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1 An Introduction to this Paper

A large body of research on the logic of concurrent programs may be char-
acterized as the “axiomatic” school. Members of this school reason about
safety properties (“something bad never happens”) in terms of invariance,
and liveness properties (“something good eventually does happen”) using
temporal logic.

While they are quite successful at proving properties of a given program,
axiomatic methods have not provided a satisfactory semantics for concurrent
programming languages. Axiomatic methods usually reason about the entire
program, while a semantics should be compositional—deriving the meaning
of a program from the meanings of its components. Even the Generalized
Hoare Logic described in [4] and [9], which looks compositional, actually
assumes a context of a complete program. The only attempt we know of
at a truly compositional axiomatic semantics for concurrent programs that
handles both safety and liveness properties is given in [14]. However, while
it is axiomatic in a strict logical sense, that approach is not in the spirit
of the axiomatic school because it essentially defines a new temporal logic
operator for every programming-language construct.

In this paper, I present a new compositional, truly axiomatic semantics
for concurrent programming languages. It is based upon temporal logic, but
employs five fundamental ideas beyond those found in most temporal logic
methods:

1. The addition of action predicates to describe “who” performs an ac-
tion.

2. Defining an assertion to be true of a statement only if it is true of
every program containing that statement.

3. The introduction of renaming operations that map an assertion about
a statement S into an assertion about a larger statement containing S
as a substatement.

4. Defining the relations between control points, described in [4] as state
predicates, to be aliasing relations among variables.

5. Allowing “stuttering” actions, so an atomic operation is represented
by a finite sequence of actions, only the last one having any effect.
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The first idea was developed by Susan Owicki and myself in the late
1970’s, and was published in [6]. (It was developed independently, in dif-
ferent contexts, by other researchers [1].) The second and third ideas were
developed by me shortly afterwards. The second was also used in [6], though
not featured prominently there. The third idea has never appeared in print,
though I have talked about it in lectures starting in 1981. The fourth idea
was discovered by Fred Schneider and myself in the spring of 1984 [10]. The
fifth idea has been present in all of my work on temporal logic, starting
with [5]. I was originally led to it by my philosophical objections to the
“next time” operator; only later did I recognize its practical significance [8].

The first two ideas were used in [14], but they are not enough to permit
a compositional semantics based upon a simple temporal logic. Combined
with the third idea, they do permit a compositional semantics, but a se-
mantics that I did not find satisfying. It seemed like a large, complicated
structure had to be erected solely to reason about program control, mak-
ing the enterprise of dubious merit. It was the fourth idea that gelled the
method into a coherent form. The apparatus for handling program control
was no longer an ad hoc “Kludge”. Rather, it was the appropriate structure
to deal with aliasing. Aliasing was not considered in other approaches, but
it is a problem that must be dealt with in any realistic language, if only
to handle procedure calls. The fifth idea is not needed for the semantics
itself; in fact the semantics would be somewhat easier to understand had I
abandoned it and employed the next-time operator favored in most other
temporal logic approaches. However, allowing stuttering actions enables the
semantics to address the practical issue of what it means for a compiler to
be correct.

In this paper, I develop these five ideas, and show how they lead to a
method for defining the semantics of concurrent programming languages.
A complete semantics is given only for a simple language. However, the
approach is “meta-compositional” in the sense that the meaning of each
language construct is defined independently of the other constructs in the
language. The semantics of a richer language can be given by defining the
meanings of its additional constructs, without changing the meanings of the
constructs from the simple language. (This is not the case in [14] where,
for example, the axioms for the assignment statement would be invalid if
an unfair cobegin were added to the language.) I will indicate the power
of my method by informally describing how the meanings of some more
complicated language constructs can be defined.
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2 An Introduction to Semantics

2.1 What Are Semantics?

The syntax of a programming language defines the set of syntactically well-
formed programs of that language. However, a program is more than just
a string of characters; there should be a well-defined set of possible results
of executing the program. The purpose of a semantics is to assign a math-
ematical meaning to each syntactically correct program that describes the
effect of executing it.

I will regard a program Π to be a syntactic object, and denote by M[[Π]]
the mathematical object denoting its meaning. To define a formal semantics,
one must specify the mapping Π →M[[Π]].

