
Recursive Compiling

and Programming Environments

SUMMARY

Leslie Lamport

25 July 1984

1 Introduction

While there are many programming environments, to my knowledge only In-
terlisp has the following feature: A user can write a program with Interlisp
and add that program to his version of Interlisp, using it to help write and
debug other programs. While there are many screen editors, to my knowl-
edge only EMACS has the following feature: A user can write a program
with EMACS and add that program to his version of EMACS, using it to
help him edit other files.

This self-modifying feature of Interlisp and EMACS adds enormously
to their versatility, making it possible to build very powerful systems one
piece at a time. It is probably one of the major reasons why Interlisp and
EMACS are so popular where they are available. For example, I added a
command to my EMACS that performs nontrivial syntax checking for input
to a typesetting program. This was fairly easy because I could do it entirely
within EMACS. Adding such a command to any other editor I know of would
require modifying the editor’s source code and recompiling it—a formidable
task.

The ability to create such self-modifying systems derives from the fol-
lowing property of the languages in which they are implemented: a program
written in the language can manipulate the text of a program as data and
then execute it. This is possible in Lisp, the language underlying Interlisp,
because of the eval function. It is possible in TECO, the language used to
implement EMACS, because a TECO program can manipulate a string of
characters as data, then store it in a “Q-register” and execute it as a pro-
gram. Not surprisingly, a version of EMACS has also been written in Lisp.
(There is also a program called EMACS that is written C, but it is a hollow
shell of EMACS because it lacks the self-modifying property.)

Unfortunately, Lisp and TECO lack many features found in more mod-
ern programming languages—features like block structuring and typing. In
this paper, I describe a method for extending any imperative language to
permit the writing of such self-modifying programs. The basic idea is to
add statements that allow a compiled program to compile and execute a
procedure—hence, the name recursive compiling.

I will describe recursive compiling in terms of Pascal, since Pascal is
both well known and simple. Pascal’s simplicity means that it lacks certain
features needed for the proposed extension that are present in more sophis-
ticated languages like Ada. This will force me to describe explicitly exactly
what language features are required. However, recursive compiling can be

1

added to any imperative language.
Recursive compiling requires the following extensions to Pascal:

• String variables. (They are already present in many extensions to
Pascal.)

• Variables of type procedure whose values are executable procedures,
with a mechanism for executing the contents of a procedure variable.

• A compile procedure to compile a string (the program text) into a
procedure.

Certain other extensions are proposed for reasons of efficiency and elegance.
To simplify the implementation of interactive programs, I also propose ex-
tensions to Pascal’s input/output commands.

2 String Variables

My first extension to Pascal is a built-in string data type. A string is a
sequence of ASCII characters; the declaration of a string variable places no
limit on the length of string it may hold. A string variable must be able to
hold an entire text file—perhaps as long as 500,000 characters.

With modern operating systems, implementing the storage management
to handle such long strings should present no problem. However, compiling
efficient code requires restricting the operations that may be performed on
long strings. The basic string operations that are needed are insertion and
deletion. There should also be sticky pointers—pointers specifying a partic-
ular character position within a string. For example, a sticky pointer that
points to the fifth character of a string is changed to point to the seventh
character when two characters are inserted at the beginning of the string.

It must also be possible to read a file into a string variable, and to write
the contents of a string variable onto a file. The complete paper will describe
a set of simple functions and procedures for performing these operations.

3 Procedures

A new procedure data type must be added to Pascal, where the value of a
variable of type procedure is an executable procedure. An ordinary proce-
dure, compiled at the same time as the main program, is a constant of type

2

procedure. Thus, a Pascal procedure declaration is a special case of constant
declaration. Writing

procedure foo . . .

is completely analogous to writing

const foo = . . .

Procedure values are executed by the command

execute proc(args) exception excep proc

where proc and excep proc are values of type procedure, and args is an ar-
gument list. This statement executes procedure proc, executing excep proc
only if there is a run-time error in proc. Procedure excep proc must take two
arguments that are used to specify the type of error, as explained in the com-
plete paper. A run-time error in the execution of
excep proc is a run-time error in the program containing the execute com-
mand.

A procedure value includes the number and types of its parameters, so
run-time type checking can be performed. Compiling an execute command
generates code to compare the type of each argument in the argument list
(which, in Pascal, is known at compile time) with the types of the proce-
dure’s parameters, which are part of the procedure value. A type mismatch
produces a run-time error, invoking the exception procedure. As will be-
come evident below, the actual object used to represent a type is a pointer
to a symbol-table entry.

