
out  des t roying  the 1D C-R proper ty ,  it is necessary and  
sufficient tha t  the same record  appea r  in two queries.  

Thus  the m a x i m u m  number  of  t imes a record  can be 
de le ted  and still preserve the 1D C-R p rope r ty  is 
[(m --  1)/2]. There  are m records ;  hence the r edundancy  
is 

rn(m --  1) --  m [ ( m  - -  1)/2] 
- - 1  

in 
= (m -- 2) - -  [(m --  1)/21. 

W h e n  m is odd,  then in a 1D C R W R  organiza t ion ,  
there  will be one record  at one end of the organiza t ion ,  
which canno t  be deleted.  Thus,  the end cor rec t ion  to  be 
a d d e d  to the r edundancy  is (m - -  2 [ m / 2 ] ) / m .  Thus,  the 
r edundancy  of  the C R W R  organ iza t ion  is 

(m --  2) --  [(m --  1)/2] -t- (m - -  2 [ m / 2 ] ) / m .  

As there are only two records  in each query,  it is 
easy to  show tha t  such a 1D C R W R  organ iza t ion  can 
be cons t ruc ted  with any value of  m. 

This  comple tes  the proof .  
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Multiple Byte 
Processing with Full- 
Word Instructions 
Leslie Lamport 
Massachusetts Computer Associates, Inc. 

A method is described which allows parallel proc- 
essing of packed data items using only ordinary full- 
word computer instructions, even though the processing 
requires operations whose execution is contingent upon 
the value of a datum. It provides a useful technique for 
processing small data items such as alphanumeric 
characters. 

Key Words and Phrases: byte processing, character 
processing, packed data 

CR Categories: 4.9 

Introduction 

One often has the p r o b l e m  of  process ing m a n y  
s imilar  da t a  i tems,  each of  which is much  shor ter  t han  a 
full compute r  word.  One  would  l ike to pack  several  
i tems to a word  and process  them s imul taneous ly  in 
o rder  to reduce bo th  s torage  space and  process ing  t ime.  

As  a s imple example ,  suppose  the da ta  are vectors  
of  the fo rm a = ( a l ,  . . . ,  am), where each a~ is a non-  
negat ive  integer  with a smal l  range  of  poss ible  values.  
We  can pack  some number  k of  the  e lements  al in a 
single compute r  word,  so only a b o u t  m / k  words  of  
s torage  are  needed  for  each  vector.  Cer ta in  ope ra t ions  
on these vectors  can be done  wi thout  u n p a c k i n g  them.  
F o r  example ,  given ano ther  s imilar  vector  b, we can  
fo rm the sum a + b = (al  q- b l ,  . . . ,  a,, + bin) using 
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full-word binary addition on each word of packed ele- 
ments. The vector sum is thus computed with only m / k  
separate add instructions, so we have saved time as well 
as space by packing the data. (The problem of overflow 
is considered later.) Other operations such as bit-wise 
logical operations and multiplication of a vector by a 
scalar can be done in a similar way. 

However, not all operations are so easy to do on 
packed data. Some involve making decisions on the 
basis of the values of individual data elements, as in 
computing maximum (a,h) = (maximum (a l ,b l ) , . . . ,  
maximum (a,,,bm)). It is not obvious how such an 
operation can be performed without unpacking the 
data. 

Sequences of similar data items are also encountered 
when processing strings of alphanumeric characters. We 
would like to pack several characters in a single word 
and process them simultaneously. We will consider the 
sample problem of comparing two strings of characters 
and forming an output string indicating where they 
differ. In particular, we will want the output string to 
contain a # where the two strings differ, and a blank 
where they are the same. For  example, given the input 
strings X Y Z Z Y X and X Y U Z V X, we want to pro- 
duce the output string A A # A # A (where A denotes 
the blank character). Once again, it is not obvious how 
an entire word full of characters can be processed 
simultaneously. 