What is the purpose of a formal semantics? One purpose is to help us to
understand the language. However, “understanding” is too vague to usefully
characterize a formalism. I propose that a formal semantics should provide
a formal basis for the following:

1. Deducing properties of a program written in the language.

2. Deciding if a compiler is correct, given a formal semantics for the target
language into which the programs are compiled.

A semantics should provide a formal foundation, but not necessarily a prac-
tical method, for doing these things. A method for deducing properties of
a program is called a proof system. A proof system is used to decide if a
program works properly; a semantics is used to decide if a programming
language is defined properly. One wants to reason about programs at a high
level, hiding as much detail of the language as possible; a semantics should
expose the language details. Although a semantics allows one, in principle,
to verify properties of programs, its real purpose is to explain the language.
A semantics should be used to verify the correctness of a proof system; it
need not provide a practical method for reasoning about programs.

Programs can be very large and complicated. We want to reduce the
problem of understanding a complex program to that of understanding its
components. The meaning of a program should therefore be defined in
terms of the meanings of its components. We must therefore define the
meaning not just of an entire program, but of individual components—
usually individual program statements. So, M[[S]] must be defined for any
program statement S, and it must be defined in terms of the substatements
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of S. For example, M[[S1;S2]] should be defined in terms of M[[S1]] and
M[[S2]]. I will say that a semantics with this property is compositional.1

When defining a formal semantics, the first thing one has to decide is
what kind of object M[[S]] should be. The execution of a statement in a
sequential program is usually considered to start in some input state and
produce an output state, and M[[S]] is defined to be a mathemtical object
that describes the relation between the input and the output states. One
way of doing this is to define M[[S]] to be a set of ordered pairs of states.

Concurrent programs cannot be described with such a simple input/out-
put semantics. Consider the following two program statements, where angle
brackets denote indivisible atomic operations.

1. 〈x := x+ 1 〉

2. begin 〈 x := x+ y 〉;
〈 x := x− y + 1 〉

end

These statements both have the same relation between input and output
states—they both increment the value of x by one. However, they are not
equivalent when used as part of a concurrent program. Executing the first
always has the effect of adding one to x, but executing the second can have
a very different effect if the value of y is changed by some other process
between the two assignments to x.

A semantics for a concurrent programming language must define the
meaning of a statement in terms of its behavior. There are two fundamen-
tally different approaches to doing this. The first approach is to define the
meaning of a statement S in terms of the effects it produces that are “visi-
ble” outside S. For example, in a shared-variable language, the only visible
effects of executing a statement are changes to shared variables. The alter-
native approach to defining the semantics of concurrent languages defines
the meaning of a statement in terms of complete behaviors, which include
all the effects of a statement’s actions, whether externally visible or not. In
most languages, these invisible effects include changes to the control state
(the values of “program counters”).

An approach that mentions only visible effects is very appealing, and
it has been taken by a number of researchers [3, 11]. For many years,
I regarded it as the proper way to think about programs, and found it

1The terms denotational, syntax-directed, and modular have also been used to denote
this property.
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unnatural to reason about things like the control state that are internal
to the program. However, years of experience reasoning about concurrent
programs has led me to conclude that one should think about them in terms
of the complete state, including externally invisible compents of the state.
I will not attempt to justify this conclusion here, and will simply adopt the
second approach, defining the meaning of a program in terms of complete
behaviors that describe the internal as well as the externally-visible effects
of program operations.

Having decided that the meaning of a program is its set of possible
behaviors, we must decide what a behavior is. The simplest notion of a
behavior is a sequence of states. Each action of the program transforms the
state. Nondeterminism, leading to sets of behaviors, appears when there are
several choices of a possibile next state from the same current state.

It is sometimes argued that a sequence of states cannot adequately model
the execution of a concurrent program because it has no notion of concurrent
activity, and that one should instead use a partially ordered set of actions.
However, a partially ordered set contains exactly the same information as
the set of all total orderings consistent with the partial order. Since the
meaning of a statement is the set of behaviors, which includes all possible
sequences that represent the real, partially ordered set of actions, nothing
has been lost by considering sequences. The basic assumptions being made
are that the execution of a program consists of discrete atomic actions, and
the possible effect of an atomic action depends only upon the current state.
It appears that any digital system can be accurately modeled in this way by
making the atomic actions small enough and including enough information
in the current state.