Without some restriction on the assignment of values to procedure vari-
ables, one can execute a procedure outside the scope in which it should be
executed. For example, suppose foo is a procedure declared in block B,
and foo accesses a variable v local to block B. Code in B could assign the
procedure foo to a procedure variable p declared outside B. Code external
to block B could then execute p, accessing v where it is no longer defined.

To prevent this, I introduce the concept of a level number. A declara-
tion is at level n if it occurs in a block nested within n − 1 other blocks.
Every object that is referred to by name—a variable, a user-defined type,
a declared procedure, etc.—has a level number—namely, the level number
of its declaration. (Predefined objects, such as built-in types and functions,
are assigned level number −1.) Proper nesting means that it is impossible
for a statement in a level-n block to access an object with a level number
greater than n.

3

To every value of type procedure, we attach an execution-level number
that is the smallest (outermost) level at which the procedure may be exe-
cuted. Its value equals the largest level number of any object it references,
excluding those objects that are local to the procedure itself. For example,
a procedure that mentions only its parameters, its own local variables, and
built-in types, can be executed anywhere. The execution-level number of a
procedure is easily determined at compile time, since the level number of
every declared object is known.

The code to implement an assignment to a procedure variable com-
pares the level number of that variable (known at compile time) with the
execution-level number of the value being assigned to it. A run-time error
occurs if the execution-level number is less than the variable’s level number.

Everything I have done for procedures can also be done for functions.
However, it is not clear whether it should be done, since exception handling
in function calls is rather awkward. A run-time error in a function call
should invoke an exception function that returns a value of the same type as
the original function. This means that, in Pascal, one cannot write a single
exception handler that works for all functions.

4 The Compile Procedure

Pascal is next extended by adding a built-in compile procedure, which is
called as follows:

compile(proc, str , var1, var2)

where proc is a procedure variable and str is a value of type string . (The
variables var1 and var2 are used to return error information and will be
described in the complete paper.)

The compile procedure compiles its string argument exactly as if that
string had appeared as a procedure declaration in the current block. For
example, when applied to the string

procedure foo (arg : integer)
var x : user_defined_type ;

begin y := x + arg ;
...

end

the identifiers user defined type and y have the same meanings as in the
context where the compile procedure appears, while x and arg have the

4

obvious local definitions.
Note that all names declared in this procedure declaration are invis-

ible outside the scope of the compiled procedure. In fact, a value of type
procedure has no name. The only reason for giving a procedure a name, as
we did above, is for defining recursive procedures.

To implement recursive compiling, a compiled program must keep a sym-
bol table that is updated at run time whenever a procedure or function is
invoked or returns—i.e., every time the context changes. This is exactly the
kind of symbol-table manipulation that the compiler must perform, so there
is no real implementation problem. However, it does take time, which may
make it unacceptable if execution speed is important. To improve efficiency,
we need two classes of declarations: visible and invisible ones. Only those
objects—constants, types, variables, procedures, and functions—declared to
be visible are known to the compile procedure, and they are the only ones
that must be added to and removed from the symbol table during invocation
and exit.

The cost of symbol-table manipulation is incurred only during function
and procedure calls, and only for variables visible to the compile procedure.
Functions and procedures that are invoked frequently will make almost all
of their declared objects invisible, so they will incur little overhead. Only
high-level procedures that are infrequently invoked because their execution
takes a long time—procedures such as a text editor, whose execution lasts
for an entire editing session—will use significant numbers of visible objects.
In this case, the only cost is the space occupied by the symbol table, which
is negligible

The complete paper will provide a syntax for indicating in its declaration
whether an object is to be visible or invisible. As we shall soon see, when
debugging a procedure, one wants all its objects to be visible to the compile
function. The language should therefore contain a statement that forces all
declarations to be visible.

There are good reasons for constraining the scope of declared variables
even without recursive compiling. The scope rules of Pascal imply that a
variable declared within a procedure proc may be accessed by any procedure
nested within proc. This makes it hard to keep track of data dependencies
in large programs, so it would be nice to require an explicit “export” dec-
laration for a variable to be used outside the current nesting level. The
introduction of visible and invisible objects is just one instance of the gen-
eral idea of controlling the export of declarations, and should be considered
in that more general context. This will be discussed in the complete paper.

5

5 Interactive Display

The line-oriented input/output of Pascal is not well-suited to implementing
modern, screen-oriented user interaction. Pascal’s output commands need
to be augmented with ones for creating “windows” on a terminal screen and
displaying data inside them.

The complete paper will describe commands to create windows. To
display text within a window, I propose a command that assigns a string
variable to a window in such a way that the screen always displays the
current contents of the variable. More precisely, the command specifies a
string variable together with the portion of the variable that is to appear in
the window—for example, by specifying a sticky pointer to the first character
to appear on the screen. The screen always displays the selected part of the
string variable’s current value. I will not discuss the display of graphical
data.

