP3 follows from AC3 and the
definition of in(σ). Property OP4 follows from AC3, AC4, the definition of in(σ),
and assumption CTL3.

3.5 The Weakest Invariant

Definition of win
Let σ be a set of actions and let Q be a predicate. The predicate win(σ,Q) is
defined to equal the disjunction of all predicates I such that |= I ⇒ Q and σ leaves
I invariant. The operator win is called the weakest invariant operator. By OP2,
win(σ,Q) is an invariant of σ; it is the weakest invariant of σ that implies Q. The
set of actions σ leaves Q invariant iff |= Q ≡ win(σ,Q). (Since |= win(σ,Q) ⇒ Q
always holds, σ leaves Q invariant iff |= Q ⇒ win(σ,Q).)

Expressing win in Terms of wlp
The win operator can be expressed in terms of wlp as follows.

win(σ,Q) ≡
∧
λ∈σ∗

wlp(λ,Q) (5)

Let R denote the right-hand side of (5). To verify (5), we must prove that (i) |= R ⇒
Q, (ii) R is an invariant of σ, and (iii) R is implied by every invariant of σ. Prop-
erty (i) holds because the empty sequence, which is in σ∗, is the identity action ι,
and wlp(ι, Q) = Q. To prove (ii), observe that for any action ξ of σ, WLP0 and
WLP1 imply |= wlp(ξ, R) ≡ ∧

λ wlp(ξλ,Q). Hence |= R ⇒ wlp(ξ, R), so ξ leaves
R invariant. Finally, it follows from WLP0 and WLP2 that |= I ⇒ wlp(ξ, I) and
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|= I ⇒ wlp(λ,Q) imply |= I ⇒ wlp(ξλ,Q). A simple induction argument then
shows that if σ leaves I invariant and |= I ⇒ Q, then |= I ⇒ wlp(λ,Q) for all
λ ∈ σ∗, which proves (iii).
Let 〈σ∗〉 be ⋃

λ∈σ∗ λ, the action consisting of all (s, t) such that executing some
finite number of actions of σ starting in s yields t. It is easy to show that
|= win(σ,Q) ≡ wlp(〈σ∗〉, Q). If σ is an operation, so 〈σ〉 is defined, then 〈σ∗〉
is a superset of 〈σ〉. While 〈σ〉 contains pairs of states obtained only from complete
executions of σ, the action 〈σ∗〉 includes pairs obtained from incomplete executions
as well.

Properties of win
We will use the following properties of the win operator, where P , Q, and the Qh
are any predicates and σ and τ are any sets of actions. They follow easily from
equation (5) and the corresponding properties of wlp.

WIN1. |= ∧
h win(σ,Qh) ≡ win(σ,

∧
hQh)

WIN2. If |= P ⇒ Q then |= win(σ, P ) ⇒ win(σ,Q).
WIN3. If σ leaves I invariant and σ right commutes with τ , then σ leaves win(τ, I)

invariant.
WIN4. If σ leaves P unchanged, then |= win(σ, P ∨Q) ≡ P ∨ win(σ,Q).
WIN5. If a set of variables is not accessed by σ and not accessed by Q, then it is

not accessed by win(σ,Q).

The Predicate Transformer winp
Of particular importance in verifying programs are formulas of the form winp(σ,
after(σ) ⇒ Q), where σ is an operation. We denote this formula by winp(σ,Q),
where winp stands for weakest invariant of a postcondition. The predicate winp(σ,
after(σ) ⇒ Q), asserts of a state s that if control is anywhere in σ, then any
terminating execution of σ starting in state s terminates with Q true. Contrast
winp(σ,Q) with wlp(σ,Q), which makes this assertion only for a state s with control
at the beginning of σ. We will use the following properties of winp.

WINP1. |= at(σ) ∧ winp(σ,Q) ≡ at(σ) ∧ wlp(σ,Q)
WINP2. If |= after(σ) ⇒ ¬in(σ) then |= after(σ) ∧ winp(σ,Q) ≡ after(σ) ∧Q.
WINP3. If σ leaves P invariant, then |= P ∧ winp(σ,Q) ≡ P ∧ winp(σ, P ∧Q).
WINP4. If |= after(σ) ⇒ ¬in(σ) and σ leaves P invariant, then σ leaves (in(σ) ∧

P ∧ winp(σ,Q)) ∨ (after(σ) ∧ P ∧Q) invariant.

The validity of WINP1 should be obvious from our discussion of the relation be-
tween winp and wlp. It can be derived from (4), (5), and the observation that
|= wlp(

⋃
h ξh, Q) ≡ ∧

h wlp(ξh, Q). Property WINP2 is proved as follows.5

1. |= after(σ) ≡ win(σ, after(σ))
Proof: OP3 and the hypothesis imply that σ leaves after(σ) invariant.

2. |= after(σ) ∧ winp(σ,Q) ≡ win(σ, after(σ) ∧Q)
Proof: By 1, WIN1, and the definition of winp, since |= (after(σ)∧ (after(σ) ⇒
Q)) ≡ after(σ) ∧Q.

5Complicated proofs are broken down into numbered steps. Boxed numbers indicate the statement
or statements that immediately imply the desired conclusion.
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3 |= after(σ) ∧ winp(σ,Q) ≡ after(σ) ∧Q.
Proof: By 2 and the definition of win, since OP3 and the hypothesis imply that
σ leaves after(σ) ∧Q invariant, so win(σ, after(σ) ∧Q) equals after(σ) ∧Q.

Property WINP3 is proved as follows.

1. |= winp(σ, P ∧Q) ≡ winp(σ, P ) ∧ winp(σ,Q)
Proof: By the definition of winp and WIN1, since (after(σ) ⇒ P )∧(after(σ) ⇒
Q) equals after(σ) ⇒ (P ∧Q).

2. |= P ⇒ winp(σ, P )
Proof: Since |= P ⇒ (after(σ) ⇒ P ), WIN2 implies |= win(σ, P ) ⇒ winp(σ, P ).
But σ leaves P invariant, so |= win(σ, P ) ≡ P .

3 |= (P ∧ winp(σ,Q)) ⇒ (P ∧ winp(σ, P ∧Q))
Proof: By 1 and 2.

4 |= (P ∧ winp(σ, P ∧Q)) ⇒ (P ∧ winp(σ,Q))
Proof: By WIN2, |= winp(σ, P ∧Q) ⇒ winp(σ,Q).

To prove WINP4, we apply WINP2 to rewrite (in(σ)∧P ∧winp(σ,Q)) ∨ (after(σ)∧
P ∧Q) as (in(σ) ∨ after(σ)) ∧ P ∧ winp(σ,Q) and then apply OP2.

3.6 The Strongest Invariant

Just as sp is the dual of wlp, we can define an operator sin, the strongest invariant,
that is dual to win. For any set of actions σ and predicate P , sin(σ, P ) is defined
to be the conjunction of all invariants I of σ that are implied by P . Corresponding
to (5), we have

sin(σ, P ) ≡
∨
λ∈σ∗

sp(λ, P ) (6)

The dual of winp is sinp(σ, P ), defined to be sin(σ, at(σ) ∧ P ), where σ is an op-
eration. We will use the following properties, dual to WIN2 and WIN3, which can
be derived from (6), SP2, and SP3.

SIN2. If |= P ⇒ Q then |= sin(σ, P ) ⇒ sin(σ,Q).
SIN3. If σ leaves I invariant and σ left commutes with τ , then σ leaves sin(τ, I)

invariant.

