
A Temporal Logic of Actions

Leslie Lamport

April 1, 1990

i

ii

c©Digital Equipment Corporation 1990

This work may not be copied or reproduced in whole or in part for any com-
mercial purpose. Permission to copy in whole or in part without payment
of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that
such copying is by permission of the Systems Research Center of Digital
Equipment Corporation in Palo Alto, California; an acknowledgment of the
authors and individual contributors to the work; and all applicable portions
of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Systems Research
Center. All rights reserved.

iii

iv

Author’s Abstract

In 1977, Pnueli introduced to computer scientists a temporal logic for rea-
soning about concurrent programs. His logic was simple and elegant, based
on the single temporal modality “forever”, but it was not expressive enough
to completely describe programs. Since then, a plethora of more expressive
logics have been proposed, all with additional temporal modalities such as
“next”, “until”, and “since”. Here, a temporal logic is introduced based
only on Pnueli’s original modality “forever”, but with predicates (assertions
about a single state) generalized to actions—assertions about pairs of states.
This logic has all the expressive power needed to describe and reason about
concurrent programs. Much of the temporal reasoning required with other
logics is replaced by nontemporal reasoning about actions.

vi

Perspective by Kevin D. Jones

It is generally accepted by the software engineering community that some
means of formally specifying software is an important tool in increasing
confidence in its correctness, as this allows the possibility of formally proving
important properties of the system with respect to the semantics of the
specification. Much work has been done in this area, with the usual route
being, unsurprisingly, a passing of the torch from theoreticians to engineers.

The current state of the art for sequential systems illustrates this well.
From the early “theoretical” work done in the late 60s by Floyd and Hoare,
formal specification and verification of sequential programs has matured into
tools like VDM and Z that are now being used in industry. The most suc-
cessful of these are based on the concept of modelling state transformations
in some suitable logic, usually first-order predicate calculus (or a variant
thereof). This approach is both sufficiently expressive and of manageable
complexity.

Concurrent programs have posed more of a challenge, and specifying
concurrent systems is not yet practical. One approach has been to extend the
state-based methods mentioned above by replacing simple predicate calculus
with a temporal logic. Early attempts suffered from a lack of expressiveness.
The common approach to this problem has been to increase the power of
the temporal operators. Whilst this gives the required expressiveness, it is
at the price of increased logical complexity. This raises the sophistication of
the reasoning involved in verification and has resulted in these techniques
being difficult to translate into practice.

In this work, the author has taken a different direction. Rather than
extending the logical connectives, he has extended the base terms to include
predicates on pairs of states (actions). Much of the complexity in verifica-
tion now involves reasoning about actions, rather than about the temporal
system. The logic has been shown to be applicable to practical problems
in the verification of concurrent algorithms, and the author is continuing to
work on such examples.

His approach is more in the spirit of what has been shown to be suc-
cessful in the sequential world. As stated in the report, the current area
of application is the verification of concurrent algorithms, rather than com-
plete programs. This allows the possibility of machine-checked verification
of important parts of any concurrent system. Eventually, one hopes that
this method may be extended to permit the practical application of formal
specification and verification to complete concurrent systems.

vii

viii

Contents

1 Introduction 1

2 States, Actions, and Temporal Formulas 3
2.1 States and State Functions 3
2.2 Actions . 4

2.2.1 Actions and their Meaning 4
2.2.2 The Enabled Predicate 6
2.2.3 The Logic of Actions 6

2.3 Temporal Logic . 7
2.3.1 Behaviors . 7
2.3.2 ✷ and Friends . 7
2.3.3 Elementary Temporal Formulas 8
2.3.4 Temporal Reasoning 9

3 Expressing Programs as Temporal Formulas 9
3.1 The Parts of a Program . 9
3.2 The Progress Condition . 10
3.3 Reasoning with Fairness . 11

4 Reasoning About Programs 12
4.1 Safety Properties . 12
4.2 Liveness Properties . 14

5 The General Logic 18

6 Conclusion 20

Acknowledgments 21

References 23

x

1 Introduction

Classical program verification, begun by Floyd and Hoare, employs two lan-
guages. The program is written in a programming language, and properties
of the program are written in the language of formulas of some logic. Prop-
erties are derived from the program text by special proof rules, and from
other properties by reasoning within the logic. Hoare’s popular method for
sequential programs [Hoa69] uses an Algol-like programming language and
a logic of Hoare triples.

A program logic expresses both programs and properties with a single
language. Program Π satisfies property P if and only if Π ⇒ P is a valid
formula of the logic. Pratt’s dynamic logic [Pra76] is a well-known program
logic.

The temporal logic of actions is a new logic for expressing concurrent pro-
grams and their properties. It is a slightly extended version of the simplest
form of temporal logic. Formulas can be built from elementary formulas
using only logical operators (¬, ∨, . . .) and the one temporal operator ✷,
which means “forever” [Pnu77]. There are two types of elementary formu-
las: ones of the form [A], where A is an action, and state predicates. An
action is a boolean-valued expression containing primed and unprimed vari-
ables, such as x′ = x+ 1, and a state predicate is an action containing only
unprimed variables. For example,1

(x = 0 ∧ y = 0) ∧ ✷[x′ = x+ 1 ∧ y′ = y + 2x+ 1] ⇒ ✷(y = x2)

asserts that if x and y are initially equal to zero, and each individual step
of the program increments x by 1 and y by 2x+1, then y always equals x2.

The logic’s action-based formulas provide fairly natural representations
of programs. The action x′ = x+ 1 ∧ y′ = y + 2x+ 1 represents a multiple
assignment statement x, y := x+ 1, y + 2x + 1. But, unlike the assignment
statement, the action can be manipulated algebraically. For example, a
simple calculation shows that this action equals y′ − y = x′ + x ∧ y′ − y =
3x − x′ + 2.

The actions used to describe a program bear a striking resemblance to
statements in a Unity program [CM88]. It is easy to translate a Unity
program into a formula in the temporal logic of actions. The translation
in the other direction would also be easy, except that the logic permits a

1We take ⇒ to have lower precedence than any other operator except ∀, ∃, and |=, so
A ∧ B ⇒ C means (A ∧ B) ⇒ C.