Pascal’s repertoire of input commands needs to be extended to handle
character-by-character input. An obvious extension, which exists on some
versions of Pascal, is the addition of a boolean-valued function to test if a
character has been typed, and a function that returns the typed character.
It would also be useful to have built-in functions for reading the position of
a mouse-controlled cursor. These functions would return values indicating
which character within which window the cursor is pointing to.

6 Symbol Tables

One difficulty with implementing an extensible system in this way is that
Pascal does not provide any extensible data structures. For example, a
system should allow the user to define named commands which he can later
invoke by name. Using standard Pascal data structures, this can be done
only by declaring an array of procedures with enough elements to hold one
procedure for every command that the user will ever want to define.

A more elegant approach is to introduce a new data structure called a
symbol table. The statement

foo : symbol table of type

is similar to the statement

foo : array [1 . . n] of type

6

However, instead of being indexed by integers, the elements of foo are in-
dexed by strings. One can write expressions like foo["John"] to represent
the value of the element associated with the name "John". There must also
be some way to test whether a symbol table entry has been defined.

Note that this symbol table mechanism is already used by the compiler,
so it should not be difficult to implement in object code. Symbol tables will
be discussed at greater length in the complete paper.

7 Applications

I will illustrate the utility of recursive compiling with two simple examples:
text editing and interactive debugging.

7.1 Text Editing

Using the display functions described above, one can write a simple proce-
dure that acts as an EMACS-style text editor. The text is kept in a string
variable that is displayed in a window on the screen. An array char cmd of
procedures is declared by

char cmd : array [0 . . 256] of procedure

and the main loop of the editor is as follows, where Read(Keyboard) returns
the next typed character and ord(InChar) is the ASCII code for character
InChar :

InChar := Read(Keyboard) ;
execute char cmd [ord(InChar)] exception . . .

One customizes the editor, á là EMACS, by executing commands that com-
pile the contents of a buffer and assign the resulting procedures to a chosen
element of char cmd.

The complete paper will discuss this example in more detail, indicating
how the editor provides an environment for writing new commands. Use
will be made of the symbol table data structure to store named commands.

Such an editor can do more than just edit text. Commands can easily be
created to assist in writing Pascal programs, and to check for syntax errors.
Editor commands can also be added that compile and run programs.

7

7.2 Interactive Debugging

One can define a procedure Debug that invokes an editor, allowing the user
to enter (and edit) Pascal statements that are then executed in the context
in which the Debug procedure was invoked. The user can put a call of
the Debug procedure anywhere in his program. When the procedure is
executed, it allows him to interrogate and change the status of his program
by executing Pascal commands. For example, executing write(x) prints the
current value of x.

One can also write an interactive interpreter. I will quickly outline here
how it is implemented; the complete paper will contain a more detailed
description. The heart of the interpreter is a recursive procedure with a
single string argument, which is the Pascal text for a sequence of statements.
This procedure presents the user with a buffer containing the Pascal text,
and gives him commands to edit the buffer, pop back to a higher level,
or execute a specified statement in the buffer. The latter is the interesting
option. It is handled by compiling the statement (in its current context) and
executing it, unless the statement is a procedure or function call. In the case
of a procedure call, the interpreter compiles a call to a new procedure having
the same declarations as the one being called, but whose body contains
only a recursive call to the interpreter with an argument consisting of the
procedure body. A function call is handled similarly.

8 Conclusion

Recursive compiling allows a complex system to be bootstrapped from a
simple one. I showed how, from a simple skeleton, one can gradually create
a very sophisticated editor. Moreover, since the commands one writes are
compiled, just like ordinary Pascal programs, the resulting editor can be
as efficient as one written and compiled in a traditional fashion. One can
create a Pascal-based EMACS.

The example of the interpretor indicates how recursive compiling per-
mits one to implement sophisticated programming environments in a similar
incremental fashion.

The additions to an ordinary Pascal compiler required for recursive com-
piling are really quite modest. Except for those commands introduced to
implement interactive display, every extension to Pascal I have described
involves giving to the programmer capabilities that the compiler itself pos-
sesses. I would estimate that these additions would add about ten percent

8

to the cost of implementing a Pascal compiler—assuming that it is designed
right from the beginning to be a recursive compiler. Unfortunately, modify-
ing an existing compiler is not so simple. I hope to initiate a project at SRI
to build a recursive Pascal compiler for a personal computer, but no such
project is yet under way.

Bibliography

The complete paper will include citations of relevant literature, including
references to Interlisp, EMACS, and the various extensions to Pascal that
are mentioned.

9