3.7 Simple cobegin Programs with Unspecified Atomicity

The Programs and Their Control Predicates
We now consider simple cobegin programs containing elementary statements that
are not atomic operations. These are programs that can be written in the same
simple language considered above, except without the requirement that every ele-
mentary statement be enclosed in angle brackets. An example of such a program is
the bakery algorithm, given in Figure 3. This is essentially the same as the original
version in [9], though with different notation. It is an extreme example because no
atomic operations are specified.
Figure 3 says nothing about the grain of atomicity of the program’s operations.

Statement βi could be executed by reading each num[j] one bit at a time, and
writing num[i] one bit at a time. The individual bits could even be read and
written several times. Thus, Figure 3 does not describe a single program; it is a
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array num[1 . . . n] of nonnegative integer
array c[1 . . . n] of boolean

cobegin i=1...n

loop ncsi: noncritical section;
αi: c[i] := true;
βi: num[i] := 1 + max{num [j] : j �= i};
γi: c[i] := false;
δi: cobegin j �=i

εij : await ¬c[j] ;
ηij : await i� j

coend;
csi: critical section;
ρi: num[i] := 0

endloop
coend

Fig. 3. The bakery algorithm.

specification of a class of programs that are valid implementations of the bakery
algorithm. Proving a property of the bakery algorithm means proving that property
for any valid implementation.
In addition to the ordinary variables num[i] and c[i], an implementation of the

bakery algorithm will contain hidden variables—variables not explicitly mentioned
in Figure 3. For example, hidden variables are needed to hold the values of in-
termediate computations when executing βi. In the bakery algorithm, the control
variables are hidden variables. We can’t write an explicit expression for the predi-
cate in(βi) in terms of variables at(ξ) for atomic operations ξ because Figure 3 does
not specify what those atomic operations are. Such an expression can be written
only for a particular implementation, in which the atomic operations are given.
We let Ω denote the set of operations that correspond to the elementary state-

ments and tests of the program. For the bakery algorithm, Ω = {ncsi, αi, βi, γi, εij ,
ηij , csi, ρi : i �= j}. The set Ω is a partition of the set Π of atomic operations, since
each atomic operation of the program belongs to exactly one operation in Ω. Of
course, the actual atomic operations that constitute an element of Ω depend upon
the implementation.
We can deduce certain relations between the at and after predicates from the pro-

gram control structure. For example, in the bakery algorithm, we have |= at(csi) ≡∧
j �=i after(ηij) and |= (after(ηij) ∧ in(cs i)) ⇒ at(cs i). We will assume these obvi-

ous relations without giving a formal method for deriving them.

Operations Belonging to Different Processes
The definition of what it means for two arbitrary operations to belong to different
processes is the same as the definition for atomic operations—namely, that σ and τ
belong to different processes iff they occur in different clauses of the same cobegin
statement. We make the following assumption, which is the generalization of CTL2
to arbitrary operations.

CTL4. If operations σ and τ in Ω belong to different processes, then τ leaves at(σ),
in(σ), and after(σ) unchanged.
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Predecessors
The definition of one operation being a predecessor of another is essentially the same
as the definition for atomic operations—namely, an operation ρ in Ω is a predecessor
of an operation σ in Ω iff control can reach σ by completing the execution of ρ. In
the bakery algorithm, ρi is the only predecessor of ncsi, and each ηij is a predecessor
of csi.

The Semantics of Nonatomic Operations
To reason formally about programs with nonatomic operations, we must make some
assumptions about those operations. Our first assumption is that, in the absence of
concurrent execution of other operations, a nonatomic operation has the expected
meaning. For example, executing a nonatomic assignment x := 2 ∗ y when y equals
1 sets x to 2. Formally, this means that we assume the validity of ordinary rules
for manipulating wlp formulas involving nonatomic operations. Thus, if σ is a
nonatomic assignment x := 2 ∗ y, then wlp(σ, x = 2) equals (y = 1) ∨ ¬at(σ).
What it means to execute a nonatomic operation in the presence of concurrent

activity is a subtle issue. Consider again a nonatomic assignment x := 2 ∗ y.
If x is not concurrently modified by another operation, must execution of this
assignment set x to an even value? One can argue that the answer is “yes”, since
regardless of what value is obtained when reading y, multiplying it by 2 yields an
even number. On the other hand, one can argue that the answer is “no”, since
〈x := y〉; 〈x := x+ y〉 is a valid implementation of x := 2 ∗ y whose execution could
set x to an odd value—for example, if another process increments y by 1 in the
middle of the execution.
Deciding what the semantics of x := 2 ∗ y should be is a problem in language

design—a topic we wish to avoid. Instead, we just assume that this operation does
not modify or access any variables we don’t expect it to. We can make the obvious
assumption that x is the only nonhidden variable modified by this operation, and
the operation does not access any set of nonhidden variables that does not contain
x or y. However, we also need some assumption about the hidden variables that
the operation may modify or access.
Intuitively, we assume that each process has its own local variables that are not

accessed or modified by any other process. More precisely, we assume that, for
each operation σ in Ω, there is a set of variables that are local to σ. If σ and
τ are operations in different processes, we assume that they have disjoint sets of
local variables. We then assume the following rules for reasoning about nonatomic
assignment and await statements.

Assignment Rule A nonatomic operation x := exp(y1, . . . , ym) modifies only
x and variables local to the operation. The operation does not access any set of
variables that contains neither x, nor any yp, nor any variable local to the operation.

Await Rule A nonatomic operation await exp(y1, . . . , ym) modifies only vari-
ables local to it. The operation does not access any set of variables that contains
neither any yp nor any variable local to the operation.

3.8 The Owicki-Gries Method with Unspecified Atomicity

Decomposing the Invariant
We now extend the Owicki-Gries method to permit reasoning about simple cobegin
programs like the bakery algorithm with nonatomic elementary statements. A
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safety property is still proved by finding the appropriate invariant I, where I is
written as an annotation. However, the annotation now denotes the predicate∧

σ∈Ω

(in(σ) ⇒ Iσ) ∧ (after(σ) ⇒ I ′σ) (7)

Intuitively, this predicate asserts that, for each operation σ, if control is in σ then
Iσ is true, and if control is immediately after σ then I ′σ is true. Since in(σ) is
equivalent to at(σ) if σ is an atomic operation, (7) is the same as (3) if every
operation σ is atomic.

The Owicki-Gries Conditions
To prove the invariance of an annotation, one proves the following nonatomic
Owicki-Gries conditions, where Jσ is defined to be (in(σ) ∧ Iσ) ∨ (after(σ) ∧ I ′σ).

Sequential Correctness:
(a) Every operation σ ∈ Ω leaves Jσ invariant.
(b) For every operation σ ∈ Ω and every predecessor set ρ1, . . . , ρm of σ:

|= (at(σ) ∧ ∧
p I

′
ρp
) ⇒ Iσ.

Interference Freedom: For every pair of distinct operations σ, τ in Ω that belong
to different processes: τ leaves in(σ) ∧ Iσ ∧ Jτ and after(σ) ∧ I ′σ ∧ Jτ invariant.

