ON PROGRAMMING PARALLEL COMPUTERS

Leslie Lamport
Massachusetts Computer Associates, Inc.

INTRODUCTION

In this paper, I will make some general ob-
servations about how computers should be program-
med, and how programs should be compiled. I will
restrict my attention to programming computers to
solve numerical analysis problems, although most
of my remarks can be applied to other problem
areas as well. My primary concern is for large
parallel computers. However, [will show that
parallelism is not a major issue, and I will not re~
strict the discussion to any single type of compu-
ter architecture.

The paper is a very general one, and I will
make few specific proposals for language or com-
piler design. Instead, I will examine the funda-
mental nature of the programming/compiling pro-
cess, how this process is done now, and how {t
should be done in the future. Few of my observa-
tions will be new or original. However, a careful
analysis will lead to a somewhat surprising conclu-
sion: a higher level programming language is
needed both to reduce programming costs and also
to obtain more efficient programs. The analysis
will also provide some useful ideas for designing
a higher level language and compiling efficient
code from it.

ON PROGRAMMING

I will begin with a general discussion of
what programming is all about. I will not say any-~
thing very profound, but I hope to clarify some of
the problems, and provide a basis for the more
specific material I will present later.

We are given a domain of problems to be
solved. We may think of these problems as speci-
fied in some very abstract form -~ perhaps as
“pure thoughts". [will remain vague about the na-
ture of a problem specification, since it is very
hard to define it precisely. For example, the
specification of a problem involving the simulation
of a physical system includes some sort of state-
ment about the likely range of certain physical
parameters.

Given one of these problems, a necessary
task is to generate a suitable machine code for it,
where a machine code is a collection of operating
instructions for some specific computer. For ex-
ample, a machine language (binary) program for a
PDP-10 and an input tape for some particular
Turing machine are both machine codes.

This tagk is usually accomplished by

25

writing a program, which is an intermediate stage
between the problem and the machine code. The
task of generating machine code for a problem is
then broken into two steps: (1) programming --
the essentially human task of constructing a pro-
gram which represents a solution to the problem,
and (2) compiling ~- the essentially computer-
performed task of constructing a machine code
which correctly implements the program. I will
represent this process with the following picture:

programming compiling
PROBLEM — PROGRAM—— MACHINE CODE .

We can think of the problem, the program, and the
machine code as variables assuming values in
their appropriate domains, so programming and
compiling are mappings between these domains.

The usefulness of this picture lies in the
fact that it clearly shows the duality or comple-~
mentarity of the programming and compiling tasks.
Suppose we consider the problem and the machine
code to be fixed and the program to be variable.
Choosing a program which makes the programming
task easier will tend to make the compiling task
more difficult, and vice-versa -- assuming that all
else remains the same. (Requiring the programmer
to be blindfolded will make programming more dif-
ficult, but it will not make compiling any easier.)
It is important to remember that this duality exists
only when the program is varied, but the machine
code -~ or the class of acceptable machine
codes -- is not.

In going from the problem to the machine
code,- the basic goal is to minimize the cost of
solving the problem. This cost has three distinct

components:
I Programming Cost -~ the cost of generating

the program. Its major element is the
human effort required, including the debug-
ging effort. One seldom solves a single
problem on a single computer. Therefore,
evaluating the effect of some policy on this
cost requires considering the cost of mod-
ifying the program for a different problem
(program maintenance) or for a different
computer.

II Compiling Cost -- the cost of generating
machine code from the program. Its major
element is the computer resource used to
perform all the compilations needed to
write and debug the program. It also in-
cludes part of the cost of developing the

compiler. Since this latter cost is shared
by all uses of the compiler, it is usually
negligible.

III Execution Cost -- the cost of executing the
machine code on a computer in order to
solve the problem. It consists mainly of
the cost of the computer resource used.

Observe that the first two costs are at-
tached to the arrows in our picture. Hence, they
are dual to each other. Decreasing the program-
ming cost will tend to increase the compiling
cost, and vice-versa -- assuming that the quality
of the machine code and all other factors remain
the same. The third cost is just attached to the
machine code. It measures the quality of the end
product of the programming and compiling proces-
ses.

Let us now examine the compiling task more
closely. It can be separated conceptually into
two parts: (i) translation -- the process of trans-
forming a program into some correct machine code,
and (ii) compiler optimization -~ the process of
choosing the best possible machine code. Al-
though it is impossible to completely separate
these two aspects of compiling, many compilers do
have a separate optimization phase which is de-
voted solely to performing this choosing. Of
course, other phases of these compilers also per-
form some compiler optimization, since they make
choices among different possible machine codes.

There is a dual separation of the program-
ming task into two parts: (i) the process of trans-
forming the problem into some program, and (ii)
programmer optimization -- the process of choos-
ing the best possible program, It is impossible to
actually separate them, but it is useful to remem-
ber that there are these two different aspects to the
programming task.