1

rich class of progress (fairness) conditions, many of which are not easily ex-
pressed with Unity. Giving up any pretense of having a “real” programming
language allows us to merge program and logic.

Our logic may be viewed as a generalization of Hehner’s [Heh84]. While
Hehner’s logic deals only with partial correctness, the temporal logic of ac-
tions can express invariance properties, which generalize partial correctness,
and simple fairness properties that generalize termination. We also present,
in Section 5, a more general logic that can express an even richer class of
properties.

A program logic offers the choice of writing programs directly in the logic,
or in a more conventional language that is then translated into the logic. Our
choice is based on the pragmatic view that one reasons about algorithms,
not programs. An algorithm, described in perhaps a few dozen lines, may
be abstracted from a ten thousand line program. The algorithm is written
as a program in any convenient language, using existing synchronization
primitives such as semaphores or CSP communication, or new ones invented
for the occasion. This program provides an informal description of the
algorithm; the formal description is obtained by translating the program
into the logic.

We consider the problem of verification—proving that a given algorithm
has a desired property. This is a practical problem for designers of today’s
concurrent systems. Any verification method can, in principle, be applied in
reverse to derive a program from its desired properties. However, we have
had little practical experience with program derivation, and we refer the
reader interested in this topic to Chandy and Misra [CM88].

The primary goal of this paper is to explain the simple temporal logic
of actions. Although this logic is new, it offers no really new method of
reasoning about concurrent programs. We feel that existing “assertional”
proof methods are adequate: safety properties are proved by invariance ar-
guments [LS84, OG76], and liveness properties are proved by counting-down
arguments or proof lattices [OL82]. The logic just provides a convenient way
of formalizing the proofs.

Since these proof methods are not new, there is no need for realistic
examples. We illustrate the logic with the simple program of Figure 1.
The program has integer-valued variables x and y initialized to 0, and an
(integer-valued) semaphore variable sem initialized to 1. There are two
processes, each consisting of a loop with three atomic operations (enclosed
in angle brackets), where P and V are the usual semaphore operations.
The atomic actions have been labeled for easy reference. Execution of the

2

var integer x, y = 0;
semaphore sem = 1;

cobegin loop α1: 〈P(sem) 〉;
β1: 〈x := x+ 1 〉;
γ1: 〈V(sem) 〉

end loop

loop α2: 〈P(sem) 〉;
β2: 〈 y := y + 1 〉;
γ2: 〈V(sem) 〉

end loop
coend

Figure 1: An example program.

program consists of an infinite sequence of steps, where a step is performed
by executing an atomic operation of either process. Fairness is discussed
later.

A more general logic is introduced in Section 5 to permit proofs that one
program implements another. This logic makes possible the verification of
properties that can be expressed with abstract programs—as large a class
of properties as one can hope to prove by assertional techniques.

2 States, Actions, and Temporal Formulas

We now present the logic. Its semantics are defined by assigning to every
syntactic formula F a meaning [[F]], which is an object in a semantic domain.
The semantic domains are defined in terms of a set S of states. It may help
to think of an element of S as describing the complete state of a comput-
ing device that goes through a sequence of state changes when executing a
program. But formally, S is just an abstract set.

2.1 States and State Functions

We assume a set V of values. This set includes all data elements of interest,
such as integers, booleans, and strings. All operators are assumed to be
defined on all values. Thus, “abc” + 7 is some value—perhaps “fred” or
42. (Since this value is left unspecified, the correctness of a program cannot

3

depend upon what result is obtained by adding “abc” and 7.) Operators
such as ∧ and < are assumed to be boolean-valued, so “abc” < 7 equals
either true or false.

State variables are primitive terms in the logic. They represent quantities
that can change during execution of a program. The meaning [[x]] of a state
variable x is a function from S to V. Intuitively, [[x]](s) is the value of x
when the computing device is in state s.

The formal description of the program in Figure 1 uses state variables
x, y, and sem to represent the corresponding program variables. Two ad-
ditional state variables pc1 and pc2 represent the control state of the two
processes. For example, pc1 = β iff (if and only if) control in the first pro-
cess is at control point β1, which is reached after executing statement α1.
We assume that α, β, and γ are three distinct values. (Control at βi could
be denoted by pci = βi, with β1 and β2 being distinct values, but using a
single value β eliminates some subscripts.)

A state function is an expression made from state variables. Its meaning
is a function from S to V. For example, if u and v are state variables, then
2u − v is the state function whose meaning [[2u − v]] is the function defined
by2 [[2u − v]](s) ∆= 2[[u]](s) − [[v]](s), for any state s in S.

A state predicate is a boolean-valued state function. A state predicate
P is valid, written |= P , iff P is true in all states. Formally, [[|= P]] equals
∀s ∈ S : [[P]](s).

State variables represent quantities that can change during program ex-
ecution. They should not be confused with ordinary logical variables, which
represent constants. If x is a state variable and n a logical variable, then
x − n2 = 2 is a state predicate having n as a free logical variable, and
∃n : x − n2 = 2 is the state predicate whose meaning is defined by

[[∃n : x − n2 = 2]](s) ∆= ∃n : [[x]](s)− n2 = 2

In the simple temporal logic of actions, quantification is over logical variables
only.

2.2 Actions

2.2.1 Actions and their Meaning

An action is a boolean-valued expression containing primed and unprimed
state variables. Its meaning is a boolean-valued function on S× S, where

2The symbol
∆
= means equals by definition.

4

unprimed state variables are applied to the first component and primed
variables to the second component. For example, the meaning of the action
y′ − x > 1 is defined by [[y′ − x > 1]](s, t) ∆= [[y]](t)− [[x]](s) > 1.

We think of an action as specifying a set of allowed state transitions.
Action A allows the transition s → t from state s to state t iff [[A]](s, t)
equals true. A state transition allowed by A is called an A transition.

A program’s atomic operations are represented by actions. The oper-
ation labeled β2 in our example program is represented by the action β2

defined as follows.

