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Author’s Abstract

We present a theorem for deriving properties of a concurrent program by
reasoning about a simpler, coarser-grained version. The theorem generalizes
a result that Lipton proved for partial correctness and deadlock-freedom.
Our theorem applies to all safety properties.
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1 Introduction

To specify a concurrent program, one must specify what its atomic actions
are. If x := x+ 1 is executed as a single atomic action, then

cobegin x := x+ 1 x := x+ 1 coend

increments x by 2; if each read and store of x is a separate atomic action,
then it increments x by 1 or 2.
We specify that a statement is executed as a single atomic action by

enclosing it in angle brackets. For example, 〈x := x+1 〉 is a statement that
is executed as one atomic action. A statement x := x+1 in which each read
and store of x is a separate atomic action can be written as

〈 t := x 〉; 〈 t := t+ 1 〉; 〈x := t 〉
where t is a new variable that is local to the process and represents an
“accumulator”.
Representing a program using fewer atomic actions simplifies reasoning

about it. One way to reduce the number of atomic actions in a program is
to combine two or more atomic actions into a single larger one. This is often
done by pretending that a statement is atomic if its execution contains at
most one access (read or write) of a shared variable, tacitly applying what
we will call the single-action rule. For the example above, applying this rule
would allow

〈 t := x 〉; 〈 t := t+ 1 〉
to be combined into the single atomic action 〈 t := x+ 1 〉.
The single-action rule cannot always be applied. For example, it would

imply that any operation can be considered atomic in a single-process pro-
gram, because no variable is shared. This would mean that a property of
the program

〈 y := x+ 1 〉; 〈 x := y 〉 (1)

could be established by proving it for the program

〈 y := x+ 1; x := y 〉 (2)

This reasoning is wrong. The following property holds for the second pro-
gram but not the first.

If the program is started in a state with x = y, then x = y holds
in all states reached during execution.
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Execution of (1) reaches an intermediate state in which x �= y—a state that
does not occur when executing (2).
In this paper, we derive a general rule for combining atomic actions.

It includes a correct version of the single-action rule as a corollary. Our
rule applies only to safety properties, which include partial correctness, mu-
tual exclusion, and deadlock-freedom, but not to liveness properties, such as
termination and starvation-freedom. A safety property asserts that “some-
thing bad does not happen”, so if it is violated, then it is violated by a finite
portion of a (possibly infinite) execution of the program.
The idea of combining atomic actions is probably as old as the study

of concurrent algorithms. To our knowledge, the single-action rule was first
mentioned in print by Owicki and Gries [10], where it was informally claimed
for partial correctness properties. In [9], Lipton formally proved a closely
related theorem for partial correctness and deadlock-freedom. However, Lip-
ton was primarily concerned with semaphore operations, and it was not
widely recognized that the single-action rule is a corollary of his results.
Doeppner [4] extended Lipton’s partial-correctness result to a somewhat
larger class of safety properties. In this paper, we extend Lipton’s and
Doeppner’s results to a more general class of safety properties.

2 Lipton’s Theorem

Before describing our result, we give an informal review of Lipton’s work [9].
The hypotheses of his main theorem involve commutativity relations be-
tween atomic actions. We begin by defining these relations, departing some-
what from Lipton’s original notation.
Henceforth, we refer to atomic actions simply as actions. Formally, an

action α is a set of pairs of program states, where (t, u) ∈ α means that
executing α in state t can produce state u. We say that α is enabled in state
t iff (if and only if) there is a state u such that (t, u) ∈ α. We write t α−→ u
to denote that (t, u) is an element of α. For example, a semaphore operation
P (sem) is represented by an action α that is enabled in state t iff control is
at that operation and the value of sem is positive. For this action, t α−→ u
holds iff (i) α is enabled in state t and (ii) state u is the same as t, except
that control is after the semaphore operation and the value of sem is one
less than its value in t.
The program state includes control information, in addition to the values

of program variables. Thus, two instances of a statement 〈 x := x + 1 〉 in
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a program are different actions because they have different effects on the
control components of the state.
If α and β are actions, then αβ is defined to be the action such that

t
αβ−→ u iff there exists a v such that t α−→ v and v β−→ u. An action ρ right

commutes with an action α iff t ρα−→ u implies t αρ−→ u, for every pair of states
t, u. In other words, ρ right commutes with α means that if it is possible
to execute first ρ then α, then it is possible to produce the same state by
executing first α then ρ. Similarly, λ left commutes with α iff t αλ−→ u implies
t

λα−→ u for every pair of states t, u. Thus, ρ right commutes with λ iff λ
left commutes with ρ. Two actions commute iff each one left commutes and
right commutes with the other.
The hypotheses of Lipton’s main theorem involve commutativity between

actions in different processes. An action ρ in a process is called a right mover
iff it right commutes with the actions of every other process. An action λ is
a left mover iff it left commutes with the actions in every other process.
Lipton observed that, if semaphore operations are represented as atomic

actions, then P actions are right movers and V actions are left movers. To
see that P actions are right movers, let ρ be a P (sem) action, let λ be an
action in another process, and assume that executing ρ then λ from state t
can produce state u. There are three cases to consider.

• λ does not access the semaphore sem. In this case, ρ can obviously be
executed after λ to produce the same state u.

• λ is another P (sem) action. Executing the two P (sem) actions in
either order must produce the same state.

• λ is a V (sem) action. In this case, executing λ from state t produces
a state with sem > 0, so ρ can then be executed to produce state u.
(Note that ρ does not left commute with λ because, in a state with
sem = 0, it is possible to execute a V (sem) followed by a P (sem), but
not a P (sem) followed by a V (sem).)

Similar reasoning shows that every V action is a left mover.
To combine actions, Lipton introduced the notion of reducing a program

by a statement. Let S be a sequence 〈S1〉; 〈S2〉; . . . ; 〈Sk〉 of statements in a
program Π. Program Π reduced by S, denoted Π/S, is the program obtained
from Π by replacing S with the single atomic statement 〈S1; . . . ;Sk〉. Lipton
proved the following result.
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Lipton’s Theorem Let Π be a program and S have the form 〈S1〉; 〈S2〉;
. . . ; 〈Sk〉, where, for some i:
1. S1, . . . , Si−1 are right movers.

2. Si+1, . . . , Sk are left movers.

3. From any program state in which execution of S has begun but not
terminated, it is possible, by executing only actions in S, to reach a
state in which S has terminated.

Then, programs Π and Π/S satisfy the same partial correctness and deadlock-
freedom properties.