The proof that these conditions imply the invariance of I is similar to the proof for
the atomic Owicki-Gries conditions.
By part (a) of the sequential correctness condition, each operation τ in Ω leaves Jτ

invariant. Therefore, OP2 implies that to prove the interference-freedom condition
for the pair σ, τ , it suffices to prove that τ leaves in(σ) ∧ Iσ and after(σ) ∧ I ′σ
invariant. Since σ and τ are in different processes, τ leaves in(σ) and after(σ)
invariant (by CTL4). Hence by OP2, to prove this interference-freedom condition,
it also suffices to prove that τ leaves Iσ and I ′σ invariant.
For an atomic operation ξ, the formula {Iξ} ξ {I ′ξ} is equivalent to the assertion

that ξ leaves Jξ invariant. Hence, if all operations are atomic, the nonatomic
sequential-correctness condition is equivalent to the atomic Owicki-Gries condition.
If σ and τ are atomic operations, the presence of the in(σ) and after(σ) conjuncts
makes this nonatomic interference-freedom condition somewhat weaker than the
atomic Owicki-Gries condition.

4. APPLICATIONS

4.1 The Single-Access Rule

It is usually assumed that an operation may be treated as atomic if it contains at
most one access to a shared variable. We call this assumption the single-access rule.
It was first published by Owicki and Gries in [14], but probably qualifies as a folk
theorem [7]. In the traditional method of reasoning about a concurrent program,
one first applies the single-access rule to replace the program with one containing
larger atomic operations and then applies the atomic Owicki-Gries method to the
new program. We will indicate with an example how the win formalism allows one
to use the nonatomic Owicki-Gries method to reason about the original program
without using the single-access rule to change the grain of atomicity.
The single-access rule is based upon the assumption that any access to a shared

variable is atomic, which may not always be the case. (For example, the variable
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var x, y: array 1. . .n of integer;
m: integer;

cobegin i=1...n αi: 〈m := max(m,x[i]) ;
y[i] := x[i] 〉 {m ≥ y[i]}

coend

Fig. 4. Annotation of a program obtained with the single-action rule.

var x, y: array 1. . .n of integer;
m: integer;

cobegin i=1...n ξi: 〈m := max(m,x[i]) 〉 {m ≥ x[i]};
{winp(ψi,m ≥ y[i])} ψi: y[i] := x[i] {m ≥ y[i]}

coend

Fig. 5. Annotation of the original program.

may be implemented as two words of memory, with access to each word being a
separate action.) A more precise formulation of the single-access rule is that if
θ; ξ;ψ appears in a program, ξ is atomic, and θ and ψ are operations that do not
access any set of variables that are not local to the process containing them, then
θ; ξ;ψ may be considered a single atomic operation.
Any Owicki-Gries method proof of a program transformed with the single-access

rule can be turned into a proof of the original program. However, proving this
result in general is rather tedious and requires properties of win and sin that we
have not introduced. Instead, we illustrate the result with an example—namely,
the annotated program of Figure 4, which is obtained by applying the single-action
rule to combine

ξi: 〈m := max(m,x[i]) 〉
ψi: y[i] := x[i]

into the one atomic operation αi. (In this program,m is the only nonlocal variable.)
It is easy to prove the invariance of this annotation, from which one can deduce
that m ≥ max(y[1], . . . , y[n]) holds upon termination.
Instead of applying the single-action rule, we apply the nonatomic Owicki-Gries

method directly to the annotated program of Figure 5. We give a more detailed
proof than is warranted by the example in order to illustrate the decomposition
into simple steps that is the hallmark of the Owicki-Gries method.

Proof of Sequential Correctness—(a)
We must show that every operation σ leaves Jσ invariant. (Recall that Jσ equals
(in(σ) ∧ Iσ) ∨ (after(σ) ∧ I ′σ).) There are two cases to check: σ = ξi and σ = ψi.

ξi: An atomic action σ leaves Jσ invariant iff {Iσ} σ {I ′σ}. We must therefore prove
{true} ξi {m ≥ x[i]}, which follows from the usual rules for Hoare triples.

ψi: The invariance of Jψi follows immediately from WINP4 (substituting true for
P ).

Proof of Sequential Correctness—(b)
We must show that for every operation σ: if ρ1, . . . , ρm are the predecessors of σ,
then |= at(σ) ∧ ∧

p I
′
ρp

⇒ Iσ. Again, there are two choices of σ to consider.
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ξi: This condition is vacuous, since ξi has no predecessors. (Formally, the condition
holds because the conjunction of an empty set of predicates equals false.)

ψi: Since ξi is the only predecessor of ψi, we must prove

|= (at(ψi) ∧ (m ≥ x[i])) ⇒ winp(ψi,m ≥ y[i])

This formula follows from WINP1, since a simple wlp calculation shows that
at(ψi) ∧ wlp(ψi,m ≥ y[i]) equals at(ψi) ∧ (m ≥ x[i]).

Proof of Interference Freedom

For each operation τ and each operation σ in a different process from τ , we must
prove that τ leaves in(σ)∧ Iσ ∧Jτ and after(σ)∧ I ′σ ∧Jτ invariant. As we observed
in Section 3.8, it suffices to prove that τ leaves Iσ and I ′σ invariant.

Proof for τ = ξk.. There are two choices of σ to be checked—namely, ξi and ψi,
with i �= k.

ξi: Operation ξk obviously leaves Iξi invariant, since Iξi equals true. (Formally,
this follows from OP1.) To prove that ξk leaves I ′ξi

invariant, we must show that
{m ≥ x[i]} ξk {m ≥ x[i]} holds, which follows from the usual rules for reasoning
about Hoare triples.

ψi: 1 ξk leaves I ′ψi
invariant.

Proof: We must show that {m ≥ y[i]} ξk {m ≥ y[i]} holds, which follows by
ordinary reasoning about Hoare triples.

2. ξk commutes with ψi.
Proof: By the Assignment Rule and OP5.

3. ξk leaves ¬after(ψi) invariant.
Proof: By CTL4.

4. ξk leaves after(ψi) ⇒ I ′ψi
invariant.

Proof: By 1, 3, and OP2.
5 ξk leaves Iψi invariant.

Proof: By 2, 4, and WIN3, since Iψi equals win(ψi, after(ψi) ⇒ I ′ψi
).

Proof for τ = ψk.. We have the same two choices for σ.

ξi: Operation ψk obviously leaves Iξi invariant, since Iξi ≡ true. By the Assign-
ment Rule and OP1, it leaves I ′ξi

invariant

ψi: The Assignment Rule and OP1 imply that ψk leaves I ′ψi
invariant (since i �= k).

The proof that it leaves Iψi invariant is similar to the proof for τ = ξk.

4.2 The Bakery Algorithm

We now prove the correctness of the original bakery algorithm, shown in Figure 3.
More precisely, we prove that this algorithm is correct if two additional assumptions
are made about it. Our inability to verify the correctness of the original algorithm
will lead to the discovery of the necessary assumptions. These assumptions will be
discussed later, after the proof.
We have already given rules for reasoning about nonatomic assignment and await

statements. The bakery algorithm also contains the nonatomic critical and non-
critical sections, for which we make the following obvious assumption.
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Section Hypothesis In the bakery algorithm of Figure 3, a csi or ncs i operation
neither modifies nor accesses any set of variables that contains neither any num[j],
nor any c[j], nor any variable local to the operation.

