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Abstract

A novel formal theory of concurrent systems is introduced that does not
assume any atomic operations. The execution of a concurrent program is
modeled as an abstract set of operation executions with two temporal or-
dering relations: “precedence” and “can causally affect”. A primitive inter-
process communication mechanism is then defined. In Part II, the mutual
exclusion is expressed precisely in terms of this model, and solutions using
the communication mechanism are given.
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1 Introduction

The mutual exclusion problem was first described and solved by Dijkstra
in [3]. In this problem, there is a collection of asynchronous processes,
each alternately executing a critical and a noncritical section, that must be
synchronized so that no two processes ever execute their critical sections
concurrently. Mutual exclusion lies at the heart of most concurrent pro-
cess synchronization and, apart from its practical motivation, the mutual
exclusion problem is of great theoretical significance.

The concept of mutual exclusion is deeply ingrained in the way computer
scientists think about concurrency. Almost all formal models of concurrent
processing are based upon an underlying assumption of mutually exclusive
atomic operations, and almost all interprocess communication mechanisms
that have been proposed require some underlying mutual exclusion in their
implementation. Hence, these models and mechanisms are not satisfactory
for a fundamental study of the mutual exclusion problem. We have therefore
been forced to develop a new formalism for talking about concurrent systems,
and a new way of viewing interprocess communication. Part I is entirely
devoted to this formalism, which we believe provides a basis for discussing
other fundamental problems in concurrent processing as well; the mutual
exclusion problem itself is discussed in Part II [5].

The formal model we have developed is radically different from com-
monly used ones, and will appear strange to computer scientists accustomed
to thinking in terms of atomic operations. (It is a slight extension to the
one we introduced in [6].) When diverging from the beaten path in this
way, one is in great danger of becoming lost in a morass of irrelevance. To
guard against this, we have continually used physical reality as our guide-
post. (Perhaps this is why hardware designers seem to understand our ideas
more easily than computer scientists.) We therefore give a very careful
physical justification for all the definitions and axioms in our formalism.
Although this is quite unusual in theoretical computer science, we feel that
it is necessary in explaining and justifying our departure from the traditional
approach.

2 The Model

We begin by describing a formal model in which to state the problem and
the solution. Except for the one introduced by us in [6], all formal models

2



of concurrent processes that we know of are based upon the concept of an
indivisible atomic operation. The concurrent execution of any two atomic
operations is assumed to have the same effect as executing them in some
order. However, if two operations can affect one another—e.g., if they per-
form interprocess communication—then implementing them to be atomic is
equivalent to making the two operations mutually exclusive. Hence, assum-
ing atomic operations is tantamount to assuming a lower-level solution to
the mutual exclusion problem. Any algorithm based upon atomic opera-
tions cannot be considered a fundamental solution to the mutual exclusion
problem. We therefore need a formalism that is not based upon atomic
operations. The one we use is a slight extension to the formalism of [6].

2.1 Physical Considerations

For our results to be meaningful, our formalism must accurately reflect the
physical reality of concurrent processes. We therefore feel that it is impor-
tant to justify the formalism on physical grounds. We do this in terms of the
geometry of space-time, which lies at the foundation of all modern physics.
We begin with a brief exposition of this geometry. A more thorough expo-
sition can be found in [15] and [16], but for the more sophisticated reader
we recommend the original works [4, 11].

The reader may find the introduction of special relativity a bit far-
fetched, since one is rarely, if ever, concerned with systems of processes
moving at relativistic velocities relative to one another. However, the rel-
ativistic view of time is relevant whenever signal propagation time is not
negligibly small compared to the execution time of individual operations,
and this is certainly the case in most multiprocess systems.

Because it is difficult to draw pictures of four-dimensional space-time,
we will discuss a three-dimensional space-time for a two-dimensional spatial
universe. Everything generalizes easily to four-dimensional space-time.1 We
picture space-time as a three-dimensional Cartesian space whose points are
called events, where the point (x, y, t) is the event occurring at time t at the
point with spatial coordinates (x, y). Dimensional units are chosen so the
speed of light equals 1.