β2
∆= pc ′1 = pc1 ∧ x′ = x ∧

pc2 = β ∧ y′ = y + 1 ∧
pc ′2 = γ ∧ sem ′ = sem

Action β2 describes the changes to the program variables x, y, and sem and
to the control variables pc1 and pc2 that can be caused by executing the
atomic operation labeled β2. We can write this somewhat more compactly
as

β2
∆= pc2 = β ∧ y′ = y + 1 ∧

pc ′2 = γ ∧ unchanged {x, sem , pc1}
(1)

where unchanged w denotes the conjunction of the actions w′ = w for each
w in the set w of state variables.

The actions that represent the other atomic program operations are de-
fined similarly—for example:

γ2
∆= pc2 = γ ∧ sem ′ = sem + 1 ∧

pc ′2 = α ∧ unchanged {x, y, pc1}
(2)

α1
∆= pc1 = α ∧ sem > 0 ∧

pc ′1 = β ∧ sem ′ = sem − 1 ∧
unchanged {x, y, pc2}

(3)

A state predicate, such as x = y + 1, is also an action—one that can be
written with no primed variables. In general, a state predicate P is an action
that allows a state transition s → t iff P is true in state s. When viewing
P as a state predicate, [[P]] is a boolean-valued function on states; when
viewing P as an action, [[P]] is a boolean-valued function on pairs of states.
It will be clear from context which function we mean when we write [[P]].

5

2.2.2 The Enabled Predicate

For any action A, the state predicate Enabled(A) is defined to be true in
state s iff there exists some state t such that s → t is an A transition.
Formally, [[Enabled(A)]](s) ∆= ∃t : [[A]](s, t). For the actions defined by
(1)–(3),

Enabled(β2) = pc2 = β

Enabled(γ2) = pc2 = γ

Enabled(α1) = pc1 = α ∧ sem > 0

If x′
1, . . . , x′

n are the primed state variables that appear in action A, then
Enabled(A) = ∃x′

1 ∈ V : . . . ∃x′
n ∈ V : A

where, in the right-hand expression, the x′
i are taken to be logical variables

rather than primed state variables.

2.2.3 The Logic of Actions

Boolean combinations of actions are defined in the obvious way. Thus, s → t
is an A∧B transition iff it is both an A transition and a B transition. The
constants true and false are also actions: true allows any state transition,
and false allows no state transition. We write |= A to denote that A equals
true. In other words, [[|= A]] ∆= ∀s, t ∈ S : A(s, t).

If P is a state predicate, then P ′ denotes the action obtained by re-
placing every state variable x in P by its primed version x′. For example,
(x > y + 1)′ ∆= x′ > y′ + 1.

For any action A and state predicates P and Q, we define the Hoare
triple {P}A{Q} to be the action P ∧ A ⇒ Q′. The formula |= {P}A{Q}
asserts that for all states s and t, if P is true in state s and A allows the
transition s → t, then Q is true in state t. A Hoare triple is an action—
an expression involving primed and unprimed variables—and its validity is
proved by ordinary mathematical reasoning. For example, simple algebra
proves x, y ∈ Int ⇒ {x + y > 0}β2{x + y > 1}, where Int is the set of
integers and β2 is defined by (1).

The language-independent proof rules of Hoare logic are immediate con-
sequences of our definition. For example, Hoare’s first “Rule of Conse-
quence” [Hoa69]

{P}A{Q}, (Q ⇒ R)
{P}A{R}

6

is obvious when we substitute P ∧ A ⇒ Q′ for {P}A{Q} and P ∧ A ⇒ R′

for {P}A{R}, since Q ⇒ R implies Q′ ⇒ R′.3

Language-based proof rules, such as Hoare’s “Rule of Iteration” for a
while statement, are replaced by the “Decomposition Rule” [LS84]

|= {P} A ∨ B {Q} = {P} A {Q} ∧ {P} B {Q} (4)

which follows from the definition of a Hoare triple as an action.

2.3 Temporal Logic

2.3.1 Behaviors

A behavior is an infinite sequence of states; the set of all behaviors is denoted
by Sω. If σ is the behavior s0, s1, . . . , then σi denotes the ith state si. The
ith step of σ is the state transition σi−1 → σi. It is called a stuttering step
iff states σi−1 and σi are equal.

An execution of a program is represented by the behavior consisting of
the sequence of states assumed by the computing device. A terminating
execution is represented by a behavior that ends with an infinite sequence
of stuttering steps. (The computing device has stopped when it no longer
changes state.) Remember that Sω contains all sequences of states; most of
them do not represent executions of any program.

In a linear-time temporal logic [Lam80], the meaning of a formula is
a boolean-valued function on the set Sω of behaviors. The meaning of a
logical combination of temporal formulas is defined in the obvious way—for
example,

[[¬F]](σ) ∆= ¬[[F]](σ)
[[F ∧ G]](σ) ∆= [[F]](σ) ∧ [[G]](σ)

A formula F is valid iff it is true for all behaviors:

[[|= F]] ∆= ∀σ ∈ Sω : [[F]](σ)

2.3.2 ✷ and Friends

The temporal logic operator ✷ (usually read “always”) is defined as follows.
If σ is a behavior, let σ+i denote the behavior σi, σi+1, . . . obtained by

3A proof rule A,B
C

means (|= A) ∧ (|= B) ⇒ (|= C), which is not the same as
|= (A ∧ B ⇒ C).

7

cutting off the first i states in the sequence σ. For any formula F and
behavior σ,

[[✷F]](σ) ∆= ∀i ≥ 0 : [[F]](σ+i) (5)

Intuitively, a temporal formula F holds at a certain time iff F holds for the
infinite behavior starting at that time. The formula ✷F asserts that F holds
at all times—now and in the future.

The operator ✸ (read “eventually”) is defined by ✸F
∆= ¬✷¬F . Intu-

itively, ✸F asserts that F holds now or at some time in the future.
The operators ✷ and ✸ can be nested and combined with logical opera-

tors to provide more complicated temporal modalities. For example, ✷✸F
asserts that at all times, F must be true then or at some future time. In
other words, ✷✸F asserts that F is true infinitely often. Of particularly
interest is the operator ❀ (read “leads to”), where F ❀ G

∆= ✷(F ⇒ ✸G).
Intuitively, F ❀ G asserts that whenever F is true, G is true then or at
some later time.

2.3.3 Elementary Temporal Formulas

Logical operators, ✷, and derived operators like ✸ build formulas from other
formulas. To get anywhere, we must start with elementary formulas. We
now define two types of elementary formula.