Let us return to our picture of the program-
ming/compiling process. Moving from left toright
in the picture represents a loss of information.
Choosing a particular program destroys some infor-
mation about the problem. A machine code imple-
mentation of that program contains even less infor-
mation about the problem than the program does.
Information is the same as freedom of choice.
There are many possible machine codes to solve a
problem. When we write a program for the prob-
lem, we lose the possibility of obtaining some of
those machine codes. For example, writing a
PDP-10 assembly language program for a matrix
calculation problem undoubtedly destroys the in-
formation about the program which is needed to
generate an efficient machine code for the ILLIAC
IV. We could certainly write a compiler to produce
ILLIAC IV machine code from a PDP-10 assembly
language program. However, it could not generate
the type of efficient ILLIAC machine code that we
could obtain by programming in an ILLIAC array
language such as IVTRAN, By writing our program
in PDP-10 assembly language, we have greatly re-
stricted the compiler's freedom in choosing a
machine code to solve the original problem.

It is very difficult to precisely define what
"loss of information" means. In a certain sense,
the PDP-10 assembly language program is equiva-
lent to the original problem. It is theoretically
possible to "decompile" it into an IVTRAN program
which can then be compiled into very efficient
ILLIAC IV code. However, we know that this is
very difficult because something has been lost by

26

transforming the problem into the PDP-10 program
and must be put back by the decompiler. It is this
vague something which I am calling "information”.

This concept of information is closely re-
lated to the concept of entropy in physics. A liter
of blue ink and a liter of yellow ink are equivalent
to the two liters of green fluid obtained by mixing
them, since the individual "ink molecules” are
unchanged by the mixing process. However,
ergodic theory tells us that it is more difficult to
separate the two colors than it is to mix them.
Without an ergodic theory for programming, we can-
not precisely define the concept of information.
However, it seems to be a valid concept, and we
can place some trust in our intuitive understanding
of it.

Consider a specific program for a certain
problem. We say that it is a high level program if
it contains much information about the problem,
and that it is a low level program if it contains
little information about the problem. In other
words, we have lost less information about the
problem in writing a high level program than in
writing a low level one.

Equivalently, a high level program allows
a great deal of freedom of choice in selecting a
machine code to implement it, and a low level pro-
gram allows little choice of machine code imple-
mentation. For example, an assembly language
program allows the compiler little choice in the
machine language it produces. It is only free to
choose such things as the absolute machine ad-
dresses of certain program segments. Hence, the
assembly language program is a low level one.
Conversely, a Fortran program can be compiled into
many different machine codes. For example, there
may be many different instruction sequences for
evaluating a single Fortran arithmetic expression.
Hence, the Fortran program is a high level one.

Another way of viewing this is to think of a
problem as specifying what is to be done, and a
machine code as specifying how it is done. A pro-
gram lies somewhere in between. The closer it
comes to describing what is to be done rather than
how to do it, the higher level a program it is.

A high level programming language is a
language in which one usually writes high level
programs, and a low level programming language is
one in which low level programs are usually writ-
ten. However, it is important to remember that
even with a single programming language, one can
write higher and lower level programs for the same
problem.

Now let us consider the programming/com-
piling duality in terms of the level of a program.
Suppose we want to obtain a certain quality of
machine code for a given problem. The more free-
dom of choice the compiler has, the harder it is to
make an optimal choice. Therefore, compiler op-
timization is harder for a high level language then
for a low level one. Dually, the programmer has
to make a more specific choice when he writes a
low level program than when he writes a high level
one. Therefore, programmer optimization is harder
for a low level program than a high level one.
Choosing the level of the program provides a means
of making a trade-off between programming cost
and compiling cost.

Our programming/compiling picture leads us
to expect compiler optimization to be costlier for a
high level program than a low level one. However,
it gives us no reason to expect this to be true of

translation. Thus, although it is costlier to com~
pile a single Fortran statement than a single as-
sembly language statement, a Fortran program will
have fewer statements than an assembly language
one which solves the same problem. There is no
reason to suppose that translating a Fortran pro-
gram is costlier than translating an equivalent as-
sembly language program.

There is, however, one reason why it may
be costlier to translate a higher level program than
a lower level one. It seems to cost more to de-
velop a compller for a higher level language, even
one which does no optimizing. Hence, the pro-
gram's share of the compiler development cost is
greater for a program written in a high level lan-~
guage than for one written in a low level language.
For a popular language like Fortran, this cost is
negligible. However, it becomes significant if
one is thinking of writing a compiler for an ex-
tremely high level language, such as English.

FORTRAN

Before I propose a new method of program~
ming numerical analysis problems, let us consider
the current method. Most numerical analysis pro~-
grams are written in Fortran, so I will restrict my
attention to Fortran programming. By "Fortran"”, I
will mean ANSI standard Fortran [1], which re-
presents the "intersection" of the various dialects
which have been implemented.

Why is Fortran so popular? There are his-
torical reasons for its popularity -~ it was the
first widely available high level language, so it
has the weight of tradition behind it. However,
there is a more valid reason why it is still so
widely used today: Fortran programming provides
a reasonably low cost means of solving numerical
analysis problems. Let us examine why this is so
in terms of the three components of this cost.