4.2.1 Almost a Proof

In the Owicki-Gries method, the key to the proof is finding an invariant annotation.
In practice, the annotation is obtained by a method of trial and error that can
be viewed as an attempt to approximate a weakest invariant. We begin with an
informal derivation of an invariant annotation for the bakery algorithm. After
obtaining the annotation, we use the Owicki-Gries method to prove its invariance.
This is an idealized presentation; in reality, derivation and proof of the annotation
go hand in hand.
We start with the predicate Icsi

, which is true when control is in process i’s
critical section. The truth of Icsi must imply that no other process j is in its critical
section. The structure of the program suggests that we let Icsi

equal
∧
j �=i I

′
ηij

, so
we look next at I ′ηij

.
The basic idea of the algorithm is that process i enters its critical section only

when num[i] > 0 and i � j. Mutual exclusion is guaranteed because num[i] > 0
and i � j imply that j �� i. Letting Ni denote the predicate num[i] > 0, our first
guess for I ′ηij

is Ni ∧ (i � j).
This choice of I ′ηij

does not satisfy the interference-freedom condition for βj or
ρj (the condition with σ equal to ηij , and τ equal to βj or ρj), since num[j] can
assume arbitrary values during execution of the operations βj and ρj. In such a
case, the standard approach is either to strengthen I ′ηij

to imply that control is not
in βj or ρj , or else to weaken it to be true whenever control is in those operations.
Since process j can execute βj after process i has executed ηij , strengthening I ′ηij

won’t work; we must weaken it. We weaken I ′ηij
to require only that i � j hold

while control in process j is after βj and before ρj . This is still strong enough
to guarantee mutual exclusion when we take Icsi

to be
∧
j �=i I

′
ηij

. Let Qij be the
predicate asserting that if control is in γj , δj , or csj , then i � j. Our next guess
at I ′ηij

is Ni ∧Qij .
Our choice of I ′ηij

still does not satisfy the interference-freedom condition for βj
because βj puts control at γj without necessarily ensuring that i � j. We must
strengthen I ′ηij

by conjoining a predicate to ensure that i � j if executing βj leaves
control at γj . Since winp(βj , i � j) is the predicate asserting that i � j holds
upon completion of βj , we conjoin the predicate in(βj) ⇒ winp(βj , i � j), which
we denote by P ′

ij . We thus choose Ni∧P ′
ij ∧Qij for I ′ηij

. A quick check shows that
this I ′ηij

seems to be left invariant by every operation of process j.
The standard approach is to work backwards through the program, so we now

choose Iηij . Since we know nothing about the atomic operations that constitute
ηij , we are forced to let Iηij equal winp(ηij , I ′ηij

) in order to satisfy part (a) of the
Sequential Correctness Condition. We continue working backwards and now try to
find I ′εij

.
Part (b) of the Sequential Correctness Condition states that at(ηij) ∧ I ′εij

im-
plies Iηij , which equals winp(ηij , Ni ∧ P ′

ij ∧Qij). By WINP1, I ′εij
must therefore

imply wlp(ηij , Ni ∧ P ′
ij ∧Qij). In the absence of concurrent activity, i � j must

hold upon completion of ηij , so executing ηij makes Qij true. In other words,
wlp(ηij , Qij) is identically true. Since executing ηij doesn’t change Ni or P ′

ij , we
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see that wlp(ηij , Ni ∧ P ′
ij ∧Qij) equals Ni ∧P ′

ij , which becomes our natural choice
for I ′εij

.
Continuing backwards in this way, we let Iεij equal winp(εij , I ′εij

) and choose
I ′γi

so it implies wlp(εij , Ni ∧ P ′
ij). Since εij does not change num[i], we see that

wlp(εij , Ni ∧ P ′
ij) equals Ni ∧ wlp(εij , P ′

ij). If wlp(εij , P ′
ij) were identically true,

then we could let I ′γi
equal Ni, which obviously holds after process i has executed

βi and γi. Unfortunately, wlp(εij , P ′
ij) is not identically true; just looking at εij

gives us no reason to believe that P ′
ij will be true after executing it.

Simply manipulating formulas will take us no further; we must think about why
the algorithm works. The predicate P ′

ij asserts that if βj is currently executing,
then running it to completion will set num[j] to a value that makes i � j true. We
expect P ′

ij to be true after executing εij because εij terminates only when it finds
c[j] false, and c[j] is true when control is in statement βj . This suggests replacing
P ′
ij by the weaker predicate (in(βj)∧ c[j]) ⇒ winp(βj , i � j), which we denote Pij .

A complete execution of εij terminates only when c[j] is false, so wlp(εij , Pij) is
identically true and we can satisfy the requirement that I ′γi

implies wlp(εij , Ni ∧ Pij)
by letting I ′γi

equal Ni. Of course, we must also make sure that replacing P ′
ij by

Pij does not invalidate any of the conditions we have already checked.
The rest of the derivation is straightforward, so we stop now and define the

complete annotation. First, recall that the predicates Ni, Pij , and Qij , for i �= j,
are defined as follows:

Ni ≡ num[i] > 0
Pij ≡ (in(βj) ∧ c[j]) ⇒ winp(βj , i � j)
Qij ≡ (in(γj) ∨ in(δj) ∨ in(csj)) ⇒ i � j

where in(δj) is defined to equal
∨
l in(εkl)∨in(ηkl). The predicates of the annotation

are defined below. Each Iσ that contains a winp is equal to winp(σ, I ′σ), but WINP3
has been used to write some of these predicates in a more convenient form.

Incsi≡ true I ′ncsi
≡ true

Iαi ≡ winp(αi, c[i]) I ′αi
≡ c[i]

Iβi ≡ c[i] ∧ winp(βi, Ni) I ′βi
≡ c[i] ∧Ni

Iγi ≡ Ni I ′γi
≡ Ni

Iεij ≡ Ni ∧ winp(εij , Pij) I ′εij
≡ Ni ∧ Pij

Iηij ≡ Ni ∧ Pij ∧ winp(ηij , Qij) I ′ηij
≡ Ni ∧ Pij ∧Qij

Icsi
≡ Ni ∧

∧
j �=i Pij ∧Qij I ′csi

≡ Ni ∧
∧
j �=i Pij ∧Qij

Iρi ≡ true I ′ρi
≡ true

The predicate defined by the annotation is clearly true in the initial state and, since
Icsi

and Icsj
cannot both be true if i �= j, it implies the mutual exclusion condition.

We now attempt to prove the invariance of this annotation using the nonatomic
Owicki-Gries method.

Proof of Sequential Correctness—(a)
We must prove that each operation σ leaves Jσ invariant.

ncs i: Since Incsi
and I ′ncsi

both equal true, OP4 implies that Jncsi
is left invariant

by ncs i.
αi: WINP4 implies that αi leaves Jαi invariant.
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βi: The Assignment Rule and OP1 imply that βi leaves c[i] invariant, andWINP4
then implies that βi leaves Jβi invariant.

γi: The Assignment Rule and OP1 imply that γi leaves Ni invariant, so OP4
implies that γi leaves Jγi invariant.

εij : The Await Rule and OP1 imply that εij leavesNi invariant, so WINP4 implies
that εij leaves Jεij invariant.

ηij : 1. ηij leaves Ni invariant.
Proof: By the Await Rule and OP1.

2. ηij leaves winp(βj , i � j) invariant.
Proof: The Await and Assignment Rules and WIN5 imply that winp(βj ,
i � j) does not access the set of variables modified by ηij , so OP1 implies
that ηij leaves winp(βj , i � j) invariant.

3. ηij leaves ¬(in(βj) ∧ c[j]) invariant.
Proof: CTL4 implies that ηij leaves ¬in(βij) invariant. The Await Rule
and OP1 imply that it leaves ¬c[j] invariant. Rule OP2 then implies that
ηij leaves ¬(in(βj) ∧ c[j]) invariant.

