
Lower Bounds for Asynchronous

Consensus

Leslie Lamport

28 July 2004

Revised 20 August 2005

Minor corrections made 19 January 2006

MSR-TR-2004-72

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

Abstract

Impossibility results and best-case lower bounds are proved for the
number of message delays and the number of processes required to
reach agreement in an asynchronous consensus algorithm that tolerates
non-Byzantine failures. General algorithms exist that achieve these
lower bounds in the normal case, when the response time of non-faulty
processes and the transmission delay of messages they send to one
another are bounded. Our theorems allow algorithms to do better in
certain exceptional cases, and such algorithms are presented. Two of
these exceptional algorithms may be of practical interest.

Contents

1 Introduction 1
1.1 Traditional Consensus . 2
1.2 Agents . 3
1.3 Results . 5
1.4 Proofs . 6

2 Theorems 7
2.1 Scenarios and Algorithms . 7
2.2 The Lower Bound on Acceptors 10
2.3 Fast Learning . 11
2.4 Collision-Fast Learning . 15
2.5 Hyperfast Learning . 19

3 Algorithms 20
3.1 The Lower Bound on Acceptors 20
3.2 Fast, Collision-Fast, and Hyperfast Learning 21

3.2.1 Fast Learning . 21
3.2.2 Collision-Fast Learning 22
3.2.3 Hyperfast Learning . 25

4 Conclusion 25

References 26

Appendix 27

A Proofs 27
A.1 The Accepting Lemma . 29
A.2 The Acceptor Lower Bound Theorem 30
A.3 The Fast Accepting Lemma 32
A.4 The Fast Learning Theorem 35
A.5 The Collision-Fast Learning Theorem 41
A.6 The Hyperfast Learning Theorem 49

B Formal Statements of the Results 52

1 Introduction

In an asynchronous system, how many processors are needed to achieve con-
sensus in the presence of f (non-Byzantine) faults? And how fast can they
achieve it? The answers are known: 2f + 1 processors and two message
delays [2]. These are correct answers, but to the wrong questions. The
traditional definition of consensus hides one message that occurs in most
applications—namely, the initial message from a client to the processes im-
plementing the consensus algorithm.

Here, we answer the questions How many processes? and How many mes-
sage delays? for a more pertinent definition of consensus. For an n-process
algorithm that can reach consensus even if f processes fail, the approximate
answers are:

• Consensus is possible only if n > 2f .

• In the absence of conflicting requests from different clients, consensus
can be achieved in two message delays despite the failure of e processes,
for 0 ≤ e ≤ f , only if n > 2e + f .

• Consensus cannot be achieved in fewer than two message delays, nor
can it be guaranteed in two message delays if there are conflicting user
requests.

Each of these answers is false in certain exceptional cases. For example,
consensus can be achieved in two message delays in the absence of failure
despite conflict if the only clients are the processes that execute the consen-
sus algorithm.

Our exact answers to these questions consist of several precisely stated
and rigorously proved lower-bound results. Algorithms exist that show the
bounds to be tight. For the normal cases, those algorithms appear elsewhere.
We provide algorithms for the exceptional cases. Two of those algorithms
may be useful in practice.

We assume only non-Byzantine (omission) failures. This means that a
process can fail by stopping, not by performing incorrect actions; and a mes-
sage can be lost or delivered multiple times, but cannot be (undetectably)
corrupted.

Approximate versions of extensions to most of these results were pre-
viously announced [10]. The extensions treated Byzantine as well as non-
Byzantine failures. We would assert that precise statements of the extended
versions and their proofs will appear, but experience has shown the foolhar-
diness of such a prediction.

1

1.1 Traditional Consensus

We begin by examining the traditional consensus problem. One assumes a
collection of n processes, each of which can propose a value. The problem is
to find an algorithm for choosing a value subject to the following conditions,
where f is the number of faults to be tolerated.

Nontriviality Only a proposed value may be chosen.

Consistency Only a single value may be chosen.

Progress If at least n − f processes are nonfaulty, then a value must be
chosen and must be learned by every nonfaulty process.

The well-known result of Fischer, Lynch, and Paterson (FLP) [5] implies
that an asynchronous algorithm cannot solve this problem in the presence
of even a single fault. But most real systems are synchronous at least most
of the time, meaning that nonfaulty processes can usually perform actions
and communicate with one another in a bounded length of time. An asyn-
chronous consensus algorithm is required to maintain nontriviality and con-
sistency in the presence of any non-Byzantine failures; progress need be
guaranteed only under the assumption that the system is eventually syn-
chronous for a long enough period of time [4].

The cost of consensus we consider is the number of message delays be-
tween the proposal of a value and the learning of a value. If local computa-
tion were instantaneous and messages were received exactly one second after
they were sent, then this would be the number of seconds between the first
proposal of a value and the learning of a value by every non-faulty process.
The general definition of the number of message delays in an asynchronous
system is fairly obvious [6]. The FLP result implies that the worst-case cost
for achieving consensus is unbounded. Fortunately, it is the best-case cost
that is interesting. A good algorithm will achieve the best-case cost in the
normal case of synchronous behavior.

The cost of a consensus algorithm is important only when a system exe-
cutes multiple instances of the algorithm. If a system executed the algorithm
only a few times—for example, during start-up—the algorithm’s efficiency
wouldn’t matter. In the state-machine approach [6], a sequence of instances
of a consensus algorithm are used to choose the sequence of commands.

Perhaps the most widely-known consensus algorithm is the Paxos algo-
rithm [3, 8, 9]. It has a preliminary section consisting of the election of a
leader and the leader’s execution of phase 1 for a new ballot number. This

2

phase is executed only when a leader fails, and it can be executed simultane-
ously for all instances of the algorithm. The cost of the preliminary section
can therefore be ignored. The significant cost of the Paxos algorithm is that
of phase 2. In that phase, the leader proposes a value by sending phase 2a
messages with that value to all the processes, which respond with phase 2b
messages. The leader learns that the value has been chosen when it receives
phase 2b messages from a majority of the processes. Hence, if a majority
of processes are nonfaulty, then the leader learns the chosen value in two
message delays. By having each process send its phase 2b message to every
other process, every nonfaulty process can also learn the chosen value in
two message delays. Paxos is therefore optimal for solving the traditional
consensus problem. But it is not necessarily optimal for implementing a
system that uses consensus.

1.2 Agents

In the state-machine approach, a set of servers execute a sequence of in-
stances of a consensus algorithm to choose a sequence of client commands.
In Paxos, a client sends its command to the leader, and the leader proposes
that command in the next instance of the Paxos consensus algorithm. By
considering only the cost of the consensus algorithm, we are ignoring the
message sent by the client to the leader. In other applications of consensus
as well, the proposed values need not be generated by the processes that
choose a value. So, instead of defining consensus in terms of a single set of
processes, we define it more generally in terms of three fixed sets of agents:

Proposers A proposer can propose a value.

Acceptors The acceptors cooperate to choose a value.

Learners A learner can learn what value has been chosen.

These sets need not be disjoint. For example, an agent might be both a pro-
poser and an acceptor. The traditional statement of consensus corresponds
to the case in which these three sets are equal. This situation represented
the class of process-control systems that originally inspired the consensus
problem [14]. However, it is not typical of applications of consensus in asyn-
chronous systems. For example, a state-machine implementation that can
tolerate the failure of f computers needs only f + 1 copies of the machine’s
state. However, 2f + 1 computers are required to achieve consensus on the
state-machine commands. A fault-tolerant state-machine implementation

3

requires 2f + 1 computers to act as acceptors, but only the f + 1 of them
that maintain the state-machine’s state have to be learners.

By choosing what computers play what roles, we can make tradeoffs
between time and message complexity. For example, by letting clients as
well as servers be learners, we can reduce the number of message delays
between when the client issues a command and when it receives a response.
However, this reduction comes at the cost of extra messages.

We now generalize the consensus problem to a system of agents perform-
ing these three roles. The generalizations of nontriviality and consistency
are obvious:

Nontriviality Only a proposed value may be learned.

Consistency Any two values that are learned must be equal.

The generalization of progress is less obvious. We want our definition of
consensus to apply to client/server systems, in which clients are not nec-
essarily reliable. For example, a client might issue a command and then
“disappear”. Since proposer and learner are roles that might be assigned
to a client, we cannot require that they not fail. We can make reliability
assumptions only about acceptors. Let n be the total number of acceptors,
which we assume to be finite. A consensus algorithm is said to be f -fault
tolerant iff only n − f nonfaulty acceptors are needed to ensure that a value
is chosen. (Remember that a consensus algorithm must maintain nontrivial-
ity and consistency despite any number of failures; f -fault tolerance means
only that it must make progress if no more than f acceptors have failed.)
However, no value can be chosen if none is proposed. Moreover, we can-
not expect the acceptors to find out about a proposal if the proposer failed
immediately after issuing it. So, we can require a value to be chosen only
if there is a proposal issued by a nonfaulty proposer. We naturally require
only nonfaulty learners to learn. This all leads to the following requirement
for a consensus algorithm that tolerates f faults:

Progress For any proposer p and learner l , if p, l , and n − f acceptors are
nonfaulty and p proposes a value, then l must learn a value.

As in the traditional consensus problem, progress can be guaranteed only
under some synchrony assumption. Lower bounds applying only to purely
asynchronous algorithms that guarantee progress would therefore be vac-
uous. However, we prove lower bounds for any algorithm that can make
progress. These bounds apply a fortiori to any algorithm that, under some
other assumption such as eventual synchrony [4], must make progress.

4

1.3 Results

We now sketch our lower-bound results for asynchronous consensus algo-
rithms. The exposition here is very informal and not completely accurate.
It is only an intuitive introduction to our results, which are stated more
precisely in Section 2. Our first two theorems were announced previously
without proof [10].

Consensus becomes trivial if there is only one proposer or one learner.
(In either case, a proposer can simply send its proposal directly to a learner,
which learns the first proposal it receives.) So, we assume that there are at
least two proposers and two learners.

A quorum is a set Q consisting of enough acceptors to choose a value.
Our first result is the following theorem about the size of quorums. Its
anomalous case, as well as the exceptional cases of other theorems, are
described in the precise statements of the theorems in Section 2.

Theorem (Acceptor Lower Bound) For any consistent asynchronous al-
gorithm with n acceptors, if any set of n − f acceptors is a quorum then
n > 2f , except in one anomalous case with exactly three agents in which
n = 2 and f = 1.

For Paxos and most of the asynchronous consensus algorithms that have
been proposed, a quorum consists of any majority of the servers. It is
therefore easy to see that the acceptor lower bound is tight for the normal
case. Section 3.1 gives an algorithm that works in the anomalous case.

An execution of a consensus algorithm is said to be fast-learning iff
there is at most a two-message delay between the proposal of a value and
the learning of the value. The FLP result implies that an asynchronous
consensus algorithm must have non-terminating executions, so no algorithm
can guarantee learning in any fixed number of message delays. The best
we can hope for a fast-learning asynchronous algorithm is that it is fast
for certain “good” executions, in which messages are delivered in a timely
fashion. Our lower bound for fast learning assumes only that fast learning
is possible.

It isn’t hard to find an algorithm that allows fast learning for a single
proposer. In particular, the Paxos algorithm allows fast learning of proposals
issued by the leader. We therefore consider algorithms that are fast for at
least two proposers. We define a set of acceptors to be fast-accepting for a
proposer p if it allows p’s proposals to be learned quickly by any learner.
(Having a hypothesis that allows rather than requires fast learning makes
our lower-bound result stronger.) For an algorithm with n acceptors to

5

tolerate f faults, every set of n− f acceptors should be a quorum. However,
we do not require every set of n − f acceptors to be fast-accepting. Instead,
we consider algorithms that are fast-learning when there are at most e faulty
acceptors, where 0 ≤ e ≤ f . If e < f , such an algorithm may slow down
when e + 1 failures have occurred. Our second result is:

Theorem (Fast Learning) For any asynchronous consensus algorithm
with n acceptors, and any e and f with e ≤ f and f > 0, if any set
of n − f acceptors is a quorum and there are two proposers for which
any set of n − e acceptors is fast-accepting, then n > 2e + f , except in
one special case.

Fast Paxos, a variant of Paxos, achieves this lower bound [12]. The basic
idea behind Fast Paxos was originally observed by Brasileior et al. [1]. The
Generic Broadcast algorithm of Pedone and Schiper [13] is a fast-learning
algorithm for the case e = f .

The bound for the normal case is therefore tight. The special case is
described in Section 2.3, and Section 3.2.1 gives a fast-learning algorithm
for it.

Two message delays is a best-case lower bound on learning for a general
algorithm. It is achieved by Fast Paxos only in the absence of collisions,
where a collision occurs when two proposers concurrently propose different
values. The Collision-Fast Learning Theorem stated in Section 2.4 asserts
that no general consensus algorithm can be fast-learning in the presence
of collisions. However, there are two potentially useful cases in which fast
learning is possible despite collisions. Algorithms for those cases are given
in Section 3.2.2.

We have stated that two message delays is a lower bound on the time
to reach consensus. That is not quite true. We define hyperfast learning to
mean learning within one message delay. It is not hard to see that no algo-
rithm can provide hyperfast learning for two different proposers. However,
there are certain special cases in which hyperfast learning for a single pro-
poser is possible. The Hyperfast Learning theorem of Section 2.5 enumerates
those cases, and Section 3.2.3 provides the corresponding hyperfast-learning
algorithms.

1.4 Proofs

It is not hard to write convincing informal proofs of our theorems. Nor is it
hard to write such proofs for incorrect versions of the theorems. Since the
exceptional cases of the theorems lead to algorithms that may be interesting,

6

we feel it is important to ensure that we have correctly characterized those
cases. We would have no confidence in the correctness of our results had
we not written very detailed proofs. Readers should be skeptical of results
such as ours that are not accompanied by rigorous proofs. However, such
proofs may not provide an intuitive understanding of why the results are
true. We therefore give proof sketches in the main text and rigorous proofs
in Section A of the appendix. Although the proofs in the appendix are
long and somewhat tedious, their hierarchical structure makes them easy to
check.

2 Theorems

We have tried to make our definitions of an asynchronous consensus algo-
rithm and of fast learning as general as possible. Indeed, they allow round-
based algorithms in which values are proposed only in the first round and
any message sent in one round is either lost or received by the next round.
However, we cannot rule out the possibility that our definitions are too re-
strictive and are not satisfied by algorithms that are, in a practical sense,
asynchronous or fast-learning. It is therefore important that we state our
results very precisely, making it clear exactly what kinds of algorithms they
show to be impossible. In this section, our definitions and theorems are
stated rigorously but informally. Section B of the appendix expresses them
formally in TLA+ [11].

We are assuming that the set of acceptors is finite. As we remarked
above, consensus is trivial with a single proposer or a single learner. Con-
sensus is also trivial if only a single value may be proposed. So, we assume
once and for all:

Assumption (Agent) The set of acceptors is finite, and there are at least
two proposers and two learners.

Assumption (Value) There are at least two proposable values.

We let n be the number of acceptors, and we define an agent to be a proposer,
a learner, or an acceptor.

2.1 Scenarios and Algorithms

To state theorems about consensus algorithms, we must define what an
algorithm is. We represent a possible execution of an algorithm by a set of

7

events. An algorithm is then described by a set of sets of events, representing
all its possible partial executions. We now define this precisely.