The single-action rule asserts that, if S contains at most one access to a
shared variable, then we can prove a property of program Π by proving it for
Π/S. If an action α does not access any variable that is accessed by any other
process, then α is both a left and a right mover. Letting 〈Si〉 be the single
statement in S that accesses a shared variable (or any statement if S does
not access a shared variable), Lipton’s Theorem implies the single-action
rule for reasoning about partial correctness and deadlock freedom—except
that the single-action rule does not require hypothesis 3. We will show
that hypothesis 3 is not needed in Lipton’s Theorem for partial correctness
properties, so the single-action rule is valid for partial correctness.
Partial correctness relates initial and final states, but makes no assertion

about states in which control is inside S. Doeppner extended Lipton’s result
to a more general class of safety properties that also assert nothing when
control is within S. A precise statement of Doeppner’s result is given below.
To use Lipton’s Theorem (or Doeppner’s extension), one usually per-

forms many reductions to decrease the number of separate actions in a pro-
gram. We now show that these reductions can all be done at once. Let
S and S′ be two disjoint sequences of statements. We show that if S and
S′ both satisfy the hypotheses of Lipton’s Theorem, then (Π/S)/S′, which
equals (Π/S′)/S, and Π satisfy the same partial correctness and deadlock-
freedom properties. Since S satisfies the hypotheses, Π/S and Π satisfy the
same properties. An action that left or right commutes with every action
of S in program Π must left or right commute with 〈S〉 in program Π/S.
Therefore, if S′ satisfies the hypotheses of Lipton’s Theorem in program Π,
then it also satisfies these hypotheses in Π/S. Hence, a second application
of Lipton’s Theorem shows that (Π/S)/S′ and Π satisfy the same partial
correctness and deadlock-freedom properties. Generalizing to an arbitrary
number of reductions is obvious.
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3 A General Reduction Theorem

We begin by defining the concepts needed to formalize the notion of reduc-
tion. Then, in Section 3.2, we state a generalization of Lipton’s Theorem;
its proof is in the appendix. We derive Doeppner’s result as a corollary, and
use it to prove Lipton’s Theorem. The section closes with an example of the
use of our theorem.

3.1 Definitions

3.1.1 Programs

Thus far, we have viewed a program Π as a set of states and a set of actions.
(Recall that an [atomic] action is a set of pairs of states.) However, what
matters for safety properties is not the set of actions, but the program’s
next-state relation, which is the union of all the program’s actions. For
example, replacing the single program action

〈 x := |x|+ 1 〉

by the pair of actions

if 〈x ≥ 0→ x := x+ 1 〉 〈 x < 0→ x := −x+ 1 〉 fi

yields an equivalent program.
We therefore formally define a program Π to consist of a set of states

and a single action Π̂, where Π̂ is the next-state relation. (The next-state
relation, being the union of actions, is itself an action.) Observe that, al-
though the specification of a program usually describes its possible starting
states, we do not include any special starting or terminating states in our
formal definition—they are irrelevant to our results.

3.1.2 Histories

A history of Π is a finite, nonempty sequence t0, . . . , tn of states such that

ti−1
Π̂−→ ti, for 0 < i ≤ n. This history represents a partial execution

(possibly complete) of Π, starting in state t0 and reaching state tn. Only such
finite partial executions need be considered when proving safety properties,
even of nonterminating programs, since a safety property is, by definition,
one that is satisfied by an infinite execution iff it is satisfied by every finite
prefix [1].
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3.1.3 Commutativity

Recall that an action ρ right commutes with an action λ (and λ left com-
mutes with ρ) iff t ρλ−→ u implies t λρ−→ u for all states t and u. It follows
from this definition that, if ρ equals the union of actions ρi and λ equals the
union of actions λj , then ρ right commutes with λ if every ρi right commutes
with every λj .
If there are no states s, t, and u such that s ρ−→ t

α−→ u, so α cannot be
executed immediately after ρ, then ρ right commutes with α. Hence, if ρ is
an action in a process of a concurrent program, then ρ right commutes with
every action in that process, except the action immediately following it. Hy-
pothesis 1 of Lipton’s theorem is therefore equivalent to the hypothesis that
S1, . . . , Si−1 right commute with every program action not in S. Similarly,
an action left commutes with every action in the same process except the
action immediately preceding it.
For any action α, we define α=⇒ to be the reflexive, transitive closure of

α−→. Thus, t α=⇒ u iff t = u or there exists a state v such that t α−→ v
α=⇒ u.

In other words, t α=⇒ u iff it is possible to go from state t to state u by
“executing” action α zero or more times. We adopt the usual convention of
writing t α=⇒ v

β=⇒ u to denote that t α=⇒ v and v β=⇒ u hold.

3.1.4 Predicates and Safety Properties

A predicate is a Boolean-valued function on the set of states. The value Q(t)
of predicate Q on state t is written t |= Q. An action α is defined to leave
predicate Q invariant iff t |= Q implies u |= Q whenever t α−→ u. It follows
from this definition that, if α equals the union of actions αi, then α leaves
Q invariant iff every αi does. Note that if t |= Q implies that α cannot be
executed in state t, so there is no state u such that t α−→ u, then α trivially
leaves Q invariant. Thus, if U is the predicate asserting that α is enabled,
then α leaves ¬U invariant.
If Init and Q are predicates, then a program Π satisfies the temporal

logic formula Init ⇒ ✷Q iff the following holds: for any history t0, . . . , tn of
Π, if t0 |= Init then ti |= Q, for 0 ≤ i ≤ n. This property is equivalent to

For all states t and u: if t Π̂=⇒ u and t |= Init , then u |= Q.

Properties of the form Init ⇒ ✷Q are proved with the Owicki-Gries
method [10] and similar assertional methods [2, 6]. Moreover, by adding
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auxiliary variables to the program, any safety property can be expressed in
this form.

3.1.5 Operations

The notion of a statement is meaningful only in the context of a program-
ming language. To make our results independent of any language, we will
define reduction with respect to operations rather than statements. The in-
tuitive view is that an operation S consists of a collection of related actions
from a single process. Actions are “related” iff, from the time the first action
of S is executed until the entire operation completes, the process can execute
actions only from S. Executing the first action of S moves control inside S,
and executing the last action moves control outside S. Only actions of S
can move control inside or outside of S.

Formally, an operation S of program Π consists of a subset Ŝ of the
next-state relation Π̂ together with a predicate E(S) (where E stands for
external), such that Π̂ − Ŝ leaves both E(S) and ¬E(S) invariant. Being
subsets of Π̂, an action, Ŝ and Π̂ − Ŝ are themselves actions. This formal
definition corresponds to the intuitive view above, where Ŝ is the union of
the actions constituting S, and E(S) is the predicate asserting that control
is outside S.1

We now define what it means for an operation to be atomic. We could
define A to be atomic iff E(A) holds in all states. However, we want Π and
Π/S to satisfy the same properties, so we want them to have the same set
of states; this means that Π/S may contain states in which E(〈S〉) is false
even though it has 〈S〉 as an atomic action. Therefore, we adopt the more
general definition that an operation A of program Π is atomic iff E(A) is left
invariant by Π̂. Consequently, if A is atomic, then control will remain outside
A throughout any history that starts in a state with control outside A.

Observe that the concept of a process is not used in our formal defini-
tion of an operation, and nothing prevents actions of different processes from
being part of a single operation. For example, a matching pair of communi-
cation statements in a CSP program can be represented by a single atomic
operation [8].