The world line of a point object is the locus of all events (x, y, t) such that
the object is at location (x, y) at time t. Since photons travel in a straight

1While it is even easier to draw pictures of a two-dimensional space-time with a single
space dimension, a one-dimensional space has some special properties (such as the ability
to send a light beam in only two directions) that can make such pictures misleading.

3



��
�

�
�

�
�

�
�

�
�

�
��

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅❅

e

forward light
cone from e

✲

future of e
✁

✁
✁

✁
✁☛

x-y space plane

t
i
m
e

✁
✁
✁
✁
✁
✁

✡
✡

✡
✡
✡

✡✡

✻

Figure 1: Space-Time

line with speed 1, the world line of a photon is a straight line inclined at 45◦

to the x-y plane. The forward light cone emanating from an event e is the
surface formed by all possible world lines of photons created at that event.
This is illustrated in Figure 1. The future of event e consists of all events
other than e itself that lie on or inside the future light cone emanating from
e. It is a fundamental principle of special relativity that an event e can only
influence the events in its future.

We say that an event e precedes an event f , written e −→ f , if f lies in
the future of e. It is easy to see that −→ is an irreflexive partial ordering—
i.e., that (i) e /−→ e and (ii) e −→ f −→ g implies e −→ g. Two events
are said to be concurrent if neither precedes the other. Since objects cannot
travel faster than light, two different events lying on the world-line of an
object cannot be concurrent.

We can think of the vertical line through the origin as the world line of
some standard clock, where the event (0, 0, t) on this world line represents
the clock “striking” time t. A horizontal plane, consisting of all events
having the same t-coordinate, represents the universe at time t—as viewed
by us. However, another observer may have a different view of which events
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occur at time t. We define a space-like plane to be a plane making an angle
of less than 45◦ with the x-y plane. For an inertial observer, the set of events
occurring at time t forms a space-like plane through (0, 0, t). (An inertial
observer is one traveling in a straight line at constant speed.) For different
values of t, these planes are parallel (for the same observer). Any space-like
plane represents a set of events that some inertial observer regards as all
occurring at the same time. Such a plane defines an obvious partitioning of
space-time into three sets: the future, the past, and the present (the plane
itself).

It follows from these observations that an event e precedes an event f
if and only if every inertial observer regards e as happening before f , and
events e and f are concurrent if and only if there is some observer who views
them as happening at the same time.

2.2 System Executions

According to classical physics, the universe consists of a continuum of space-
time events, each having no spatial or temporal extent. In computer science,
one imposes a discrete structure upon this continuous universe, considering
a system to consist of distinct operation executions such as reading a flip-
flop or sending a message.2 An infinite (usually bounded) set of space-time
events is considered to be a single operation execution. For example, the
operation execution of reading a flip-flop consists of events spatially located
at the flip-flop and perhaps at some of the wires connected to it.

The boundary between the events of one operation execution and of
other operation executions in the same processor is rather arbitrary; events
occurring along the wire leading from the flip-flop can be included as part
of the reading of the flip-flop or as part of a subsequent operation execution
that uses the value that was read. The fine details of where the bound-
ary is drawn do not matter; extending the region of space-time comprising
the operation execution by a nanosecond here or a micron there makes no
difference. However, the choice of which events belong to which operation
executions can influence the properties we ascribe to the operations; the
formalism used to describe a system can depend upon whether the events in
the propagation of a value along a wire belong to the send or to the receive
operation.

2Since the term “operation” often denotes a type of action that can be performed
repeatedly, as in “the operation of addition”, we write “operation execution” to emphasize
that we are referring to a single instance of such an action.
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An execution of a system therefore consists of a set of operation execu-
tions, where each operation execution consists of a nonempty set of space-
time events. We define the relations −→ and ✮ on the set of operation
executions as follows:

A −→ B
def= ∀a ∈ A : ∀b ∈ B : a −→ b

A ✮B
def= ∃a ∈ A : ∃b ∈ B : a −→ b or a = b

Thus, A −→ B means that every event of A precedes every event of B, and
A ✮B means that some event of A either precedes or is the same as some
event of B. (If a read of a flip-flop occurs while the flip-flop is also being set,
some space-time events located at the flip-flop may belong to both operation
executions.)