(1) Programming Cost: Fortran is a sig-
nificantly higher level language than as-
sembly language, and we know that it
should be easier to write programs in a
high level language. Because it is fairly
simple and easy to learn, Fortran actually
does make it easier to write programs.
There i{s a small number of different state~
ment types, and it uses ordinary algebraic
notation and a simple subscript notation.
Fortran also requires no detailed knowledge
of how computers actually work ~- it can
be used by a programmer who has never
heard of accumulators or index registers.
This all helps to reduce programming costs
by making Fortran programs easier to write
and to maintain.

Another important factor in reducing
programming costs is Fortran's machine-
independence. A Fortran compiler has
been written for almost every computer, so
one can transfer a Fortran program from one
machine to another with minimal effort.
Although there are some incompatibilities
among the dialects of Fortran implemented
on different computers, these are rela-
tively minor and affect only a small frac-
tion of the statements in most programs.
(2) Compiling Cost: It is not too difficult
to compile a Fortran program into machine
code. The syntax of Fortran does not lead

87

to efficient parsing, probably because
parsing was not well understood when the
language was designed, However, most of
the executable Fortran statements can be
translated quite easily into machine code.
(The formatted I/O statements are notable
exceptions.)

(3) Running Cost: Fortran was designed to
enable the programmer to produce efficient
machine code, thus keeping the running
cost low, The concern for efficient machine
code was apparent from Fortran's inception.
For example, the numerical IF statement
was designed to allow efficient use of the
IBM 704's compare instruction.* Efficiency
has taken precedence over elegance
throughout Fortran's evolution. Thus, re-
cursive function definitions are still not
allowed.

This emphasis on efficient machine code
has made it possible for a Fortran programmer to
produce reasonably efficient machine code for sol-
ving numerical analysis problems on almost any
computer. The ability to produce efficient machine
code for a wide range of computers has contributed
enormously to Fortran's success. One area in
which Fortran compilers have not produced efficient
machine code is input/output. This has led to
non-standard I/O statement types in several dia-
lects of Fortran.

Although Fortran produces efficient machine
code for problems in numerical analysis, this is
not true for other, non-numeric problem domains.
Fortran's success is largely the result of designing
it specifically for the domain of numerical analysis
problems. However, the ability of Fortran to re-
duce programming costs has led to its use even for
problem areas in which it does not produce very
good machine code. For example, the ILLIAC IV
Fortran compiler is written in PDP~10 Fortran.

Having listed the reasons for using For-
tran, [will now explain why I feel that Fortran is
no longer adequate. Its basic problem is that it is
too low level a language. Fortran has come to be
used as a sort of "universal machine language"”.
(It has even been praposed that other high level
languages should be compiled by first translating
them into Fortran [41.) A machine language is
one in which the compiler can simply translate a
program in a straight forward manner without doing
much optimization. The programmer who uses
Fortran as a machine language is therefore trying
to write a low level program. He wants to do all
that he can to choose the final machine code, and
to remove as much choice as possible from the
compiler. Let us examine the effect of this prac-
tice on the cost of problem solving.

(1) Programming Cost: Writing low-level
programs obviously increases the program-~
ming cost. The programmer must work
harder to write the program in the first
place. Because he is optimizing for ef-
fictent machine code rather than for read-
ability, his optimization will almost al-
ways produce a program which is harder to
understand, and thus harder to maintain.
In practice, this manifests itself in

*
Ironically, the problem of detecting "minus zero"
defeated this attempt at efficiency.

"unstructured" programs, replete with un-
disciplined GOTOs and other obscuring fea-
tures. This increase in programming cost is
well recognized, and I need not dwell upon
it. As we all know, the programming cost
is becoming a larger and larger part of the
total cost of solving a problem.

(2) Compiling Cost: By optimizing his own
program, the programmer can decrease the
cost of compiling it. Since the compiler
has less to do, it should cost less to com-
pile the program. Although this is true, the
saving is not that important. Computing
costs are decreasing, and we would much
orefer to let the compiler do the optimizing
instead of the programmer. I will have
more to say about compiling cost later.

(3) Running Cost: The costs of programmer
optimization have been incurred in order to
decrease running costs. It has been felt
that the extra programming effort was nec-
essary in order to obtain more efficient
machine code. There seems to be a general
feeling that low level programs are neces-
sary in order to obtain good machine code.
However, our picture of the programming/
compiling process shows that this feeling
is based upon the assumption that the pro-
grammer is better at optimizing than the
compiler is. If this assumption is correct,
then the programmer wants to do the opti-
mizing, and leave little choice to the com-
piler, thus writing a low level program.
However, if the compiler is better at opti-
mizing than the programmer, then the op-
posite is true. We then want the program
to be a high level one, and leave most of
the optimizing to the compiler.

In practice, neither the programmer nor
the compiler is strictly better at optimizing.
Each performs certain types of optimiza-
tions better than the other. Programmers
are usually better at such tasks as choosing
a numerical algorithm for solving the prob-
lem. Compilers are often better at such
other tasks as register allocation. In order
to produce the most efficient machine code,
it is necessary to have the programmer per-
form only those optimizations which he
does best, and leave the rest to the com-
piler.

The success of any new high level language
for numerical analysis problems will depend largely
upon its ability to obtain efficient machine code.
Therefore, let us consider how good Fortran is in
this respect. I will show that Fortran is too low
level a language to obtain efficient machine code
for the large parallel computers of the present such
as the ILLIAC IV and the CDC Star, or for the com-
plex computers of the future.