We begin by defining what an event is. We assume that the events
performed by a single agent are totally ordered. (Events performed concur-
rently by a single agent can be ordered arbitrarily.) So an event e specifies
an agent eagent and a positive integer enum , indicating that e is the enum

th

event performed by eagent . An event can be performed either spontaneously
or upon receipt of a message. For a message-receiving event e, we let ercvd

be a triple 〈m, a, i 〉, indicating that the event was triggered by the receipt
of a message m sent by the i th event of agent a. For simplicity, we assume
that each event e sends exactly one message emsg , which can be received
by any agent (including itself). The sending of a possibly empty set M of
messages can be modeled by letting emsg equal M and having an event that
receives M ignore any of its elements not meant for the receiver. Since we
are concerned with when learning occurs and not with termination, we don’t
care if an agent ever stops sending messages.

We now define a scenario to be a set of events that could conceivably be
generated by a single (possibly partial) execution of some algorithm. But
first, for any set S of events, we define the precedence relation ¹S on S
to be the transitive closure of the relation → such that d → e iff either
(i) dagent = eagent and dnum ≤ enum or (ii) e is a message-receiving event
such that ercvd = 〈dmsg , dagent , dnum 〉. (This is the reflexive form of the
usual precedence relation for events in a distributed system [6].) A scenario
is then defined as follows.

Definition (Scenario) A scenario S is a set of events such that

• For any agent a, the set of events in S performed by a consists of ka

events numbered from 1 through ka , for some natural number ka .

• For every message-receiving event e in S , there exists an event d in
S different from e such that ercvd = 〈dmsg , dagent , dnum 〉.

• ¹S is a partial order on S .

Since ¹S is defined to be transitively closed, the last requirement asserts
that ¹S has no cycles, meaning that d ¹S e and e ¹S d imply d = e, for all
d and e in S . The relation ¹S describes causality, d ¹S e holding for d 6= e
iff it is possible for event d to causally influence event e. A cycle therefore
cannot occur if S represents a possible partial execution of an algorithm.

A prefix of a scenario T consists of a set of events in T that precede all
other events in T . The precise definition is:

8

Definition (Prefix) A subset S of a scenario T is a prefix of T , written
S v T , iff for any events d in T and e in S , if d ¹T e then d is in S .

It is easy to see that any prefix of a scenario is also a scenario.
An algorithm is defined to be any non-empty set of scenarios. Our results

apply to asynchronous algorithms. However, our definition of an asynchro-
nous algorithm is very weak, allowing algorithms that assume a great deal
of synchrony. Our basic assumption is that whether or not the algorithm
can perform an event e may depend only on events that causally precede
e. For example, our definition includes algorithms that assume agents have
perfectly synchronized clocks and point-to-point communication links that
deliver messages with a known delay, but that allow agents and communi-
cation links to fail at any time. Our precise definition is as follows, where
Agents(S) is the set of all agents that perform events in the set S of events,
and A \B is the subset of the set A consisting of all elements not in the
set B .

Definition (Asynchronous Algorithm) An asynchronous algorithm Alg
is a set of scenarios such that:

A1. Every prefix of a scenario in Alg is in Alg .
[The occurrence of an event d in the prefix cannot depend on whether an
event e not in the prefix occurs, because e cannot causally effect d .]

A2. If T and U are scenarios of Alg and S is a prefix of both T and U
such that Agents(T \S) and Agents(U \S) are disjoint sets, then
T ∪U is a scenario of Alg .
[The assumptions about S , T , and U imply that T ∪ U is a scenario.
The sets of events T \S and U \S both represent continuations of S that
are allowed by the algorithm. Each continuation is performed by agents
that have no way of knowing what the other’s agents are doing. Hence
the algorithm must allow both continuations to be performed, producing
the execution described by T ∪U .]

Letting S be the empty scenario (the one containing no events), we deduce
from A1 and A2 the following:

Lemma (Scenario Union) For any scenarios T and U of an asynchro-
nous algorithm Alg such that Agents(T) and Agents(U) are disjoint,
T ∪U is also a scenario of Alg .

We now assume that there are proposing and learning events. A proposing
event e is one in which proposer eagent proposes a value eproposed . A learning

9

event e is one in which learner eagent learns a value e learned . Nontriviality
and consistency are defined by:

Definition (Nontriviality) An algorithm Alg is nontrivial iff, for every
scenario S in Alg and any learning event e in S , there is a proposing
event d in S with dproposed = e learned .

Definition (Consistency) An algorithm Alg is consistent iff, for every
scenario S in Alg , if d and e are learning events in S , then d learned =
e learned .

We define a consensus algorithm to be an algorithm that is nontrivial and
consistent. (Since our lower-bound results are about what can happen rather
than what must happen, we do not require a progress property.)

2.2 The Lower Bound on Acceptors

A quorum is a set of acceptors that is large enough to choose a value,
regardless of what steps of the algorithm have been performed so far. We
formally define quorums in Section 2.3. Here, we define an accepting set to
be one large enough that it can choose a value starting ab initio. A quorum
is therefore an accepting set.

Definition (Accepting Set) A set Q of acceptors is accepting for a pro-
poser p in algorithm Alg iff for every value v and learner l , there is a
scenario S of Alg with Agents(S) ⊆ {p, l}∪Q such that S has an event
in which p proposes v and an event in which l learns v .

Our Acceptor Lower Bound Theorem assumes that any set with at least
some minimum number of acceptors is an accepting set. Algorithms such as
Paxos allow more general accepting sets, so the following result is of interest.
It implies that for any algorithm that works with arbitrary sets of proposers
and acceptors, no two accepting sets can be disjoint.

Lemma (Accepting) For any consistent asynchronous algorithm Alg , any
proposers p1 and p2, any learners l1 and l2, and any sets Q1 and Q2 of
acceptors such that each Q i is an accepting set for pi , the sets {p1, l1}∪
Q1 and {p2, l2} ∪Q2 are not disjoint.

Proof Sketch Choose two different proposable values v1 and v2. For each
i , since Q i is an accepting set for pi , there exists a scenario S i of Alg with
agents {pi , l i} ∪Q i in which l i learns v i . If the {pi , l i} ∪Q i were disjoint,

10

then the Scenario Union Lemma (Section 2.1) would imply that S 1 ∪ S 2 is
a scenario, contradicting consistency. 2

Our first lower bound is a direct corollary of the Accepting Lemma.

Theorem (Acceptor Lower Bound) For any natural number f with f ≤
n and any consistent asynchronous algorithm Alg , if any set of n − f
acceptors is an accepting set in Alg for every proposer, then either

a. n > 2f , or

b. f = 1 and there are three agents a1, a2, and a3 such that {a1, a2}
is the set of acceptors, {a1, a3} is the set of proposers, and {a2, a3}
is the set of learners.

Proof Sketch We assume that n ≤ 2f and every set of n − f acceptors
is an accepting set for every proposer, and we obtain a contradiction to the
Accepting Lemma except if case b holds. One can show that n ≤ 2f implies
n − f ≤ bn/2c. Therefore, there exist disjoint sets Q1 and Q2 that each
contain n − f acceptors and are thus accepting sets for every proposer.

The Agent and Value Assumptions imply that there are proposers p1

and p2 and learners l1 and l2 such that the sets {p1, l1} and {p2, l2} are
disjoint. Since Q1 and Q2 are disjoint, we get the required contradiction
to the Accepting Lemma if we show the existence of such pi and l i with
{p1, l1} and Q2 disjoint and {p2, l2} and Q1 disjoint. This is trivial to do
if the pi and l i can be chosen not to be acceptors, and it is not hard to do
if n ≥ 4. Showing that such pi and l i exist when n < 4, except in case b,
requires a complicated case analysis. 2

Section 3.1 below gives an algorithm for the anomalous case b. This case is
of no practical interest, being just a weird consequence of defining consensus
in terms of proposers, learners, and acceptors.

2.3 Fast Learning

Before stating our results about fast learning, we explain what it means.
We define a source of a scenario S to be a minimal event in the ordering
¹S , which is an event e in S such that d ¹S e implies d = e, for any event
d in S . We define the depth of an event in a scenario to be the number of
message delays before the execution of that event:

Definition (Event Depth) The depth of an event e in a scenario S equals
0 if e is a source of S , otherwise it equals the maximum of (i) the depths
of all events d with dagent = eagent and dnum < enum and (ii) if e is

11

an event that receives a message sent by event d , then 1 plus the depth
of d .

The depth of a scenario is defined to be the maximum of the depths of its
events.

As we observed above, no algorithm can always achieve fast learning.
However, we are interested only in whether an algorithm allows fast learning.
We define a set M of acceptors to be fast-accepting for a proposer p if any
learner can learn a proposal of p in two message delays by communicating
only with p and the acceptors in M . The nonobvious aspect of the definition
is that we require p’s proposal to be the learning scenario’s only source event.
This requirement may seem too restrictive because it rules out algorithms
like Paxos that can perform preliminary actions before proposals are issued.
However, we can consider such an algorithm to begin after the execution of
those preliminary actions. What we rule out are algorithms that “cheat” by
restricting what proposals can be learned fast. For example, Paxos can be
modified to be fast-learning for a single value that is nondeterministically
selected in advance by the leader. This algorithm has a scenario in which any
proposed value is learned quickly—namely, one in which the leader happened
to select that value in advance. We are not ruling out “secondary” proposals
issued in response to a message from some other agent. We simply do not
consider the learning of a value proposed in this way to be fast.

Definition (Fast Accepting) A set M of acceptors is fast-accepting for a
proposer p in algorithm Alg iff for every proposable value v and learner
l , there is a scenario S of Alg with Agents(S) ⊆ {p, l} ∪M such that S
has depth at most 2, has as its only source an event in which p proposes
v , and contains an event in which l learns v .

Our lower bound on fast learning assumes that a quorum is not just an
accepting set, but that it is able to choose a value regardless of what steps
of the algorithm have been performed so far. Stated in terms of learners, a
quorum Q should be able to tell any learner l what value is chosen. Since
nontriviality implies that a value can be chosen only if one is proposed, some
proposer p may be needed to propose a value for l to learn.

Definition (Quorum) A set Q of acceptors is a quorum for an algorithm
Alg iff it is an accepting set in Alg for every proposer and, for every
proposer p, learner l , and scenario S of Alg , there exists a scenario T of
Alg such that (i) S is a prefix of T , (ii) Agents(T \S) ⊆ {p, l}∪Q , and
(iii) T contains a learning event of l .

12

The lower bound on fast learning is proved with the following obscure tech-
nical lemma. The best way to understand the lemma is to consider what
it means for a general algorithm that works with any sets of proposers and
learners. In this case, we can assume that proposers, learners, and accep-
tors are disjoint sets of agents, and that there are at least three learners and
three acceptors. The lemma then implies that the intersection any quorum
with any two sets that are fast-accepting for different proposers must be
non-empty. This is precisely the condition on quorums and fast-accepting
sets required by the Fast Paxos algorithm.

Lemma (Fast Accepting) For any consistent asynchronous algorithm
Alg , if there exist proposers p1, p2, and pq , learners l1, l2 and lq , fast-
accepting sets M 1 for p1 and M 2 for p2 in Alg , and a quorum Q for Alg
such that

• p1 6= p2

• p1 /∈ M 2 and p2 /∈ M 1

• l1 /∈ {p2, pq , lq} ∪ (M 2 \M 1) ∪Q

• l2 /∈ {p1, pq , lq} ∪ (M 1 \M 2) ∪Q

• {pq , lq} ∩M 1 ∩M 2 is empty

then M 1 ∩M 2 ∩Q is nonempty.

Proof Sketch We assume that M 1 ∩ M 2 ∩ Q is empty and obtain a
contradiction. Let v1 and v2 be two different proposable values. Since each
M i is a fast-accepting set for pi , there exists a scenario T i executed by
the agents in {pi , l i} ∪M i in which l i learns v i within two message delays.
Scenario T i begins with pi proposing v i and sending “round 1” messages
to l i and the acceptors in M i ; the acceptors in M i can then send “round 2”
messages to l i . Upon receipt of the rounds 1 and 2 messages sent to it,
l i learns v i . We can assume that only these round 1 and 2 messages are
received in T i , any other messages sent having been lost.

We will obtain a contradiction by constructing an initial scenario that
can be completed to either T 1 or T 2 by agents not in {pq , lq} ∪ Q . Since
Q is a quorum, the agents in {pq , lq} ∪ Q must be able to complete this
initial scenario to one in which lq learns a value. However, whatever value
lq learns, agents not in {pq , lq} ∪ Q could execute the remaining actions
of one of the T i in which the value v i that is learned is different from the
value learned by lq . This contradicts the assumption that the algorithm is
consistent.

13

Remark : An algorithm that preserves consistency cannot allow a sce-
nario to contain all the events of both T 1 and T 2. It prevents this by not
allowing acceptors in M 1 ∩M 2 to perform events from both scenarios. It
is those acceptors that can determine whether T 1 or T 2 occurred. In the
fast-learning scenarios T i , the acceptors in M 1 ∩M 2 have no time to guar-
antee that other acceptors know in which scenario they are participating
before the messages are sent that allow l i to learn v i . The assumption that
M 1∩M 2∩Q is empty means that none of the acceptors that know whether
T 1 or T 2 occurred are in Q . End of Remark

To construct the necessary initial scenario, let U i be the prefix of T i

consisting of all its events except the learning event of l i and the events
of acceptors in M 1 ∩ M 2. A careful analysis shows that the hypotheses
imply that U 1 and U 2 are performed by disjoint sets of agents, so the
Scenario Union Lemma implies that U 1 ∪U 2 is a scenario of the algorithm.
The hypotheses also imply that U 1 ∪ U 2 can be completed to a scenario
containing all the actions of either T 1 or T 2 by adding events performed
by agents not in {pq , lq} ∪ Q . Hence, U 1 ∪ U 2 is the initial scenario that
provides the required contradiction. 2

The Paxos algorithm is fast-accepting for a single proposer—namely, the
initial leader. Our lower bound on fast learning is for an algorithm that is
fast-accepting for at least two different proposers. Its hypothesis asserts that
every set of n−e acceptors is fast-accepting and every set of n− f acceptors
is a quorum. By the Fast-Accepting Lemma, we expect this to be possible
only for values of n, e, and f satisfying the following condition: every two
sets of n − e acceptors and every set of n − f acceptors have a nonempty
intersection. Simple reasoning about finite sets shows that this condition is
equivalent to n > 2e + f , which is our basic lower bound. However, there is
one weird case in which this bound does not apply.

To rule out other uninteresting special cases, we assume e ≤ f even
though that assumption is not necessary to prove our basic lower bound.
(In fact, Fast Paxos works for arbitrary e and f with n > 2e + f .) However,
the case f < e, where the algorithm allows fast progress with fewer processes
than are required to ensure eventual progress, seems to be of no practical
interest. We also rule out the uninteresting case of f = 0 (no fault tolerance).
Fast learning is easily achieved in this case by letting one particular acceptor
choose the value.

Theorem (Fast Learning) For any natural numbers e and f with f > 0
and e ≤ f ≤ n, and for any asynchronous consensus algorithm Alg , if
every set of n − f acceptors is a quorum for Alg and every set of n − e

14

acceptors is fast-accepting in Alg for two distinct proposers p1 and p2,
then n > 2e + f or the set of learners equals {p1, p2}.

Proof Sketch We assume that the conclusion of the theorem is false and
obtain a contradiction. The obvious approach is to construct proposers p1,
p2, and pq , learners l1, l2, and lq , and sets M 1, M 2, and Q of acceptors that
contradict the Fast Accepting Lemma. The assumption that the conclusion
is false implies n ≤ 2e + f , from which we deduce the existence of the
sets M 1 and M 2 with n − e acceptors each and the set Q with n − f
acceptors such that M 1 ∩M 2 ∩Q empty. A careful analysis shows that we
can also find the necessary proposers and learners if n > 2f . By the Acceptor
Lower Bound Theorem, this yields the desired contradiction except in the
anomalous three-agent case b of that theorem. We obtain a contradiction
in this anomalous case by constructing the same sort of scenarios used in
the proof of the Fast Accepting Lemma. (We could strengthen the lemma
to handle the anomalous case as well, but it seems easier to consider that
case separately rather than complicating the proof of the lemma.) 2

2.4 Collision-Fast Learning

As explained above, Fast Paxos is fast-learning only in the absence of colli-
sions. This is also true of the Generic Broadcast algorithm of Pedone and
Schiper [13]. We now consider collision-fast algorithms, which are ones that
are fast despite collisions. We show that such algorithms are possible only
in certain special cases.