Remembering the meaning of the precedence relation for events, we read
A −→ B as “A precedes B”, and A ✮ B as “A can causally affect B”.
However, we think of “can causally affect” as a purely temporal relation,
independent of what the operations are doing. Thus, A ✮ B can hold
even if A and B are read operations that cannot actually influence one
another. We say that A and B are concurrent if A /−→ B and B /−→ A.
In other words, two operation executions are concurrent unless one precedes
the other.

The following properties of the relations −→ and ✮ on operation ex-
ecutions follow directly from the fact that the relation −→ on events is an
irreflexive partial ordering:

A1. The relation −→ is an irreflexive partial ordering.

A2. If A −→ B then A ✮B and B / ✮A.

A3. If A −→ B ✮C or A ✮B −→ C then A ✮C.

A4. If A −→ B ✮C −→ D then A −→ D.

There are two kinds of operation executions—terminating ones whose
events all occur before some time (they are in the past of some space-like
surface), and nonterminating ones that go on forever (their events do not lie
in the past of any space-like surface). We make the following assumptions
about these two classes of operation executions.

A5. For any terminating A, the set of B such that A /−→ B is finite.

A6. For any nonterminating A:
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(a) The set of B such that B −→ A is finite.

(b) For all B: A /−→ B.

Properties A5 and A6 can be derived from the following assumptions.

• At any time, there are only a finite number of operation executions
that have begun by that time—i.e., for any space-like surface, there
are only a finite number of operation executions containing events in
the past of that surface.

• There are only a finite number of operation executions concurrent with
any terminating operation execution.

The second assumption means that the speed with which the system is
“spreading out” in space is bounded by some value less than the speed of
light.

We have described operation executions in terms of events in order to
justify A1–A6. In computer science, one ignores the space-time events that
comprise operation executions. A programmer does not care that machine
instructions are composed of more primitive events. In our formalism, op-
eration executions are considered primitives elements, and A1–A6 are taken
as axioms. We define a system execution to consist of a set of operation
executions, partitioned into terminating and nonterminating ones, together
with relations −→ and ✮ that satisfy Axioms A1–A6.

2.3 Higher-Level Views

A system can be viewed at many different levels; the programmer may con-
sider the execution of a load accumulator from memory instruction to be
a single operation, while the hardware designer considers it to be a se-
quence of lower-level register-transfer operations. The fundamental task in
computing is to implement higher-level operations with lower-level ones. A
hardware designer implements machine-language operations with register-
transfer operations; a compiler writer implements Pascal operations with
machine-language operations; and an applications programmer implements
funds-transfering operations with Pascal operations. One assumes that the
lower-level, primitive operations are given and uses them to construct the
higher-level ones.

A higher-level operation execution consists of a set of lower-level ones.
If we view operation executions as sets of space-time events, a higher-level
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operation execution is the union of the events of the (lower-level) operation
executions it is composed of. It is nonterminating if and only if it consists of a
finite number of nonterminating operation executions. It is not hard to show
that the relations −→ and ✮ between higher-level operation executions
can be computed from those relations between the lower-level operation
executions as follows:

R −→ S = ∀A ∈ R : ∀B ∈ S : A −→ B

R ✮S = ∃A ∈ R : ∃B ∈ S : A ✮B or A = B (2-1)

Since events do not appear in our formalism, we cannot proceed in this
way. Instead, we take (2-1) to be the definition of the relations −→ and ✮

between any two sets of operation executions. By identifying an operation
execution A with the set {A}, this definition also applies when R or S is
a single operation execution rather than a set of them. A set of operation
executions is defined to be terminating if and only if it consists of a finite
number of terminating operation executions.