The idea of needing a higher level language
to produce more efficient machine code is a new
one for most people. In order to justify it, let me
first consider why it has been possible to compile
efficient code for so many different computers from
a single Fortran program. The basic reason is that
up to now, computers have all been pretty much
alike. They have contained a single arithmetic
unit connected to a random access memory of com-
parable speed. Viewed in this way, an IBM 370/
165 is basically the same as an IBM 704. When

28

writing a Fortran program, one is essentially pro-
gramming a "Fortran computer”. This Fortran com-
puter reflects the essential properties of a standard
sequential computer, as used for numerical compu-
tations. (The fact that this is still true today is
perhaps partly due to the influence of Fortran on
computer design.) An efficient program for the
Fortran computer will describe an efficient program
for a real machine.

However, input/output on the 370/165 is
quite different from on the 704. Thus, ANSI stan-
dard Fortran has not been successful at producing
efficient machine code for I/O. For a similar rea-
son, the non-1/0 aspect of Fortran is unsatisfac-
tory for the new large parallel computers. The
ILLIAC IV, consisting of sixty-four identical pro-
cessors controlled by a single instruction stream,
is quite different from an IBM 704. One therefore
does not expect Fortran to be a good language for
the ILLIAC 1V,

It is usually thought that Fortran is unsuit-
able for the ILLIAC IV simply because it lacks any
way of specifying parallel execution. However,
this is not the reason. ANSI Fortran will soon be
extended to include parallel operations [3], but
the following problems will still prevent it from
generating efficient code for parallel computers:

(1) Parallel computers differ in what they
can execute in parallel. The presence or
absence of a particular feature on a stan-
dard sequential computer will have only a
small effect on the efficiency of the com-~
piled code. However, for the ILLIAC, it
could mean the difference between sequen-
tial and parallel execution of a program --
a difference of up to a factor of sixty~four
in execution time. Machine independence
is one of Fortran's main features. If the
programmer can only express parallel com~
putation which can be implemented on all
parallel computers, then he will be unable
to write an efficient parallel program for
any of them.

(2) There is evidence to indicate that
people are not very good at finding the pos-
sible parallel execution in their programs.
In [7], I described a case in which com-
piling techniques developed for the ILLIAC
can transform a standard sequential algo-
rithm into better parallel programs than ones
written explicitly in parallel for two dif-
ferent types of parallel computers. [once
gave several members of the IVTRAN com-
piler group a seven line Fortran program to
be rewritten in parallel for the ILLIAC.
(This rather contrived program was a sim-
plified version of the example used in [8].)
None of them obtained as much parallel ex-
ecution as would a compiler using the
methods of [81].

These observations about parallel program-
ming can be abstracted to obtain the following
general reasons why higher level programs are
needed to produce more efficient machine code.

(1) For programs to be run on a wider vari-
ety of computers, more freedom of choice
must be left to the compliler.

(2) As computers become more complex,
and parallelism introduces a large degree
of complexity, the programmer becomes

less competent at optimization. Hence,
more optimization must be left to the com-
piler.

A further example of the difficulty of writing
efficient programs in Fortran is given by a surpris-
ing result reported by Owens [12]. He described
how taking a Fortran program coded for the CDC
7600, translating it into a vector program for the
CDC-STAR, and running the new program with a
STAR emulator, resulted in a program that ran twice
as fast on the 7600 as did the original program.
The immediate implication of this is that it is bet-
ter to program the 7600 as a vector computer than
as a "standard Fartran computer”.

I have worked on one important aspect of
compiler optimization for parallel computers: de-
veloping techniques for the parallel execution of
sequential programs. Many such techniques have
been found, by myself and others [8-11, 13, 141,
Very often, the basic algorithm used in writing a
Fortran program allows parallel execution, If the
program were written in a simple, direct style then
these optimization techniques would permit the
compiler to obtain this parallel execution. How-
ever, after the programmer has finished optimizing
his Fortran program, it is almost impossible for a
compiler to find this parallelism.

What the programmer has done by his opti-
mization is to write a lower level Fortran program,
thus destroying information about the problem.
Even if the information has not actually been "des-
troyed", it has been hidden so as to make it much
more difficult to discover. I believe that most of
the programmer optimization techniques we have
learned for writing more efficient programs will ul-
timately turn out to be bad programming practice.
As an example, consider the elementary technique
of removing invariant code from a loop. Suppose we
want to set all elements of a 50 element array A
equal to the product of the scalars B and C . A
novice might write the following:

DO1I=1,50
1 A=B*C .

However, he would soon learn to write this "better"
version:

TEMP=B * C
DO1I=1, 50
1 A(I} = TEMP .,

But is it really better ? The first version is easier
to understand, since we need only look at state-
ment 1 to see what values the elements of A re-
ceive. Hence, the first version leads to lower
programming cost. Furthermore, it is a simple job
for the compiler to transform the first version into
the second. It then knows that TEMP is a tempo-
rary variable which need not be saved after execu-
tion of the DO loop. It might be difficult for the
compiler to determine this from the second ver-
sion -- especially if the programmer were clever
enough to save memory by using TEMP elsewhere,
perhaps even putting it in COMMON storage. l.e.,
programmer optimization can destroy the information
needed to generate optimal machine code -- code
in which B*C is saved in a live register and not
stored in memory. Finally, in the ILLIAC IV, the
DO Loop would be executed in parallel just once
for all values of I . The first version is actually
more efficient than the second for the ILLIAC.