Our lower bound result for fast learning assumed only the existence of
certain fast-learning scenarios. However, any algorithm that permits fast
learning allows scenarios that are fast-learning in the presence of collision—
namely, scenarios in which the messages sent by one of the proposers reaches
the acceptors before messages sent by the other proposers. What we want
to show is the impossibility of an algorithm that can always guarantee fast
learning despite collisions. But this is trivial because the FLP result shows
that no algorithm can always guarantee learning. So, what kind of interest-
ing impossibility result can we find?

A useful asynchronous consensus algorithm works in the “normal” case,
in which faulty processes send no messages, and all messages sent by non-
faulty processes are delivered quickly, before any timeouts can occur. We
define a collision-fast learning algorithm to be one in which fast learning
always occurs in the normal case. Hence, we want the definition of normal-
ity to be as restrictive as possible, since that strengthens the definition of
collision-fast and therefore makes our impossibility result stronger.

15

Definition (Normal Scenario) A scenario S is normal iff it satisfies the
following properties:

• The only sources of S are proposal events.
[As in the definition of fast accepting, this rules out cheating.]

• The message sent by any single event is not received twice by the same
agent.
[This allows an agent to resend the same message and have both copies
received by another agent.]

• Every non-source event is a message-receiving event.
[Except for initial proposals, each event is triggered by the receipt of a mes-
sage and thus not by a timeout.]

• If d1 and d2 are events in S with d1agent = d2agent and d1 ¹S d2, and
e2 is an event in S that receives the message sent by d2, then there
exists an event e1 in S with e1agent = e2agent and e1 ¹S e2 such that
e1 receives the message sent by d1
[Messages sent from any agent a to any agent b are delivered in FIFO order,
with no gaps.]

• If d and e are events in S and e receives the message sent by d , then
the depth of e in S equals 1 plus the depth of d in S .
[Messages are delivered in an order consistent with a round-based algorithm,
in which all messages sent in one round are delivered before those sent in the
next round.]

We say that an agent a is complete to depth δ in a normal scenario iff a
performs all events of depth δ or less that it possibly could. The precise
definition is:

Definition (Complete to Depth) An agent a is complete to depth δ in
a scenario S iff either δ = 0 or every agent in Agents(S) is complete to
depth δ− 1 and a receives every message sent by an event in S of depth
less than δ.

Definition (Collision-Fast Accepting) A set M of acceptors is collision-
fast in algorithm Alg for a set P of proposers iff for every nonempty
subset {p1, . . . , pk} of P with the pi all distinct:

• For any proposable values v1, . . . , vk there is a scenario {e1, . . . , ek}
in Alg such that each e i is a spontaneous event (a source) in which pi

proposes v i .

16

• For every learner l and every normal scenario S of Alg with
Agents(S) = {l , p1, . . . , pk}∪M that contains {e1, . . . , ek} as a prefix,
if l is complete to depth 2 in S , then l learns a value in S .

Our definition of an asynchronous algorithm is satisfied by an algorithm
that can control the precise order in which messages sent by different agents
will be delivered. For example, it is satisfied by an algorithm in which an
agent that receives a message from proposer p1 without having received a
message from proposer p2 can conclude that p2 has not issued a proposal. To
prove our impossibility result for collision-fast learning, we need to require
that messages sent by different agents in events of the same depth can be
delivered in arbitrary order to other agents. This requirement is expressed
by the following definition.

Definition (Independent Delivery) An algorithm Alg has independent
delivery iff for any normal scenario S in Alg , any event e in S , and any
agent a, if

• For every event d in S performed by eagent that precedes e, there is
an event in S in which a receives the message sent by d .
[a has received every previous message sent by eagent .]

• There is no event in S in which a receives the message sent by event e.
[a has not yet received the message sent by e.]

• For every event d in S , if the depth of d in S is less than the depth
of e in S , then there is an event in S in which a receives the message
sent by d .
[Having a now receive the message sent by e is consistent with a round-based
algorithm.]

then there is an event c performed by a that receives the message sent
by e such that S ∪ {c} is a scenario of Alg .

[a can now receive the message sent by e.]

In an algorithm with independent delivery, each agent can send messages to
itself that are delivered in arbitrary order relative to messages sent by other
agents. This appears strange, since we would expect an agent to be able
to control when a message it sends to itself arrives. Such a message can be
helpful only in special architectures where sending it influences the arrival
order of other messages—for example, by clearing some message queue. It
is this type of dependent delivery order that we are ruling out. It is not

17

hard to see that any result that holds for independent delivery also holds
if agents do not send messages to themselves, since not sending a message
is equivalent to ignoring the message when it arrives. However, the details
of the proof become a bit simpler if the same assumptions are made for all
possible messages, including ones sent by an agent to itself.

Theorem (Collision-Fast Learning) For any natural numbers e and f ,
with e ≤ f ≤ n and f > 0, and any asynchronous consensus algorithm
Alg with independent delivery, if every set of n− f acceptors is a quorum
for Alg and there are two distinct proposers p1 and p2 such that every
set of n − e acceptors is collision-fast accepting for {p1, p2} in Alg , then
e = 0 and

a. f = 1, every learner is an acceptor, and at least one acceptor is not
a learner, or

b. p1 or p2 (or both) is an acceptor.

Proof Sketch The proof is by contradiction. Let a1, . . . , an be the
acceptors, and define a sequence S 0, . . . , Sn of scenarios as follows. In each
S j , let p1 propose v1 and p2 propose v2, where v1 6= v2. The messages
generated by these two proposal events are received by p1, p2, and all the
acceptors. In S j , acceptors a1, . . . , a j receive the message from p1 then the
message from p2, while acceptors a j+1, . . . , an receive those messages in the
opposite order.

Let l be a learner. Adding events performed by l , we extend S j to a
normal scenario T j (l) in which l is complete to depth 2, so it must learn
either v1 or v2. In T 0(l), all of p2’s messages arrive before p1’s, so T 0(l)
contains a prefix in which p1 performs no events, only p2 issues a proposal,
and l is complete to depth 2. Learner l must learn v2 in that prefix and
hence in T 0(l). Similarly, l must learn v1 in Tn(l). Thus, there is some k
with 0 < k ≤ n such that l learns v2 in T k−1(l) and v1 in T k (l). Scenarios
T k−1(l) and T k (l) differ only in the events performed by ak and l . If
scenario T k−1(l) or T k (l) occurs and ak and l both fail, then there is no
way for the remaining agents to know if l learned v1 or v2, so it is impossible
to ensure consistency if any other learner learns a value. This contradicts
the hypothesis that any n − f acceptors form a quorum, where f > 0.

The proof sketched here breaks down if (i) l is an acceptor, (ii) p1 or p2 is
an acceptor, or (iii) l equals p1 or p2. (Only if e = 0 does the negation of the
theorem’s conclusion, which is assumed in a proof by contradiction, imply
that (ii) is false.) The proof in the appendix handles these three cases. 2

18

Collision-fast algorithms for both exceptional cases are given below in Sec-
tion 3.2.2. These algorithms may be of practical interest.

2.5 Hyperfast Learning

For completeness, we consider hyperfast learning, which is learning a value
in one message delay. With hyperfast learning, a learner must learn a value
after receiving messages only from a proposer. (If the proposal event is the
only source, then messages from other agents are received only after at least
two message delays.)

Definition (Hyperfast Accepting) An algorithm Alg is hyperfast-accept-
ing for a proposer p iff for every proposable value v and learner l , there
is a scenario S of Alg such that S has depth at most 1, has as its only
source an event in which p proposes v , and contains an event in which l
learns v .

The following result shows that hyperfast learning is impossible except in
very restricted special cases.

Theorem (Hyperfast Learning) A consistent asynchronous algorithm
Alg cannot be hyperfast-accepting for two different proposers. For any
integer f with 0 < f ≤ n, if every set of n − f acceptors is a quorum for
Alg and Alg is hyperfast-accepting for a proposer p, then

1. f = 1,

2. p is an acceptor that is not a learner, and

3. For every learner l , either l is an acceptor or {p, l} is the set of
proposers.

Proof Sketch Hyperfast accepting for a proposer q implies that, for any
learner l and value v , there is a scenario in which q proposes v and sends a
message to l , which receives the message and thereupon learns v . The set
of agents in this scenario is {q , l}.

Suppose the algorithm is hyperfast accepting for two different proposers
p1 and p2. The Agent Assumption implies that there are learners l1 and
l2 with {p1, l1} and {p2, l2} disjoint. We can then show that consistency
is violated by applying the Scenario Union Lemma to two scenarios whose
set of agents are {p1, l1} and {p2, l2}, in which l1 and l2 learn different
values. This shows that hyperfast accepting is impossible for two different
proposers.

19

We now sketch a proof of the rest of the theorem. If Alg is hyperfast
accepting for p, then for any learner l1 and value v1 there is a scenario with
set of agents {p, l1} in which l1 learns v1. Suppose the set of all agents other
than p and l1 contains a proposer p2, a learner l2, and a quorum Q . We can
then construct a scenario with agents {p2, l2}∪Q in which l2 learns a value
v2 6= v1. Applying the Scenario Union Lemma then shows that consistency
is violated. To complete the proof of the theorem, we must show that such
agents p2 and l2 and quorum Q exist unless the theorem’s three conclusions
hold. This is not hard, but requires care in checking the details. 2

It is quite easy to see that the analog of fast and hyperfast learning with
zero message delays is never possible.

3 Algorithms

Our theorems assert that consensus algorithms do not exist except in cer-
tain cases. We now describe algorithms for those cases, showing that the
theorems are as strong as possible. The theorems are covered in the same
order as in Section 2. Paxos and Fast Paxos provide algorithms for the
normal cases. Among the exceptional cases, only the ones for the Collision-
Fast Learning Theorem yield potentially useful algorithms; they appear in
Section 3.2.2. Since the theorems are our main results, we just sketch the al-
gorithms and their correctness proofs. All the algorithms have a parameter
f such that any set of n − f acceptors is a quorum.

3.1 The Lower Bound on Acceptors

The Paxos algorithm [9] achieves the lower bound of n = 2f + 1 asserted
by the main case of the Acceptor Lower Bound Theorem, for arbitrary sets
of learners and proposers. We now exhibit a consensus algorithm for the
anomalous case of the theorem, with f = 1 and three agents a1, a2, and a3

such that {a1, a2} is the set of acceptors, {a1, a3} is the set of proposers,
{a2, a3} is the set of learners, and both {a1} and {a2} are quorums. The
existence of such an algorithm is actually an artifact of our definitions. We
show that the requirements are satisfied by any 1-fault tolerant consensus
algorithm Alg that works for n = 3, such as Paxos, in which a1, a2, and a3

all act as acceptors.
One-fault tolerance means that any two of the three agents form a quo-

rum for Alg . In other words, any set containing a proposer, a learner, and
two agents can make progress. Since the nontriviality and consistency re-

20

quirements do not depend on the set of quorums, to show that Alg satisfies
the requirements of the theorem’s anomalous case, it suffices to show that
{a1} and {a2} are quorums. This requires showing that any set consisting
of a proposer, a learner, and either a1 or a2 can make progress. But a sim-
ple enumeration of all possible cases shows that any such set contains two
agents, so Alg guarantees that progress can be made.

3.2 Fast, Collision-Fast, and Hyperfast Learning

We now describe several algorithms for fast and hyperfast learning. All but
one of these algorithms is described in terms of a fast round that may be
followed by a slow round. An agent enters the slow round either sponta-
neously by a timeout or when it receives a slow-round message from another
agent. Once it enters the slow round, the agent stops participating in the
fast round and ignores any fast-round messages it may receive.

The slow round can use any consensus algorithm, such as Paxos, that
ensures progress if a proposer, a learner, and n − f acceptors are nonfaulty.
The round first determines either (a) that some single value v might have
been learned in the fast round, or (b) no value was learned in the first round.
In case (a), only the value v may be proposed to the consensus algorithm;
in case (b), any value may be proposed.

Our algorithms for fast and collision-fast learning have a parameter e
such that every set of n−e acceptors is a fast or collision-fast accepting set.
They require that, in the fast round, every nonfaulty learner learns a value
within 2 message delays if n − e acceptors are nonfaulty and, for ordinary
fast learning, if only a single proposer issues a proposal.

3.2.1 Fast Learning

The Fast Learning Theorem asserts that if an algorithm is fast-accepting
for at least two different proposers p1 and p2, then either (a) n > 2e + f or
(b) the set of learners equals {p1, p2}.

Fast Paxos is an f -fault tolerant consensus algorithm that works for arbi-
trary sets of proposers and learners. Under the same synchrony assumption
as ordinary Paxos, it ensures fast learning in the absence of collision if n > 2f
and n > 2e + f . By the Acceptor Lower Bound Theorem, there can exist a
fast-learning algorithm with n ≤ 2f for case (a) only in the anomalous three-
agent case of that theorem with n = 2, f = 1, and e = 0. A collision-fast,
and hence fast, algorithm for this case is given in Section 3.2.2 below.

Here we describe only a fast-learning algorithm that works for e = f and

21

n > 2f in case (b), when {p1, p2} is the set of learners. In the fast round,
each pi can send a proposal to the acceptors iff it has not already learned a
value. An acceptor votes for a proposed value in the fast round and sends
its vote to the pi iff it has not already voted. A learner learns a value v in
the fast round iff it receives at least n − f fast-round votes for v and it has
not proposed any value other than v .

The algorithm is fast accepting because a proposed value is learned in 2
message delays if it is the only one proposed, n − f acceptors are nonfaulty,
and no timeout occurs during the fast round. Consistency is maintained in
the fast round because n > 2f implies that two different values cannot both
receive n − f votes. We now show that progress is ensured if a learner, a
proposer, and n − f acceptors are nonfaulty.

Suppose pi , a learner, and n − f acceptors are nonfaulty. Then in the
slow round, those agents can determine that exactly one of the following
occurred in the fast round:

• pi learned v .

• pi did not learn a value, at least one of the n − f acceptors voted for
a value v , and

– v was not proposed by pi (so it was proposed by the other pro-
poser), or

– v was proposed by pi and none of the acceptors voted for a value
other than v .

• None of the n − f acceptors voted.

In the first two cases, v was proposed and no value other than v could have
been learned in the fast round, so v can be proposed in the slow round. In
the third case, no value could have been learned in the fast round, so any
value can be proposed in the slow round. Hence, a value can be proposed
in the slow-round consensus algorithm, ensuring progress.

3.2.2 Collision-Fast Learning

We now give two collision-fast algorithms for e = 0 and n > 2f :

A. An algorithm that is collision-fast learning for any set of proposers
when f = 1 and every acceptor except one is a learner.

B. An algorithm, in which every acceptor is a proposer, that is collision-
fast for a set of proposers consisting of the acceptors together with at
most one additional proposer.

22

We can always reduce the set of proposers or learners by simply not letting
some proposers propose and ignoring what some learners learn. Therefore,
these are the most general algorithms whose existence is not ruled out by
the Collision-Fast Learning Theorem.