Given a system execution, a higher-level view of that execution con-
sists of a partitioning of its operation executions into sets, which represent
higher-level operation executions. The machine-language view of a system is
obtained by partitioning the register-transfer operations into executions of
machine-language instructions. This need not be a true partition; a single
register-transfer operation could be part of the execution of two separate
machine-language instructions. We therefore define a higher-level view of a
system execution to be a collection H of nonempty sets of operation execu-
tions such that each operation execution belongs to a finite number, greater
than zero, of sets in H. The elements of H (which are sets of operation
executions) are called the operation executions of the higher-level view, or
simply the higher-level operation executions.

Given a higher-level view of a system execution, we have defined the
relations −→ and ✮ (by (2-1)) and the concept of termination on its high-
level operation executions. Using these definitions and Axioms A1–A6 for
the (lower-level) operation executions, it is easy to show that A1–A6 hold
for the higher-level operation executions. Hence, the higher-level view of a
system execution is itself a system execution.

In any study of computer systems, there is a lowest-level view that is
of interest. The operation executions in that view will be called elementary
operation executions. A set of elementary operation executions will be called
an operation execution. (It is an operation execution in some higher-level
view.)
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3 Interprocess Communication

To achieve mutual exclusion, processes must be able to communicate with
one another. We must therefore assume some interprocess communication
mechanism. However, almost every communication primitive that has been
proposed implicitly assumes mutual exclusion. For example, the first mutual
exclusion algorithms assumed a central memory that can be accessed by all
the processes, in which any two operations to a single memory cell occur in
some definite order. In other words, they assumed mutually exclusive access
to a memory cell. We will define an interprocess communication mechanism
that does not assume any lower-level mutual exclusion. In order to explain
our choice of a mechanism, we begin by examining the nature of interprocess
communication.

The simplest form of interprocess communication is for a process i to
send one bit of information to a process j. This can be done in two ways:
by sending a message or by setting a bit. For example, if the physical
communication medium is a wire, then “sending a message” might mean
sending a pulse and “setting a bit” might mean setting a level. However, a
message is a transient phenomenon, and j must be waiting for i’s message
in order to be sure of receiving it. We now show that with only this kind
of transient communication, the mutual exclusion problem does not admit
a solution in which the following two conditions hold:

• A process need communicate only when trying to enter or leave its
critical section, not in its critical or noncritical sections.

• A process may remain forever in its noncritical section.

These conditions rule out algorithms in which processes take turns enter-
ing, or declining to enter, their critical section; such algorithms are really
solutions to the producer/consumer problem [1].

Assume that a process i wants to enter its critical section first, while
another process j is in its noncritical section. Since j could remain in its
noncritical section forever, i must be able to enter its critical section without
communicating with j. Assume that this has happened and i is in its critical
section when j decides it wants to enter its critical section. Since i is not
required to communicate while in its critical section, j cannot find out if i
is in its critical section until i leaves the critical section. However, j cannot
wait for a communication because i might be in, and remain forever in, its
noncritical section. Hence, no solution is possible.
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This conclusion is based upon the assumption that communication by
transient messages can only be achieved if the receiving process is waiting
for the message. This assumption may seem paradoxical since distributed
systems often provide a message-passing facility with which a process can re-
ceive messages while engaged in other activity. A closer examination of such
systems reveals that the receiving process actually consists of two concur-
rently executing subprocesses: a main subprocess that performs the process’s
major activity, and a communication subprocess that receives messages and
stores them in a buffer to be read by the main subprocess, where one or
more bits in the buffer may signal the main subprocess that it should inter-
rupt its activity to process a message. The activity of the communication
subprocess can be regarded as part of the sending operation, which effects
the communication by setting bits in the buffer that can be read by the
receiving process. Thus, this kind of message passing really involves the
setting of bits at the remote site by the sender.