If P is a state predicate, the temporal formula Act(P) is defined by

[[Act(P)]](σ) ∆= [[P]](σ0)

for any behavior σ. Thus, Act(P) is true for a behavior iff the state predi-
cate P is true in the first state of the behavior. As usual in temporal logic,
we write the temporal formula Act(P) simply as P . The same symbol P
therefore denotes both a state predicate (which is also an action) and a
temporal formula. It will be clear from context which is meant.

If A is an action, the temporal formula [A] is defined by
[[[A]]](σ) ∆= ∀i > 0 : σ0 = σ1 = . . . = σi−1 �= σi ⇒ [[A]](σi−1, σi) (6)

for any behavior σ. Thus, [A] is true for a behavior σ iff either σ consists only
of stuttering steps, or else the first nonstuttering step of σ is an A transition.
Observe that [false] asserts that there are no nonstuttering steps.

The temporal formula 〈A〉 is defined to equal ¬[¬A], for any action A.
It follows from (6) that

[[〈A〉]](σ) ∆= ∃i > 0 : σ0 = σ1 = . . . = σi−1 �= σi ∧ [[A]](σi−1, σi)

8

Thus, 〈A〉 is true for a behavior σ iff there exists a nonstuttering step of σ
and the first such step is an A transition.

2.3.4 Temporal Reasoning

The temporal reasoning with ✷ and its derived operators used in program
verification is simple. With a little practice, it becomes quite natural. Much
has been written on the subject [OL82, Pnu77], so we will take this kind of
reasoning for granted. In addition to the usual rules for ✷, we need laws gov-
erning the operator []. We make no attempt to formulate a comprehensive
set of proof rules; we just present the ones that are used in practice.

Traditional invariance proofs of safety properties are based on the tau-
tology

✷P ∧ ✷[A] ⇒ ✷[P ∧ A] (7)

and the following proof rule, where P is a predicate and A an action.

Invariance Rule {P}A{P}
✷[A] ⇒ (P ⇒ ✷P)

The hypothesis asserts that any A transition with P true in the starting
state has P true in the ending state. The conclusion asserts that if every
nonstuttering step is an A transition, then P true initially implies that it
remains true forever. Observe that the hypothesis is an action, while the
conclusion is a temporal formula.

Proofs of leads-to formulas are based on two additional rules that are
given in section 3.3.

3 Expressing Programs as Temporal Formulas

3.1 The Parts of a Program

A program Π is described by four things:

• A collection of state variables. The state variables for the program of
Figure 1 are x, y, sem, pc1, and pc2.

• A state predicate InitΠ specifying the initial state. For the program of
Figure 1,

InitΠ
∆= sem = 1 ∧ x = 0 ∧ pc1 = α ∧

y = 0 ∧ pc2 = α

9

• An action NΠ specifying the state transitions allowed by the program.
A state transition is allowed iff it can be produced by an atomic op-
eration of the program. Thus, NΠ is the disjunction of the actions
that represent the program’s atomic operations. For the program of
Figure 1,

NΠ
∆= α1 ∨ β1 ∨ γ1 ∨ α2 ∨ β2 ∨ γ2

where α1, β2, and γ2 are defined by (1)–(3), and α2, β1, and γ1 are
defined similarly.

• A temporal formula LΠ specifying the program’s progress condition.
The program action NΠ specifies what the program may do, but it
doesn’t require it to do anything. The progress condition LΠ describes
what the program eventually must do. It is discussed in Section 3.2
below.

The program itself is the temporal logic formula Π defined by

Π ∆= InitΠ ∧ ✷[NΠ] ∧ LΠ (8)

Viewed as an assertion about a behavior σ, the first conjunct of (8) states
that InitΠ holds in the initial state σ0; the second conjunct states that every
step of σ is a stuttering step or a transition allowed by NΠ; and the third
conjunct states that σ satisfies the progress condition.

3.2 The Progress Condition

A program’s progress condition is usually expressed in terms of fairness
conditions for actions. The weak and strong fairness conditions WF(A) and
SF(A) for an action A are defined by

WF(A) ∆= ✷Enabled(A) ❀ 〈A〉
SF(A) ∆= ✷✸Enabled(A) ❀ 〈A〉

The formula WF(A) asserts that if A becomes forever enabled, then a non-
stuttering A transition must eventually occur—in other words, A cannot be
continuously enabled without a nonstuttering A transition occurring. The
formula SF(A) asserts that whenever A is enabled infinitely often, a non-
stuttering A transition must eventually occur. Since ✷F implies ✷✸F for
any F , we see that SF(A) implies WF(A), for any action A.

10

The weakest progress condition that occurs in practice asserts that the
program never halts if some step is possible. This condition is expressed by
the formula WF(NΠ).

Progress conditions stronger than WF(NΠ) are generally called fairness
conditions. The customary “weak fairness” condition for the program of
Figure 1 asserts that neither process can remain forever ready to take a step
without ever taking one. This condition is expressed by WF(N 1

Π)∧WF(N 2
Π),

where N i
Π is the action αi ∨ βi ∨ γi describing the state transitions allowed

by process i.
Once an action in our example program is enabled, no other action in the

same process can become enabled until the first action has been executed.
It follows from this that WF(N i

Π) equals WF(αi)∧WF(βi)∧WF(γi). More
precisely, we can prove

✷[NΠ] ⇒ (WF(N i
Π) = WF(αi) ∧WF(βi) ∧WF(γi))

Thus, weak fairness can be expressed as the conjunction of weak fairness
conditions either on the processes or on the individual atomic operations.

In the program of Figure 1, weak fairness allows an individual process
to wait forever at its P operation. Such starvation is forbidden by the
customary “strong fairness” condition, which asserts that a process must
eventually take infinitely many steps if it can do so infinitely often. This
condition is expressed by SF(N 1

Π)∧SF(N 2
Π). As with weak fairness, SF(N i

Π)
equals SF(αi) ∧ SF(βi) ∧ SF(γi), so strong fairness can be expressed by
conditions on either the processes or their individual operations.

3.3 Reasoning with Fairness

Leads-to properties are derived from weak fairness assumptions by using the
following rule, where P and Q are predicates and N and A are actions.