1In the notation of [5], E(S) = at(S) ∨ ¬in(S).
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3.1.6 Sequential Composition

Our reduction theorem involves the sequential composition T ;U of opera-
tions T and U . Composition is usually defined for statements in a program-
ming language. A precise definition for sequential composition of operations
is complicated. However, the composition T ;U has the expected meaning if
(i) control cannot be inside both T and U , and (ii) any execution of T ;U con-
sists of a (possibly null) sequence of executions of T followed by a (possibly
null) sequence of executions of U . For example, in the statement

if b then T ;U1

else U2

fi

the then and else clauses together define a single operation T ;U , where the
operation U is defined by Û = Û1 ∪ Û2 and E(U) = E(U1) ∧ E(U2). By our
definition of atomicity, if each Ui is atomic, then U is atomic.
For a general definition of the sequential composition of operations, we

must use E(T ), E(U), T̂ , and Û to characterize when operation T ;U is
defined and, when it is defined, what T̂ ;U and E(T ;U) are. Such a definition
is complicated; the only simple part is that when T ;U is defined, T̂ ;U equals
T̂ ∪ Û . Therefore, instead of giving a formal definition, we just list in the
appendix properties of sequential composition that we require.
If T is null, meaning that T̂ is the empty set and E(T ) is identically true,

then T ;U equals U . Similarly, if U is null, then T ;U equals T .

3.1.7 Possible Termination

Hypothesis 3 of Lipton’s Theorem asserts that it is possible for S to ter-
minate from any state in which control is inside S. Control being inside S
means that ¬E(S) holds. Termination of S means reaching a state in which
E(S) holds. Thus, Lipton’s hypothesis 3 asserts that, for every state t, if
t |= ¬E(S) then there exists a state u such that t Ŝ=⇒ u and u |= E(S).

3.2 The Reduction Theorem and Corollaries

3.2.1 Reduction

The purpose of our reduction theorem is to justify pretending that an op-
eration is atomic. To define what this pretense means, we first define the
operation 〈S〉 for an arbitrary operation S in a program Π. This requires
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defining action 〈̂S〉 and predicate E(〈S〉). We define E(〈S〉) to equal E(S).
Our definition of 〈̂S〉 should assert that t 〈̂S〉−→ u iff a complete execution of
S can take state t to state u. A “complete execution” is one that starts
with control outside S and ends as soon as control leaves S. We define 〈̂S〉
to consist of all pairs (t, u) such that t |= E(S), u |= E(S), and there exist
states t0, . . . , tn, with 0 < n, such that

t = t0
Ŝ−→ t1

Ŝ−→ . . .
Ŝ−→ tn−1

Ŝ−→ tn = u

and ti |= ¬E(S) for 0 < i < n.
For any action α, define t α=⇒

S
u to mean that there exist states t0, . . . ,

tn, with 0 ≤ n, such that

t = t0
α−→ t1

α−→ . . .
α−→ tn−1

α−→ tn = u

and ti |= ¬E(S) for 0 < i < n. Then, t α=⇒
S
u implies t α=⇒ s. If u |= ¬E(S),

then t α=⇒
S
u and u α=⇒

S
v imply t α=⇒

S
v.

To see the relation between the two actions Ŝ and 〈̂S〉, suppose t |= E(S)
and u |= E(S). The definition of 〈̂S〉 implies that t Ŝ=⇒

S
u iff t 〈̂S〉−→ u or t = u.

This in turn implies that t Ŝ=⇒ u iff t 〈̂S〉=⇒ u.
We can now formally define program Π/S. We want Π/S to be the

program obtained by replacing S by an atomic action, so Π/S is defined
to have the same set of states as Π and to have its next-state relation Π̂/S
equal to (Π̂ − Ŝ) ∪ 〈̂S〉. To show that 〈S〉 is an atomic operation of Π/S,
we must show that Π̂/S leaves E(〈S〉) invariant. By definition of what it
means for S to be an operation of Π, action Π̂− Ŝ leaves E(S) invariant. By
definition of 〈S〉, action 〈̂S〉 leaves E(S) invariant. Therefore, (Π̂− Ŝ)∪ 〈̂S〉,
which equals Π̂/S, leaves invariant E(S), which equals E(〈S〉).
The useful part of the reduction theorem states that, for certain oper-

ations S, if a safety property is satisfied by Π/S then it is satisfied by Π.
The converse, that a safety property is satisfied by Π/S if it is satisfied by
Π, is true for any S.

Lemma 1 If Init ⇒ ✷Q is satisfied by program Π then it is satisfied by
program Π/S.

Proof of Lemma
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1. For any states t and u, if t Π̂=⇒ u and t |= Init , then u |= Q.
Proof : By the hypothesis that Π satisfies Init ⇒ ✷Q.

2. For any states t and u, if t Π̂/S=⇒ u then t Π̂=⇒ u.
Proof : By definition of reduction, since Π̂/S − 〈̂S〉 ⊆ Π̂ and v

〈S〉−→ w

implies v Ŝ=⇒ w.

3. For any states t and u, if t Π̂/S=⇒ u and t |= Init then u |= Q.
Proof : By 1 and 2.

4. Program Π/S satisfies Init ⇒ ✷Q.
Proof : By 3 and the definition of what it means for Π/S to satisfy Init ⇒
✷Q.

End Proof of Lemma

3.2.2 The Reduction Theorem and a Corollary

We now state our reduction theorem, which is proved in the appendix, and
derive a corollary.

Reduction Theorem Let Π be a program, Init and Q be predicates, and
S be an operation of Π having the form R; 〈A〉;L, where

0. Init implies E(S).

1. (a) Action R̂ right commutes with action Π̂− Ŝ.

(b) For all states t and u: if t R̂=⇒ u and t |= (Q ∧ E(S)) then u |=
(Q ∨ E(S)).

2. (a) Action L̂ left commutes with action Π̂− Ŝ.

(b) For all states t and u: if t L̂=⇒ u and t |= (¬Q ∧ ¬E(S)) then
u |= (¬Q ∨ ¬E(S)).

3. For all states t: if t |= (¬Q ∧ E(R; 〈A〉) ∧ ¬E(S)) then there exists a

state u such that t L̂=⇒ u and u |= E(S).2

Then, Init ⇒ ✷Q is satisfied by Π iff it is satisfied by Π/S.

2E(R; 〈A〉) ∧ ¬E(S) asserts that control is either inside L or at its entry point.
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Observe that hypothesis 1(b) holds if R leaves Q invariant, and hypothe-
sis 2(b) holds if L leaves ¬Q invariant. Thus, both of these hypotheses hold
if R and L do not change any part of the state on which Q depends.
The conclusion of our reduction theorem asserts that if Q holds through-

out the execution of Π/S then it holds throughout the execution of Π.
Weaker hypotheses lead to the weaker conclusion that, in the execution
of Π, predicate Q holds only when control is external to S, giving a result
obtained by Doeppner [4].

Corollary (Doeppner) Let Π be a program and S have the form R; 〈A〉;L,
where

0. Init implies E(S).
1. Action R̂ right commutes with action Π̂− Ŝ.
2. Action L̂ left commutes with action Π̂− Ŝ.

Then, Init ⇒ ✷(Q ∨ ¬E(S)) is satisfied by Π iff Init ⇒ ✷Q is satisfied by
Π/S.