We will describe a general method for doing such 
processing of packed data which should prove useful in 
many applications. It requires only the following full- 
word operations, which are common to most binary 
computers: logical and (/k), or (V),  and exclusive or 
(@); binary addition (q-); and n-bit left or right shift 
(~---, or --*,). (Although some of these operations can 
be programmed using the others, it would be imprac- 
tical to do so.) Binary multiplication (.) and logical 
complement ( ~ )  are also useful, but not necessary. 

The Basic Method 

In order to perform different operations on different 
items in a single word, we must construct bit masks. We 
need a mask word whose ith item consists of all ones if 
item i of the data word is to be changed, and all zeros 
otherwise. In our character string comparison problem, 
if one string has the substring X Y Z stored in a single 
computer word, and the other string has the correspond- 
ing substring X Y U stored in a single word, then we 
want to construct the mask word 0 . . .  0 0 . . .  0 1 . . .  1 
containing three mask characters. Given such a mask 
(and its complement), the rest is easy. We will describe 
how to construct this mask. 

Let the data items consist of n-bit fields. We assume 
that each item is stored in an (n + 1)-bit byte whose 
leftmost bit equals zero. (A method not requiring the 
extra bit can often be used. It is described later.) 
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Several bytes are stored in a single computer word. For  
convenience, the following description is in terms of 
operations on a single byte. However, since the opera- 
tions are performed using only the full-word computer 
instructions listed above, they can be done simul- 
taneously on all the bytes of a word. 

The bits of a byte are numbered 0-n from left to 
right. The ith bit of byte a is denoted by a~, and aj_n 
denotes bits j through n of a, for j _< n. Let 0 n and 1" 
denote strings of n zeros and n ones, respectively, so 01 ~ 
denotes the (n q- 1)-bit quantity 0 1 1 . . .  1. 

Let p be a logical function of two data items--i.e, a 
relation. We want to define a masking function mp to be 
a function whose value is a mask of ones when p is true 
and a mask of zeros when p is false. For  masking opera- 
tions on the (n -b 1)-bit bytes, the value of bit 0 of a 
mask byte is usually immaterial. We therefore define a 
masking function mp as follows: 

mp(a, b)l-n = 1" if p(a,b) = true, 
= 0" if p(a,b) = false, 

for all (n -b 1)-bit data items a and b with a0 = b0 = 0. 
(Recall that bit 0 of a data item is assumed to be zero.) 
For  a given relation p, we must write a program to 
evaluate mp using only full-word instructions. 

The basic idea is to compute mp in two steps. In 
Step 1, we compute a test function f r  which has the 
following property: 

f~(a, b)0 = 1 if p(a,b) = true, 
= 0 if p(a,b) =false ,  

for all a, b with a0 = b0 = 0. In Step 2, we construct a 
mask byte which depends upon the value o f f , ( a ,  b)0. 
Thus, Step 1 puts the value of the relation p into bit 0, 
and Step 2 spreads that value into the mask bits. 

Step 2 
We describe Step 2 first. Given the value offp(a,b),  

we can construct the mask mp by the following three 
operations: 

(1) x := ---~, (fi(a,b)) [shift bit 0 into bit n]. 
(2) y : =  x A 0  "1 [mask out b i t s 0 t o n - -  1]. 
(3) mp(a,b) := y .  01 ~ [multiply by a mask of l's]. 

To compute m_p--a masking function for the nega- 
tion of  p - -we  replace operation (3) by 

(3') m_p(a,b) := y + 01". 

If  we do not want to use a multiply instruction to com- 
pute rap, we can set mp(a,b) := ,~,m_p(a,b). This can 
be done without a complement instruction, since 
~-~z = z ~ 1 "+x. 

Step 1 
To describe Step 1, we define test functions for 

several common relations. Logical combinations of 
these relations are computed in the obvious way. For  
example, fpvq(a,b) = fp(a,b) k~ f~(a,b) for any relations 
p and q. All of the following definitions only use opera- 
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tions which can be performed on a full word of bytes 
with the aforementioned computer instructions. 

(a) Equality. For  the equality relation, observe that 
a = b if and only if a ~ b = 0 "+1, which is true if and 
only if a ~ b ~ 01" = 01". It is then easy to see that if 

f_  is defined by 

f_(a,b) = (a ~9 b ~) 01") -k 0"1, 

thenf=(a,b)o = 1 if and only if a = b. Hence, fffi is a 
test function for the equality relation. 