WF Rule {P} A {Q}
{P} N ∧ ¬A {P ∨ Q}
P ⇒ Enabled(A)

✷[N] ∧WF(A) ⇒ (P ❀ Q)

The soundness of this rule is demonstrated by the following informal argu-
ment. The first two hypotheses imply that, starting from a state with P
true, any A transition makes Q true, and any N transition either leaves P
true or makes Q true. Hence, if every step is an N transition, then whenever

11

P becomes true, either it remains true forever or Q eventually becomes true.
But if P remains true forever, then the third hypothesis implies that A is
enabled forever, so WF(A) implies that an A transition eventually occurs
to make Q true.

Leads-to properties are derived from strong fairness assumptions by us-
ing the following rule, where P , Q, N , and A are as before, and F is any
temporal formula.

SF Rule {P} A {Q}
{P} N ∧ ¬A {P ∨ Q}
✷F ∧ ✷[N ∧ ¬A]⇒ (P ∧ ¬Enabled(A) ❀ Enabled(A))

✷F ∧ ✷[N] ∧ SF(A) ⇒ (P ❀ Q)

As in the WF Rule, the first two hypotheses together with ✷[N] imply that
whenever P becomes true, either it remains true forever or eventually Q is
true. The third hypothesis ensures that, if P is true forever, ✷F holds, and
an A transition never occurs, then whenever Enabled(A) is false it eventually
becomes true again. This implies that Enabled(A) is true infinitely often, so
SF(A) implies that an A transition must eventually occur to make Q true,
proving the soundness of the rule.

A formula of the form ✷F is said to be permanent. Since F ❀ G equals
✷(F ⇒ ✸G), the properties WF(A) and SF(A) are permanent, for any ac-
tion A. Since ✷F ∧ ✷G equals ✷(F ∧ G), the conjunction of permanent
properties is permanent. In applying the SF Rule, ✷F will be the con-
junction of progress properties other than SF(A) that are assumed of the
program, perhaps conjoined with a formula ✷I, where I is an invariant.

4 Reasoning About Programs

Traditional state-based methods prove two types of properties: safety prop-
erties, which assert that something bad does not happen, and liveness prop-
erties, which assert that something good eventually does happen. (Safety
and liveness are defined formally by Alpern and Schneider [AS85].) Al-
though the proofs of both types of properties can be carried out in the same
temporal logic of actions, they use different styles of reasoning.

4.1 Safety Properties

Assertional methods for proving safety properties, including Floyd’s method
for sequential programs, and the Ashcroft [Ash75] and Owicki-Gries [OG76]

12

methods for concurrent programs, all have the same logical basis: the In-
variance Rule is used to prove a formula |= Π ⇒ ✷P , for some predicate
P . We give two simple examples of how such proofs are expressed in the
temporal logic of actions.

The first safety property one usually proves about a program is that it
is type-correct, meaning that the values of all variables are of the expected
“type”. Type-correctness for the program of Figure 1 is expressed by the
formula Π⇒ ✷T , where

T
∆= pc1 ∈ {α, β, γ} ∧ x ∈ Int ∧ sem ∈ Nat ∧

pc2 ∈ {α, β, γ} ∧ y ∈ Int
(9)

and Int and Nat denote the sets of integers and naturals.
We now prove Π⇒ ✷T . Since Π equals InitΠ∧✷[NΠ]∧LΠ, it suffices to

prove InitΠ ⇒ T and T ∧✷[NΠ]⇒ ✷T . (The progress condition LΠ, which
describes only what must eventually happen, is not needed for proving safety
properties.) By the Invariance Rule, {T}NΠ{T} implies T ∧ ✷[NΠ]⇒ ✷T .
Hence, it suffices to prove InitΠ ⇒ T and {T}NΠ{T}.

The proof of InitΠ ⇒ T is immediate. To prove {T}NΠ{T}, the decom-
position rule (4) implies that we need only verify the six triples {T}α1{T},
. . . , {T}γ2{T}. This is an exercise in triviality, the hardest step being the
proof of

(sem ∈ Nat) ∧ (sem > 0) ∧ (sem ′ = sem − 1) ⇒ (sem ′ ∈ Nat)

which is used in proving {T}α1{T} and {T}α2{T}.
As a slightly less trivial example, we prove the obvious mutual exclusion

property for this program: at most one process at a time can have control
at β or γ. Formally, the property to be proved is Π⇒ ✷P , where P equals
¬(pc1 ∈ {β, γ}∧pc2 ∈ {β, γ}). To prove it, we find an invariant I satisfying
three properties: (i) InitΠ ⇒ I, (ii) T ∧I ⇒ P , and (iii) {I}T ∧NΠ{I}. The
following proof shows that these three properties imply Π⇒ ✷P .

1. Π⇒ ✷[T ∧ NΠ]
Proof : Π⇒ ✷T (proved above), Π⇒ ✷[NΠ] (by definition of Π), and (7).

2. I ∧ ✷[T ∧ NΠ]⇒ ✷I
Proof : Property (iii) and the Invariance Rule.

3. Π⇒ ✷I
Proof : 1, Π⇒ InitΠ (by definition of Π), property (i), and 2.

4. Π⇒ ✷P
Proof : Π⇒ ✷T , 3, property (ii), and simple temporal reasoning.

13

We define the invariant I by

I
∆= sem +Υ(pc1 ∈ {β, γ}) + Υ(pc2 ∈ {β, γ}) = 1 (10)

where Υ(true) ∆= 1 and Υ(false) ∆= 0. The proofs of InitΠ ⇒ I and T∧I ⇒ P
are immediate. Applying (4), {I}T ∧ NΠ{I} is proved by verifying the six
triples {I}T ∧ α1{I}, . . . , {I}T ∧ γ2{I}. For example, {I}T ∧α1{I} equals
T ∧ α1 ∧ I ⇒ I ′ which by the definition (10) of I equals

T ∧ α1 ∧ sem +Υ(pc1 ∈ {β, γ}) + Υ(pc2 ∈ {β, γ}) = 1
⇒ sem ′ +Υ(pc ′1 ∈ {β, γ}) + Υ(pc ′2 ∈ {β, γ}) = 1

This implication follows by simple algebra from the definitions (9) of T and
(3) of α1.