These two algorithms are of more than theoretical interest. The e = 0
case is important because, if a system is automatically reconfigured to re-
move any server that fails, then all servers are nonfaulty most of the time.
Algorithm A is interesting because the most common applications of asyn-
chronous consensus will probably tolerate one fault by using three servers,
only two of which maintain the system state and thus need to be learners.
Algorithm B handles the traditional case in which each agent is a proposer,
a learner, and an acceptor.

Algorithm A Algorithm A is a simple variant of the Paxos algorithm
for f = 1. Recall how Paxos works in this case [9]. It begins with a leader
chosen for ballot 0. Proposers send proposed values to the leader. When the
leader receives the first such value, it sends it in a ballot-0 phase 2a message
to each acceptor. Upon receiving the phase 2a message, an acceptor then
sends the value to every learner in a ballot-0 phase 2b message. A learner
learns a value if it receives n − f ballot-0 phase 2b messages with the value.

We explain Algorithm A first for the case n = 3. We let the leader for
ballot 0 be the acceptor that is not a learner, so the learners are the other two
acceptors. The leader sends its phase 2a and phase 2b messages together.
Upon receiving the leader’s phase 2a/b message, each other acceptor knows
about two phase 2b messages for the value—the leader’s and its own—so it
learns the value. (Recall that n = 3 and f = 1.) In fact, the learner does
not actually have to send its phase 2b message. In the absence of failures
or timeouts, the proposal is then learned within two message delays. The
algorithm is thus collision-fast for any set of proposers.

To generalize the algorithm to an arbitrary n > 2, we observe that Paxos
works with any set of quorums, subject only to the requirement that any
two quorums have an acceptor in common. A learner learns a value when it
receives phase 2b messages with the same ballot number from all acceptors
in a quorum. We let the leader be the acceptor that is not a learner, and
we let a quorum consist of either (i) any set containing the leader and at
least one other acceptor or (ii) the set of all acceptors other than the leader.
This set of quorums satisfies the requirement that any two quorums have
an acceptor in common. Since f = 1, any n − f acceptors form a quorum.
As in the n = 3 case, a learner learns a value when it receives the ballot-

23

0 phase 2a/b message from the leader, because it and the leader form a
quorum.

Algorithm B Let p1, . . . , pn be the acceptors, which are also proposers,
and let p0 be an additional proposer. These agents perform the following
actions in the fast round.

• If it has not already sent a fast-round message, a proposer pi can
propose a value v by sending the message 〈pi , v 〉 to all acceptors other
than itself and, if it is an acceptor, sending the message 〈pi : 〈pi , v 〉〉
to all learners.

• Upon receipt of the message 〈pj , v 〉, an acceptor pi may send the
message 〈pi : 〈pj , v 〉〉 to all learners iff it has not already sent a
message 〈pi : 〈pk , v ′ 〉〉 with k > j .

A learner learns the value v if, for some i , it has received the message
〈pj : 〈pi , v 〉〉 from every acceptor pj .

For each i , if pi proposed a value in the fast round, let v i be that value.
Suppose some pi did propose a value in the fast round, and let k be the
largest such i . We prove consistency of the fast round by showing that vk

is the only value that can be learned. This is obvious if k = 0, since v0 is
then the only value proposed. If k > 0, then it is implied by the following
assertion, which is easily shown to be an invariant of the algorithm, for
any i > 0:

If process i has proposed a value, then it has not sent any message
〈pi : 〈pj , v 〉〉 with j < i .

If pk and all the acceptors are non-faulty and no timeout occurs during the
fast round, then every acceptor i sends the message 〈pi : 〈pk , v k 〉〉, so every
non-faulty learner learns vk in two message delays. Hence, the algorithm is
collision-fast accepting for {p0, . . . , pn}.

To ensure progress in the slow round, any set of n− f acceptors must be
able to determine either (a) a proposed value v j such that no value except v j

could have been learned in the fast round, or (b) that no value was learned
in the fast round. For n−f > 0 (so a quorum contains at least one acceptor),
this is easy to do because, for any acceptor pi :

(a) If j is the largest integer such that pi sent a 〈pi : 〈pj : v j 〉〉 message,
then only v j could have been learned in the fast round.

(b) If pi sent no 〈pi : 〈pj : v j 〉〉 message, then no value was learned in
the fast round.

24

The Anomalous Three-Agent Case Algorithms A and B both work
and are equivalent for the anomalous three-agent case of the Acceptor Lower
Bound Theorem. Algorithm A is fast-learning despite the failure of the
non-acceptor agent because fast learning requires only that the leader be
nonfaulty. For this set of agents, the fast round of Algorithm B is equivalent
to the initial part of Algorithm A in which proposal messages and ballot-0
phase 2a/b messages are sent.

3.2.3 Hyperfast Learning

The Hyperfast Learning Theorem permits hyperfast learning only with f = 1
and only for a single proposer p such that (i) p is an acceptor that is not a
learner and (ii) either (a) every learner is an acceptor, or (b) every learner
but one is an acceptor and the other learner is the only proposer besides p.
We show that a hyperfast learning algorithm exists in this case.

The definition of hyperfast learning pretty much determines the fast
round. Proposer p can propose at most one value by sending a message to
every learner, and a learner learns that value upon receiving the message.
Hyperfast learning and consistency of the fast round are obvious. To ensure
progress in the slow round, any proposer, learner, and set of n−1 acceptors
must be able to determine if p proposed a value that could have been learned
in the fast round. They can do this because conditions (i) and (ii) imply
that either p is the proposer, p is one of the n−1 acceptors, or the proposer
and the n − 1 acceptors include all learners.

4 Conclusion

In a fault-tolerant asynchronous consensus algorithm, how many message
delays must occur between when a value is proposed and when a value is
learned? We have shown that the answer is 3, 2, or 1, depending on how
many acceptor processes are used to choose the value, how many of them
may fail, exactly who the proposers and learners are, and whether or not
proposals are issued concurrently. For an algorithm that uses n acceptors,
can always make progress if n − f of them are non-faulty, and works with
arbitrary proposers and learners, the answers are:

• Learning is possible in 3 message delays iff n > 2f .

• Learning is possible in 2 message delays when n−e acceptors are non-
faulty, for 0 ≤ e ≤ f and f > 0, iff n > 2e + f . However, concurrent
proposals can prevent an algorithm from achieving such fast learning.

25

• Learning is impossible in 1 message delay.

We have presented algorithms showing that each of these results is false
for special choices of proposers and/or learners. Our two algorithms that
permit learning in 2 message delays despite concurrent proposals may have
practical applications.

The consensus problem is important, so we want our results to be unam-
biguous and correct. Our presentation has therefore been rigorous, and the
proofs and formal exposition in the appendix are rather long and tedious.
We do not know any easier way to avoid errors.

References

[1] Francisco Brasileiro, Fab́ıola Greve, Achour Mostefaoui, and Michel
Raynal. Consensus in one communication step. In V. Malyshkin, editor,
Parallel Computing Technologies (6th International Conference, PaCT
2001), volume 2127 of Lecture Notes in Computer Science, pages 42–50.
Springer-Verlag, 2001.

[2] Bernadette Charron-Bost and André Schiper. Uniform consensus
is harder than consensus (extended abstract). Technical Report
DSC/2000/028, École Polytechnique Fédérale de Lausanne, Switzer-
land, May 2000.

[3] Roberto De Prisco, Butler Lampson, and Nancy Lynch. Revisiting the
paxos algorithm. Theoretical Computer Science, 243:35–91, 2000.

[4] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM, 35(2):288–323,
April 1988.

[5] Michael J. Fischer, Nancy Lynch, and Michael S. Paterson. Impossi-
bility of distributed consensus with one faulty process. Journal of the
ACM, 32(2):374–382, April 1985.

[6] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[7] Leslie Lamport. How to write a proof. American Mathematical Monthly,
102(7):600–608, August-September 1995.

[8] Leslie Lamport. The part-time parliament. ACM Transactions on Com-
puter Systems, 16(2):133–169, May 1998.

26

[9] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed
Computing Column), 32(4):18–25, December 2001.

[10] Leslie Lamport. Lower bounds for asynchronous consensus. In André
Schiper, Alex A. Shvartsman, Hakim Weatherspoon, and Ben Y. Zhao,
editors, Future Directions in Distributed Computing, volume 2584 of
Lecture Notes in Computer Science, pages 22–23. Springer, 2003.

[11] Leslie Lamport. Specifying Systems. Addison-Wesley, Boston, 2003.

[12] Leslie Lamport. Fast paxos. Technical Report MSR-TR-2005-112, Mi-
crosoft Research, July 2005.

[13] Fernando Pedone and André Schiper. Handling message semantics with
generic broadcast. Distributed Computing, 15(2):97–107, 2002.

[14] J. Wensley et al. SIFT: Design and analysis of a fault-tolerant computer
for aircraft control. Proceedings of the IEEE, 66(10):1240–1254, October
1978.

Appendix

A Proofs

We now provide rigorous proofs of the results presented in Section 2. The
results are not hard to prove under the assumption that the sets of pro-
posers, acceptors, and learners are pairwise disjoint. Difficulties are caused
by the exceptional cases that arise when those sets are not pairwise disjoint.
Since exceptional cases may permit interesting algorithms, we feel that it
is important to make sure that we have identified all of them. In other
words, we want to make sure that our theorems are not just “approximately
correct”.

The only practical way we know of checking the correctness of a theorem
is by writing its proof in the hierarchically structured style explained in [7].
A structured proof consists of a sequence of statements and their proofs;
each of those proofs is either a structured proof or an ordinary paragraph-
style proof. The j th step in the current level i proof is numbered 〈i〉j . The
proof statement “〈i〉j . Q.E.D.” denotes the current goal—that is, the level
i − 1 statement being proved by this step. A proof statement

Assume: A Prove: P

27

asserts that P can be proved under assumption A, and that A is assumed
in the lower-level steps that prove P . Each paragraph-style “leaf” proof
explicitly names each assumption and prior proof step required to prove the
statement. However, n, f , and e are taken to be natural numbers without
mentioning the assumptions implying that they are.

We recommend reading the proofs hierarchically, from the top level
down. To read the proof of a long level i step, first read the level i + 1
statements that form its proof, together with the proof of the final Q.E.D.
step (which is usually a short paragraph). The proof of the level i + 1 steps
can then be read in any order.

The steps of the proof are written in informal mathematics. They could
be expressed as TLA+ formulas using the definitions in Section B below,
except that:

• TLA+ has no construct corresponding to an Assume/Proof step. A
Proof clause can be expressed as a TLA+ formula, and an Assume
clause as a collection of constant declarations and a formula.

• A step of the form “Choose an x satisfying P(x)” or “Let x satisfy
P(x)” is expressed as the definition x ∆= choose x : P(x) and the
assertion P(x), which is verified by proving ∃ x : P(x).

Each proof is preceded by an informal sketch and an explanation of any
notation introduced for the proof. The following notation is used in more
than one proof.

• A is the set of all acceptors.

• For i equal to 1 or 2, we define ¬i by ¬1 = 2 and ¬2 = 1.

• {x ∈ C : P(x)} is the subset of the set C consisting of all elements x
that satisfy the predicate P(x).

• We say that the set of agents is anomalous iff there are three agents
a1, a2, and a3 such that {a1, a2} is the set of acceptors, {a1, a3} is
the set of proposers, and {a2, a3} is the set of learners.

[Case b of the Acceptor Lower Bound Theorem asserts that the set of agents
is anomalous.]

• An itemized list of assertions denotes their conjunction if the items are
labeled with numbers; it denotes their disjunction if they are labeled
with letters. (In the latter case, “or”s are written explicitly.)

28

• i . . j is the set of all integers k with i ≤ k ≤ j , for any natural numbers
i and j .

A.1 The Accepting Lemma

Lemma (Accepting) For any consistent asynchronous algorithm Alg , any
proposers p1 and p2, any learners l1 and l2, and any sets Q1 and Q2 of
acceptors such that each Q i is an accepting set for pi , the sets {p1, l1}∪
Q1 and {p2, l2} ∪Q2 are not disjoint.

The proof sketch of Section 2.2 is quite rigorous. We provide a hierarchically
structured version here mainly as an introduction to the proof style.

Proof

Assume: 1. Alg is a consistent asynchronous algorithm.
2. p1 and p2 are proposers, l1 and l2 are learners, and Q1 and Q2

are sets of acceptors such that Q i is an accepting set for pi , for
each i = 1, 2.

3. {p1, l1} ∪Q1 and {p2, l2} ∪Q2 are disjoint.
Prove: false
〈1〉1. Choose proposable values v1 and v2 and scenarios S 1 and S 2 such

that:
1. v1 6= v2

2. S i is a scenario of Alg with Agents(S i) ⊆ {pi , l i} ∪ Q i , for i =
1, 2.

3. S i has an event in which l i learns v i , for i = 1, 2.
Proof: Values v1 and v2 exist by the Value Assumption. Scenarios S i

satisfying conditions 2 and 3 exist by assumption 2 and the definition
of an accepting set.

〈1〉2. S 1 ∪ S 2 is a scenario of Alg .
Proof: This follows from 〈1〉1.2, assumption 3, and the Scenario
Union Lemma (page 9 of Section 2.1).

〈1〉3. Q.E.D.
Proof: Step 〈1〉1.2 implies that each learner l i learns v i in S 1 ∪
S 2, which is a scenario of Alg by 〈1〉2. By 〈1〉1.1, this contradicts
assumption 1 (the consistency of Alg).

29

A.2 The Acceptor Lower Bound Theorem

Theorem (Acceptor Lower Bound) For any natural number f with f ≤
n and any consistent asynchronous algorithm Alg , if any set of n − f
acceptors is an accepting set in Alg for every proposer, then either

a. n > 2f , or
b. f = 1 and the set of agents is anomalous.

We show that if n ≤ 2f , then except in the case of the anomalous set of
agents, there exist accepting sets, proposers, and learners that contradict
the Accepting Lemma. The proof is easy if n ≥ 4, but rather complicated
if n < 4. Fortunately the proof for n < 4 can be checked with a computer
by exhaustive enumeration. We do this by having the TLC model checker
verify the truth of a TLA+ formula, so the reader can determine directly
the correspondence between what the computer verified and what we claim
has been proved. We feel that it is much less likely for an undetected error
in TLC to let it verify an incorrect formula than it would be for us to make
an undetected error in a hand proof.

Proof

Assume: 1. Alg is a consistent asynchronous algorithm.
2. f is a natural number with f ≤ n and n ≤ 2f .
3. Every set of n − f acceptors is an accepting set for every pro-

poser.
Prove: f = 1 and there exist a1, a2, and a3 such that {a1, a2} is the set

of acceptors, {a1, a3} is the set of proposers, and {a2, a3} is the
set of learners.

〈1〉1. Choose proposers p1 and p2 and learners l1 and l2 such that {p1, l1}
and {p2, l2} are disjoint.
Proof: The existence of the pi and l i follows from the Agent As-
sumption.

〈1〉2. Case: n ≥ 4
〈2〉1. Choose acceptors a1, . . . , an such that:

1. A = {a1, . . . , an}
2. {p1, l1} ∩ A ⊆ {a1, a2}
3. {p2, l2} ∩ A ⊆ {an−1, an}

Proof: It follows from step 〈1〉1, the level 〈1〉 case assumption
(n ≥ 4), and the definition of n (the cardinality of A) that we
can number the acceptors in this way.

30

〈2〉2. {p1, l1} ∪ {a1, . . . , an−f } and {p2, l2} ∪ {a f +1, . . . , an} are dis-
joint.
〈3〉1. {a1, . . . , an−f } and {a f +1, . . . , an} are disjoint.

Proof: Assumption 2 (n ≤ 2f) implies n − f < f +
1. This implies the disjointness of {a1, . . . , an−f } and
{a f +1, . . . , an}, since 〈2〉1.1 and the definition of n imply
that the a i are all distinct.