So far, I have indicated why the programmer

29

should write a higher level program. He could try
to do this simply by writing a better structured,
higher level Fortran program. However, I will now
describe how Fortran makes it impossible to write a
sufficiently high level program. First of all, For-
tran requires the programmer to be too specific -~
to make too many choices. Below are two examples
of this.

(1) The ANSI Fortran standard requires that
the integrity of parenthesized subexpres-
sions be maintained when evaluating an
arithmetic expression. The compiler may
not use distributivity relations to obtain an
algebraically equivalent expression which
can be executed more efficiently. Alge-
braically equivalent expressions may differ
because of roundoff error, but often this is
not the case. The user has no way of spe-
cifying which parentheses are significant,
Although it does not affect the ILLIAC, this
restriction prevents the use of the methods
of [11] for other types of parallel compu~
ters.

{2) Many numerical algorithms involve a
convergent iterative procedure for compu-
ting successive approximations to the de-
sired result. The iteration is terminated
when some convergence criterion is met.

As explained in [10], the most efficient
parallel execution of such an algorithm
often requires executing extra iterations
after convergence occurs. However, this is
impossible because the Fortran programmer
must specify that the calculations stop after
a particular iteration, and the compiled code
must produce the exact results specified by
the program.

Secondly, Fortran requires the destruction
of certain information about the problem because it
gives the programmer no way of including it in his
program. The following are some examples of the
information which a compiler would like to have to
help it optimize, but cannot find out from a Fortran
program.

(1) The context in which a subroutine or
function is executed. From where is the
subroutine called ? For the ILLIAC, it is
sometimes best to compile two different
versions of a single routineg -- one to be
called in parallel, and another to be called
sequentially which can perform its own
parallel computations.

(2) Information about a called function or
subroutine. What data can be modified by
calling the routine? Is the routine called
from anywhere else? If not, perhaps it
should be compiled.in line.

(3) Frequency of execution information.
How often is a particular branch of the pro-
gram actually executed ? If a DO loop has
variable limits, what are the approximate
values of those limits ? This information
was provided by the original Fortran FRE-
QUENCY statement, which has unfortunately
disappeared from the language.

(4) There are also many other facts about
the program which might help the compiler
generate better code. E.g., is a certain
input variable always positive ? This might
be necessary to allow the parallel execution

of a loop on the ILLIAC. The compiler
would like to ask the programmer such
questions, but Fortran gives him no way of
putting the answers in his program.

The above criticism of Fortran is in no way
intended to belittle its achievements. It has been
a very useful tool, with a remarkable longevity.
The ILLIAC IV compiler will produce surprisingly
good parallel code from sequential Fortran pro-
grams, largely because of the basic conceptual
soundness of many aspects of the language. How-
ever, a new way of programming is needed for the
ILLIAC and for other new complex computers.

A NEW WAY TO PROGRAM

The discussion of Fortran indicates that
both the programming cost and the execution cost
can be reduced by writing higher level programs, I
will now try to show how this can actually be done.

Programs should be written in a simple,
straightforward fashion. This will make them easy
for people to understand, thereby reducing the cost
of writing and maintaining them, and easy for com-
pilers to understand, thereby allowing better com-
piler optimization. This implies the use of hier-
archical, structured programming.

Achieving this style of programming re-
quires a programming language which encourages
simple, straightforward programming. The need to
inhibit constructions such as GOTOs which lead to
unstructured programs is well understood. What is
perhaps less well understood is the need to inhibit
unnecessary elegance. It is elegant to allow dy-
namically defined data types. However, their use
is not likely to lead to simple, easily understood
programs. Elegance leads to short programs, but
not necessarily to straightforward ones.

Writing simple programs does not mean
using the simplest possible programming language.
A Turing machine is simple, but its programs are
not. A good programming language is sufficiently
general and elegant to permit clear, simple pro-
grams, but not so elegant as to defeat attempts to
compile efficient code. An example of what I con-
sider to be a good programming language feature is
the DO loop. It is very useful -- especially for
the array computations common in numerical anal-
ysis, it is easy to understand, it encourages good
structured programming, and it makes compiler op-
timization easier. Of course, I am assuming a
properly defined DO loop, with no "extendedrange'
and for whicha "DO I=1, N" results in no ex-
ecution of the loop body if N« 1. One might
desire some syntactic improvement to make the
loop body easier to identify, but semantically it is
marvelous.

The fact that a language is to be compiled
for a parallel computer does not mean that it must
be a "parallel language". People tend to think in
terms of sequential processes. Some parallel op-
erations are simple and natural, such as writing
“A = 0" rather than a nest of DO loops in order to
set all elements of the array A to zero. How-
ever, the fact that people think sequentially im~
plies that programs should be essentially sequen-
tial.