4.2 Liveness Properties

We illustrate the proof of liveness properties by showing that the program of
Figure 1, under the strong fairness assumption, increases x without bound.
More precisely, we assume that the progress condition LΠ equals SF(N 1

Π) ∧
SF(N 2

Π), and we prove

Π ⇒ (x = n ❀ x = n+ 1) (11)

which asserts that if x ever equals n, then at some later time it will equal
n+ 1. (Here, n is a logical variable.)

An informal proof of (11) involves four steps:

A. Control in process 1 is either at α1, β1, or γ1.

B. If control is at γ1 with x equal to n, then eventually (after executing
γ1) control will be at α1 with x equal to n.

C. If control is at α1 with x equal to n, then eventually (after executing
α1) control will be at β1 with x equal to n.

D. If control is at β1, then eventually (after executing β1) x will equal
n+ 1.

These steps imply that if x equals n, then it will eventually equal n+ 1.
This line of reasoning is formalized with the proof lattice [OL82] of Fig-

ure 2. The lattice denotes the following four formulas, where letters on the
lines indicate the correspondence between lattice and formula.

14

x = n

pc1 = γ ∧ x = n

pc1 = α ∧ x = n

pc1 = β ∧ x = n

x = n+ 1

❏
❏

❏
❏

❏
❏

❏
❏

❏
✟✟✟✟

❍❍❍❍

❍❍❍❍

✟✟✟✟

A

A

AB

C

D

Figure 2: A proof lattice for the program of Figure 1.

A. Π ⇒ (x = n) ❀

((pc1 = γ ∧ x = n) ∨ (pc1 = α ∧ x = n) ∨ (pc1 = β ∧ x = n))

B. Π ⇒ (pc1 = γ ∧ x = n) ❀ (pc1 = α ∧ x = n)

C. Π ⇒ (pc1 = α ∧ x = n) ❀ (pc1 = β ∧ x = n)

D. Π ⇒ (pc1 = β ∧ x = n) ❀ (x = n+ 1)

Property (11) is deduced from A–D by simple temporal reasoning. Detailed
proofs of A–C follow. The proof of D is similar to that of B and is omitted.

Proof of A

Formula A follows from Π ⇒ ✷T , which was proved above, and simple temporal
reasoning, since T implies pc1 ∈ {α, β, γ}.

Proof of B

The proof is given below in excruciating detail. Steps 1, 2, and 3 verify the three
hypotheses of the WF Rule. Step 2 is actually stronger than the second hypothesis
of the rule, since {P}N ∧ ¬A{P} implies {P}N ∧ ¬A{P ∨ Q}.
1. {pc1 = γ ∧ x = n} N 1

Π {pc1 = α ∧ x = n}
1.1. pc1 = γ ∧ N 1

Π ⇒ γ1

Proof : N 1
Π = α1 ∨ β1 ∨ γ1 (definition of N 1

Π) and pc1 = γ ⇒ ¬(α1 ∨ β1)
(definitions of α1 and β1).

15

1.2. γ1 ⇒ pc′1 = α ∧ x′ = x

Proof : Definition of γ1.
1.3. {pc1 = γ ∧ x = n} N 1

Π {pc1 = α ∧ x = n}
Proof : 1.1, 1.2, and the definition of a Hoare triple.

2. {pc1 = γ ∧ x = n} NΠ ∧ ¬N 1
Π {pc1 = γ ∧ x = n}

2.1. NΠ ∧ ¬N 1
Π = N 2

Π

Proof : NΠ = N 1
Π ∨ N 2

Π (definition of NΠ).
2.2. N 2

Π ⇒ x′ = x ∧ pc′1 = pc1

Proof : N 2
Π = α2∨β2∨γ2 (definition ofN 2

Π) and definitions of α2, β2, and γ2.
2.3. {pc1 = γ ∧ x = n} NΠ ∧ ¬N 1

Π {pc1 = γ ∧ x = n}
Proof : 2.1, 2.2, and the definition of a Hoare triple.

3. pc1 = γ ∧ x = n ⇒ Enabled(N 1
Π)

3.1. Enabled(γ1) = (pc1 = γ)
Proof : Definitions of γ1 and Enabled .

3.2. γ1 ⇒ N 1
Π

Proof : Definition of N 1
Π.

3.3. Enabled(γ1)⇒ Enabled(N 1
Π)

Proof : 3.2 and definition of Enabled .
3.4. pc1 = γ ∧ x = n ⇒ Enabled(N 1

Π)
Proof : 3.1 and 3.3.

4. Π ⇒ (pc1 = γ ∧ x = n) ❀ (pc1 = α ∧ x = n)
4.1. ✷[NΠ] ∧WF(N 1

Π) ⇒ (pc1 = γ ∧ x = n) ❀ (pc1 = α ∧ x = n)
Proof : 1–3 and the WF Rule.

4.2. Π ⇒ ✷[NΠ] ∧WF(N 1
Π)

Proof : Definition of Π and SF(N 1
Π)⇒WF(N 1

Π).
4.3. Π ⇒ (pc1 = γ ∧ x = n) ❀ (pc1 = α ∧ x = n)

Proof : 4.1 and 4.2.

Proof of C

Let P
∆= (pc1 = α ∧ x = n) and Q

∆= (pc1 = β ∧ x = n), so property C is
Π ⇒ (P ❀ Q). This property is proved using the SF Rule and the properties
Π⇒ ✷T and Π⇒ ✷I, which were proved in Section 4.1. Steps 1–3 in the following
proof verify the hypotheses of the SF Rule, with ✷F replaced by ✷(T∧I)∧WF(N 1

Π).
Steps 1 and 2 are similar to the corresponding steps in the proof of property B, and
the proofs are omitted.

1. {P} N 1
Π {Q}

2. {P} NP ∧ ¬N 1
Π {P}

16

3. ✷(T ∧ I) ∧ WF(N 2
Π) ∧ ✷[NΠ ∧ ¬N 1

Π] ⇒
(P ∧ ¬Enabled(N 1

Π) ❀ Enabled(N 1
Π))

Proof : Let Pβ
∆= (P ∧ pc2 = β ∧ sem = 0) and Pγ

∆= (P ∧ pc2 = γ ∧ sem = 0).
Steps 3.1–3.4 represent a proof that ✷(T ∧I) ∧WF(N 2

Π) ∧ ✷[NΠ∧¬N 1
Π] implies

P ∧ sem = 0❀ P ∧ sem = 1, based on the following proof lattice.