Hence, we assume that a process i communicates one bit of information
to a process j by setting a communication bit that j can read. A bit that
can be set but not reset can be used only once. Since there is no bound
on the number of times a process may need to communicate, interprocess
synchronization is impossible with a finite number of such “once only” com-
munication bits. Therefore, we require that it be possible to reset the bit.
This gives us three possibilities:

1. Only the reader can reset the communication bit.

2. Only the writer can reset the communication bit.

3. Both can reset the communication bit.

In case 1, with a finite number of bits, a process i can send only a bounded
amount of information to another process j before j resets the bits. However,
in the mutual exclusion problem, a process may spend arbitrarily long in its
noncritical section, so process i can enter its critical section arbitrarily many
times while process j is in its noncritical section. An argument similar to the
one demonstrating that transient communication cannot be used shows that
process i must communicate with process j every time it executes its critical
section, so i may have to send an unbounded amount of information to j
while j is in its noncritical section. Since a process need not communicate
while in its noncritical section, the problem cannot be solved using the first
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kind of communication bit.3

Of the remaining two possibilities, we choose number 2 because it is more
primitive than number 3. We are therefore led to the use of a communication
bit that can be set to either of two values by one process and read by
another—i.e., a boolean-valued communication variable with one writer and
one reader. We let true and false denote the two values. We say that such
a variable “belongs to” the process that can write it.

We now define the semantics of the operations of reading and writing a
communication variable. A write operation execution for a communication
variable has the form write v := v′, where v is the name of the variable, and
v′ denotes the value being written—either true or false. A read operation
execution has the form read v = v′, where v′ is the value obtained as the
result of performing the read.

The first assumptions we make are:

C0. Reads and writes are terminating operation executions.

C1. A read of a communication variable obtains either the value true or
the value false.

Physically, C1 means that no matter what state the variable is in when it
is being read, the reader will interpret that state as one of the two possible
values.

We require that all writes to a single communication variable be to-
tally ordered by the −→ relation. Since all of these writes are executed
by the same process—the one that owns the variable—this is a reasonable
requirement. We will see below that it is automatically enforced by the pro-
gramming language in which the algorithms are described. This requirement
allows us to introduce the following notation.

Definition 1 For any variable v we let V [1], V [2], . . . denote the write
operation executions to v, where

V [1] −→ V [2] −→ · · · .

We let v[i] denote the value written by the operation execution V [i].
3However, it is possible to solve producer/consumer problems with it. In fact, an

interrupt bit of an ordinary computer is precisely this kind of communication bit, and it
is used to implement producer/consumer synchronization with its peripheral devices.
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Thus V [i] is a write v := v[i] operation execution. We assume that the
variable can be initialized to either possible value. (The initial value of a
variable can be specified as part of the process’s program.)

If a read is not concurrent with any write, then we expect it to obtain the
value written by the most recent write—or the initial value if it precedes all
writes. However, it turns out that we need a somewhat stronger requirement.
To justify it, we return to our space-time view of operations. The value of
a variable must be stored in some collection of objects. Communication is
effected by the reads and writes acting on these objects—i.e., by each read
and write operation execution containing events that lie on the world lines
of these objects. A read or write operation may also contain “internal”
events not on the world line of any of these shared objects. For example, if
the variable is implemented by a flip-flop accessed by the reader and writer
over separate wires, the flip-flop itself is the shared object and the events
occurring on the wires are internal events. The internal events of a write do
not directly affect a read. However, for a write to precede (−→) a read, all
events of the write, including internal events, must precede all events of the
read.

For two operation executions A and B on the same variable, we say
that A “effectively precedes” B if every event in A that lies on the world
line of one of the shared objects precedes any events in B that lie on the
same object’s world line. For a read to obtain the value written by V [k], it
suffices that (i) V [k] effectively precedes the read, and (ii) the read effectively
precedes V [k+1]. “Effectively precedes” is weaker than “precedes”, since it
does not specify any ordering on internal events, so this condition is stronger
than requiring that the read obtain the correct value if it is not concurrent
with any write.

This definition of “effectively precedes” involves events, which are not
part of our formalism, so we cannot define this exact concept. However,
observe that if events a and b lie on the same world line, then either a −→ b
or b −→ a. Hence, if A and B both have events occurring on the same
world line, then A ✮ B and/or B ✮ A. If B / ✮ A, then no event in
B precedes any event in A. Hence, A ✮ B and B / ✮ A imply that A
effectively precedes B. We therefore are led to the following definition:

Definition 2 We say that two operation executions A and B are effectively
nonconcurrent if either A ✮B or B ✮A, but not both.