Proof of Corollary
1. Init ⇒ ✷(Q ∨ ¬E(S)) is satisfied by Π iff it is satisfied by Π/S.

Proof : Apply the Reduction Theorem with Q∨¬E(S) substituted for Q.
Hypotheses 0, 1(a), and 2(a) of the theorem follow from hypotheses 0–2
of the corollary. Hypothesis 1(b) of the theorem holds trivially because
(Q ∨ ¬E(S)) ∨ E(S) is identically true. Hypothesis 2(b) of the theorem
holds vacuously because ¬(Q ∨ ¬E(S)) ∧ ¬E(S) is identically false. Hy-
pothesis 3 also holds vacuously because ¬(Q∨¬E(S))∧E(R; 〈A〉)∧¬E(S)
is identically false.

2. Π/S satisfies Init ⇒ ✷E(S).
Proof : By hypothesis 0, since Π̂/S leaves E(S), which equals E(〈S〉),
invariant.

3. Π/S satisfies Init ⇒ ✷(Q ∨ ¬E(S)) iff it satisfies Init ⇒ ✷Q.
Proof : Follows from 2 and the definition of what it means for Π/S to
satisfy a formula of the form Init ⇒ ✷P .

End Proof of Corollary

The corollary provides a correct statement of the single-action rule. The
incorrect version of the rule asserts that if the reduced program satisfies a
property then the original program does. The correct version asserts that
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if the reduced program satisfies a property Init ⇒ ✷Q, then the original
program satisfies the related property Init ⇒ ✷(Q∨¬E(S)). Only if ¬E(S)
implies Q does the original program satisfy the same property as the reduced
program.

3.2.3 Deriving Lipton’s Theorem

We now derive Lipton’s Theorem from the corollary. Lipton’s Theorem
concerns partial correctness and deadlock freedom properties. We consider
each of them separately.
The partial correctness property {Pre}Π{Post} can be expressed in the

form Init ⇒ ✷Q by letting Init be the predicate asserting that control is at
the beginning of Π and Pre holds, and letting Q be Term ⇒ Post , where
Term is the predicate asserting that Π has terminated—that is, Term asserts
that control is at the end of the program. Since control at the end of Π
implies that E(S) holds, ¬E(S) implies Q, so Q ∨ ¬E(S) is equivalent to Q.
Hence, the corollary implies that, under the hypotheses of Lipton’s Theorem,
Π satisfies {Pre}Π{Post} iff Π/S does. This proves Lipton’s Theorem for
partial correctness. Moreover, we have strengthened this part of Lipton’s
Theorem by eliminating hypothesis 3. In so doing, we have shown that the
single-action rule is valid for partial correctness properties.
We next show that the deadlock-freedom part of Lipton’s Theorem fol-

lows from the corollary. A program is deadlocked iff it has not terminated
and no program action is enabled. Program Π has terminated iff program
Π/S has. Thus, we need show only that an action of Π is always enabled iff
an action of Π/S is always enabled. Let Init be the predicate asserting that
control is at the beginning of Π and let DFΠ be the predicate asserting that
some action of Π is enabled. Similarly, define DFΠ/S to assert that some
action of Π/S is enabled. The conclusion of Lipton’s Theorem states, in our
notation, that Π satisfies Init ⇒ ✷DFΠ iff Π/S satisfies Init ⇒ ✷DFΠ/S .
We use the corollary to show that this conclusion is implied by the hypothe-
ses of Lipton’s Theorem.

1. Π satisfies Init ⇒ ✷(DFΠ/S ∨ ¬E(S)) iff Π/S satisfies Init ⇒ ✷DFΠ/S .
Proof : Apply the Corollary with DFΠ/S substituted for Q.

2. DFΠ/S ∨ ¬E(S) implies DFΠ.
2.1. DFΠ/S implies DFΠ.

Proof : By definition of Π/S, if an action of Π/S is enabled then an
action of Π must be enabled.
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2.2. ¬E(S) implies DFΠ.
Proof : By hypothesis 3 of Lipton’s Theorem.

3. DFΠ implies DFΠ/S ∨ ¬E(S).
Proof : It suffices to prove that DFΠ and E(S) imply DFΠ/S . For this,
it suffices to prove that for any state t, if there exists a state u such that

t |= E(S) and t Π̂−→ u, then there exists a state v such that t Π̂/S−→ v.

Since t Π̂−→ u, either t Π̂−Ŝ−→ u or else t Ŝ−→ u. If t Π̂−Ŝ−→ u, then we can

let v equal u. Assume that t Ŝ−→ u. If u |= ¬E(S), then hypothesis 3 of
Lipton’s Theorem implies that there exists a state v such that v |= E(S)
and u Ŝ=⇒ v. If u |= E(S), then let v equal u. In either case, t Ŝ=⇒ v,
t |= E(S), and v |= E(S), so t 〈S〉−→ v.

4. Π satisfies Init ⇒ ✷DFΠ iff Π/S satisfies Init ⇒ ✷DFΠ/S .
Proof : By 1, since 2 and 3 imply DFΠ = DFΠ/S ∨ ¬E(S).
The single-action rule is not valid for deadlock freedom. For example,

let Π be the single-process program

〈 x := 0 or 1 〉; 〈await x = 0 〉

where the assignment nondeterministically sets x to 0 or 1, and the await
delays forever if x = 1. Since every variable is local, a naive single-action
rule would assert that this program is equivalent to

〈x := 0 or 1; await x = 0 〉

which, by our definition of 〈S〉, is equivalent to

〈x := 0 〉

The reduced program is deadlock free, but the original program is not—it
deadlocks if the assignment statement sets x to 1.
One might be able to find an alternate definition of 〈S〉 that makes the

single-action rule valid for deadlock freedom. However, we believe that such
a definition would be unnatural, and unlikely to be of any practical use.

3.3 An Example

Program Π1 of Figure 1 is a two-process concurrent program, where head
and tail are the usual operators on sequences, and ◦ denotes concatenation.

13



Program Π1

variables
inp : infinite sequence of value;
out : sequence of value;
buf : array [0 . . . N − 1] of value;
x, y : value;
fp, fc : Natural;
cobegin
Producer: loop

Dp: 〈x,inp := head(inp), tail(inp) 〉;
Ap: 〈await (fp − fc) < N 〉;
Bp: 〈 buf [fp mod N ] := x 〉;
Cp: 〈 fp := fp + 1 〉

end loop

Consumer: loop
Ac: 〈await (fp − fc) > 0 〉;
Bc: 〈 y := buf [fc mod N ] 〉;
Cc: 〈 fc := fc + 1 〉;
Dc: 〈 out := out ◦ y 〉

end loop
coend

Figure 1: A simple producer/consumer program.
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Using a bounded buffer, a producer process communicates an infinite se-
quence of values to a consumer process. The safety property of interest is
that the sequence of values out received by the consumer is a prefix of the
initial value of the sequence inp. This property is formulated as Init ⇒ ✷Q,
where

• Init asserts that buf is empty, inp has some initial value inpinit , fp =
fc = 0, and at(Dp) and at(Ac) hold, where at(ξ) is a predicate that is
true iff control is at action ξ.