It turns out that to define the semantics of concurrent languages, one
needs more information about a behavior than just the sequence of states;
one must also know “who” performed the actions. For example, the natu-
ral definition of a fair cobegin states that in each infinite behavior, every
nonterminating process performs infinitely many actions. Formalizing this
definition requires the ability to decide which process performs each action.
I will therefore define a behavior to be a sequence of the form:

s0
α1−→ s1

α2−→ · · ·

where the si are states and the αi are actions. Fairness of a cobegin can be
expressed by stating that for every process and every n: if there is no state
si with i > n in which the process has terminated, then infinitely many of
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the αi are actions of that process. I will explain later exactly what states
and actions are.

The semantics that I am aiming for is an axiomatic one, in which the
meaning of a program is a set of axioms in a formal system. An important
advantage of an axiomatic semantics is that it is very formal. A formal
mathematical system is one in which reasoning can be reduced to a strict
application of axioms and inference rules. Automated deduction systems
can usually be applied only to a formal system. A semantics in which M[[S]]
is defined to be a set of sequences is really semi-formal, based upon the in-
formal mathematical concepts of sets and sequences. Formalizing it requires
formalizing these mathematical concepts. With an axiomatic semantics,
this extra step is unnecessary; M[[S]] is already a set of axioms in a formal
system.

The problem with an axiomatic semantics is that one can understand the
meaning of a formal logical system only by constructing a semantic model
for it in terms of concepts that we already understand. Having constructed
a semantics in which M[[S]] is a set of axioms in some formal system is only
half the job; we also have to define a semantics for the formal system in
terms of well-understood mathematical concepts.

I will give a temporal logic semantics—one in which the axioms are tem-
poral logic formulas. I will rely upon the usual semantic model of temporal
logic, described later, to provide a basis for an intuitive understanding of
the axioms.

2.2 Different Kinds of Semantics

2.2.1 Behavioral Semantics

An obvious method of defining a semantics for concurrent programs is to let
the meaning of a statement be its set of possible behaviors, and to explicitly
construct the behaviors in M[[S]] from the behaviors of its components. For
example, the set of behaviors M[[S1 ; S2]] consists of all infinite behaviors in
M[[S1]] together with all concatenations of finite behaviors in M[[S1]] with
behaviors in M[[S2]]. This can be expressed formally by:

M[[S1 ; S2]] = {σ ∈ M[[S1]] : σ infinite}
∪ {στ : σ ∈ M[[S1]], τ ∈ M[[S2]], and σ finite}

I will call such a semantics a behavioral semantics.
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Behavioral semantics have their problems. While they work well for
sequential programming constructs, they are less satisfactory for concurrent
languages. The behaviors of

cobegin S1 S2 coend

are obtained by forming interleavings of behaviors from S1 and S2, and inter-
leavings are rather awkward mathematically—especially for a fair cobegin,
where only fair interleavings are allowed.

A more serious problem is raised by the language construct

assign processor to S

Intuitively, this statement causes the compiler to assign a physical (or vir-
tual) processor to execute S. In terms of behaviors, it means that any
behavior that reaches S must either subsequently reach the end of S or else
include an infinite number of actions of S. In other words, a process can-
not be “starved” while it is executing this statement. This is a perfectly
reasonable—and compilable—statement. It can be used to construct a fair
cobegin from an unfair one as follows:

unfair cobegin assign processor to S1

assign processor to S2 coend

More complicated uses of the assign processor statement are also possible.
Considered completely by themselves, the statements S and

assign processor to S

have the same sets of behaviors, so it is not clear how one could apply to
the assign processor statement the same approach used above to define
M[[S1;S2]].

2.2.2 Action Semantics

Instead of defining M[[S]] to be the set of behaviors itself, one can define it
to be something that can be used to construct the set of behaviors. Since
a behavior is generated by a sequence of actions starting in some state, an
obvious approach is to let M[[S]] be the set of all possible actions together
with the set of all possible starting states. I will call such a semantics an
action semantics. Given an action semantics, one can define the behaviors
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of S to be the set of all behaviors that can be obtained from these actions
starting from the specified starting states.