4. ηij leaves Pij invariant.
Proof: By 2, 3, and OP2.

5 ηij leaves Jηij invariant.
Proof: By 1, 4, OP2, and WINP4.

cs i: The Section Hypothesis and OP1 imply that csi leaves Icsi invariant, so OP4
implies that it leaves Jcsi

invariant.
ρi: By OP4, since Iρi and I ′ρi

both equal true.

Proof of Sequential Correctness—(b)
We must show that for every operation σ: if ρ1, . . . , ρm are the predecessors of σ,
then |= at(σ) ∧ ∧

p I
′
ρp

⇒ Iσ. There are eight choices of σ to consider.

ncs i: |= (at(ncs i) ∧ I ′ρi
) ⇒ Incsi

, is trivially true, since Incsi
≡ true.

αi : 1. |= at(αi) ∧ winp(αi, c[i]) ≡ at(αi) ∧ wlp(αi, c[i])
Proof: By WINP1.

2. |= wlp(αi, c[i]) ≡ true
Proof: By an elementary wlp calculation.

3 |= (at(αi) ∧ I ′ncsi
) ⇒ Iαi

Proof: By 1, 2 and the definition of Iαi

βi: Similar to the proof for αi.
γi: |= I ′βi

⇒ Iγi follows immediately from the definitions of I ′βi
and Iγi .

εij : 1. |= at(εij) ∧ winp(εij , Pij) ≡ at(εij) ∧ wlp(εij , Pij)
Proof: By WINP1.

2. |= wlp(εij ,¬c[j]) ⇒ wlp(εij , Pij)
Proof: By WLP2, since the definition of Pij implies |= (¬c[j]) ⇒ Pij .

3. |= wlp(εij ,¬c[j]) ≡ true
Proof: By an elementary wlp calculation.

4. |= at(εij) ⇒ winp(εij , Pij)
Proof: By 1, 2, and 3.

5 |= (at(εij) ∧ I ′γi
) ⇒ Iεij

Proof: By 4 and the definitions of I ′γi
and Iεij .
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ηij : 1. |= at(ηij) ∧ winp(ηij , Qij) ≡ at(ηij) ∧ wlp(ηij , Qij)
Proof: By WINP1.

2. |= wlp(ηij , i � j) ⇒ wlp(ηij , Qij)
Proof: By WLP2, since |= (i � j) ⇒ Qij .

3. |= wlp(ηij , i � j) ≡ true
Proof: By an elementary wlp calculation.

4. |= at(ηij) ⇒ winp(ηij , Qij)
Proof: By 1, 2, and 3.

5 |= (at(ηij) ∧ I ′εij
) ⇒ Iηij

Proof: By 4 and the definitions of I ′εij
and Iηij .

csi: |= (at(cs i)∧
∧
j �=i I

′
ηij

) ⇒ Icsi
follows immediately from the definitions of I ′ηij

and Icsi .
ρi: |= (at(ρi) ∧ I ′csi

) ⇒ Iρi obviously holds, since Iρi equals true.

Proof of Interference Freedom
For each operation τ and each operation σ in a different process from τ , we must
prove that τ leaves both in(σ)∧Iσ∧Jτ and after(σ)∧I ′σ∧Jτ invariant. As observed
in Section 3.8, to prove that τ leaves in(σ)∧Iσ∧Jτ invariant, it suffices to prove that
it leaves either Iσ ∧ Jτ or simply Iσ invariant, and similarly for after(σ) ∧ I ′σ ∧ Jτ .

Proof for τ = ncsk.. We begin by proving that ncsk leaves invariant the “primi-
tive” predicates, such as Pij , that appear in the annotation. Predicate Pij is a little
trickier than the rest because it contains a winp formula. Also, since Pij and Qij
mention the control state of process j, which is changed by ncsj , the case k = j
requires special consideration.

NC1. Operation ncsk leaves c[i], Ni, and Qij invariant, for i �= k and j �= k.
Proof: This follows from the Section Hypothesis and OP1.

NC2. Operation ncsk leaves Pij invariant, for i �= k and j �= k.
Proof: Operation ncsk leaves winp(βj , i � j) invariant by the Section Hy-

pothesis, the Assignment Rule, and WIN5. It leaves ¬in(βj) invariant by
CTL4, and ¬c[j] invariant by the Section Hypothesis and OP1. Rule OP2
then implies that ncsk leaves Pij invariant.

NC3. Operation ncsj leaves Qij invariant, for i �= j.
Proof: Reasoning about control predicates implies

|= (in(ncsj) ∨ after(ncsj)) ∧ (in(γj) ∨ in(δj) ∨ in(csj)) ≡ false

Hence, (in(ncsj)∨ after(ncsj))∧Qij is identically true, so OP4 implies that
ncsj leaves Qij invariant.

NC4. Operation ncsj leaves Pij invariant, for i �= j.
Proof: The proof is similar to that of NC3.

Using these four results, we can prove that ncsk leaves Iσ and I ′σ invariant, for
each operation σ in process i, where i �= k. If Iσ contains no winp expression, then
invariance follows easily from NC1–NC4. The proofs for all σ containing a winp
expression are similar to the proof for σ = εij , which is given below.

εij : 1. ncsk leaves Pij invariant.
Proof: By NC2 and NC4.
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2. ncsk leaves after(εij) ⇒ Pij invariant.
Proof: By 1, CTL4, and OP2.

3. ncsk commutes with εij .
Proof: By the Section Hypothesis, the Await Rule, and OP5.

4. ncsk leaves winp(εij , Pij) invariant.
Proof: By 2, 3, WIN3, and the definition of winp.

5 ncsk leaves Iεij invariant.
Proof: By 4, NC1, and OP2.

6 ncsk leaves I ′εij
invariant.

Proof: By 1, NC1, and OP2.

Proof for τ = αk.. We begin by proving the invariance results for αk that are the
analogs of NC1–NC4. The proofs of α1–α3 are similar to the proofs of NC1–NC3
and are omitted. The strict analog of NC4 does not hold, since αj does not leave
Pij invariant. However, in the annotation, Pij always appears conjoined with Ni,
so it suffices to prove that αj leaves Ni ∧ Pij invariant.

α1. Operation αk leaves c[i], Ni, and Qij invariant, for i �= k and j �= k.
α2. Operation αk leaves Pij invariant, for i �= k and j �= k.
α3. Operation αj leaves Qij invariant, for i �= j.
α4. Operation αj leaves Ni ∧ Pij invariant, for i �= j.

1. |= (in(αj) ∨ after(αj)) ∧ in(βj) ≡ at(βj)
Proof: By reasoning about the control state.

2. |= Ni ⇒ wlp(βj , i � j)
Proof: By elementary reasoning about wlp.

3. |= (Ni ∧ at(βj)) ⇒ winp(βj , i � j)
Proof: By 2 and WINP1.

4. |= ((in(αj) ∨ after(αj)) ∧Ni ∧ in(βj) ∧ c[j]) ⇒ winp(βj , i � j)
Proof: By 1 and 3.

5. |= (in(αj) ∨ after(αj)) ∧Ni ∧ Pij ≡ (in(αj) ∨ after(αj)) ∧Ni

Proof: By 4 and the definition of Pij , since |= (A∧B) ⇒ C implies |= A∧
(B ⇒ C) ≡ A. (Substitute Pij for B ⇒ C.)

6. αj leaves (in(αj) ∨ after(αj)) ∧Ni invariant.
Proof: By α1 and OP4.