Encouraging simple programs means dis-
couraging the programmer's clever attempt at pro-
grammer optimization. This will not be easy,
since programmer optimization has become areflex

action. Leaving invariant code inside a loop re-
quires a conscious effort for many programmers. I
do not know how the programmer's urge to blindly
optimize can best be discouraged. One possible
answer is provided by the growing interest in pro-
gram correctness [2]. The desire to prove the
correctness of his program should force the pro-
grammer to concentrate on simplicity rather than
self-defeating efficiency.

It is easier to see how Fortran's specific
impediments to writing higher level programs can
be overcome. For example, one can devise a way
of specifying convergent iterative algorithms which
allows the execution of extra loop iterations., It
is also easy to devise ways of including frequency
of execution information in the program. [will not
discuss any of these problems. However, I will
briefly discuss the problem of I/O specification.
Higher level programming means specifying what
rather than how. Specification of I/O should be
done by describing the relation between the input/
output and the program variables. Thus, instead
of writing

READ from file F into A
PROCESS A
READ from file F into B
PROCESS B

the programmer would specify in some way that A
and B are the first two elements on file F , and
then just write

PROCESS A
PROCESS B .

The compiler would then be free to insert the actu-
al READ operations any place it chose, so long as
it produced a correct implementation,

So far, I have been talking only about a
new programming language. In addition to a new
language, the programmer needs a whole new way
of interacting with the compiler. With Fortran,
the programmer simply compilles each subroutine
individually, completely independent of any other
subroutine. This is no longer satisfactory. If the
compiler is to assume greater responsibility for
optimizing then it requires information about the
whole program. [t cannot produce optimal machine
code if it sees only one subprogram at a time,
knowing nothing about the rest of the program.

I envision the compiler -~ that object
which actually produces machine code -- being
imbedded in a larger programming system. The
programmer uses the system in all phases of pro-
gram design, from the initial high level design
down to the final programming stage. At each
stage, the programmer supplies the system with
preliminary information about the program, and the
system can respond with preliminary estimates of
what the machine code will be like. This will al-
low the system to identify the most important
parts of the program, so the programmer and the
compiler can concentrate their efforts on them.

To obtain an efficient machine~-independent
program, the programmer may want to write two (or
more) versions of some subroutines. Both versions
would become part of the program. The compiler
can choose the version which will produce the best
machine code for each individual computer.

The ideas I have given for the programming
system are quite vague, and not all original. Some
of them can be found in [16 1. Actually designing
such a system is a formidable task. I have tried to

indicate why it is necessary. I will next explain

why I think it is feasible.

COMPILING

The most difficult part of the programming
system to implement is the compiler. Trans-
lation -- the process of simply producing any cor-
rect machine code for a program ~- is not difficult.
The difficult part of compiling is optimizing -- pro-
ducing good machine code. I will therefore con-
sider only the task of compiler optimization.

Compiler optimization methods can be di-
vided into two general classes: local and global.
Local optimization is performed on a single se-
mantic unit of the program, such as one program
statement, and it maintains the integrity of that
unit. It includes such optimizations as choosing
the fastest instruction sequence to evaluate a sin-
gle arithmetic expression, Local optimization pro-
duces a separate machine code object for each
program unit, Although very important and often
quite difficult, local optimization presents no con-
ceptual problems.

Global optimization -involves the interaction
among separate program units. It produces machine
code in which there is no single machine code ob-
ject which implements an individual program unit.
Common subexpression elimination, in which a
subexpression appearing in two distinct program
statements is evaluated only once, is an example
of a global optimization. The resulting machine
code does not contain two separate objects which
implement the two program statements.

The distinction between local and global
optimization depends upon the level of semantic
unit chosen. If the unit is the program statement,
then removing invariant code from a DO loop is a
global optimization. However, it is a local opti-
mization if the DO loop is the semantic unit being
considered.

The programmer's attempts at global opti-
mization are primarily responsible for the high
(programming) cost of programmer optimization.

The basic principle of structured programming is
that one should be able to think about individual
program units independently of one another. Glo-
bal optimization destroys this independence, so it
destroys the hierarchic program structure necessary
for reducing programming costs.

Most global compiler optimization techni-
ques that have been developed are global with re-
spect to the individual program statements, but
local with respect to larger semantic units such as
the subroutine. Effective compiler optimization
must be global at the highest possible level. Thus,
it should include inter-subroutine optimization.
Such optimization techniques are discussed in
[17]. As a simple example, let INVERT be a gen-
eral subroutine for inverting an N x N matrix,
with the matrix and the value of N as arguments.
Suppose that a particular program always calls
INVERT with N equal to 100. The compiler can
then generate more efficient code for INVERT by
substituting 100 for N , and eliminating N as an
argument.

Programs seldom remain unchanged for very
long. They are usually subject to modification,
which means recompiling. In order to prevent very
large compilation costs, this implies the use of
incremental compiling: only the program unit which
is changed should have to be recompiled. However,

31

if there is no single machine code unit which im-
plements it, how can we recompile just that one
program unit ?