• Q asserts that out is an initial prefix of inpinit .

To prove that Π1 satisfies this property, the Reduction Theorem is ap-
plied twice. First, Program Π1 is reduced by Ap;Bp;Cp, resulting in a
program where the producer has only two actions—Dp and 〈Ap;Bp;Cp〉.
Then, that program is reduced by Ac;Bc;Cc, resulting in a final program
having just four atomic actions. As we observed at the end of Section 2,
these two reductions can be done at once. This is because a consumer ac-
tion left (right) commutes with each of the actions Ap, Bp, and Cp iff it left
(right) commutes with the single action 〈Ap;Bp;Cp〉.
For the first reduction, the theorem is applied with Ap for R, Bp for 〈A〉,

and Cp for L. We now show that the four hypotheses of the theorem are
satisfied.

Hypothesis 0. Init implies E(Ap;Bp;Cp).

Proof : This follows from the definition of Init and E , because Init im-
plies at(Dp), and at(Dp) implies that control is external to Ap;Bp;Cp.

Hypothesis 1. (a) Action R̂ right commutes with action Π̂ − Ŝ, where S is
Ap;Bp;Cp.

(b) For all states t and u, if t
Âp=⇒ u and t |= (Q ∧ E(S)) then u |=

(Q ∨ E(S)).
1. Âp right commutes with D̂p.

Proof : D̂p cannot be executed immediately after Âp.

2. Âp right commutes with Âc, B̂c, and D̂c.

Proof : Actions Âp and Âc commute because neither modifies any
variable accessed by the other, and Âp commutes with B̂c and with
D̂c for the same reason.

15



3. Âp right commutes with Ĉc.

3.1. If s
ÂpĈc−→ t and s

ĈcÂp−→ t′, then t = t′.

Proof : From the definitions of Âc and Ĉc.

3.2. If it is possible to execute first Âp then Ĉc on a state s, then it
is also possible to execute first Ĉc then Âp on s.

Proof : It is possible to execute Âp then Ĉc on s iff

s |= at(Ap) ∧ at(Cc) ∧ (fp − fc < N) (3)

It is possible to execute Ĉc then Âp on s iff

s |= at(Ap) ∧ at(Cc) ∧ (fp − (fc + 1) < N) (4)

Obviously, (3) implies (4).

3.3. If s
ÂpĈc−→ t then s

ĈcÂp−→ t

Proof : By 3.1 and 3.2.

4. Hypothesis 1(a) holds.

Proof : By 1, 2, and 3, since Π̂− Ŝ equals the union of D̂p, Âc, B̂c,
Ĉc, and D̂c.

5. Hypothesis 1(b) holds.

Proof : Action Âp does not modify any part of the state on which
Q depends, so it leaves Q invariant.

Hypothesis 2. (a) Action Ĉp left commutes with action Π̂− Ŝ.

(b) For all states t and u, if t
Ĉp=⇒ u and t |= (¬Q ∧ ¬E(S)) then

u |= (¬Q ∨ ¬E(S)).
Proof : The proof of this is similar to the proof of hypothesis 1. The
key step in the proof that Cp left commutes with Ac is the observation
that (i) it is possible to execute Ac then Cp on a state s iff s |=
(at(Ac) ∧ at(Cp) ∧ (fp − fc > 0)), and (ii) it is possible to execute Cp

then Ac on s iff s |= (at(Ac)∧ at(Cp)∧ (fp− fc ≥ 0)). Hypothesis 2(b)
holds because action Cp does not change any part of the state on which
Q depends, so it leaves ¬Q invariant.

Hypothesis 3. For all states t: if t |= (¬Q ∧ at(Cp)) then Cp can terminate
from t.

Proof : Cp can terminate from any state t for which t |= (at(Cp)).
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The justification of the second reduction is similar to that of the first with
p and c subscripts interchanged. We must prove that Âc left commutes and
Ĉc right commutes with the four actions Âp, B̂p, Ĉp, and D̂p. (Recall that

this implies that they left and right commute with
✭✭✭ ❤❤❤

〈Ap;Bp;Cp〉.) Proving
the symmetric versions of statements 0–3 in the proof of the first reduction
allows our theorem to be applied to the second reduction. We omit the
proofs. (Note that the proofs of the commutativity relations between Âc and
Ĉp, and between Ĉc and Âp appeared in the proof of the first reduction.)

4 Constraints

We can replace the unbounded integer variables fp and fc of Program Π1 by
integers modulo 2N , to obtain producer/consumer program Π2 of Figure 2.
Program Π2 can be viewed as an implementation of Π1 in which the “left-
most bits” of fp and fc have been eliminated. We would, therefore, expect
to be able to reduce Π2 to a program with only four atomic actions, just as
we reduced Π1. Unfortunately, we cannot. The action pairs Âp, Ĉc and Âc,
Ĉp of Π2 do not satisfy the required commutativity relations. For example,
if t is a state in which fp = fc, then there are states u and v such that

t
Âp−→ u

Ĉc−→ v, but no state u′ such that t Ĉc−→ u′
Âp−→ v because −1 mod 2N

equals 2N − 1, which is greater than or equal to N . (Executing Ĉc when
fp = fc disables Âp.) Thus, Âp does not right commute with Ĉc.
Program Π2 admits “irreducible” histories—ones that are not equiva-

lent to any of the reduced program’s histories. However, these irreducible
histories are irrelevant because they cannot arise when Π2 is started in a
“proper” initial state. The property we want to prove is Init ⇒ ✷Q, which
asserts that Q is always true for any execution started in a state satisfying
the predicate Init , and it turns out that there is no irreducible history be-
ginning with a state that satisfies Init . For example, histories containing a
state in which fp = fc and both Âp and Ĉc are enabled, so Âp does not right
commute with Ĉc, are irrelevant because such a state cannot be reached
when Program Π2 is started with Init true.
We will dispense with these irrelevant histories by modifying Π2 to elimi-

nate them.3 We constrain the program by a predicate I to eliminate histories

3We could define these histories out of existence by including the initial state in the
formal definition of a program, but this would complicate our definitions without making
it any easier to actually prove properties of programs.
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Program Π2

variables
inp : infinite sequence of value;
out : sequence of value;
buf : array [0 . . . N − 1] of value;
x, y : value;
fp, fc : {0 . . . 2N − 1};

cobegin
Producer: loop

Dp: 〈x,inp := head(inp), tail(inp) 〉;
Ap: 〈await (fp − fc) mod 2N < N 〉;
Bp: 〈 buf [fp mod N ] := x 〉;
Cp: 〈 fp := fp + 1 mod 2N 〉

end loop

Consumer: loop
Ac: 〈await (fp − fc) mod 2N > 0 〉;
Bc: 〈 y := buf [fc mod N ] 〉;
Cc: 〈 fc := fc + 1 mod 2N 〉;
Dc: 〈 out := out ◦ y 〉

end loop
coend

Figure 2: Another simple producer/consumer program.
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in which I becomes false [7]. If the original program satisfies Init ⇒ ✷I,
then only irrelevant histories are eliminated.
For an action α and a predicate I, define α|I (read α constrained by I)

to be the action {(s, t) ∈ α : (s |= I)∧ (t |= I)}. Thus, s α|I−→ t iff s α−→ t and
I holds in states s and t. For a program Π we define Π|I to be the program
whose states are the states of Π that satisfy I, and whose next-state relation
is Π̂|I . If S is an operation of Π, then S|I is the operation of Π|I such that
Ŝ|I equals Ŝ|I and E(S|I) equals E(S) with its domain restricted to the
states of Π|I .
The next-state relation Π̂|I is enabled only in states satisfying I, and