If two operation executions are effectively nonconcurrent according to this
definition, then one “effectively precedes” the other according to the above
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definition in terms of events. We therefore expect a read that is effectively
nonconcurrent with every write to obtain the correct value. This leads us
to the following requirement.

C2. A read R of v that is effectively nonconcurrent with every V [i] obtains
the value v[k] , where k is the largest number such that V [k] ✮R, or
it obtains the initial value if there is no such k.

It follows from A2 and A5 that the set of k such that V [k] ✮R is finite, so
C2 specifies the value obtained by a read that is effectively nonconcurrent
with every write. The only assumption we make about a read that is “ef-
fectively concurrent” with some write is that it obtain either the value true
or the value false (by C1).

In the above space-time discussion of reading and writing, it is clear that
for communication to take place, every pair of reads and writes must have
events on the world line of the same object. The following requirement is
therefore quite reasonable (although it may not be obvious why we need it).

C3. If R is a read of the communication variable v, then for every write
V [i] of v: R ✮V [i] or V [i] ✮R (or both).

It has been argued that the kind of communication variable we are as-
suming is equivalent to one in which reads and writes are atomic actions
that cannot be concurrent. The reasoning used is as follows.

If the value of the variable is not changed by a write, then there
is no reason to do the write. We may therefore assume that a
process executes a write only if it will change the value. By C1, a
read that is concurrent with such a write must obtain either the
old or the new value, since those are the only possible values. If
the read obtains the old value, then we may consider it to have
preceded the write, and if it obtains the new value then we may
consider the write to have preceded it.4

This reasoning is fallacious under our assumptions because if two successive
reads are concurrent with the same write, then the first read can obtain
the new value and the second the old value. This is impossible if reads and
writes are nonconcurrent atomic actions.

4In fact, we made this unfortunate claim in our original correctness proof for the bakery
algorithm [7]. Happily, it was only the proof and not the algorithm that turned out to be
incorrect.
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Several people have devised mutual exclusion algorithms using commu-
nication variables similar to ours, except with the stronger assumption that
writing and reading are atomic operations [13], [14]. We believe that these
algorithms do not work with the more primitive type of communication vari-
able that we are assuming.5 Other than the ones mentioned here, we know
of no published mutual exclusion algorithms that are correct using these
communication variables.

4 Processes

An algorithm implements higher-level operations such as request service in
terms of lower-level ones like reading and writing a one-bit variable. A
synchronization problem is posed as a set of conditions on the higher-level
system execution—for example, that each request service operation execu-
tion is followed by a grant service operation execution. A solution consists of
a specification of a lower-level system execution together with a higher-level
view—for example, an algorithm for generating reads and writes together
with a specification of which sets of these lower-level operation executions
correspond to request service and grant service executions. The system exe-
cution defined by this higher-level view must satisfy the problem conditions.

We now consider how the lower-level system execution is specified. We
assume that the set of all elementary operation executions is partitioned into
N sets called processes. A process is described by an ordinary program, each
operation execution of the process being generated by the execution of some
statement in its program. For example, suppose the program for a process
contains the following program statement:

begin
x := 1;
z := y + z

end

Executing this statement might generate the following four elementary op-
eration executions, with the indicated −→ relations.

5We have found counterexamples to the simpler algorithms, and have no reason to
expect the more complicated ones to work better.
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read y = y′

read z = z′
write x := 1 write z := y′ + z′

✟✟✯

❍❍❥

❍❍❥

✟✟✯

Although we think of the program as generating the operation execu-
tions, formally the set of operation executions is given and the processes’
programs provide a set of conditions on it. For example, if this statement
were the only place where y is read, then it would provide the following
formal condition:

For every read y = y′ operation execution, there must exist
three operation executions write x := 1, read z = z′, and write
z := y′ + z′ such that the above −→ relations hold.