〈3〉2. 1. {p1, l1} and {a f +1, . . . , an} are disjoint.
2. {p2, l2} and {a1, . . . , an−f } are disjoint.
Proof: The level 〈1〉 case assumption (n ≥ 4) and as-
sumption 2 (n ≤ 2f) imply f ≥ 2. Since this implies
f +1 > 2, part 1 follows from 〈2〉1.2 and 〈3〉1. Since f ≥ 2
implies n − f < n − 1, part 2 follows from 〈2〉1.3 and 〈3〉1.

〈3〉3. Q.E.D.
Proof: 〈2〉2 follows from 〈1〉1, 〈3〉1, and 〈3〉2.

〈2〉3. 1. {a1, . . . , an−f } is an accepting set for p1 in Alg .
2. {a f +1, . . . , an} is an accepting set for p2 in Alg .
Proof: By assumption 3 and 〈1〉1 (the pi are proposers).

〈2〉4. Q.E.D.
Proof: Steps 〈1〉1 (the pi are proposers and the l i are learners),
〈2〉2, 〈2〉3, and assumption 1 contradict the Accepting Lemma.

〈1〉3. Case: n ≤ 3 and the set of agents is not anomalous.
Proof: It suffices to show that, if n ≤ 3, then except in the anomalous
case with three agents, we can choose proposers p1 and p2, learners l1
and l2, and sets Q1 and Q2 each containing n − f acceptors such that
{p1, l1}∪Q1 and {p2, l2}∪Q2 are disjoint. By the Agent Assumption,
it suffices to show this when A is the set {1, . . . ,n} and there exist two
distinct proposers and two distinct learners in the set {1, . . . ,n + 4}.
The existence of the pi , l i , and Q i is therefore asserted by the TLA+

formula of Figure 1. The validity of this formula has been verified
with the TLC model checker.

〈1〉4. Q.E.D.
Proof: Cases 〈1〉2 and 〈1〉3 are exhaustive.

31

∀n ∈ 0 . . 3 :
∀ f ∈ 0 . . n :

n ≤ 2 ∗ f ⇒
∀ pp1, pp2, ll1, ll2 ∈ 1 . . (n + 4) :

(pp1 6= pp2) ∧ (ll1 6= ll2) ⇒
∨ ∃ p1 ∈ {pp1, pp2} :

∃ p2 ∈ {pp1, pp2} \ {p1} :
∃ l1 ∈ {ll1, ll2} :
∃ l2 ∈ {ll1, ll2} \ {l1} :
∃Q1, Q2 ∈ subset (1 . . n) :
∧ Cardinality(Q1) = n − f
∧ Cardinality(Q2) = n − f
∧ ({p1, l1} ∪Q1) ∩ ({p2, l2} ∪Q2) = {}

∨ ∧ n = 2
∧ f = 1
∧ ∃ a1, a2 ∈ {1, 2} :

∃ lp ∈ {pp1, pp2} ∩ {ll1, ll2} :
∧ {pp1, pp2} = {a1, lp}
∧ {ll1, ll2} = {a2, lp}
∧ lp /∈ {a1, a2}

Figure 1: TLA+ formula used in the proof of the Acceptor Lower Bound
Theorem.

A.3 The Fast Accepting Lemma

Lemma (Fast Accepting) For any consistent asynchronous algorithm
Alg , if there exist proposers p1, p2, and pq , learners l1, l2 and lq , fast-
accepting sets M 1 for p1 and M 2 for p2 in Alg , and a quorum Q for Alg
such that

• p1 6= p2

• p1 /∈ M 2 and p2 /∈ M 1

• l1 /∈ {p2, pq , lq} ∪ (M 2 \M 1) ∪Q

• l2 /∈ {p1, pq , lq} ∪ (M 1 \M 2) ∪Q

• {pq , lq} ∩M 1 ∩M 2 is empty

then M 1 ∩M 2 ∩Q is nonempty.

The proof follows the proof sketch in Section 2.3. Recall that ¬1 = 2 and
¬2 = 1.

32

Proof

Assume: 1. Alg is a consistent asynchronous algorithm.
2. p1, p2, and pq are proposers, l1, l2, and lq are learners, and

M 1, M 2, and Q are sets of acceptors.
3. M i is a fast-accepting set for pi in Alg , for i = 1, 2.
4. Q is a quorum for Alg .
5. p1 6= p2

6. pi /∈ M ¬i , for i = 1, 2.
7. l i /∈ {p¬i , pq , lq} ∪ (M ¬i \M i) ∪ Q , for i = 1, 2.
8. {pq , lq} ∩M 1 ∩M 2 is empty.
9. M 1 ∩M 2 ∩Q is empty.

Prove: false
〈1〉1. For i = 1, 2, choose proposable values v i and a scenario S i such that:

1. v1 6= v2.
2. S i is in Alg .
3. Agents(S i) ⊆ {pi , l i} ∪M i .
4. S i has depth at most 2.
5. The only source of S i is an event in which pi proposes v i .
6. S i contains an event e i in which l i learns v i .

Proof: The existence of the v i follows from the Value Assumption.
The existence of the S i follows from assumptions 2 (pi a proposer and
l i a learner) and 3 (M i fast accepting for pi).

definition T i
∆= {e ∈ S i : e ¹S i e i}

U i
∆= {e ∈ T i : (Depth(e,T i) ≤ 1) ∧

(eagent ∈ {pi} ∪ (M i \M ¬i))}
for i = 1, 2, where Depth(e,T i) is the depth of event e in T i .

〈1〉2. For i = 1, 2:
1. U i v T i v S i

2. T i and U i are scenarios in Alg .
Proof: T i is clearly a prefix of S i . By 〈1〉1.5, the only depth 0 events
of S i are performed by pi , which implies that U i is a prefix of T i ,
proving part 1. Part 2 follows from part 1 by 〈1〉1.2 and assumption 1
(Alg asynchronous).

〈1〉3. U 1 ∪U 2 is in Alg .
Proof: The definition of U i implies Agents(U i) ⊆ {pi}∪(M i \M ¬i).
Assumption 6 therefore implies that Agents(U 1) and Agents(U 2) are

33

disjoint. Step 〈1〉2.2, assumption 1 (Alg asynchronous), and the Sce-
nario Union Lemma then imply that U 1 ∪U 2 is in Alg .

〈1〉4. For i = 1, 2:
1. l i learns v i in T i .
2. Agents(U ¬i) and Agents(T i) are disjoint.

Proof: Part 1 follows from the definition of T i and 〈1〉1.6. By 〈1〉1.3,
〈1〉2.1, and the definition of U i , to prove part 2 it suffices to show that
{pi , l i} ∪M i and {p¬i} ∪ (M ¬i \M i) are disjoint. This follows from:

• pi 6= p¬i by assumption 5.

• pi /∈ (M ¬i \M i) by assumption 6.

• l i /∈ {p¬i} ∪ (M ¬i \M i) by assumption 7.

• M i is disjoint from {p¬i} by assumption 6.

• M i is disjoint from M ¬i \M i by definition of set difference.

〈1〉5. Choose a scenario V such that:
1. V is in Alg .
2. (U 1 ∪U 2) v V .
3. Agents(V \ (U 1 ∪U 2)) ⊆ {pq , lq} ∪Q
4. V contains a learning event eq performed by lq .

Proof: The existence of V follows from 〈1〉3, assumption 2 (pq a
proposer and lq a learner), and assumption 4 (Q a quorum).

〈1〉6. T i ∪V is a scenario of Alg , for i = 1, 2.
〈2〉1. T i ∪U ¬i is in Alg .

Proof: By 〈1〉2.2, 〈1〉4.2, assumption 1 (Alg asynchronous) and
the Scenario Union Lemma.

〈2〉2. U 1 ∪U 2 v T i ∪U ¬i

Proof: Since T i is a scenario (by 〈1〉2.1), an event e in T i∪U ¬i

precedes an event f in T i iff e is in T i , so 〈1〉2.1 (U i v T i)
implies that U 1 ∪U 2 is a prefix of T i ∪U ¬i .

〈2〉3. Agents((T i ∪U ¬i) \ (U 1 ∪U 2)) ⊆ {l i} ∪ (M 1 ∩M 2)
Proof: 〈1〉2.1 (U i v T i) and 〈1〉4.2 imply (T i ∪ U ¬i) \ (U 1 ∪
U 2) equals T i \U i . Step 〈1〉1.3 asserts that Agents(T i) ⊆
{pi , l i} ∪ M i , and 〈1〉1.4 and the definition of T i imply that
the only events in T i of depth greater than 1 are performed by
l i . Hence the definitions of T i and U i imply Agents(T i \U i) ⊆
{l i} ∪ (M 1 ∩M 2), since M i \ (M i \M ¬i) = M 1 ∩M 2.

34

〈2〉4. Agents(V \ (U 1 ∪U 2)) and Agents((T i ∪U ¬i) \ (U 1 ∪U 2)) are
disjoint.
Proof: By 〈1〉5.3 and 〈2〉3, we must prove that {l i}∪(M 1∩M 2)
and {pq , lq} ∪Q are disjoint. This follows from:
• l i /∈ {pq , lq} ∪Q by assumption 7.
• (M 1 ∩M 2) and {pq , lq} are disjoint by assumption 8.
• M 1 ∩M 2 and Q are disjoint by assumption 9.

〈2〉5. Q.E.D.
Proof: 〈1〉6 follows from 〈1〉5.1, 〈1〉5.2, 〈2〉1, 〈2〉2, 〈2〉4, assump-
tion 1, and part A2 of the definition of an asynchronous algo-
rithm, substituting T ← V , U ← T i ∪U ¬i , and S ← U 1 ∪U 2.

〈1〉7. Q.E.D.
Proof: 〈1〉4.1, 〈1〉5.4, 〈1〉6, and assumption 1 (Alg consistent) imply
that lq learns v i in event eq , for i = 1, 2. This is impossible by 〈1〉1.1.

A.4 The Fast Learning Theorem

Theorem (Fast Learning) For any natural numbers e and f with f > 0
and e ≤ f ≤ n and for any asynchronous consensus algorithm Alg , if
every set of n − f acceptors is a quorum for Alg and every set of n − e
acceptors is fast-accepting in Alg for two distinct proposers p1 and p2,
then n > 2e + f or the set of learners equals {p1, p2}.

The proof fills in the details missing from the proof sketch in Section 2.3.

Proof

Assume: 1. Alg is a consistent asynchronous Algorithm.
2. e and f are natural numbers with

1. e ≤ f ≤ n
2. 0 < f
3. n ≤ 2e + f

3. Every set of n − f acceptors is a quorum for Alg .
4. p1 and p2 are proposers with p1 6= p2.
5. Every set of n − e acceptors is fast-accepting for p1 and p2.
6. The set of learners does not equal {p1, p2}.

Prove: false
〈1〉1. Case: The set of agents is not anomalous.
〈2〉1. 1. n > 2f

35

2. n > 2e
3. e > 0
4. n − e > 1

Proof: Part 1 follows from assumptions 1 and 3, the level 〈1〉 case
assumption, and the Acceptor Lower Bound Theorem. Part 2 follows
from part 1 and assumption 2.1. Part 3 follows from

f < n [by part 1]
≤ 2e + f [assumption 2.3]

Part 4 follows from
n − e > 2f − e [by part 1]

≥ 1 + (f − e) [since f ≥ 1 by assumption 2.2]
≥ 1 [since (f − e) ≥ 0 by assumption 2.1]

〈2〉2. Choose learners l1 and lq such that
1. l1 6= lq
2. l1 /∈ {p1, p2}
3. If there is a learner in A\{p1, p2}, then l1 ∈ A.

Proof: l1 and lq exist by the Agent Assumption and assumption 6.

〈2〉3. Choose acceptors a1, . . . , an such that
1. A = {a1, . . . , an}
2. if l1 ∈ A then l1 = an−e

3. if p1 ∈ A then p1 = a1

4. if p2 ∈ A then p2 = an

5. if (lq ∈ A) ∧ (lq /∈ {p1, p2})
then if p1 /∈ A then lq = a1

else if p2 /∈ A then lq = an

else lq = a2

〈3〉1. Case: a. lq is not an acceptor, or
b. lq ∈ {p1, p2}, or
c. p1 or p2 is not an acceptor.

Proof: In each of these three cases, parts 2–5 of 〈2〉3 constrain at
most the choices of a1, an−e , and an . By assumption 4 (p1 6= p2),
〈2〉2.1, and 〈2〉2.2, no two of these acceptors are constrained to equal
the same agent. Hence, the constraints can be satisfied because 〈2〉1.3
and 〈2〉1.4 imply that 1, n − e, and n are three distinct integers.

〈3〉2. Case: 1. lq , p1, and p2 are all acceptors, and
2. lq /∈ {p1, p2}

〈4〉1. Case: l1 is not an acceptor.
Proof: In this case, 〈2〉3 is satisfied with p1 = a1, lq = a2, and

36

p2 = an , since 2 < n by the level 〈3〉 case assumption and assump-
tion 4 (p1 6= p2).

〈4〉2. Case: l1 is an acceptor.
〈5〉1. n ≥ 4

Proof: By the levels 〈3〉 and 〈4〉 case assumptions and 〈2〉2.
〈5〉2. n − e > 2
〈6〉1. Case: e > 1

Proof: In this case, 〈5〉2 follows from 〈2〉1.2, which implies
n − e > e.

〈6〉2. Case: e = 1
Proof: In this case, 〈5〉2 follows from 〈5〉1.

〈6〉3. Q.E.D.
Proof: Cases 〈6〉1 and 〈6〉2 are exhaustive by 〈2〉1.3.

〈5〉3. Q.E.D.
Proof: 〈5〉2 and 〈2〉1.3 imply 2 < n− e < n, so by 〈2〉2 and the
levels 〈3〉 and 〈4〉 case assumptions (which imply that lq , l1, p1,
and p2 are all distinct), we can satisfy 〈2〉3 by numbering the
acceptors so that p1 = a1, lq = a2, l1 = an−e and p2 = an .

〈4〉3. Q.E.D.
Proof: Cases 〈4〉1 and 〈4〉2 are exhaustive.

〈3〉3. Q.E.D.
Proof: Cases 〈3〉1 and 〈3〉2 are exhaustive (by propositional logic).

definition M 1
∆= {a1, . . . , an−e}

M 2
∆= {ae+1, . . . , an}

〈2〉4. Let Q be a subset of {a1, . . . , ae} ∪ {an−e+1, . . . , an} containing
n − f elements.

Proof: 〈2〉1.2 (which implies n − e + 1 > e) and 〈2〉3.1 (which implies
that the e i are all distinct) show that {a1, . . . , ae} ∪ {an−e+1, . . . , an}
contains 2e elements, and assumption 2.3 implies n − f ≤ 2e. Hence
such a Q exists.

definition l2
∆= l1 and pq

∆= p1

〈2〉5. 1. pi /∈ M ¬i , for i = 1, 2.
2. l i /∈ {p¬i , pq , lq} ∪ (M ¬i \M i) ∪Q , for i = 1, 2.
3. {pq , lq} ∩M 1 ∩M 2 is empty.
4. M 1 ∩M 2 ∩Q is empty.

〈3〉1. e + 1 ≤ n − e < n − e + 1

37

Proof: e + 1 ≤ n − e by 〈2〉1.2.
〈3〉2. M 1 ∩M 2 = {ae+1, ..., an−e}

Proof: By definition of M 1 and M 2, since 〈2〉1.2 implies e+1 ≤ n−e
and 〈2〉3.1 implies that the a i are distinct.

〈3〉3. M 1 ∩M 2 ∩Q is empty.
Proof: By 〈3〉2 and 〈2〉4, since 〈2〉3.1 implies that the a i are distinct.