Π̂|I can produce only states satisfying I. The histories of Π|I consist of the
histories of Π in which all states satisfy I. This implies that every history
of Π|I is a history of Π.
Suppose that Init ⇒ ✷I holds for a program Π. Then, I is true for all

states in any history of Π beginning in a state with Init true. Therefore, any
history of Π beginning with Init true is also a history of Π|I . If Π satisfies
Init ⇒ ✷I, then Π satisfies Init ⇒ ✷Q iff Π|I does. The property Init ⇒ ✷I
can be proved by ordinary assertional methods. Usually, I is an invariant
of Π.
To define the predicate I for Π2, we first define a function Ψp on the set

of program states:

Ψp =

{
1 if at(Bp) ∨ at(Cp)
0 otherwise

We define Ψc similarly, replacing p by c. The predicate I is defined to equal

Ψc ≤ (fp − fc) mod 2N ≤ N −Ψp

That I is an invariant of Π can be established in the usual way. It is also
easy to check that Init implies I. Therefore, to prove that Init ⇒ ✷Q is
satisfied by Π2, we need to show only that it is satisfied by Π2|I .
We can now apply our Reduction Theorem to Π2|I , reducing it first by

Ap|I ;Bp|I ;Cp|I and then by Ac|I ;Bc|I ;Cc|I . The proof is almost identical
to that for Π1 given above. The major difference is in the proof that Âp|I
right commutes with Ĉc|I . As in step 3.2 above, we must show that if it
is possible to execute Âp|I followed by Ĉc|I from a state t, then it is also
possible to execute Ĉc|I followed by Âp|I from t. It is possible to execute
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Âp|I followed by Ĉc|I from t iff
t |= I ∧ at(Ap) ∧ at(Cc) ∧ ((fp − fc) mod 2N < N) (5)

and it is possible to execute Ĉc|I followed by Âp|I from t iff
t |= I ∧ at(Ap) ∧ at(Cc) ∧ ((fp − (fc + 1)) mod 2N < N) (6)

Since I ∧ at(Ap) ∧ at(Cc) implies that 1 ≤ fp − fc mod 2N ≤ N , it follows
that (5) implies (6).

5 Discussion

We have given a reduction theorem for proving that a safety property of the
form Init ⇒ ✷Q holds for a program Π if it holds for the coarser-grained
program Π/S. In general, a reduction theorem allows one to conclude that
Π satisfies a property P if Π/S satisfies a related property P ′. It is proved
by showing that for any history Σ of Π, there is a corresponding history
Σ′ of Π/S such that Σ satisfies P if Σ′ satisfies P ′. The history Σ′ is
derived from Σ by commuting actions and completing or eliminating any
unfinished execution of S. Hypotheses about commutativity and the possible
termination of L make it possible to derive Σ′. Additional hypotheses may
be needed to guarantee that if Σ′ satisfies P ′ then Σ satisfies P. In our
reduction theorem, these are hypotheses 1(b) and 2(b).
A reduction theorem is tailored to a particular class of properties. We

chose the hypotheses of our reduction theorem to be as weak as possible for
properties of the form Init ⇒ ✷Q. Lipton considered partial correctness and
deadlock-freedom properties, and Doeppner considered properties closely
related to partial correctness. We do not know of a similar reduction theorem
for liveness properties. We do know that such a theorem would need different
hypotheses. For example, the hypotheses of Lipton’s Theorem are satisfied if
S equals P (sem);V (sem), in which case 〈S〉 leaves sem unchanged. Suppose
a program Π contains a process that repeatedly executes S. Then Π/S
might satisfy a progress property that is not satisfied by Π because the
repeated decrementing and incrementing of sem prevents some other process
from making progress. Thus, the hypotheses of Lipton’s Theorem are not
sufficient for deriving liveness properties.
Back [3] does give a reduction theorem for total correctness—the con-

junction of partial correctness (a safety property) and termination (a live-
ness property). However, his hypotheses involve commutativity relations
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between actions outside S, so the theorem is not closely related to either
our reduction theorem or Lipton’s.

Appendix: Proof of the Reduction Theorem

Our proof relies on the following properties of sequential composition and
atomic operations, where S equals T ;U .

SC1. For any action α, if v α=⇒
S
w, then there exists a state x such that

v
α−Û=⇒

T
x

α−T̂=⇒
U
w.

[When executing S: first, actions in T or not in S are executed until control
exits T ; then, actions in U or not in S are executed until control exits S.]

SC2. E(S) implies E(T ) ∧ E(U).
[If control is external to S, then it is external to its components T and U .]

SC3. ¬E(T ) ∧ ¬E(U) is identically false.
[Control cannot be internal to both T and U .]

SC4. ¬E(T ) implies that Û is not enabled.
[U cannot be executed when control is internal to T .]

SC5. If U is an atomic operation and v Û−→ w then w |= E(S).
[When control exits U , control is external to S; and control exits an atomic
action when it is executed.]

Lemma 2 (a) Let α and ρ be actions such that ρ right commutes with
α − ρ. For states t and u, if t α=⇒ u then there exists a state v such that
t

α−ρ=⇒ v
ρ=⇒ u.

(b) Let α and λ be actions such that λ left commutes with α − λ. For
states t and u, if t α=⇒ u then there exists a state v such that t λ=⇒ v

α−λ=⇒ u.

Proof of Lemma
We prove part (a); the proof of part (b) is similar. The hypothesis asserts
that

t = t0
α−→ t1

α−→ . . .
α−→ tn−1

α−→ tn = u (7)

for some states ti, with 0 ≤ n. If w α−→ x, then either w ρ−→ x or w α−ρ−→ x.
By the right-commutativity hypothesis, if w ρ−→ x

α−ρ−→ y, then there exists
x′ such that w α−ρ−→ x′ ρ−→ y. Thus, by repeatedly replacing ρ−→ x

α−ρ−→ with
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α−ρ−→ x′ ρ−→, we can deduce from (7) the existence of k and of states t′i such
that

t = t′0
α−ρ−→ t′1

α−ρ−→ . . .
α−ρ−→ t′k

ρ−→ . . .
ρ−→ t′n = u

This implies t α−ρ=⇒ v
ρ=⇒ u, where v = t′k.