Each process will be described by a program written in an Algol-like
language with two kinds of program variables:

• Private variables read and written by that process only.

• Communication variables used for interprocess communication.

We can define a formal semantics for the programming language as follows.
The elementary operation executions of a process are of the form write
v := v′ or read v = v′, where v is a variable and v′ is an element in the range
of values of that variable. The variable v must be one that the process can
write or read, respectively. For the critical section problem, there are also
elementary operation executions of the form critical section execution and
noncritical section execution.

We assume that C0–C3 hold for reads and writes of communication
variables. We also assume that C0 and C2 hold for private variables. We
will not need C1 or C3 because a read of a private variable will never be
concurrent with a write of that variable. In fact, a read will not be concurrent
with any write performed by the same process.

We now indicate how a process’s program can be formally translated
into a set of conditions on possible system executions. Syntactically, a pro-
gram is composed of a hierarchy of program statements—more complicated
statements being built up from simpler ones.6 In any system execution, to

6If function calls are permitted, then we have to include expression evaluations as well
as statement executions in this hierarchy.

15



each program statement corresponds a (not necessarily elementary) opera-
tion execution—intuitively, it is the set of elementary operation executions
performed when executing that statement. The execution of the entire pro-
gram, which is a single statement, is a single operation execution consisting
of all the process’s elementary operation executions. The semantics of each
type of statement in the language is defined by a collection of axioms on the
(set of elementary operation executions in the) execution of a statement of
that type. For assignment statements, we have the following axiom:

An execution of the statement

v := F (v1, . . . , vm)

consists of the elementary operation executions read v1 = v′1,
. . . , read vm = v′m, and write v := F (v′1, . . . , v′m), where each
read precedes (−→) the write.

This axiom, together with conditions C0–C3 for communication variables
and C0 and C2 for private variables, defines the semantics of the simple
assignment statement.

The following axioms define the semantics of the concatenation construc-
tion S;T . (Recall that a statement execution, being a set of elementary
operation executions, is defined to terminate if and only if it consists of a
finite number of terminating operation executions.)

An execution of S;T is one of the following:

• A nonterminating execution of S.

• An operation execution of the form A ∪ B, where:

– A is a terminating execution of S.
– B is an execution of T .
– A −→ B.

In this way, one can give a complete formal semantics for our program-
ming language. However, we will not bother to do so, and will reason some-
what informally about system executions. We merely note the following
properties:

• A write is not concurrent with any other operation generated by the
same process. (However, it may be concurrent with operations gener-
ated by other processes.)
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• Any elementary operation execution is concurrent with only a bounded
number of elementary operation executions in the same process.

5 Multiple-Reader Variables

Thus far, we have assumed that communication variables can be read by
only a single process. Using such variables, it is easy to construct a com-
munication variable satisfying C0–C3 that can be read by several processes,
though only written by one process. To implement a communication vari-
able v that can be written by process i and read by processes 1, . . . , N ,
we use an array v[1], . . . , v[N ] of variables, where v[j] can be written by
i and read by j. (All the v[j] are communication variables except for v[i],
which is a private variable of process i.) Any statement v := . . . in process
i’s program is implemented as an operation of assigning the value of the
right-hand expression to each element of the array, and any occurrence of
the variable v in an expression within the program of process j is interpreted
as an occurrence of v[j]. The fact that this construction works is implied by
the following result, whose proof is left to the reader.

Theorem 1 For each j �= i, let v[j] be a communication variable that is
written by process i and read by process j. Assume that for all j, j′ and all
k:

• The initial values of v[j] and v[j′] are equal.

• v[j][k] = v[j′][k].

• V [j][k] −→ V [j′][k+1].

Let the initial value of v be defined to equal the initial value of the v[j],
let V [k] be defined to be {V [1][k], . . . , V [N ][k]}, and define a read of v by a
process j �= i to be a read of v[j]. Then C0–C3 are satisfied by the variable
v (where −→ and ✮ are defined for the set of operation executions V [k]

by (2-1)).