P ∧ sem = 1
Pγ

Pβ

P ∧ sem = 0

���

✏✏✏

����

Formula 3 then follows (steps 3.5–3.7) because P implies that N 1
Π is enabled iff

sem is greater than 0.
3.1. ✷(T ∧ I) ⇒ (P ∧ sem = 0❀ Pβ ∨ Pγ)

Proof : T ∧ I ∧ P ∧ sem = 0 ⇒ Pβ ∨ Pγ and temporal reasoning.
3.2. ✷[NΠ ∧ ¬N 1

Π] ∧WF(N 2
Π) ⇒ (Pβ ❀ Pγ)

Proof : By the WF Rule with NΠ ∧ ¬N 1
Π substituted for N and N 2

Π sub-
stituted for A. (The second hypothesis of the rule holds trivially because
NΠ ∧ ¬N 1

Π ∧ ¬N 2
Π equals false.)

3.3. ✷[NΠ ∧ ¬N 1
Π] ∧WF(N 2

Π) ⇒ (Pγ ❀ P ∧ sem = 1)
Proof : Similar to proof of 3.2.

3.4. ✷(T ∧ I) ∧ ✷[NΠ ∧ ¬N 1
Π] ∧WF(N 2

Π) ⇒ (P ∧ sem = 0 ❀ P ∧ sem = 1)
Proof : 3.1–3.3 and temporal reasoning.

3.5. T ∧ I ⇒ (P ∧ ¬Enabled (N 1
Π) ⇒ P ∧ sem = 0)

Proof : P ⇒ (N 1
Π = α1), and Enabled(α1) equals pc1 = α ∧ sem > 0.

3.6. P ∧ sem = 1 ⇒ Enabled(N 1
Π)

Proof : Same as proof of 3.5.
3.7. ✷(T ∧ I) ∧ WF(N 2

Π) ∧ ✷[NΠ ∧ ¬N 1
Π] ⇒

(P ∧ ¬Enabled(N 1
Π) ❀ Enabled(N 1

Π))
Proof : 3.4–3.6 and temporal reasoning.

4. Π ⇒ (P ❀ Q)
4.1. ✷(T ∧ I) ∧ WF(N 2

Π) ∧ ✷[NΠ] ∧ SF(N 1
Π) ⇒ (P ❀ Q)

Proof : 1–3 and the SF Rule.
4.2. Π ⇒ ✷(T ∧ I) ∧ WF(N 2

Π) ∧ ✷[NΠ] ∧ SF(N 1
Π)

Proof : Π ⇒ ✷T and Π ⇒ ✷I (proved above), temporal reasoning, the
definition of Π, and SF(N 2

Π)⇒WF(N 2
Π).

4.3. Π ⇒ (P ❀ Q)
Proof : 4.1 and 4.2.

This completes a tiresome proof of a rather obvious property. Unfortunately,

17

we do not know how to write shorter proofs of liveness properties without
sacrificing rigor. Fortunately, with a little practice, deriving the detailed
proof from a lattice like Figure 2 becomes a routine task requiring little
ingenuity. People with limited time or patience will just draw the proof
lattice and argue informally that it is correct. Perhaps some day these
informal arguments will be mechanically translated into complete, verified
proofs.

5 The General Logic

The temporal logic of actions defined above is adequate for describing and
proving simple safety and liveness properties of a single program. However,
the logic is deficient in three ways: there are useful properties that it cannot
express, it does not support proofs that one program implements another,
and it does not permit a simple compositional semantics of programs.

To illustrate the problems with the simple logic, let us try to specify
how the program of Figure 1, described by the formula Π, changes the val-
ues of variables x and y. We might write such a specification as a formula Φ
describing a very simple program that repeatedly increments x or y, nonde-
terministically but fairly choosing which to increment next. Such a formula
Φ is defined as follows.

InitΦ
∆= x = 0 ∧ y = 0

N 1
Φ

∆= x′ = x+ 1 ∧ y′ = y

N 2
Φ

∆= y′ = y + 1 ∧ x′ = x

NΦ
∆= N 1

Φ ∨ N 2
Φ

Φ ∆= InitΦ ∧ ✷[NΦ] ∧ WF(N 1
Φ) ∧ WF(N 2

Φ)

To show that the program satisfies property Φ, we must prove Π ⇒ Φ.
However, this implication is not valid. The formula ✷[NΦ] asserts that
every nonstuttering step is an NΦ transition, but Π allows nonstuttering
steps that do not change x or y—for example, α1 transitions. Therefore, Π
cannot imply ✷[NΦ], so it cannot imply Φ. To make Π⇒ Φ valid, we must
replace ✷[NΦ] in the definition of Φ by a formula asserting that every step
that changes x or y is an NΦ transition—a formula written ✷[NΦ]{x,y}.

In general, let w be a finite set of state variables, and define a w-
stuttering step to be one that does not change the value of any variable
in w. The temporal formula [A]w is defined to be true of a behavior σ iff

18

the first step of σ that is not a w-stuttering step, if such a step exists, is
an A transition. Formally, let s =w t denote ∀w ∈ w : [[w]](s) = [[w]](t) and
define [A]w by

[[[A]w]](σ) = ∀i > 0 : σ0 =w . . . =w σi−1 �=w σi ⇒ [[A]](σi−1, σi)

This is the same as (6), the definition of [A], except with = replaced by =w.
The more general temporal logic of actions has, as its elementary for-

mulas, state predicates and formulas of the form [A]w. It has the same
temporal operators as the simple logic, all derived from the single operator
✷. We define 〈A〉w to equal ¬[¬A]w, which asserts that there is a step
changing some variable in w, and the first such step is an A transition. The
formulas WFw(A) and SFw(A) are defined to be the obvious analogs of
WF(A) and SF(A).