7 αj leaves Ni ∧ Pij invariant.
Proof: By 5, 6, and OP4.

We can now prove that αk leaves Iσ and I ′σ invariant for all the operations σ in
process i, where i �= k. Only the proofs for σ equal to βi and εij are given; the rest
are similar or else follow easily from α1–α4.

βi: 1 αk leaves I ′βi
invariant.

Proof: By α1 and OP2.
2. αk leaves after(βi) ⇒ Ni invariant.

Proof: By α1, CTL4, and OP2.
3. αk and βi commute.

Proof: By the Assignment Rule and OP5.
4. αk leaves winp(βi, Ni) invariant.

Proof: By 2, 3, WIN3, and the definition of winp.
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5 αk leaves Iβi invariant.
Proof: By 4, α1, and OP2.

εij : We consider separately the two cases j �= k and j = k. The proof for j �= k is
as follows.
1 αk leaves I ′εij

invariant.
Proof: αk leaves Ni invariant by α1, and it leaves Pij invariant by α2, so
OP2 implies that it leaves Ni ∧ Pij invariant.

2. αk leaves after(εij) ⇒ Pij invariant.
Proof: By α2, CTL4, and OP2.

3. αk commutes with εij .
Proof: By the Assignment and Await Rules (since j �= k) and OP5.

4. αk leaves winp(εij , Pij) invariant.
Proof: By 2, 3, WIN3, and the definition of winp.

5 αk leaves Iεij invariant.
Proof: By 4, α1, and OP2.

We now consider the case j = k.
1 αj leaves I ′εij

invariant.
Proof: By α4.

2. εij leaves Pij unchanged.
Proof: By the Await Rule and OP1.

3. |= win(εij , Pij ∨ ¬after(εij)) ≡ Pij ∨ win(εij ,¬after(εij))
Proof: By 2 and WIN4.

4. |= winp(εij , Pij) ≡ Pij ∨ winp(εij , true)
Proof: By 3 and the definition of winp.

5. |= winp(εij , Pij) ≡ Pij ∨ (¬in(αj) ∧ winp(εij , true))
Proof: By 4 and propositional logic, since |= in(αj) ⇒ ¬in(βj) implies
|= in(αj) ⇒ Pij .

6. |= Iεij ≡ (Ni ∧ Pij) ∨ (¬in(αj) ∧ . . .)
Proof: By 5.

7 αj leaves Iεij invariant.
Proof: By 6, α4, OP3, and OP2.

Proof for τ = βk.. We begin with the analogs of NC1–NC4. The analog of NC3
isn’t valid because βj does not leave Qij invariant. Since Qij always appears in
conjunction with Pij , it would suffice to prove that βj leaves Pij ∧Qij invariant—
but it doesn’t. However, to prove interference freedom, it suffices to show that βj
leaves Jβj ∧ Pij ∧Qij invariant.

β1. Operation βk leaves c[i], Ni, and Qij invariant, for i �= k and j �= k.
Proof: Follows from the Assignment Rule and OP1.

β2. Operation βk leaves Pij invariant, for i �= k and j �= k.
1. βk leaves ¬(in(βj) ∧ c[j]) invariant.

Proof: βk leaves ¬in(βj) invariant by CTL4 and it leaves ¬c[j] invariant by
the Assignment Rule and OP1, so OP2 implies that it leaves ¬(in(βj)∧c[j])
invariant.

2. βk leaves winp(βj , i � j) invariant.
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The crucial fact that βk leaves winp(βj , i � j) invariant cannot be proved.
It must be assumed as an additional hypothesis. This assumption is dis-
cussed later.

3. βk leaves Pij invariant.
Proof: By 1, 2, and OP2.

β3. Operation βj leaves Jβj ∧ Pij ∧Qij invariant, for i �= j.
1. |= Jβj ≡ (in(βj) ∨ after(βj)) ∧ c[j] ∧ winp(βj , Nj)

Proof: By WINP2 and the definition of Jβj .
2. |= (in(βj)∨after(βj))∧Qij ≡ (in(βj)∨after(βj))∧(¬after(βj)∨(after(βj)∧

winp(βj , i � j)))
Proof: By WINP2 and propositional logic, since

|= (in(βj) ∨ after(βj)) ∧ (in(γj) ∨ in(δj) ∨ in(csj)) ≡ after(βj)

3. |= (in(βj) ∨ after(βj)) ∧ c[j] ∧ Pij ∧ Qij ≡ (in(βj) ∨ after(βj)) ∧ c[j] ∧
winp(βj , i � j)
Proof: By 2 and propositional logic, using |= after(βj) ⇒ ¬in(βj).

4. |= Jβj ∧ Pij ∧Qij ≡ Jβj ∧ winp(βj , i � j)
Proof: By 1, 3, and propositional logic.

5 βj leaves Jβj ∧ Pij ∧Qij invariant.
Proof: By 4 and OP2, since the sequential correctness proof showed that
βj leaves Jβj invariant, and the definition of winp implies that βj leaves
winp(βj , i � j) invariant.

β4. Operation βj leaves Pij invariant.
1. βj leaves ¬in(βj) invariant.

Proof: By OP3.
2. βj leaves ¬c[j] invariant.

Proof: By the Assignment Rule and OP1.
3. βj leaves winp(βj , i � j) invariant.

Proof: By the definition of win.
4 βj leaves Pij invariant.

Proof: By 1, 2, 3, OP2, and the definition of Pij .

We must now prove the interference-freedom condition for τ = βk and all σ in
process i, with i �= k. For most operations σ, the proof is essentially the same
as for τ = αk. When σ = εij , the proof for τ = βk is simpler than the proof
for τ = αk, since βj commutes with εij and αj does not. However, the proof for
σ = ηij is is trickier because βj does not commute with ηij . We consider the
interference-freedom proofs for τ = βk only when σ equals βi and ηij , with i �= k.

βi: We must prove that βk leaves Iβi and I ′βi
invariant. The invariance of I ′βi

follows immediately from β1. However, to prove that βk leaves Iβi invariant,
we must show that it leaves winp(βi,num[i] > 0) invariant. This cannot be
done. We must assume that βk leaves winp(βi,num[i] > 0) invariant.
This assumption is discussed later.

ηij : We must prove that βk leaves Jβj ∧ Iηij and Jβj ∧ I ′ηij
invariant. The proof

when k �= j is similar to the proof for τ = αk and σ = εij given above. We
consider only the case when k = j.
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1 βj leaves Jβj ∧ I ′ηij
invariant.

Proof: By β1, β3, and OP2.
2. ηij leaves Qij unchanged.

Proof: By the Await Rule and OP1.
3. |= winp(ηij , Qij) ≡ Qij ∨ winp(ηij , true)

Proof: By 2 and WIN4, which imply that win(ηij , Qij ∨ ¬after(ηij)) equals
Qij ∨ win(ηij ,¬after(ηij)).

4. |= winp(ηij , Qij) ≡ Qij ∨ (¬in(βj) ∧ winp(ηij , true))
Proof: By 3 and predicate calculus reasoning, since |= in(βj) ⇒ ¬(in(γj)∨
in(δj) ∨ in(csj)), so |= in(βj) ⇒ Qij .

5. |= Jβj ∧ Iηij ≡ (Jβj ∧Ni ∧ Pij ∧Qij) ∨ (¬in(βj) ∧ . . .)
Proof: By 4 and the definition of Jηij .