(b) Comparison of unsigned integers. Let a < b 
mean that a is numerically less than b if a and b are 
interpreted as nonnegative (unsigned) binary integers. 
T h e n a  < b if and only if 2" _< b- l -  2 " -  a -  1. But 
2" -- a -- 1 is just the n-bit logical complement of a, 
which equals a ~ 01", and 2" _< z if and only if z0 = 1. 
We can therefore define the test function f< by 

f<(a,b) = b + (a ~) 01"). 

Let _< be the relation < or = .  Since a < b if and 
only if a < b + 1, we can define the test functions"_< by 

f<_(a,b) = b + 0"1 + (a @ 01"). 

(The sum is always less than 2 "+1 , so overflow out of 
bit 0 is impossible.) 

(c) Comparison of signed integers. Let a << b mean 
that a is numerically less than b when a and b are in- 
terpreted as two's complement signed binary integers, 
with bit 1 as the sign bit. (Two's complement arithmetic 
seems the most natural for byte computations.) Observe 
that 

(i) If a~ = bl then a << b if and only if a < b. 
(ii) If ax ~ bx then a << b if and only if a > b. 

It is then easy to see that the test function f<< can be 
defined by 

f<<(a, b) = f<(a, b) @ ~'-x (a ~) b). 

The test function for the relation << (<< or = )  is 
similarly defined by 

f<<(a, b) = f_<(a, b) @ ~---1 (a ~ b). 

(d) Overflow. We now consider the problem of over- 
flow on an addition operation. (Subtraction presents a 
similar problem, and is left to the reader.) When per- 
forming vector addition, we usually have to test for 
overflow and take some special action if it occurs. Let 
us define the overflow relation ov + such that ov+(a,b) 
is true if the sum of a and b is outside the range of 
representable numbers. The problem is trivial for un- 
signed integers, since we can simply letfoo+(a, b) equal 
a q- b--i.e, bit 0 of the (n d- 1)-bit byte acts as an over- 
flow indicator. For  two's complement signed integers, 
the following program is one of several ways to compute 
bothfo,÷(a, b) and the sum of a and b. 

temp := a q- b; 
sum(a, b) := t e m p / ~  01"; 

fo,+(a, b) := temp ~ ~---x [sum (a, b) ~9 a @ b]; 

We can usefo~+ to construct the necessary mask to per- 
form some special processing for each byte in which 
overflow occurred. We could also use it to determine if 
overflow occurred in any byte within a word. This is 
discussed later. 

Programming Techniques 

It is a straightforward task to program parallel byte 
operations using this mask generation technique. How- 
ever, the following observations may prove useful. 

(a) No overflow occurs from bit 0 of a byte. Thus, 
either one's complement or two's complement full-word 
arithmetic operations can be used. However, if bit 0 of 
the leftmost byte is the leftmost bit of the word, then an 
add instruction can generate an overflow condit ion--bit  
0 of both operand words equal to zero and bit 0 of the 
result equal to one. Hence, any overflow interrupt must 
be inhibited. It may be impossible to use the sign bit of a 
computer with sign/magnitude arithmetic, depending 
upon what happens when addition of positive numbers 
generates an overflow. 

(b) On a shift operation, the values of the bits 
shifted into the end of the word are immaterial. Hence, 
any type of shift or rotate instruction may be used. 

(c) It is sometimes necessary to test each byte 
against a single value. To do this, the value can be 
spread to all the bytes of a word by multiplying it by a 
word of 0-1 bytes. 

(d) Common subexpressions can often be found 
when several test functions must be evaluated. This is 
aided by the fact that the @ operation is associative and 
commutative. 

(e) One must sometimes determine if the relation 
p(a, b) holds for any or for all pairs of data items a, b. 
For  example, we may want to generate an error message 
if overflow occurred in any of the sums of a vector 
addition operation. Testing for a zero word after opera- 
tion (2) of Step 2 provides a for any test. A for all test is 
done with a for any test of ~-~p. It may pay to make a 
for any test in order to skip a calculation if no bytes in 
the word are to be modified. 