End Proof of Lemma

Lemma 3 Assume hypotheses 0–3 of the Reduction Theorem and the addi-
tional hypotheses that, for states t and u:

4. t |= E(S)
5. u |= E(S)

6. t Π̂=⇒ u

Then t Π̂/S=⇒ u.

Proof of Lemma
We prove by induction on n that, for any states t and u, if there exist states
t0, . . . , tn such that

t = t0
Π̂−→ t1

Π̂−→ . . .
Π̂−→ tn−1

Π̂−→ tn = u (8)

then t Π̂/S=⇒ u. The base case n = 0 is trivial, since then t = u and the

relation Π̂/S=⇒ is reflexive.
We now prove the induction step, assuming n > 0. Assume states t0,

. . . , tn satisfying (8) exist. The proof that t
Π̂/S=⇒ u is split into two cases,

depending upon whether or not ti |= E(S) holds for some 0 < i < n.
1. If ti |= E(S) holds for some 0 < i < n, then t Π̂/S=⇒ u.

Proof : Since t Π̂=⇒ ti and ti
Π̂=⇒ u, the induction hypothesis implies

t
Π̂/S=⇒ ti and ti

Π̂/S=⇒ u. Thus, t Π̂/S=⇒ u holds by transitivity of Π̂/S=⇒.
2. If ti |= ¬E(S) holds for all 0 < i < n, then t Π̂/S=⇒ u.

2.1. Choose a state v such that t Π̂−L̂==⇒
R;〈A〉

v
Π̂−R̂;〈A〉==⇒

L
u.

Proof : State v exists by SC1, since t Π̂=⇒ u by hypothesis 6, so

t
Π̂=⇒
S
u by the antecedent of 2.
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2.2. Choose a state w such that t (Π̂−L̂)−〈̂A〉==⇒
R

w
(Π̂−L̂)−R̂==⇒

〈A〉
v

Π̂−R̂;〈A〉==⇒
L

u.

Proof : State w exists by 2.1 and SC1.

2.3. w 〈A〉−−→ v or w Π̂−Ŝ−−→ v or w = v.
2.3.1. w |= E(〈A〉)

Proof : By hypothesis 4 and SC2, t |= E(〈A〉); proof step 2.2
implies t Π̂=⇒ w; and Π̂ leaves E(〈A〉) invariant by definition of
atomicity.

2.3.2. Choose states w0, . . . , wm, for 0 ≤ m, such that w = w0
(Π̂−L̂)−R̂−−→

w1 . . . wm−1
(Π̂−L̂)−R̂−−→ wm = v and wj |= ¬E(〈A〉) for 0 < j < m.

Proof : By 2.2.
2.3.3. wj |= E(〈A〉) for 0 < j < m.

Proof : By 2.3.1 and the definition of atomicity.
2.3.4. m ≤ 1

Proof : By 2.3.2 (wj |= ¬E(〈A〉) for 0 < j < m) and 2.3.3.
2.3.5. w 〈A〉−−→ v or w Π̂−Ŝ−−→ v or w = v

Proof : By 2.3.2 and 2.3.4, since (Π̂− L̂)− R̂ = (Π̂− Ŝ)∪ 〈̂A〉.
2.4. If w

〈A〉−→ v then there exist states x and y such that t Π̂−Ŝ=⇒ x
R=⇒

w
〈A〉−→ v

L=⇒ y
Π̂−Ŝ=⇒ u.

Proof : Step 2.2 and the antecedent imply t (Π̂−L̂)−〈̂A〉==⇒ w
〈A〉−→ v

Π̂−R̂;〈A〉==⇒
u. The existence of x follows from hypothesis 1(a) and part (a) of
Lemma 2, and the existence of y follows from hypothesis 2(a) and
part (b) of Lemma 2, since ((Π̂− L̂)− 〈̂A〉)− R̂ and (Π̂−

✭✭ ❤❤
R; 〈A〉)− L̂

both equal Π̂− Ŝ.
2.5. If w Π̂−Ŝ−→ v or w = v then there exist states x and y such that

t
Π̂−Ŝ=⇒ x

R=⇒ v
L=⇒ y

Π̂−Ŝ=⇒ u.

Proof : Step 2.2 and the antecedent imply t
(Π̂−L̂)−〈̂A〉
==⇒ w

Π̂−Ŝ==⇒ v
Π̂−R̂;〈A〉
==⇒

u. This implies t (Π̂−L̂)−〈̂A〉==⇒ v
Π̂−R̂;〈A〉==⇒ u, since Π̂ − Ŝ ⊆ (Π̂ − L̂) −

〈̂A〉. The existence of x follows from hypothesis 1(a) and part (a) of
Lemma 2, and the existence of y follows from hypothesis 2(a) and
part (b) of Lemma 2, since ((Π̂− L̂)− 〈̂A〉)− R̂ and (Π̂−

✭✭ ❤❤
R; 〈A〉)− L̂

both equal Π̂− Ŝ.

23



2.6. Choose x and y such that t Π̂−Ŝ=⇒ x
R=⇒ w

〈A〉−→ v
L=⇒ y

Π̂−Ŝ=⇒ u or

t
Π̂−Ŝ=⇒ x

R=⇒ v
L=⇒ y

Π̂−Ŝ=⇒ u.
Proof : By 2.3, 2.4, and 2.5.

2.7. t Π̂/S=⇒ x and y Π̂/S=⇒ u.
Proof : By 2.6, since (Π̂− Ŝ) ⊆ Π̂/S.

2.8. x 〈̂S〉=⇒ y
2.8.1. x |= E(S)

Proof : By hypothesis 4 and 2.6, since every action of Π̂ − Ŝ
leaves E(S) invariant.

2.8.2. y |= E(S)
Proof : By hypothesis 5 and 2.6, since every action of Π̂ − Ŝ
leaves ¬E(S) invariant.

2.8.3. x 〈̂S〉=⇒ y

Proof : By 2.6 (which implies x Ŝ=⇒ y), 2.8.1, and 2.8.2, and
the definition of 〈S〉.

2.9. t Π/S=⇒ u
Proof : By 2.6, 2.7, and 2.8, since 〈̂S〉 ⊆ Π̂/S.

3. t Π̂/S=⇒ u
Proof : By 1 and 2.

End Proof of Lemma

Lemma 4 Assume hypotheses 0–3 of the Reduction Theorem, and the ad-
ditional hypotheses that, for states t and u:

4. Π/S satisfies Init ⇒ ✷Q

5. t |= Init

6. t Π̂=⇒ u

7. u |= E(S)
Then u |= Q.

Proof of Lemma
1. t |= E(S)

Proof : t |= Init by hypothesis 5, and Init ⇒ E(S) by hypothesis 0 of the
Reduction Theorem.
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2. t Π̂/S=⇒ u
Proof : By hypotheses 6 and 7, and Lemma 3.

3. u |= Q
Proof : By 1, 2, and hypothesis 4.