6 βj leaves Jβj ∧ Iηij invariant.
Proof: By 5 and OP2, since β1 implies that it leaves Ni invariant, β4
implies that it leaves Jβj ∧ Pij ∧ Qij invariant, and OP3 implies that it
leaves ¬in(βj) ∧ . . . invariant.

Proof for τ = γk.. As usual, we begin with the analogs of NC1–NC4. The
statements and proofs of γ1 and γ2 are similar to the ones for NC1 and NC2 and
are omitted.

γ3. Operation γj leaves Qij invariant, for i �= j.
Proof: Follows from OP4, the Assignment Rule, OP1, and OP2, since

|= after(γj) ⇒ in(δj) implies that (in(γj) ∨ after(γj)) ∧ Qij equals (in(γj) ∨
after(γj)) ∧ (i � j).

γ4. Operation γj leaves Pij invariant.
Proof: By OP4, since |= (in(γj)∨after(γj)) ⇒ ¬in(βj) implies that (in(γj)∨

after(γj)) ∧ Pij equals in(γj) ∨ after(γj).

The proof of the individual interference conditions for τ = γk are similar to the
proofs for τ = αk and are omitted.

Proof for τ = εkl (k �= l).. The proof begins, as usual, by stating and proving
ε1–ε4, the analogs of NC1–NC4. Their proofs are essentially the same as the proofs
of γ1–γ4. The interference-freedom conditions follow easily from ε1–ε4, WIN3, and
OP2, using the Assignment and Await Rules and WIN5 to show that εkl commutes
with αi, βi, εij , and ηij , for i �= k.

Proofs for τ = ηkl (k �= l) and τ = csk.. These proofs are similar to the proofs
for εkl and ncsk, respectively, and are omitted.

Proof for τ = ρk.. This proof is similar to, but simpler than, the proof for βk.
Like that proof, it requires two additional assumptions—namely, we must assume
that ρk leaves winp(βj , i � j) and winp(βi,num[i] > 0) invariant, for i �= k
and j �= k.

4.2.2 Correcting the Proof
The proof above relied upon two extra assumptions:

—βk and ρk leave winp(βi,num[i] > 0) invariant, for k �= i.
—βk and ρk leave winp(βj , i � j) invariant, for k �= i and k �= j.
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The first assumption is satisfied if βi always sets num[i] greater than 0, regardless
of how the value of num[k] changes while executing the operation. One can devise
a “legal” implementation of βi that does not satisfy this assumption, but such an
implementation would be contrived. It seems quite reasonable to incorporate the
assumption into the definition of statement βi.
For the second assumption to be satisfied, modifying the value of num[k] must

leave winp(βj , i � j) invariant. However, there is no reason why it should. Here
is a perfectly reasonable implementation of βj , where the variables tjl are local to
process j:

cobegin l�=j β1jl: tjl := num[l] coend;

β2j : num[j] := 1 + max{tjl : l �= j}
Consider a state s in which all the tjl equal 0, all the num[l] equal 0 except num[k] =
num[i] > 1, and control is at β1jk and after β1ji. (It is possible to reach such a
state in a normal execution of the bakery algorithm.) Completing the execution
of βj starting in state s will set num[j] to 1 + num[k], which equals 1 + num[i],
making i � j true. Therefore, s |= winp(βj , i � j) is true. However, if the state
is changed by setting num[k] to 0, completing the execution of βj will set num[j]
to 1, making i � j false. Hence executing ρk makes winp(βj , i � j) false, so this
predicate is not left invariant by ρk. Moreover, since βk could temporarily change
num[k] from a nonzero to a zero value, βk need not leave winp(βj , i � j) invariant
either.
We can fix the proof by replacing winp(βj , i � j) with a predicate Rij having

the following properties.

(i) Rij is left invariant by βj .
(ii) |= (after(βj) ∧Rij) ⇒ i � j.
(iii) |= (at(βj) ∧ num[i] > 0) ⇒ Rij .
(iv) Rij does not access any set of variables that contains neither num[i], nor

num[j], nor any variable local to βj .

We leave it to the reader to check that if Rij satisfies these properties, then the in-
variance proof above works with Rij substituted for winp(βj , i � j) in the definition
of Pij . (Perhaps the most difficult part of this proof is verifying β3, which is done by
using property (ii) to show that |= Jβj ∧Pij ∧Qij ≡ (Jβj ∧Rij)∨ (after(βj )∧ . . .).)
We also leave it to the reader to check that, for the implementation of βj given
above, we can define Rij to be

[(in(β1ji) ∨ after(β1ji)) ⇒ winp(β1ji, tji = num[i] > 0)]
∧ [(in(β2j) ∨ after(β2j)) ⇒ winp(β2j , i � j)]

thereby proving that the algorithm is correct with this implementation of βj . (Prop-
erty (i) is proved by applying the nonatomic Owicki-Gries method to the one-process
program βj.)
The following is an example of a valid implementation of βj for which there is no

such predicate Rij , and for which the bakery algorithm is incorrect.

〈num[j] := 0 〉;
〈mj := j〉;
for kj := 1 to n do 〈if num[kj ] > num[mj ] then mj := kj〉;
〈num[j] := 1 + num[mj ]〉
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There is nothing in Figure 3 to prohibit such an implementation of statement βj ; it
would be a fine implementation if βj appeared in a sequential program. We leave
it to the reader to construct a scenario demonstrating that the bakery algorithm
does not satisfy the mutual exclusion property with this implementation of βj .

4.3 Another Example

Thus far, we have used win to reason about statements with an unspecified grain
of atomicity. In our final example, we use sin to replace behavioral reasoning with
assertional reasoning. The example may seem contrived, but it is abstracted from
the part of the minimum spanning tree algorithm of Gallager et al. [6] that computes
the minimum-weight external edge of a fragment. For this example, we just sketch
the programs and proofs, omitting details.
Consider a tree of processes, each one communicating with its parent and its

children by sending messages. Each node p has a value val [p], and the goal of
the algorithm is for the root process, denoted by r, to compute the minimum of
all these values. The algorithm is obvious—every process finds the minimum of
its value and that of its descendants, and reports that value to its parent. Each
process p maintains three variables:

Q[p]: a queue of received messages.
mini [p]: the minimum of val [p] and the values reported by p’s children.
cnt [p]: the number of children of p who have not yet reported

For simplicity, assume that another process sends a message to process p by simply
inserting the message in Q[p]. All queues are initially empty except for Q[r], which
contains a find message. The initial values of the other variables are unspecified.
Each process p executes the following two actions.

find(p). If there is a find message in Q[p], then remove it from Q[p] and set
mini [p] to val [p]. Set cnt [p] to the number of children p has, and add a find message
to every child’s queue. If p has no children and p �= r, then add a report(val [p])
message to the queue of p’s parent.

receive(p). If there is a report(v) message in Q[p], then remove it from Q[p], set
mini [p] to the minimum of itself and v, and decrease cnt [p] by one. If this makes
cnt [p] zero and p �= r, then add a report(mini [p]) message to the queue of p’s parent.

The algorithm terminates when cnt [r] = 0 and Q[r] is empty, at which time mini [r]
is the result. We wish to prove the partial correctness property |= P ⇒ ✷Q for this
algorithm, where P asserts the initial condition on the queues and Q asserts that
if the termination condition holds then mini [r] has the correct value.
Define a process to be active if there is a report message in its queue or any

message in the queue of any descendant, and to be finished if it is not active and
there is no find message in its queue or in the queue of any ancestor. Let I be the
predicate asserting that for every process p:

(1) If there is a find message in Q[p], then (i) it is the only message in Q[p] and
(ii) the queue of every descendant of p is empty.