With global optimization, we cannot guar-
antee that changing a single program unit will re-
quire recompiling just that unit. However, we can
minimize the number of units which must be recom-
piled. To do this, some machine code object must
be associated with each program unit. Global op-
timization prevents us from finding any such object
which implements the original program unit, How-
ever, we can find a machine code object which im-
plements that unit under certain assumptions about
its environment., For example, common subexpres-
sion elimination removes the calculation of a sub-
expression from a statement and replaces it with a
fetch of the value from some register, The com-
piler generates a section of machine code which
correctly implements the statement under the as-
sumption that the register contains the value of the
subexpression.

For each program unit, the compiler can
generate a machine code object and a list of as-
sumptions under which that object correctly imple-
ments the unit. The unit must be recompiled if
changing another program unit invalidated those
assumptions. For example, consider the subrou-
tine INVERT. The compliler generates a machine
code subroutine for INVERT which is correct under
the assumption that its argument is a 100 x 100
array. When recompiling any subroutine that calls
INVERT, the compiler checks if the call still satis-
fies this assumption. If so, then INVERT need not
be recompiled. If not, then a new machine code
must be compiled for INVERT.

With a sophisticated global optimizer, in-
cremental compilation requires saving a great deal
of information about the environment of each pro-
gram unit. Hence, it is feasible only for large
program units such as subroutines, A less sophis-
ticated optimizer can save less information, and
can allow incremental compiling of smaller program
units. Thus, a compiler which can recompile an
individual Fortran statement is feasible only if it
does no common subexpression elimination.

Two major objections have been raised
against sophisticated optimizing compilers. The
first is that they often make compilation too expen-
sive. This would be a valid objection if the opti-
mizer were only trying to minimize execution cost.
However, a good optimizer will try to minimize the
sum of the compiling cost, the execution cost, and
the debugging cost. To do this, the optimizer must
choose among various options for the different
techniques which it can apply. These will include
the option of no optimization (perhaps executing
the program interpretively), options for applying
techniques to produce faster running machine code,
and options for including debugging aids in the
machine code.

In order to minimize the total cost, the
compiler must be able to estimate both the cost of
performing a certain type of optimization and the
benefits it will yield. Both types of estimates re-
quire that the compiler be able to estimate the
quality of the machine code which it will generate
with its various options. For example, it may
know that with no optimization, a program block
containing N arithmetic operations will yield
machine code requiring an average of 2N micro-
seconds to execute on a particular computer. Elim-
inating common subexpressions will reduce this

average to 1.5N microseconds, but will add N2 mil-
liseconds to the compiling time.

Estimating the benefit of applying an opti-
mization technique requires that the compiler have
good frequency of execution information. Not only
must the compiler know how often a program block
will be executed during a single execution of a
subroutine, but it must also know how often the
subroutine is executed during a single execution of
the program. Moreover, it must know how many
times the programmer expects to execute the pro-
gram before the subroutine must be recompiled.

Frequency of execution information and the
ability to estimate the quality of machine code
will allow the compiler to choose the optimization
option which is most likely to minimize total com-
piling and execution cost. It can first use the
frequency information to quickly identify which
parts of the program produce most of the execu-
tion time , It can then choose the best option
for each of those parts., For example, suppose
the compiler discovers that most of the execution
time of a program occurs in one program block con-
taining 500 arithmetic operations, which is execu-
ted 100,000 times each time the program is run. It
then knows that it should perform common subex-
pression elimination on that block if the program is
expected to be executed more than 10 times before
the block must be recompiled.

Since it is very hard for the compiler to es-
timate debugging costs, the programmer should de-
cide what debugging aids are to be included in the
machine code. The compiler can provide him with
the information needed to make this decision by
telling him the compilation and execution cost of
the various options.

The second objection which has been
raised against optimizing compilers is that they
are unreliable. There are two kinds of unreliabil-
ity: producing incorrect machine code, and pes-
simizing instead of optimizing. Producing incor-~
rect code has certainly been a real problem with
optimizing compilers., However, it is just a mani-
festation of the general problem of writing correct
programs. Progress in structured programming and
program correctness should enable it to be solved.
It should become less likely for compiler optimiza-
tion to produce an incorrect machine code than for
programmer optimization to produce an incorrect
program.

The problem of designing an optimizing
compiler which actually optimizes instead of pes-
simizing is harder to solve. High level programs
leave most of the optimization to the compiler.
However, the programmer will be better than the
compiler at some kinds of optimization, although
which kinds may depend upon the particular pro-
grammer. A programmer who wants to produce very
good machine code with a high level language
could find himself fighting the optimizer,

The solution to this problem is to let the
programmer and the compiler cooperate, instead of
having the compiler always act independently.
This can be accomplished with a generalization of
an idea described in [6]. We can let the pro-
grammer see the results of those optimizations
which he might do better than the compiler. More
specifically, there can be a compiler optimization
phase in which the program is transformed into an
equivalent lower level program in a machine-
specific dialect of the original programming lan-

32

guage. The programmer and the compiler can co-
operate in this phase of optimization. The pro-
grammer can direct the compiler to perform certain
transformations to selected portions of the pro-
gram. He might even write some parts of the low
level version entirely by himself. The compiler
¢an provide him with information about the machine
code which it will generate from the transformed
version of the program.