An Example Programmed 

Let us now consider an actual program to solve our 
character string comparison problem. Assume a simple 
computer with one accumulator, an index register, 
single address instructions, and the following branching 
instructions: increment index and branch (IXB) which 
increments the index register and branches if its value is 
not zero, branch i f  accumulator is zero (agz), and un- 
conditional branch (aR). The following is a typical pro- 
gram for our problem when one character is stored per 
word. (We assume that the index register is properly 
initialized.) 
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a: LOAD a, indexed 
EXC .OR b, indexed 
BR Z /~ 
LOAD " # "  
STORE c, indexed 
IXB a 
BR 

/3: LOAD " A "  
STORE e, indexed 
IXB a 

3," . . .  

This program executes six instructions per character. 
Multiple character per word processing can be done 

with the following program. The bracketed expressions 
indicate the contents of one byte of the accumulator 
after executing the instruction, and {z} denotes a word 
each byte of which equals z. 

a: LOAD a, indexed 
EXC.OR b, indexed [a @ b] 
EXC.OR "{01"}" [a @ b @ 01 n] 
ADD "{0'q }" [f= (a, b)] 
R .SHIFT n 
AND "{0hi}" 
ADD "{01"}" [ms(a,  b)] 
STORE temp 
AND "{#}" 
STORE c, indexed 
LOAD temp 
C O M P L E M E N T  [m=(a,b)] 
AND " { A } " 
OR c, indexed 
STORE c, indexed 
IXB a 

This program executes 16 instructions per full word of 
characters. 

Given any problem, multiple byte processing will be 
faster than single item per word processing if enough 
bytes can be put into a single word. For  a given problem 
and a given computer, let the break-even number  be the 
number of bytes per word which makes the two proc- 
essing times equal. If  we assume that all instructions 
take the same amount  of time to execute, then the 
break-even number for our example is 16/6 ~ 2.7. 
Multiple byte processing is thus faster if three or more 
bytes fit in a single word. 

General Observations 

Having found the break-even number for one prob- 
lem and one computer, we now make some general ob- 
servations about how it should vary when the problem 
or the computer is changed. 

(a) Most large computers have several registers in- 
stead of a single accumulator. Using two registers, we 
can remove one instruction from each of  the above 
programs, increasing the break-even number to 15/5 = 

3. However, if the constants are initially placed in regis- 
ters, then the extra instructions required for multiple 
byte processing become register to register operations. 
These are usually faster than operations which refer- 
ence memory. This will tend to lower the break-even 
number. 

(b) It is difficult to make any general statement 
about the effect of a larger instruction set. However, 
observe that if there is a m a s k e d  store instruction on a 
multiple register computer, then four more instructions 
can be eliminated from the multiple byte processing 
loop, reducing the break-even number to 2.2 (assuming 
enough characters in a string so initialization times can 
be ignored). 

(c) Conditional branches slow down execution on a 
high-speed pipelined computer like the CDC 7600. Since 
multiple byte processing does not require conditional 
branching to test individual characters, this will lower 
the break-even number for such a computer. 

(d) On an array computer like the Illiac-IV, testing 
must be done by masking (i.e. disabling individual 
processors) even for one item per word processing. 
Multiple byte processing will usually be faster on such 
a computer if there are more data items than processors. 

(e) When only one of  several operations is to be per- 
formed on each data item, multiple byte processing may 
perform all the operations for each word, while single 
item per word processing does just one operation for 
each item. Increasing the number of different operations 
will tend to increase the break-even number. 

(f) The above example is perhaps unrealistically 
simple. A more complicated example is provided by a 
problem taken from an actual compiler optimization 
algorithm. For  each i, we must perform the following 
calculation: 

if a[i] = 0 
then a[i] := b[i] 
else i f  a[i] ~ x and a[i] ~ b[i] 

then begin 
a[i] := x; 
i f  y then flag := true 

end, 

For  the simple computer described above, packing the 
arrays a and b gives a break-even number which varies 
from 2.9 to 4.4, depending upon the relative execution 
frequencies of the different conditional clauses. Reason- 
able values for these give a break-even number of  
about 4. 