〈3〉4. pi /∈ M ¬i , for i = 1, 2.
Proof: Since e > 0 by 〈2〉1.3, we have

1. 1 < e + 1, so p1 /∈ M 2 by 〈2〉3.3.
2. n − e < n, so p2 /∈ M 1 by 〈2〉3.4.

〈3〉5. l i /∈ {p¬i , pq , lq} ∪ (M ¬i \M i) ∪Q , for i = 1, 2.
Proof:

1. l i /∈ {p¬i , pq , lq} by 〈2〉2.1, 〈2〉2.2, and the definitions of l i and
pq .

2. l i /∈ (M ¬i \M i) ∪Q by 〈2〉3.2 and 〈3〉3, since 〈3〉2 implies that
an−e ∈ M 1 ∩M 2.

〈3〉6. {pq , lq} ∩M 1 ∩M 2 is empty.
〈4〉1. pq /∈ M 1 ∩M 2

Proof: By 〈2〉3.3 and 〈3〉2, since 〈2〉1.3 implies 1 < e + 1, and pq

is defined to equal p1.
〈4〉2. lq /∈ M 1 ∩M 2

〈5〉1. Case: lq = a2

〈6〉1. n ≥ 4
Proof: The level 〈5〉 case assumption and 〈2〉3 imply that the
if clause of 〈2〉3.5 is true and that p1 and p2 are acceptors.
Step 〈2〉2 and assumption 4 (p1 6= p2) then imply that p1, p2,
l1, and lq are all distinct acceptors, so n ≥ 4.

〈6〉2. n < 4e
Proof: This follows from

2n ≤ 4e + 2f [by assumption 2.3]
< 4e + n [by 〈2〉1.1]

〈6〉3. Q.E.D.
Proof: 〈6〉1 and 〈6〉2 imply e + 1 > 2. Step 〈4〉2 then follows
from 〈3〉2 and the level 〈5〉 case assumption.

〈5〉2. Case: lq 6= a2

Proof: In this case, if lq is an acceptor, then 〈2〉3 implies that it
equals a1 or an . Step 〈4〉2 then follows from 〈3〉2 because 〈2〉1.3
implies 1 < e + 1 and n − e < n.

38

〈5〉3. Q.E.D.
Proof: Cases 〈5〉1 and 〈5〉2 are exhaustive.

〈4〉3. Q.E.D.
Proof: 〈3〉6 follows from 〈4〉1 and 〈4〉2.

〈3〉7. Q.E.D.
Proof: 〈2〉5 follows from 〈3〉4, 〈3〉5, 〈3〉6, and 〈3〉3.

〈2〉6. Q.E.D.
Proof: M 1 and M 2 are both fast-accepting sets for p1 and p2 in Alg by
assumption 5, and Q is a quorum for Alg by assumption 3. The other
hypotheses of the Fast-Accepting Lemma are asserted by assumption 4,
〈2〉5.1, 〈2〉5.2, and 〈2〉5.3. The conclusion of the Fast-Accepting Lemma
and 〈2〉5.4 provide the desired contradiction.

〈1〉2. Case: The set of agents is anomalous.
〈2〉1. Let a1, a2, and a3 be three distinct agents such that A = {a1, a2},

{a1, a3} is the set of proposers, and {a2, a3} is the set of learners.
Proof: The a i exist by the level 〈1〉 case assumption.

definition q1
∆= a1 and q2

∆= a3

〈2〉2. n = 2, f = 1, and e > 0.
Proof: 〈2〉1 implies n = 2, and assumption 1 (Alg consistent and
asynchronous), assumption 2.2 (f > 0), assumption 3 (n − f acceptors
are a quorum), and the Accepting Lower Bound Theorem imply f = 1.
Assumption 2.3 (n ≤ 2e + f) then implies e > 0.

〈2〉3. Let v1 and v2 be proposable values with v1 6= v2 and, for i = 1, 2,
let T i be a scenario in Alg such that:

1. The only source event of T i is a proposal of v i by q i .
2. Agents(T i) = {q i , a2}.
3. T i has depth at most 2.
4. There is an event e i in T i in which a2 learns v i .

Proof: The v i exist by the Value Assumption. Step 〈2〉1 implies
{p1, p2} equals {q1, q2}, and 〈2〉2 and assumption 2.1 imply e = 1, so
assumption 5 implies {a2} is fast-accepting for q1 and q2. This implies
the existence of the scenarios T i in Alg .

definition For i = 1, 2: S i
∆= {e ∈ T i : e ¹T i e i}

Ri
∆= {e ∈ Ri : eagent = q i}

〈2〉4. For i = 1, 2:
1. Ri and S i are in Alg .

39

2. Ri v S i

3. a2 learns v i in S i .
Proof: S i is a prefix of T i , so it is in Alg by assumption 1 (Alg
asynchronous). By 〈2〉3.4, a2 learns v i in S i . By 〈2〉1 (which implies
q i 6= a2), 〈2〉3.1, and 〈2〉3.3, q i cannot receive a message from another
agent in S i . Hence Ri is a prefix of S i and is therefore in Alg by
assumption 1.

〈2〉5. 1. R1 ∪ R2 is in Alg
2. For i = 1, 2: 1. S i ∪ R¬i is in Alg .

2. R1 ∪ R2 v S i ∪ R¬i .
3. Agents((S i ∪ R¬i) \ (R1 ∪ R2)) = {a2}

Proof: Assumption 1 (Alg asynchronous), 〈2〉4.1, 〈2〉3.2, the definition
of R¬i (which implies Agents(R¬i) = {q¬i}), 〈2〉1 (which implies q1, q2,
and a2 are distinct agents), and the Scenario Union Lemma imply that
S i ∪ R¬i is in Alg . Step 〈2〉4.2 implies R1 ∪ R2 is a prefix of S i ∪ R¬i ,
so it is in Alg by assumption 1 (Alg asynchronous). The definition of
Ri and 〈2〉3.2 imply Agents((S i ∪ R¬i)) \ (R1 ∪ R2) = {a2}.

〈2〉6. Choose a scenario U such that
1. U is in Alg .
2. R1 ∪ R2 v U .
3. Agents(U \ (R1 ∪ R2)) ⊆ {a1, a3}
4. a3 learns a value in U .

Proof: Scenario U exists by 〈2〉5.1, 〈2〉1 (a1 a proposer and a3 a learner
and acceptor), 〈2〉2 (f = 1), and assumption 3 (quorum assumption).

〈2〉7. U ∪ S i is in Alg , for i = 1, 2.
Proof: By 〈2〉5.2, 〈2〉6, assumption 1, and part A2 of the definition of
an asynchronous algorithm, since 〈2〉6.2 implies U ∪S i = U ∪(S i∪R¬i)
and 〈2〉1 implies that {a2} and {a1, a3} are disjoint.

〈2〉8. Q.E.D.
Proof: 〈2〉4.3 implies that a2 learns v i in U∪S i , for i = 1, 2, and 〈2〉6.4
asserts that a3 learns a value in U . Since v1 6= v2 by 〈2〉3, assumption 1
(consistency) implies that U ∪ S 1 and U ∪ S 2 cannot both be in Alg ,
contradicting 〈2〉7.

〈1〉3. Q.E.D.
Proof: Cases 〈1〉1 and 〈1〉2 are exhaustive.

40

p1 p2 a1, . . . , an l

0 prop v1 prop v2

1 〈p1 〉 〈p2 〉 〈p2 〉 〈p2 〉
〈p2 〉 〈p1 〉 〈p1 〉

2 {〈p2 : p2 〉, 〈a1 : p2 〉,
. . . , 〈an : p2 〉, 〈 l : p2 〉}

Figure 2: Example of a tabular scenario specification.

A.5 The Collision-Fast Learning Theorem

Theorem (Collision-Fast Learning) For any natural numbers e and f ,
with e ≤ f ≤ n and f > 0, and any asynchronous consensus algorithm
Alg with independent delivery, if any set of n − f acceptors is a quorum
for Alg and there are two distinct proposers p1 and p2 such that any
set of n − e acceptors is collision-fast accepting for {p1, p2} in Alg , then
e = 0 and

a. f = 1, every learner is an acceptor, and at least one acceptor is not
a learner, or

b. p1 or p2 (or both) is an acceptor.

We transform the proof sketch in Section 2.4 into a rigorous proof. The
difficulty lies in handling the cases in which one or both of the pi is an
acceptor and/or there is no learner l that is neither an acceptor nor one of
the pi . We try to make the proof easier to understand by using a tabular
method of specifying scenarios illustrated by the example in Figure 2. In
this figure:

• prop v1 and prop v2 are depth 0 events that propose the values v1 and
v2, respectively. These two events are assumed to be the same ones in
all our tabular descriptions.

• Each 〈pi 〉 is a depth 1 event that receives the message generated by
pi ’s prop v i event.

• Each 〈b : pi 〉 is a depth 2 event that receives the message sent by
agent b’s event 〈pi 〉.

41

p1 p2 a1, . . . , an l

0 prop v1 prop v2

1 〈p1 〉 〈p2 〉 〈p2 〉 〈p2〉〈p2 〉 〈p1 〉 〈p1 〉

2 {〈p2 : p2 〉, 〈a1 : p2 〉,
. . . , 〈an : p2 〉, 〈 l : p2 〉}

Figure 3: Another example of a tabular scenario specification.

The figure specifies any scenario whose set of agents is {p1, p2, a1, . . . , an , l}
such that:

• The depth 0 events consist of prop v1 performed by p1 and prop v2

performed by p2.

• The depth 1 events of p1 consist of 〈p1 〉 followed by 〈p2 〉; the depth
1 events of p2, a1, . . . , an consist of 〈p2 〉 followed by 〈p1 〉; and l
performs the single depth 1 event 〈p2 〉.

• The only depth 2 events are performed by l and consist of the ones
in the set {〈p2 : p2 〉, 〈a1 : p2 〉, . . . , 〈an : p2 〉, 〈 l : p2 〉}, performed in
any order.

Figure 2 does not imply that the agents p1, . . . , l are all different. For
example, if p2 and a1 are the same agent, then that agent first performs the
prop v2 event and then performs the events 〈p2 〉 and 〈p1 〉. However, the
picture does not specify any scenario in case certain of the agents are equal.
For example, p1 and a1 cannot be the same agent, since the picture specifies
that they perform the events 〈p1 〉 and 〈p2 〉 in different orders. Similarly,
p2 and l cannot be the same agent because p2 performs the depth 1 event
〈p1 〉 and l does not.

A boxed entry in a tabular specification indicates that the entry replaces
the corresponding entry for any other column that describes the same agent.
For example, Figure 3 is the same as Figure 2 except for the boxed depth 1
entry of agent l . This specification allows p2 and l to be equal. The boxed
entry means that, if l equals p2, then that agent’s only depth 1 event is 〈p2 〉.
As before, the agent’s depth 0 event is prop v2 and its depth 2 events are the
ones in {〈p2 : p2 〉, . . . , 〈an : p2 〉}. However, if the boxed entry contained
the event 〈p1 〉, then Figure 3 would not specify any scenario when l equals

42

p1 p2 a1, . . . , aj aj+1, . . . , an

0 prop v1 prop v2

1 〈p1 〉 〈p2 〉 〈p1 〉 〈p2 〉
〈p2 〉 〈p1 〉 〈p2 〉 〈p1 〉

Figure 4: Tabular specification of a normal scenario Sj , for all j in π1 . . π2.

p2 because it would assert that this agent did not perform the depth 1 event
〈p2 〉 that generates the message received by its depth 2 〈p2 : p2 〉 event.

Proof

Assume: 1. Alg is a nontrivial, consistent, asynchronous algorithm with
independent delivery.

2. e and f are natural numbers with
1. e ≤ f ≤ n
2. 0 < f

3. Every set of n − f acceptors is a quorum for Alg .
4. p1 and p2 are proposers with p1 6= p2.
5. Every set of n−e acceptors is collision-fast accepting for {p1, p2}.
6. a. e > 0, or

b. 1. a. f > 1, or
b. there is a learner that is not an acceptor, or
c. every acceptor is a learner

2. p1 and p2 are both not acceptors
Prove: false

〈1〉1. Choose acceptors a1, . . . , an such that
1. {a1, . . . , an} is the set of acceptors.
2. If p1 is an acceptor, then p1 = a1.
3. If p2 is an acceptor, then p2 = an .

Proof: Assumptions 1 (Alg asynchronous and consistent), 2.2, and
3 and the Acceptor Lower Bound Theorem imply n ≥ 2, so such a
numbering of the acceptors exists by assumption 4 (p1 6= p2).

definition π1
∆= if p1 is an acceptor then 1 else 0

π2
∆= if p2 is an acceptor then n − 1 else n

43

〈1〉2. Choose two proposable values v1 and v2 with v1 6= v2, and choose a
normal scenario S j of Alg satisfying the specification of Figure 4, for
all j in π1 . . π2.
Proof: The Value Assumption implies the existence of v1 and v2.
Assumption 4 (p1 6= p2), 〈1〉1.2, and 〈1〉1.3 imply that the figure
specifies a normal scenario S j for j = 1, . . . ,n − 1, for j = 0 if p1

is not an acceptor, and for j = n if p2 is not an acceptor. Hence,
S j exists for all j in π1 . . π2. Assumption 5 (collision-fast accepting)
implies that Alg contains a scenario satisfying

p1 p2

0 prop v1 prop v2

Using assumption 1 (independent delivery), a simple induction argu-
ment starting with this scenario shows that Alg contains the normal
scenario S j , for all j in π1 . . π2.

〈1〉3. For each learner l , and each j in π1 . . π2, choose a normal scenario
T j (l) such that:

1. T j (l) is in Alg .
2. S j v T j (l).
3. Agents(T j (l) \S j) = {l}.
4. l learns v1 or v2 in T j (l).

Proof: Assumption 1 (independent delivery) implies that, by adding
events of l to S j , we can construct a normal scenario T j (l) satisfying
properties 1–3, in which l receives every message sent by a depth
0 or depth 1 event performed by itself or by any of the agents p1,
p2, a1, . . . , an−e . (This can be done even if l equals one of the
agents p1, . . . , an .) Let Z be the set of events in T j (l) performed
by agents in {l , p1, p2, a1, . . . , an−e}. Then Z is a prefix of T j (l) in
which l is complete to depth 2. Assumption 5 (collision-fast accepting)
implies that l learns a value in Z and hence in T j (l), and assumption 1
(nontriviality) implies that l can learn only v1 or v2.

〈1〉4. T j (l1)∪T j (l2) is a scenario in Alg , for all j in π1 . . π2 and all learners
l1 and l2.
Proof: This is trivial if l1 = l2. If l1 6= l2, it follows from parts
1–3 of 〈1〉3, assumption 1, and condition A2 in the definition of an
asynchronous algorithm.

〈1〉5. Choose k in (π1 +1) . . π2 such that each learner l learns v2 in T k−1(l)
and v1 in T k (l).

44

p1 a1, . . . , aπ2 l1

0 prop v1

1 〈p1 〉 〈p1 〉 〈p1〉

2 {〈p1 : p1 〉, 〈a1 : p1 〉,
. . . , 〈aπ2 : p1 〉, 〈 l1 : p1 〉}

Figure 5: Tabular specification of scenario Q .

〈2〉1. Each learner l learns v¬i in Tπi (l), for i = 1, 2.
Proof: We prove this for i = 2. The proof for i = 1 is essentially
symmetric. (In the proof for i = 1, we replace a1, . . . , aπ2 by
aπ1+1, . . . , an and p1 by p2.)