Transforming the program into a low level
one produced especially for a particular computer
offers two related advantages: (1) the programmer
can be confident that the compiler will produce
good machine code from the transformed program,
and (2) the compiler can make accurate estimates
of the quality of machine code it will generate from
the transformed program. Using a dialect of the
original programming language makes it easier for
the programmer to read the transformed program.

The programmer can choose how much help
he wants to give the compiler. This allows him to
make a trade-off between programmer optimization
cost and program execution cost. Retaining the
higher level, machine-independent version of the
program helps lower the cost of maintaining the
program and moving it to a different computer.

This idea has been used in the ILLIAC IV
Fortran compiler. This compiler has a "Paralyzer"
phase which transforms the Fortran program into a
program written in IVTRAN -- a dialect of Fortran
designed specifically for the ILLIAC. The same
idea was also described in [15], except that the
transformed version was a lower level program in
the same programming language.

Optimizing by transforming into a lower
level program has one additional advantage: the
compiler can be written gradually. Initially, it
can require a great deal of prompting from the pro-
grammer in order to produce an efficient low level
program. The compiler can be continually im-
proved to perform the transformation better, grad-
ually relieving the programmer of the optimization
task. Even the initial version would be very use-
ful, especially since optimization is usually nec-
essary for only a small part of the program [5].

CONCLUSION

[have tried to show that using a higher
level programming language for numerical analysis
problems can reduce programming costs while pro-
ducing better machine code. This is a very en-
couraging idea, and it suggests that the cost of
problem solving can be made very small by using a
high enough level language. Unfortunately, there
is one limiting factor: the cost of developing the
compiler. This cost is prohibitive for an extremely
high level language such as English. I have in-
dicated that a good optimizing compiler can be
written for a higher level language than Fortran,
However, it would be a difficult and costly soft-
ware project, and the programming profession has
a poor record on such projects. Developing the
type of high level programming system which I
have described will require a level of programming
quality that has rarely been achieved. I hope
that progress in structured programming methods
will make it possible.

REFERENCES

[11 ANSI Fortran Standard, American Standards

(21

[31]

(4]

[5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

{131

[14]

[15]

(16]

Association, American Standard Basic For-
tran, X3.1C, ANSI, New York, 1966.

Elspas, B. et al. An Assessment of Tech-
niques for Proving Program Correctness.
Computing Surveys 4, 2 (June, 1972),

pp. 97-147.

Engel, F. Future FORTRAN Development.
SIGPLAN Notices 8, 3 (March, 1973),
pp. 4-5.

Gear, C.W., What Do We Need in Program-
ming Languages ? Mathematical Software
II , Informal Conference Proceedings, Pur-
due University (May, 1974), pp. 19-24,

Knuth, D. An Empirical Study of Fortran
Programs. Software: Practice and Experi-
ence, Vol. 1, Issue 2, (April-June, 1971},
pp. 105-133.

Knuth, D. Structured Programming with go
to Statements. Stanford University,
California, Department of Computer Sci~-
ence, Tech. Report STAN-CS~-74-416,
May, 1974.

Lamport, L. Some Remarks on Parallel Pro-
gramming. Massachusetts Computer Asso-
ciates, Inc., Wakefield, Massachusetts,
CA-7211-2011, November, 1972,

Lamport, L. The Coordinate Method for the
Parallel Execution of DO Loops. Proceed-
ings of the 1973 Sagamore Conference on
Parallel Processing (August, 1973), pp. 1-
12,

Lamport, L. The Parallel Execution of DO
Loops. Comm. ACM 17, 2 (February, 1974},
pp. 83-93.

Lamport, L. The Hyperplane Method for an
Array Computer. To appear in Proceedings
of the 1974 Sagamore Conference on Paral-

lel Processing.

Muroaka, Y. Parallelism Exposure and Ex-
ploitation. Ph.D. Thesis, University of
Illinois, Urbana, Illinois (1971).

Owens, J.L. The Influence of Machine
Organization on Algorithms. Proceedings
of the Symposium on Complexity of Sequen-
tial and Parallel Algorithms held at
Carnegie-Mellon University (May, 1973).

Ramamoorthy, C.V. and Gonzalez, M.]J.
A Survey of Techniques for Recognizing
Parallel Processable Streams in Computer
Programs. AFIPS Proceedings, Fall Joint
Computer Conference, Vol. 35, (1969),
pp. 1-15.

Schneck, P.B. Automatic Recognition of
Vector and Parallel Operations. Proceed-
ings of the ACM 25th Anniversary Confer~
ence, (August, 1972), pp. 772-779.

Schneck, P.B.and Angel, E. A Fortran to
Fortran Optimizing Compiler. The Com-

piler Journal, Vol. 16, Number 4,
(November, 1973), pp. 322-330.

Schwartz, J.T. On Programming, An Inter~
im Report on the SETL Project. Computer
Science Department, Courant Institute of
Mathematical Sciences, N.Y.U. (1972).

33

[17]

Wegbreit, B. Procedure Closure in EL1.

The Computer Journal, Vol. 17, Number ?
(February, 1974), pp. 38-43.