(2) If p is active, then (i) cnt [p] equals the number of unfinished descendants of p
plus the number of report messages in Q[p], and (ii) the minimum of mini [p]

ACM Transactions on Programming Languages and Systems, Vol 12, No. 3, July 1990.



426 · Leslie Lamport

and all v for which there is a report(v) message in Q[p] equals the minimum of
all val [p′] with p′ equal to p or a finished descendant of p.

(3) If p is finished, then mini [p] is the minimum of all val [p′] for p′ equal to p or a
descendant of p.

The reader can check that |= P ⇒ I, |= I ⇒ Q, and I is left invariant by every
program action, proving that |= P ⇒ ✷Q.
Thus far, our example has been a simple exercise in assertional reasoning. We

now complicate matters by allowing the tree of processes to grow dynamically.
We assume a larger collection of processes, only some of which are initially in the
process tree, and add a new action addchild(p, q) that makes process q a child of
process p. This action may be executed only when the following conditions hold: q
is not the parent or child of any process, Q[q] is empty, and val [q] is greater than
the minimum of all val [p′] for processes p′ currently in the tree.
The following simple operational argument shows that the modified algorithm,

with the addchild actions, satisfies the same correctness property P ⇒ ✷Q. If an
addchild(p, q) action is executed before the find(p) action, then the effect is the
same as if q were part of the original process tree. On the other hand, if the action
is executed after the find(p) action, then the effect is the same as if q were added to
the process tree after the algorithm had terminated. Hence, we may pretend that
each addchild action occurs either before or after the algorithm is executed. It is
clear that executing an addchild(p, q) action at the beginning does not change P ,
and, since the action is executed only if val [q] is greater than the minimum value
among existing tree processes, executing it at the end does not change Q. Hence,
the modified algorithm satisfies P ⇒ ✷Q.
Although the modified algorithm satisfies the same partial correctness property as

the original algorithm, a different proof is required because the modified algorithm
does not leave I invariant. For example, an addchild(p, q) action can make condition
3 of I false. One can find a new invariant for the modified algorithm, but it would
be nice to reason directly from the correctness of the original algorithm, as in the
behavioral argument.
Let us write each addchild(p, q) action as the union of the two actions preadd(p, q)

and postadd(p, q), where a pair (s, t) is in preadd(p, q) if process p is neither active
nor finished in state s, otherwise it is in postadd(p, q). (Formally, we modify the set
Π of actions but leave the union of all actions unchanged, so we obtain an equivalent
program.) The reader can check that every preadd action leaves I invariant; it is
the postadd actions that may falsify I.
Let σ denote the set of all postadd actions. We show that sin(σ, I) is the invariant

that proves the correctness of the modified algorithm. To do this, we must prove
|= P ⇒ sin(σ, I), |= sin(σ, I) ⇒ Q, and the invariance of sin(σ, I).
As we observed above, every addchild action leaves P and Q invariant, so every

action of σ does also. Hence, |= sin(σ, P ) ≡ P and |= sin(σ,Q) ≡ Q. By SIN2,
|= P ⇒ sin(σ, I) and |= sin(σ, I) ⇒ Q then follow from |= P ⇒ I and |= I ⇒ Q.
Finally, we show that sin(σ, I) is an invariant. It is obviously left invariant by any

action in σ, so we must show that it is left invariant by every other action. By SIN3,
it suffices to show that every action not in σ left commutes with a postadd(p, q)
action. It is clear that the action postadd(p, q) commutes with every action not
in σ except for the following: preadd(p′, p), preadd(q, q′), find(p), and find(q). We
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prove left commutativity by showing that, if ξ is any one of these four actions,
then postadd(p, q) ξ is the empty action. (Recall that ξ left commutes with µ iff
µξ ⊆ ξµ.)

preadd(p′, q). The composition postadd(p, q) preadd(p′, p) is empty because an
addchild(p, q) action can be executed only if p is already in the process tree, in
which case the preadd(p′, p) action cannot be executed.

preadd(q, q′). The composition postadd(p, q) preadd(q, q′) is empty because
addchild(p, q) addchild(q, q′) can be nonempty only if the two addchild actions are
either both postadd or both preadd actions.

find(p). The composition postadd(p, q) find(p) is empty because an addchild(p, q)
action cannot be a postadd action if Q[p] contains a find message.

find(q). The composition postadd(p, q) find(q) is empty because an addchild(p, q)
action can occur only if Q[q] is empty.

This completes the proof of invariance of sin(σ, I).

5. DISCUSSION

Although we have provided rigorous, step-by-step proofs in our first two examples,
we have not tried to be completely formal. We did not give the rules for reasoning
about control predicates needed to prove such obvious relations as |= (in(εjl) ∨
after(εjl)) ⇒ ¬in(βj) for the bakery algorithm. We believe that if a formalism is
to be useful, it must be possible to use it rigorously but informally, without having
to prove obvious properties. Experience with the atomic Owicki-Gries method
indicates that it can be used in this way, and we believe that the same is true of
the nonatomic version employing win and sin.
In judging the utility of win and sin, it is instructive to consider why previous

correctness proofs of the bakery algorithm did not discover its hidden assumptions.
The original proof in [9] is an informal behavioral one, so it is not surprising that it
is incorrect. The proof in [11] utilizes a set of axioms for reasoning about behaviors
involving nonatomic operations. While the use of axioms gives an appearance of
extreme rigor, the method ultimately reduces to the unstructured, informal reason-
ing of ordinary mathematics. The undetected assumptions in the bakery algorithm
provide one more example of the unreliability of such reasoning.
A rigorous Owicki-Gries method proof is given in [10]. However, since the orig-

inal Owicki-Gries method requires that all atomic operations be specified, it was
necessary to translate the bakery algorithm into one with explicit atomic opera-
tions. The translation effectively specified a particular class of implementations
of the algorithm—a class that includes only implementations satisfying the hidden
assumptions. This proof illustrates the danger in trying to replace one program
with an equivalent one, if the equivalence has not been proved formally. Without a
formal justification of the single-action rule, even its use should be regarded with
suspicion.
The bakery algorithm’s two hidden assumptions are that βi sets num[i] to be

(i) positive and (ii) greater than num[j], even if it is executed while the value of
num[k] is being changed, for k �= i, j. Although the algorithm has been rather
widely studied, we know of only one other person who independently discovered
assumption (ii). We discovered assumption (i) only when expanding an earlier
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version of our win proof to its present, more rigorous, form. We knew about
assumption (ii) before writing this article, but we are confident that attempting
the proof would have led to its discovery anyway.
Assertional methods, including the Owicki-Gries method, reduce a proof of cor-

rectness to a collection of small steps—each of which involves reasoning about
a single operation. Previous assertional methods require that each operation be
atomic. The win and sin operators permit the generalization of these methods to
allow nonatomic operations. However, much work remains in assessing the practi-
cal utility of these operators and developing their formal theory. We believe that
our rules for reasoning about win provide a relatively complete method for proving
P ⇒ ✷Q formulas for simple cobegin programs, where the semantics of nonatomic
operations are defined by the Assignment and Await Rules, but a detailed proof of
this result has not yet been written. Moreover, we expect a formal system for rea-
soning about nonatomic operations to be much more sensitive to the semantics of
the particular language constructs than one for reasoning about atomic operations,
so no far-reaching conclusions can be drawn from a single completeness result. In
particular, nonatomic communication primitives have yet to be studied.
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