〈3〉1. Let l1 be a learner different from p2, and let Q be a sce-
nario satisfying the specification of Figure 5 such that

1. Q is in Alg .
2. l1 learns v1 in Q .
3. l performs the events in {〈p1 : p1 〉, 〈a1 : p1 〉, . . . ,
〈an−e : p1 〉} before any other depth 2 events.

Proof: l1 exists by the Agent Assumption. Figure 5 spec-
ifies scenarios, which are in Alg by assumption 1 (indepen-
dent delivery), since assumption 5 implies that the scenario
consisting only of the prop v1 event is in Alg . Assump-
tion 6 implies e > 0 or π2 = n, so {a1, . . . , aπ2} contains
{a1, . . . , an−e} and a scenario Q therefore exists that satis-
fies 〈3〉1.3 and the specification of Figure 5. This scenario
has a prefix Y with agent set {l , p1, a1, . . . , an−e} such
that l is complete to depth 2 in Y . Assumption 5 implies
{a1, . . . , an−e}, is a collision-fast accepting set for {p1, p2},
so l learns a value in Y and hence in Q . By assumption 1
(nontriviality), l must learn v1.

〈3〉2. Let R be a scenario satisfying the specification of Figure 6
such that Q v R and

1. R is in Alg
2. l1 learns v1 in R.

Proof: There exists a scenario R satisfying Figure 6 and
having prefix Q because p2 6= p1 by assumption 4, p2 6= l1

45

p1 p2 a1, . . . , aπ2 l1

0 prop v1 prop v2

1 〈p1 〉 〈p2 〉 〈p1 〉 〈p1〉〈p2 〉 〈p1 〉 〈p2 〉

2 {〈p1 : p1 〉, 〈a1 : p1 〉,
. . . , 〈aπ2 : p1 〉, 〈 l1 : p1 〉}

Figure 6: Tabular specification of a scenario R.

by 〈3〉1, and p2 is not in {a1, . . . , aπ2} by 〈1〉1.3 and the
definition of π2. Assumption 1 (independent delivery) and
〈3〉1.1 imply that R is in Alg , and 〈3〉1.2 implies that l1
learns v1 in R.

〈3〉3. Let J be the set of all depth 0 and depth 1 events in R.
1. J is a prefix of R.
2. J is in Alg .

Proof: J is clearly a prefix of R, so it is in Alg by As-
sumption 1 (Alg asynchronous) and 〈3〉2.1.

〈3〉4. Let p be a proposer and l2 a learner such that l1 is not in
{p, l2}, and let K be a scenario in Alg such that

1. J is a prefix of K .
2. Agents(K \ J) ⊆ {p, l2} ∪ (A\{l1})
3. l2 learns v1 in K .

〈4〉1. We can choose p and l2 such that l1 is not in {p, l2}.
Proof: By the Agent Assumption.

〈4〉2. Let K be a scenario in Alg such that
1. J is a prefix of K .
2. Agents(K \ J) ⊆ {p, l2} ∪ (A\{l1})
3. l2 learns a value in K .

Proof: Assumptions 2.2 (f > 0) and 3 (quorum
assumption) imply that A\{l1} contains a quorum,
and 〈3〉3.2 then implies the existence of K in Alg
satisfying 1–3.

〈4〉3. R ∪K is in Alg .
Proof: By 〈3〉3, 〈4〉2, assumption 1, and part A2
of the definition of an asynchronous algorithm, since

46

p1 p2 a1, . . . , ak−1 ak+1, . . . , an

0 prop v1 prop v2

1 〈p1 〉 〈p2 〉 〈p1 〉 〈p2 〉
〈p2 〉 〈p1 〉 〈p2 〉 〈p1 〉

Figure 7: Tabular specification of the prefix U of Sk−1 and Sk .

Agents(R \ J) = {l1} by 〈3〉2 and 〈3〉3, and {l1} is
disjoint from Agents(K \ J) by 〈4〉2.2 and 〈4〉1.

〈4〉4. Q.E.D.
Proof: 〈4〉1 and 〈4〉2 prove all of 〈3〉4 except 〈3〉4.3.
Assumption 1 (consistency), 〈4〉2.3, 〈3〉2.2, and 〈4〉3
imply 〈3〉4.3.

〈3〉5. K ∪ Tπ2(l1) is in Alg .
〈4〉1. J v Tπ2(l1) and Agents(Tπ2(l1) \ J) = {l1}.

Proof: Since either p2 or aπ2 equals an , every agent
other than l1 performs the same events in J as in
Tπ2(l1). The sequence of events performed by l1 in
J is a subsequence of the events that l1 performs in
Tπ2(l1).

〈4〉2. Q.E.D.
Proof: 〈3〉5 follows from 〈4〉1, 〈3〉4 and assump-
tion 1 (Alg asynchronous), since l1 not in {p, l2}
implies that {l1} is disjoint from {p, l2}∪ (A\{l1}).

〈3〉6. Q.E.D.
Proof: 〈3〉4.3, 〈1〉3.4, 〈3〉5, and assumption 1 (consis-
tency) imply that l1 learns v1 in Tπ2(l1). Step 〈2〉1 (for
i = 2) then follows from 〈1〉4, 〈1〉3.4, and assumption 1
(consistency).

〈2〉2. Q.E.D.
Proof: 〈2〉1 and 〈1〉3.4 imply that, for any individual learner l ,
there exists a k in (π1 + 1) . . π2 such that l learns v2 in T k−1(l)
and v1 in T k (l). That this holds for all l (with the same k)
follows from 〈1〉4 and assumption 1 (consistency).

〈1〉6. Q.E.D.

47

〈2〉1. For all k ∈ π1 . . π2, let U be the prefix of S k specified by Fig-
ure 7.

1. U is a normal scenario that is a prefix of both S k−1 and S k .
2. U is in Alg .
3. Agents(T k−1(l) \U) and Agents(T k (l) \U) are subsets of
{ak , l}, for any learner l .

Proof: The definition of π1 and π2 imply that Figure 7 specifies
a normal scenario if π1 ≤ k ≤ π2. Parts 1 and 3 are then
obvious. Part 2 follows from part 1 by 〈1〉2 and assumption 1
(Alg asynchronous).

〈2〉2. Case: e = 0
〈3〉1. Choose a learner l1 such that:

if ak is a learner then l1 = ak

else a. l1 is not an acceptor, or
b. f > 1

Proof: The existence of l1 follows from the level 〈2〉 case
assumption (e = 0) and part b.1 of assumption 6.

〈3〉2. Let l2 be a learner and let q be a proposer such that {q , l2}
and {l1, ak} are disjoint.
Proof: The existence of a learner l2 not in {l1, ak} follows
from the Agent Assumption and 〈3〉1, which implies that
l1 = ak if ak is a learner. The level 〈2〉 case assumption
and part b.2 of assumption 6 imply that neither p1 nor
p2 is an acceptor, so neither equals ak . By assumption 4
(p1 6= p2), at least one of the pi is not equal to l1, so we
can choose q to be that pi .

〈3〉3. Let V be a behavior such that:
1. V is in Alg
2. U v V
3. Agents(V \U) ⊆ ({q , l2} ∪ A) \ {ak , l1}
4. l2 learns a value in V .

Proof: By 〈3〉2, ({q , l2}∪A) \ {ak , l1} contains q and l2,
and by assumption 2.2 and 〈3〉1 (which implies l1 = ak

if l1 an acceptor), it contains at least n − f acceptors.
By 〈2〉1.2 and assumption 3 (quorum assumption), we can
choose V satisfying 1–4.

〈3〉4. V ∪ T k−1(l1) and V ∪ T k (l1) are in Alg .
Proof: By 〈2〉1, 〈3〉3, assumption 1, and part A2 of the

48

definition of an asynchronous algorithm.
〈3〉5. Q.E.D.

Proof: Step 〈1〉5 asserts that l1 learns v2 in T k−1(l1) and
v1 in T k (l1). Steps 〈3〉3.4 and 〈3〉4 then imply that Alg is
not consistent, contradicting assumption 1.

〈2〉3. Case: e > 0
〈3〉1. Let l1 and l2 be two distinct learners such that l2 6= ak ,

and let W be a normal scenario such that
1. W is in Alg .
2. U v W
3. Agents(W \U) = {l2}
4. l2 learns a value in W .

Proof: We can choose l1 and l2 by the Agent Assump-
tion. The level 〈2〉 case assumption (e > 0) and assump-
tion 5 imply that there is a subset B of A\{ak} that is
collision-fast in Alg . for {p1, p2}. By 〈2〉1.2 and assump-
tion 1 (independent delivery), we can choose a scenario
W satisfying 1–3 containing a normal prefix X such that
Agents(X) = {l2, p1, p2} ∪ B and l is complete to depth
2 in X . By definition of collision-fast, this implies that l2
learns a value in X and hence in W .

〈3〉2. W ∪ T k−1(l1) and W ∪ T k (l1) are in Alg .
Proof: By 〈1〉3.1, 〈2〉1.1 (which by 〈1〉3.2 implies U is
a prefix of T k−1(l1) and T k (l1)), 〈2〉1.3, 〈3〉1, assump-
tion 1, and part A2 of the definition of an asynchronous
algorithm, since 〈3〉1 implies that {ak , l1} and {l2} are
disjoint.

〈3〉3. Q.E.D.
Proof: 〈3〉1.4, 〈3〉2, and 〈1〉5 imply that Alg is not con-
sistent, contradicting assumption 1 (consistency).

〈2〉4. Q.E.D.
Proof: Cases 〈2〉2 and 〈2〉3 are exhaustive.

A.6 The Hyperfast Learning Theorem

Theorem (Hyperfast Learning) A consistent asynchronous algorithm
Alg cannot be hyperfast-accepting for two different proposers. For any
integer f with 0 < f ≤ n, if every set of n − f acceptors is a quorum for

49

Alg and Alg is hyperfast-accepting for a proposer p, then

1. f = 1,

2. p is an acceptor that is not a learner, and

3. For every learner l , either l is an acceptor or {p, l} is the set of
proposers.

The proof follows the proof sketch in Section 2.5.

Proof

Assume: 1. Alg is a consistent asynchronous algorithm.
2. f is an integer with 0 < f ≤ n.
3. Every set of n − f acceptors is a quorum.
4. Alg is hyperfast-accepting for a proposer p.

Prove: 1. Alg is not hyperfast-accepting for any proposer other than p.
2. f = 1.
3. p is an acceptor and not a learner.
4. For every learner l , either l is an acceptor or {p, l} is the set

of proposers.

〈1〉1. Assume: 1. q is a proposer.
2. l is a learner.
3. v is a proposable value.
4. Alg is hyperfast-accepting for q .

Prove: There exists a scenario S in Alg such that Agents(S) =
{q , l} and l learns v in S .

〈2〉1. Let T be a scenario in Alg such that T has depth at most 1, has
as its only source event one in which q proposes v , and contains
an event e l in which l learns v .
Proof: T exists by the level 〈1〉 assumptions and the definition
of hyperfast-accepting.

〈2〉2. Let S be the prefix of T consisting of all events e in T such that
e ¹S e l . Then Agents(S) = {q , l}.
Proof: Since e l has depth at most 1 and 〈2〉1 implies that the
only events of T with depth 0 are performed by q , any event of
T that precedes or equals e l is performed by q or l .

〈2〉3. Q.E.D.
Proof: By 〈2〉1, 〈2〉2, and assumption 1 (Alg asynchronous).

50

〈1〉2. Assume: Alg is hyperfast-accepting for a proposer p2 different from p.
Prove: false

〈2〉1. Choose learners l1 and l2 such that {p, l1} and {p2, l2} are dis-
joint.
Proof: The Agent Assumption implies the existence of l1 and l2.

definition p1
∆= p

〈2〉2. Choose values v1 and v2 with v1 6= v2 and, for each i = 1, 2, let
S i be a scenario in Alg such that Agents(S i) = {pi , l i} and l i
learns v i in S i .
Proof: v1 and v2 exist by the Value Assumption. The S i ex-
ist by 〈1〉1, the level 〈1〉 assumption, and assumption 4 (Alg
hyperfast for p).

〈2〉3. Q.E.D.
Proof: 〈2〉1, 〈2〉2, assumption 1 (Alg asynchronous), and the
Scenario Union Lemma imply S 1 ∪ S 2 is in Alg . By 〈2〉2, this
implies that Alg is not consistent, contradicting assumption 1.

〈1〉3. Assume: a. f > 1, or
b. p is not an acceptor, or
c. p is a learner, or
d. There exists a learner l and proposer q such that:

1. l is not an acceptor, and
2. q is not in {p, l}

Prove: false

〈2〉1. Choose learners l and l2 and a proposer p2 such that
1. A\{p, l} contains a quorum.
2. {p, l} and {p2, l2} are disjoint.

〈3〉1. Case: f > 1 or p is not an acceptor.
Proof: The Agent Assumption implies that we can choose
l , p2, and l2 satisfying 〈2〉1.2. Assumption 2 (f > 0), as-
sumption 3 (quorum assumption), and the case assump-
tion then implies 〈2〉1.1.

〈3〉2. Case: p is a learner.
Proof: In this case, assumption 2 (f > 0) and assump-
tion 3 (quorum assumption) imply that 〈2〉1.1 holds with
l = p. The existence of p2 and l2 satisfying 〈2〉1.2 then
follows from the Agent Assumption.

〈3〉3. Case: 1. p is not a learner

51

2. There exists a learner l and proposer q such that
1. l is not an acceptor, and
2. q is not in {p, l}

Proof: Part 2.1 of the case assumption, assumption 2
(f > 0), and assumption 3 (quorum assumption) imply
〈2〉1.1. Parts 1 and 2.2 of the case assumption and the
Agent Assumption imply that we can choose a learner l2
such that 〈2〉1.2 is satisfied with p2 = q .

〈3〉4. Q.E.D.
Proof: The level 〈1〉 case assumption implies that cases
〈3〉1, 〈3〉2, and 〈3〉3 are exhaustive.

〈2〉2. Let S be a scenario in Alg with Agents(S) ⊆ {p2, l2}∪(A\{p, l})
such that l2 learns a value v2 in S .
Proof: S exists by 〈2〉1.1 and the definition of a quorum (sub-
stituting the empty scenario for S in the definition).

〈2〉3. Let v1 be a proposable value different from v2 and let T be a
scenario in Alg with Agents(T) = {p, l} such that l learns v1

in T .
Proof: T exists by assumption 4 (Alg hyperfast for p), 〈2〉1 (l
a learner) and 〈1〉1.

〈2〉4. Q.E.D.
Proof: 〈2〉1.2, 〈2〉2, 〈2〉3, assumption 1 (Alg asynchronous), and
the Scenario Union Lemma imply that S ∪T is in Alg . By 〈2〉2
and 〈2〉3, this implies that Alg is not consistent, contradicting
assumption 1.

〈1〉4. Q.E.D.
Proof: The theorem follows from 〈1〉2 and 〈1〉3 by predicate logic.

B Formal Statements of the Results

We now formalize our definitions and results in TLA+ [11]. We do not
explain TLA+ notation here, but readers familiar with simple logic and set
theory should be able to understand most of the formalism. The results
are expressed as definitions, assumptions, and theorems in the following
TLA+ module. This is a constant module, so it makes no use of TLA (the
temporal logic of actions). TLA+ serves only as a convenient language for
writing formulas of ordinary first-order logic and set theory. Although the

52

module contains some comments, most of the explanation is provided by the
informal presentation in Section 2.

module LowerBounds
extends Naturals, Sequences, FiniteSets

We take the conventional approach of representing a relation R by a set of ordered pairs,
where 〈x , y 〉 ∈ R means x R y , and we define TransitiveClosure(R) to be the transitive
closure of relation R. We locally define Dom and Rng to be the domain and range of R,
and we recursively define TC [i] to be Ri+1, the composition of R with itself i + 1 times.