(g) The two examples we have given just require se- 
lecting the value of a data i tem--no real processing of 
the items is done. This is typical of problems involving 
small data items. The way in which the break-even 
number will vary with the amount  of  processing depends 
upon the efficiency of doing the operations on a full 
word of bytes and the probability that an operation will 
be performed on any single item. It is hard to make any 
general statements about this. However, we would ex- 
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pect that if the operations are easily performed simul- 
taneously on all bytes of  a word, then the break-even 
number  for our simple computer should be in the 3 to 4 
range for most real problems. 

(h) Storage space restrictions may require that data 
items be packed several to a word. In this case, the cost 
of  single item per word processing must include the 
unpacking and repacking operations. This will dramati-  
cally lower the break-even number unless a great deal of  
processing must be done for each item. 

Even on a multiple register computer,  this requires 
about three times as many instructions as the computa-  
tion o f f < .  

Note that if arithmetic operations are to be per- 
formed on the bytes, then the extra bit is probably 
needed anyway to prevent overflow out of one byte 
f rom propagating to the next byte. 

Conclusion 

Eliminating the Extra Bit 

I t  may be desirable to eliminate the (n -t- 1)-th bit 
(bit 0) for either of  two reasons: (i) to allow more 
bytes per word, or (ii) because other factors make it 
awkward to obtain the extra bit? We now show how to 
eliminate the extra bit if testing only requires the = 
or ~ relations. 

Using (n + 1)-bit bytes, the computat ion off=(a,  b) 
is performed as follows: 

x : =  a @  b @ 01L 
f=(a,b) := x -b 0"1. 

Since x0 = 0, f=(a, b)o will equal 1 if and only if there 
is a carry out of bit 1 in forming the sum xx-n + 1. But 
this will happen if and only if bit 1 of x2_, + 1 and bit 
1 of  x both equal 1. This suggests that we define the 
function g= by the following operations on n-bit bytes. 

x : =  a @  b @ 1" [ = ( H a )  @ b] 
y := x A 01 "-1 [= x2_,] 
g=(a, b) := (y -b 0"-11) f x 

Then g=(a, b)l = 1 if and only if a = b, so g= can be 
used as a test function, with the obvious modification of 
Step 2. 

The computat ion of g= is more complicated than 
that of f = .  On our single accumulator computer,  it 
requires three extra operations. For  the original sample 
problem, this adds about 20 percent to the computing 
time, and raises the break-even number to about  3.2. 
For  a computer with multiple registers, only two extra 
operations are needed. 

This should be a practical method of testing for 
equality despite the extra computation.  Testing for 
inequality is, of course, done with ~ g = .  

A similar trick can be used for the relations < ,  < ,  
<< and <_<. However,  it is more complicated, and 
requires so much more computat ion that it seems im- 
practical to test for these relations without using the 
extra bit. For  example, computing the analogous func- 
tion g< would involve the following operations: 

x := ( H a f  01 "-1 ) @ ( b f  01 "-1 ) 
g<(a,b) :=  ( x f - ~ a )  V ( x f b )  V ( ~ - ~ a f b ) .  

1 Conversely, these other factors sometimes provide the extra 
bit. For example, if ASCII characters must be stores in 8-bit bytes, 
then the parity bit position can be used as bit 0. 

Parallel processing of packed data items with ordinary 
full-word computer instructions is possible even if the 
computation includes operations contingent upon the 
value of an item. It  will be at least as fast as one item 
per word processing if enough items can be packed into 
a word, allowing one extra bit per item. (If  the tests 
just require the relations = and ~ ,  then the extra bit is 
not necessary.) The required minimum number of 
items per word depends upon the problem and the 
choice of computer,  but three or four items per word is 
probably sufficient in many cases. The technique should 
therefore be useful for a large number of problems in- 
volving small data items like alphanumeric characters. 
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