Formally, we are defining a higher-level view whose operation executions
are the same as those of the original system execution except that the reads
and writes of the v[j] are partitioned into reads and writes of v. This theo-
rem shows that the resulting higher-level system execution satisfies C0–C3.
We take the reads and writes of v to be elementary operation executions,
ignoring the lower-level operation executions that comprise them.
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We will therefore assume that a communication variable can be written
by its owner and read by any process. However, we must remember that the
“cost” of implementing such a communication variable may depend upon the
number of processes that actually read it. If the physical communication
mechanism involves wires that join two processors, then the number of wires
needed to implement a communication variable equals the number of readers
of that variable, so a variable read by r processes may be almost r times as
expensive as one read by a single process. However, it is quite reasonable to
suppose that the variable could be implemented with a single wire to which
each reader is connected. In this case, the cost of an r-reader variable may
not be much greater than the cost of a single-reader variable.

6 Discussion of the Assumptions

In this section, we have made some tacit assumptions that may have passed
unnoticed. The most obvious of these is the assumption that each process
knows in advance who it might communicate with. This assumption seems
to us to be reasonable for an underlying physical model in which processors
(the physical hardware that executes processes) are connected in pairs by
direct physical connections—e.g., wires or optical fibers. In such a model, it
is natural to assume that a processor knows the existence of every physical
connection. Indeed, it is only for such a model that a communication variable
owned by a single process is reasonable. Thus, our work is not applicable to
systems of anonymous processors connected along a common wire, as in an
Ethernet [10].

Our first two assumptions, C0 and C1, appear quite innocent. However,
the fact that reading and writing are not synchronized means that the reader
can become suspended for arbitrarily long in a meta-stable state if it happens
to read at exactly the wrong time. This is the “arbiter problem” discussed
in [2] and [12]. As explained in [2], one can construct a device in which the
reader has probability zero of remaining in such a meta-stable state forever.
Hence, our assumptions can be satisfied if we interpret truth to mean “true
with probability one”.

There is an additional subtle assumption hidden in the combination of
C2 with the ordering of operation executions within a process that we have
been assuming. Suppose v := true; . . . is part of the program for process
i. We are assuming that the write v := true generated by an execution
of the first statement precedes any operation execution A generated by the
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subsequent execution of the next statement. Now suppose that this is the
last write v generated by process i, and that there is a read v execution by
another process that is preceded by A. By A1, the read v is preceded by
the write v := true, and since this is the last write v operation execution,
C2 implies that the read v must obtain the value true.

Let us consider what this implies for an implementation. To guarantee
that the read v obtains the value true, after executing the write v := true the
writer must be sure that v has settled into a stable state before beginning the
next operation. For example, if the value of v is represented by the voltage
level on the wire joining two processors, then the writer cannot proceed until
the new voltage has propagated to the end of the wire. If a bound cannot be
placed upon the propagation time, then such a simple representation cannot
be used. Instead, the value must be stored in a flip-flop local to the writer,
and the reader must interrogate its value by sending a signal along the wire
and waiting for a response. Since the flip-flop is located at the writing
process, and is set only by that process, it is reasonable to assume a bound
upon its settling time. The wire, with its unknown delay, becomes part of the
reading process. Thus, although satisfying our assumption in a distributed
process poses difficulties, they do not seem to be insurmountable. In any
case, we know of no way to achieve interprocess synchronization without
such an assumption.

7 Conclusion

In Section 2, we developed a formalism for reasoning about concurrent sys-
tems that does not assume the existence of atomic operations. This formal-
ism has been further developed in [8], which addresses the question of what
it means for a lower-level system to implement a higher-level one.

Section 3 considered the nature of interprocess communication, and ar-
gued that the simplest, most primitive form of communication that can be
used to solve the mutual exclusion problem consists of a very weak form
of shared register that can be written and read concurrently. Interprocess
communication is considered in more detail in [9], where the form of shared
register we have defined is called a safe register. Algorithms for constructing
stronger registers from safe ones are given in [9].
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