TransitiveClosure(R) ∆=
let Dom ∆= {r [1] : r ∈ R}

Rng ∆= {r [2] : r ∈ R}
TC [i ∈ Nat] ∆=

if i = 0 then R
else {〈d , e〉 ∈ Dom × Rng :

∃ c ∈ Dom ∩ Rng : ∧ 〈d , c〉 ∈ TC [i − 1]
∧ 〈c, e〉 ∈ R}

in union {TC [i] : i ∈ Nat}

We declare the parameters of the specification, which are all constants, and we state the
Agent and Value assumptions. We adopt the convention of using singular nouns as names,
so x ∈ S can be read as “x is an S”.

constants Proposer , The set of proposers.

Acceptor , The set of acceptors.

Learner , The set of learners.

PVal , The set of proposable values.

Message The set of all possible messages.

assume Agent Assumption

∧ IsFiniteSet(Acceptor)
∧ ∃ p1, p2 ∈ Proposer : p1 6= p2
∧ ∃ l1, l2 ∈ Learner : l1 6= l2

assume Value Assumption

∃ v1, v2 ∈ PVal : v1 6= v2

We define n to be the number of acceptors and Agent to be the set of all proposers,
learners, and acceptors.

n ∆= Cardinality(Acceptor)
Agent ∆= Proposer ∪ Learner ∪Acceptor

53

We now formalize the definitions of Section 2.1. We define an event to be a record, using
record notation instead of subscripts—for example, writing e.num instead of enum . Each
record has proposed , learned , and rcvd fields, using the special value NotAVal to indicate
that no value is proposed or learned, and letting e.rcvd equal 〈 〉 if e is not a message-
receiving event. We define Event to be the set of all events.

NotAVal ∆= choose v : v /∈ PVal

Event ∆= [agent : Agent ,
num : Nat \ {0},
msg : Message,
proposed : PVal ∪ {NotAVal},
learned : PVal ∪ {NotAVal},
rcvd : (Message ×Agent × (Nat \ {0})) ∪ {〈〉}]

We write ¹S as Pre(S). We define Scenario to be the set of all scenarios and Prefix (T)
to be the set of prefixes of a scenario T .

Pre(S) ∆= TransitiveClosure({〈d , e〉 ∈ S × S :
∨ ∧ d .agent = e.agent
∧ d .num ≤ e.num

∨ e.rcvd = 〈d .msg , d .agent , d .num〉})
Scenario ∆=
{S ∈ subset Event :
∀ e ∈ S :
∧ (e.proposed 6= NotAVal) ⇒ (e.agent ∈ Proposer)
∧ (e.learned 6= NotAVal) ⇒ (e.agent ∈ Learner)
∧ ∀ d ∈ S : (d .agent = e.agent) ∧ (d .num = e.num) ⇒ (d = e)
∧ (e.num > 1) ⇒ ∃ d ∈ S : ∧ d .agent = e.agent

∧ d .num = e.num − 1
∧ (e.rcvd 6= 〈〉) ⇒ ∃ d ∈ S \ {e} : e.rcvd = 〈d .msg , d .agent , d .num〉
∧ ∀ d ∈ S : (〈d , e〉 ∈ Pre(S)) ∧ (〈e, d〉 ∈ Pre(S)) ⇒ (d = e) }

Prefix (T) ∆= {S ∈ subset T :
∀ d ∈ T , e ∈ S : (〈d , e〉 ∈ Pre(T)) ⇒ (d ∈ S)}

S v T ∆= S ∈ Prefix (T)

We define Algorithm to be the set of all algorithms and AsynchronousAlgorithm to be the
set of all asynchronous algorithms, and we assert the Scenario Union Lemma as a theorem.

Algorithm ∆= subset Scenario

Agents(S) ∆= {e.agent : e ∈ S}
AsynchronousAlgorithm ∆=

54

{Alg ∈ Algorithm :
∧ ∀T ∈ Alg : Prefix (T) ⊆ Alg
∧ ∀T , U ∈ Alg :

∀S ∈ Prefix (T) ∩ Prefix (U) :
(Agents(T \S) ∩Agents(U \S) = {}) ⇒ (T ∪U ∈ Alg)}

theorem Scenario Union Lemma

∀Alg ∈ AsynchronousAlgorithm :
∀T , U ∈ Alg : (Agents(T) ∩Agents(U) = {}) ⇒ (T ∪U ∈ Alg)

We now define the sets of nontrivial, consistent, and consensus algorithms.

NontrivialAlgorithm ∆=
{Alg ∈ Algorithm :
∀S ∈ Alg :
∀ e ∈ S :

(e.learned 6= NotAVal) ⇒ (∃ d ∈ S : e.learned = d .proposed)}
ConsistentAlgorithm ∆=
{Alg ∈ Algorithm :
∀S ∈ Alg :
∀ d , e ∈ S : (d .learned 6= NotAVal) ∧ (e.learned 6= NotAVal)

⇒ (d .learned = e.learned)}
ConsensusAlgorithm ∆= NontrivialAlgorithm ∩ ConsistentAlgorithm

We now formalize the definitions, assumptions, and results of Section 2.2. We define
IsAcceptingFor(Q , p,Alg) to mean that the set Q of acceptors is an accepting set for
proposer p in algorithm Alg .

IsAcceptingFor(Q , p, Alg) ∆=
∀ v ∈ PVal , l ∈ Learner :
∃S ∈ Alg : ∧Agents(S) ⊆ {p, l} ∪Q

∧ ∃ d , e ∈ S : ∧ d .proposed = v
∧ d .agent = p
∧ e.learned = v
∧ e.agent = l

theorem Accepting Lemma

∀Alg ∈ ConsistentAlgorithm ∩AsynchronousAlgorithm,
p1, p2 ∈ Proposer , l1, l2 ∈ Learner , Q1, Q2 ∈ subset Acceptor :

IsAcceptingFor(Q1, p1, Alg) ∧ IsAcceptingFor(Q2, p2, Alg)
⇒ ({p1, l1} ∪Q1) ∩ ({p2, l2} ∪Q2) 6= {}

55

theorem Acceptor Lower Bound Theorem

∀ f ∈ 0 . . n, Alg ∈ ConsistentAlgorithm ∩AsynchronousAlgorithm :
(∀Q ∈ subset Acceptor :
(Cardinality(Q) = n − f) ⇒ ∀ p ∈ Proposer :

IsAcceptingFor(Q , p, Alg))
⇒ ∨ n > 2 ∗ f

∨ ∧ f = 1
∧ Cardinality(Agent) = 3
∧ ∃ a1, a2, a3 ∈ Agent : ∧Acceptor = {a1, a2}

∧ Proposer = {a1, a3}
∧ Learner = {a2, a3}

We now formalize the definitions and results of Section 2.3. We define Depth(e,S) to be
the depth of event e in scenario S . Because TLA+ allows recursive definitions only of
functions, not operators, we locally define D [d] to equal the depth of event d in S . We
also make the following local definitions:

•PrecedesInAgent(d) is the set of events in S performed by d .agent that precede d .

•SendsTo(d) is the event that sends the message received by d , if d receives a message.

•Max (X) is the maximum of a finite set X of numbers, or 0 if X is empty.

We define Sources(S) to be the set of all sources of scenario S

Depth(e, S) ∆=
let PrecedesInAgent(d) ∆= {c ∈ S : ∧ c.agent = d .agent

∧ c.num < d .num }
SendsTo(d) ∆= choose c ∈ S : d .rcvd = 〈c.msg , c.agent , c.num〉
Max (X) ∆= if X = {} then 0

else choose i ∈ X : ∀ j ∈ X : i ≥ j
D [d ∈ S] ∆=

Max ({Max ({D [c] : c ∈ PrecedesInAgent(d)}),
if d .rcvd 6= 〈〉 then 1 + D [SendsTo(d)] else 0})

in D [e]

Sources(S) ∆= {e ∈ S : ∀ d ∈ S \ {e} : 〈d , e〉 /∈ Pre(S)}
IsFastAcceptingFor(M , p, Alg) ∆=
∀ v ∈ PVal , l ∈ Learner :
∃S ∈ Alg : ∧Agents(S) ⊆ {p, l} ∪M

∧ ∀ e ∈ S : Depth(e, S) ≤ 2
∧ ∃ e ∈ S : ∧ e.proposed = v

∧ e.agent = p
∧ {e} = Sources(S)

56

∧ ∃ e ∈ S : ∧ e.learned = v
∧ e.agent = l

IsQuorum(Q , Alg) ∆=
∀ p ∈ Proposer :
∧ IsAcceptingFor(Q , p, Alg)
∧ ∀ l ∈ Learner , S ∈ Alg :

∃T ∈ Alg : ∧ S v T
∧Agents(T \S) ⊆ {p, l} ∪Q
∧ ∃ e ∈ T : ∧ e.agent = l

∧ e.learned 6= NotAVal

theorem Fast Accepting Lemma

∀Alg ∈ ConsistentAlgorithm ∩AsynchronousAlgorithm,
p1, p2, pq ∈ Proposer ,
l1, l2, lq ∈ Learner ,
M 1, M 2, Q ∈ subset Acceptor :

∧ IsFastAcceptingFor(M 1, p1, Alg)
∧ IsFastAcceptingFor(M 2, p2, Alg)
∧ IsQuorum(Q , Alg)
∧ p1 6= p2
∧ (p1 /∈ M 2) ∧ (p2 /∈ M 1)
∧ l1 /∈ {p2, pq , lq} ∪ (M 2 \M 1) ∪Q
∧ l2 /∈ {p1, pq , lq} ∪ (M 1 \M 2) ∪Q
∧ {pq , lq} ∩M 1 ∩M 2 = {}
⇒ (M 1 ∩M 2 ∩Q 6= {})

theorem Fast Learning Theorem

∀ f ∈ 1 . . n :
∀ e ∈ 0 . . f :
∀Alg ∈ ConsensusAlgorithm ∩AsynchronousAlgorithm :
(∀Q ∈ subset Acceptor :

(Cardinality(Q) = n − f) ⇒ IsQuorum(Q , Alg))
⇒ ∀ p1, p2 ∈ Proposer :

∧ p1 6= p2
∧ ∀M ∈ subset Acceptor :

(Cardinality(M) = n − e) ⇒
∧ IsFastAcceptingFor(M , p1, Alg)
∧ IsFastAcceptingFor(M , p2, Alg)

⇒ ∨ n > 2 ∗ e + f
∨ Learner = {p1, p2}

57

We now formalize the definitions and results of Section 2.4.

NormalScenario ∆=
{S ∈ Scenario :
∧ ∀ e ∈ Sources(S) : e.proposed 6= NotAVal
∧ ∀ d , e ∈ S :

(d 6= e) ∧ (d .agent = e.agent) ⇒ ∨ d .rcvd = 〈〉
∨ d .rcvd 6= e.rcvd

∧ ∀ e ∈ S \Sources(S) : e.rcvd 6= 〈〉
∧ ∀ d1, d2, e2 ∈ S :

∧ d1.agent = d2.agent
∧ d1.num ≤ d2.num
∧ e2.rcvd = 〈d2.msg , d2.agent , d2.num〉
⇒ ∃ e1 ∈ S : ∧ e1.agent = e2.agent

∧ e1.num ≤ e2.num
∧ e1.rcvd = 〈d1.msg , d1.agent , d1.num〉

∧ ∀ d , e ∈ S : (e.rcvd = 〈d .msg , d .agent , d .num〉)
⇒ (Depth(e, S) = 1 + Depth(d , S))}

IsCompleteToDepth(a, k , S) ∆=
let CTD [b ∈ Agent , i ∈ 0 . . k] ∆=

if i = 0 then true
else ∧ ∀ c ∈ Agents(S) : CTD [c, i − 1]

∧ ∀ d ∈ S :
Depth(d , S) < i
⇒ ∃ e ∈ S :

∧ e.agent = b
∧ e.rcvd = 〈d .msg , d .agent , d .num〉

in CTD [a, k]

IsCollisionFastAcceptingFor(M , P , Alg) ∆=
∀Q ∈ (subset P) \ {{}} :
∀ v ∈ [Q → PVal] :
∃T ∈ Alg :
∧ T = Sources(T)
∧ ∀ p ∈ Q : ∃ e ∈ T : (e.agent = p) ∧ (e.proposed = v [p])
∧ ∀ l ∈ Learner , S ∈ Alg ∩NormalScenario :

∧ T v S
∧Agents(S) = {l} ∪Q ∪M
∧ IsCompleteToDepth(l , 2, S)
⇒ ∃ e ∈ S : (e.agent = l) ∧ (e.learned 6= NotAVal)

58

HasIndependentDelivery(Alg) ∆=
∀S ∈ Alg ∩NormalScenario :
∀ e ∈ S , a ∈ Agent :
∧ ∀ d ∈ S : ∧ d .agent = e.agent

∧ d .num < e.num
⇒ ∃ c ∈ S : ∧ c.agent = a

∧ c.rcvd = 〈d .msg , d .agent , d .num〉
∧ ¬∃ d ∈ S : ∧ d .agent = a

∧ d .rcvd = 〈e.msg , e.agent , e.num〉
∧ ∀ d ∈ S : (Depth(d , S) < Depth(e, S))

⇒ ∃ c ∈ S : ∧ c.agent = a
∧ c.rcvd = 〈d .msg , d .agent , d .num〉

⇒ ∃ c ∈ Event : ∧ c.agent = a
∧ c.rcvd = 〈e.msg , e.agent , e.num〉
∧ S ∪ {c} ∈ Alg

theorem Collision-Fast Learning Theorem

∀ f ∈ 1 . . n :
∀ e ∈ 0 . . f :
∀Alg ∈ ConsensusAlgorithm ∩AsynchronousAlgorithm :
∧HasIndependentDelivery(Alg)
∧ ∀Q ∈ subset Acceptor :

(Cardinality(Q) = n − f) ⇒ IsQuorum(Q , Alg)
⇒ ∀ p1, p2 ∈ Proposer :

∧ p1 6= p2
∧ ∀M ∈ subset Acceptor :

(Cardinality(M) = n − e)
⇒ IsCollisionFastAcceptingFor(M , {p1, p2}, Alg)

⇒ ∧ e = 0
∧ ∨ ∧ f = 1

∧ Learner ⊆ Acceptor
∧ ¬(Acceptor ⊆ Learner)

∨ (p1 ∈ Acceptor) ∨ (p2 ∈ Acceptor)

59

We now formalize the definitions and results of Section 2.5.

IsHyperfastAcceptingFor(p, Alg) ∆=
∀ v ∈ PVal , l ∈ Learner :
∃S ∈ Alg : ∧ ∀ e ∈ S : Depth(e, S) ≤ 1

∧ ∃ e ∈ S : ∧ Sources(S) = {e}
∧ e.agent = p
∧ e.proposed = v

∧ ∃ e ∈ S : ∧ e.agent = l
∧ e.learned = v

theorem Hyperfast Learning Theorem

∀ f ∈ 1 . . n :
∀Alg ∈ ConsistentAlgorithm ∩AsynchronousAlgorithm :
∧ ∀ p, q ∈ Proposer :

∧ IsHyperfastAcceptingFor(p, Alg)
∧ IsHyperfastAcceptingFor(q , Alg)
⇒ (p = q)

∧ (∀Q ∈ subset Acceptor : (Cardinality(Q) = n − f)
⇒ IsQuorum(Q , Alg))

⇒ ∀ p ∈ Proposer :
IsHyperfastAcceptingFor(p, Alg)
⇒ ∧ f = 1

∧ p ∈ Acceptor \Learner
∧ ∀ l ∈ Learner : ∨ l ∈ Acceptor

∨ Proposer = {p, l}

60