The simple temporal logic of actions is derived as a special case of this
new logic by fixing a finite set w of state variables, allowing only predicates
and actions whose variables are in w, and letting w be the only “subscript”.
The subscript w’s are then redundant and can be dropped, yielding the
simple logic.

We now redefine the formula Π describing the program of Figure 1 and
the formula Φ describing how x and y are changed. In these definitions, w
denotes the set {x, y, sem, pc1, pc2}.

Π ∆= InitΠ ∧ ✷[NΠ]w ∧ SFw(N 1
Π) ∧ SFw(N 2

Π)

Φ ∆= InitΦ ∧ ✷[NΦ]{x,y} ∧ WF{x,y}(N 1
Φ) ∧ WF{x,y}(N 2

Φ)

With these definitions, the formula Π⇒ Φ is valid. It can be deduced from:
generalizations of (7) and of the Invariance, WF, and SF rules; some rules
relating [A]u and [A]v for different u and v; and simple temporal reasoning.

The general logic is completed by adding quantification over state vari-
ables, as defined in [AL88]. Intuitively, if formula Ψ represents a program
with a variable w, then ∃w : Ψ represents the same program except with
w hidden (made internal). In our example, the formula ∃sem, pc1, pc2 : Π
describes how the program of Figure 1 changes x and y, with its effect on
sem, pc1, and pc2 hidden. This formula is equivalent to Φ. We deduce that
∃sem, pc1, pc2 : Π implies Φ from Π⇒ Φ and simple properties of quantifica-
tion. Proving the converse implication requires the addition of an auxiliary
variable v to transform Φ into an equivalent formula ∃v : Φv [AL88].

The general temporal logic of actions, with quantification over state vari-
ables, can serve as the logical foundation for the transition-axiom method—a
hierarchical method of specifying and verifying concurrent systems [Lam89].

19

6 Conclusion

Pnueli [Pnu77] introduced a temporal logic for reasoning about programs
that was based on predicates, logical operators, and the single temporal op-
erator ✷. It was soon recognized that Pnueli’s logic is not expressive enough,
and a plethora of new logics were introduced—all obtained by adding more
powerful temporal operators. Instead of adding temporal operators, we have
added a new kind of “action predicate”.

The simple temporal logic of actions is less expressive than other exten-
sions to Pnueli’s simple logic. Its formulas can be expressed in any temporal
logic that includes an until operator and quantification over logical variables.
Our logic is just a little more expressive than Pnueli’s. However, this extra
expressiveness is all that we need to reason about concurrent programs. De-
ductions that in other logics require more powerful temporal reasoning are
performed in our logic by nontemporal reasoning about actions. Although
not formally complete, the Invariance, WF, and SF rules combined with (7)
and simple temporal reasoning seem adequate for proving invariance and
leads-to properties. Mart́ın Abadi has developed a complete proof system
for the propositional case, where predicates and actions are just uninter-
preted symbols [Aba90].

The style of reasoning used in the simple logic can be extended to the
general temporal logic of actions. In the absence of quantification over
state variables (hiding of internal variables), such reasoning seems sufficient
for proving that one program implements another. Proofs use refinement
mappings, in which the implemented program’s variables are expressed as
functions of the implementing program’s variables [AL88]. A complete proof
system should exist for the propositional logic without quantification, but
it has yet to be discovered.

The general logic with quantification over state variables has all the use-
ful expressive power of any linear-time temporal logic. Other logics are more
expressive only in their ability to write properties that are not invariant un-
der stuttering [AL88]—for example, by mentioning “the next state”. Such
properties raise problems in proving that a lower-level program, whose next
state may come after executing one machine-language instruction, imple-
ments a higher-level program, whose next state may come after executing
one assignment statement. Invariance under stuttering is crucial to the hier-
archical approach of the transition-axiom method [Lam89]. With quantifica-
tion over state variables, additional proof rules for adding auxiliary variables
are needed. The general logic may be too expressive to have a complete de-

20

duction system. However, the refinement mapping method seems to work
in practice, and its semantic completeness is proved in [AL88].

Acknowledgments

Mart́ın Abadi helped to develop the temporal logic of actions and is the
source of many of the ideas presented here. Fred Schneider suggested ex-
pository improvements.

21

22

References

[Aba90] Mart́ın Abadi. An axiomatization of Lamport’s temporal logic of
actions. To appear, 1990.

[AL88] Mart́ın Abadi and Leslie Lamport. The existence of refinement
mappings. Research Report 29, Digital Systems Research Center,
1988. To appear in Theoretical Computer Science. A preliminary
version appeared in Proceedings of the Third Annual Symposium
on Logic In Computer Science, pages 165-177, IEEE Computer
Society, Edinburgh, Scotland, July 1988.

[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness. Informa-
tion Processing Letters, 21(4):181–185, October 1985.

[Ash75] E. A. Ashcroft. Proving assertions about parallel programs. Jour-
nal of Computer and System Sciences, 10:110–135, February 1975.

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design.
Addison-Wesley, Reading, Massachusetts, 1988.

[Heh84] Eric C. R. Hehner. Predicative programming. Communications of
the ACM, 27(2):134–151, February 1984.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–583, October 1969.

[Lam80] Leslie Lamport. ‘Sometime’ is sometimes ‘not never’: A tutorial on
the temporal logic of programs. In Proceedings of the Seventh An-
nual Symposium on Principles of Programming Languages, pages
174–185. ACM SIGACT-SIGPLAN, January 1980.

[Lam89] Leslie Lamport. A simple approach to specifying concurrent sys-
tems. Communications of the ACM, 32(1):32–45, January 1989.

[LS84] Leslie Lamport and Fred B. Schneider. The “Hoare logic” of CSP,
and all that. ACM Transactions on Programming Languages and
Systems, 6(2):281–296, April 1984.

[OG76] S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs i. Acta Informatica, 6(4):319–340, 1976.

23

[OL82] Susan Owicki and Leslie Lamport. Proving liveness properties of
concurrent programs. ACM Transactions on Programming Lan-
guages and Systems, 4(3):455–495, July 1982.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the
18th Symposium on the Foundations of Computer Science, pages
46–57. ACM, November 1977.

[Pra76] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic.
In 17th Symposium on Foundations of Computer Science, pages
109–121. IEEE, October 1976.

24