End Proof of Lemma

Proof of Theorem
The “only if” part follows from Lemma 1. To prove the “if” part, it suffices
to assume, for states t and u:

4. Π/S satisfies Init ⇒ ✷Q

5. t |= Init

6. t Π̂=⇒ u

and show that u |= Q.
The proof considers separately the cases u |= E(S) and u |= ¬E(S). The

second case is further split into the cases u |= E(R; 〈A〉) and u |= ¬E(R; 〈A〉),
yielding a total of three separate cases.
1. If u |= E(S) then u |= Q.

Proof : By Lemma 4.
2. If u |= (E(R; 〈A〉) ∧ ¬E(S)) then u |= Q.

Proof : The proof is by contradiction. We assume that u |= ¬Q.
2.1. Choose a state v such that u L̂=⇒ v and v |= E(S).

Proof : State v exists by the assumption that u |= ¬Q, the antecedent
of 2, and hypothesis 3.

2.2. t Π̂=⇒ v

Proof : By 2.1 and assumption 6, which asserts that t Π̂=⇒ u.
2.3. v |= Q

Proof : By 2.2 and Lemma 4, since v |= E(S) by 2.1. (Substitute v
for u in the lemma.)

2.4. u |= (¬Q ∧ ¬E(S))
Proof : By the assumption that u |= ¬Q and the antecedent of 2.

2.5. v |= (¬Q ∨ ¬E(S))
Proof : By 2.1, 2.4, and hypothesis 2(b), substituting u for t and v
for u.

2.6. Contradiction.
Proof : 2.3, 2.5, and 2.1 (v |= E(S)).
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3. If u |= (¬E(R; 〈A〉) ∧ ¬E(S)) then u |= Q.
3.1. t |= E(S)

Proof : By hypotheses 5 and 0.

3.2. Choose state v such that t Π̂=⇒ v
Π̂=⇒
S
u and v |= E(S).

Proof : Hypothesis 6 asserts the existence of states ti such that t =

t0
Π̂−→ t1

Π̂−→ . . .
Π̂−→ tk = u. Let v be the last ti such that ti |= E(S).

By 3.1, ti exists.

3.3. Choose state w such that v Π̂−L̂==⇒
R;〈A〉

w
Π̂−R̂;〈A〉==⇒

L
u.

Proof : By SC1, since 3.2 asserts that v Π̂=⇒
S

u, and S equals
(R; 〈S〉);L.

3.4. If w �= u then w Π̂−Ŝ−→ u and w |= ¬E(R; 〈A〉).
3.4.1. Choose states w0, . . . , wn such that w = w0

Π̂−R̂;〈A〉−−→
w1 . . . wn−1

Π̂−R̂;〈A〉−−→ wn = u and wj |= ¬E(L) for 0 < j < n.
Proof : The states wj exist by 3.3, which asserts that w

Π̂−R̂;〈A〉
==⇒

L

u.
3.4.2. u |= ¬E(R; 〈A〉)

Proof : Antecedent of 3.
3.4.3. wj |= ¬E(R; 〈A〉) for 0 ≤ j ≤ n

Proof : For j = n, this follows from 3.4.2 (since wn = u). For
j < n, it follows by induction since Π̂−

✭✭ ❤❤
R; 〈A〉 leaves E(R; 〈A〉)

invariant.
3.4.4. 0 ≤ n ≤ 1

Proof : By 3.4.1 (wj |= ¬E(L) for 0 < j < n). By 3.4.3,
wj |= false for 0 < j < n, since ¬E(L)∧¬E(R; 〈A〉) = false by
SC3.

3.4.5. w Π̂−R̂;〈A〉−−→ u

Proof : By 3.4.1 and 3.4.4, since w �= u (the antecedent of 3.4)
implies n �= 0.

3.4.6. w Π̂−Ŝ−−→ u

Proof : By 3.4.3, w |= ¬E(R; 〈A〉). By SC4, this implies L̂
is not enabled in state w. Since Ŝ =

✭✭ ❤❤
R; 〈A〉 ∪ L̂, 3.4.5 then

implies w Π̂−Ŝ−→ u.
3.4.7. Proof statement 3.4 holds.

Proof : By 3.4.3 and 3.4.6, since w = w0.
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3.5. v Π̂−L̂==⇒
R;〈A〉

u

Proof : By 3.3, which asserts v Π̂−L̂==⇒
R;〈A〉

w, and 3.4, since Π̂− Ŝ ⊆ Π̂− L̂

3.6. Choose state x such that v (Π̂−L̂)−〈̂A〉==⇒
R

x
(Π̂−L̂)−R̂==⇒

〈A〉
u.

Proof : From 3.5 by SC1.

3.7. If x �= u then x Π̂−Ŝ−−→ u.

3.7.1. t Π̂=⇒ x

Proof : By 3.2 and 3.6.
3.7.2. x |= E(〈A〉)

Proof : 3.1 and SC2 imply t |= E(〈A〉), and 3.7.1 and the
definition of atomicity then imply x |= E(〈A〉).

3.7.3. x (Π̂−L̂)−R̂−−→ u

Proof : By 3.6, there exist states x0, . . . , xp such that x =

x0
(Π̂−L̂)−R̂−−→ x1 . . . xp−1

(Π̂−L̂)−R̂−−→ xp = u and xj |= ¬E(〈A〉) for
0 < j < p. By 3.7.2 and the definition of atomicity, xj |=
E(〈A〉) for 0 ≤ j ≤ p. Hence, p ≤ 1, and since x �= u (by the
antecedent of 3.7), p = 1.

3.7.4. x Π̂−Ŝ−−→ u

Proof : Since u |= ¬E(R; 〈A〉) (by the antecedent of 3), SC5
implies that if x α−→ u, then α �⊆ 〈̂A〉. Hence, 3.7.3 implies
x

Π̂−Ŝ−−→ u, since ((Π̂− L̂)− R̂)− 〈̂A〉 equals Π̂− Ŝ.
3.8. v (Π̂−Ŝ)∪R̂==⇒ u

Proof : 3.6 and 3.7 imply v (Π̂−L̂)−〈̂A〉==⇒ u, and (Π̂−Ŝ)∪R̂ = (Π̂−L̂)−〈̂A〉.
3.9. Choose state y such that v Π̂−Ŝ=⇒ y

R̂=⇒ u.
Proof : By 3.8 and Lemma 2.

3.10. y |= E(S)
Proof : From 3.9, since v |= E(S) by 3.2, and Π̂ − Ŝ leaves E(S)
invariant.

3.11. y |= Q
Proof : Since t Π̂=⇒ v by 3.2 and v Π̂−Ŝ=⇒ y by 3.9, we have t Π̂=⇒ y.
Also, y |= E(S) by 3.10. Hence, Lemma 4, substituting y for u,
implies y |= Q.

3.12. u |= Q
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Proof : By 3.9, 3.10, and 3.11, substituting y for t in hypothesis 1(b)
implies u |= (Q∨E(S)). The antecedent of 3 asserts that u |= ¬E(S).

4. u |= Q
Proof : By 1, 2, and 3.

End Proof of Theorem
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