An action semantics is well-suited to expressing parallelism, since the set
of possible actions of

cobegin π1 π2 coend

is just the union of the sets of possible actions of π1 and π2. Action seman-
tics have long been favorites of theoretical computer scientists [15] because
they lead to mathematically well-behaved formalisms. Unfortunately, these
semantics are unsatisfactory because they cannot express fairness. Consider
a coin-flipping program with two possible actions: toss a head and toss a
tail. It can be viewed as the parallel composition of two processes: one that
generates only heads and the other that generates only tails. An unfair coin
flipper can generate any infinite sequence of heads and tails, while a fair
one can generate only sequences containing infinite numbers of both heads
and tails. Both the fair and the unfair coin flipper have the same set of ac-
tions (toss a head and toss a tail), so an action semantics cannot distinguish
between the two.

2.2.3 Action-Axiom Semantics

The problem of fairness is solved by using an action-axiom semantics in
which the meaning of a statement consists of a set of actions together with
a set of temporal logic axioms that state conditions under which an ac-
tion must eventually occur. For example, the fair coin flipper requires two
axioms:

• At any time, a head must eventually occur.

• At any time, a tail must eventually occur.

The meaning of

assign processor to S

consists of the meaning of S plus the following additional axiom:

• If S is being executed—more precisely, if control is in S—then an
action of S must eventually occur.
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We are thus led to let M[[S]] consist of a set of actions, a set of temporal
logic axioms, and a set of starting states. But how do we specify the actions?
Instead of introducing some new method for specifying actions, I will specify
the actions as well as the fairness properties with temporal logic axioms.
Starting states will be specified by ordinary, nontemporal axioms.

To give a compositional action semantics, we must define the axioms of
M[[S1;S2]] in terms of the axioms of M[[S1]] and M[[S2]]; and, of course, we
must also do the same for other language constructs besides the “ ; ”. We
will see that there is a standard prescription for doing this.

The axioms in M[[S]] define a set of behaviors for S—namely, the set of all
behaviors satisfying the temporal logic axioms starting in states that satisfy
the axioms for the starting state. Although this defines a set of behaviors for
every statement, it is different from a semantics in which M[[S]] is taken to
be a set of behaviors because the meaning of S is obtained from the meaning
of its components by “composing” axioms, not by composing behaviors.

2.3 Is This Fair?

It can be argued that the semantics of a programming language should be
defined in terms of constructive operations rather than with axioms. One
should give a procedure for constructing the set of behaviors of a program
rather than a set of axioms to describe it.

While a purely constructive approach would be nice, it seems to be
impossible to deal with fairness constructively. Even a behavioral semantics,
which looks constructive, really includes axioms for fairness. A behavioral
semantics defines the meaning of a fair cobegin in terms of fair interleaving.
The definition of a fair interleaving of two behaviors goes something like this:

Construct all interleavings and then throw away the ones that
do not satisfy the fairness condition.

This is remarkably similar to the definition of the set of behaviors obtained
from a set of actions and a set of constraints, which can be expressed as:

Construct all behaviors generated by the set of actions and then
throw away those that do not satisfy the constraints.

One might argue that fair interleaving is a simple, basic concept, and
I have given a particularly jaundiced expression of it. However, there are
many different fairness constraints one might want to define, each of which
would require a different definition of fair interleaving. For example, consider
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two coin-flipping processes, one with the single action head and the other
with two actions: tail and coin lost. The first process generates only the
sequence of all heads, the second process generates either a sequence of all
tails or a finite string of tails followed by a sequence of coin lost actions.
The behaviors resulting from executing the two processes concurrently are
defined to consist of all possible fair sequences of heads and tails plus all
sequences consisting of a finite number of heads and tails followed by nothing
but coin lost actions.

This is a perfectly reasonable example, which the reader may find more
familiar if he replaces coin lost by abort program. A behavioral semantics for
this way of combining processes would require a more complicated definition
of fair interleaving, and a formal statement of this definition would look a
lot like a temporal logic axiom. Fair interleaving is not a simple concept.
One particular type of fair interleaving has been used so commonly that we
tend to take it for granted and forget that we have never seen a constructive
definition of it.

Fairness does not appear to be a constructive concept. One specifies
fairness by adding axioms to exclude unfair behaviors rather than by explic-
itly constructing only the fair ones. Infinite objects, such as behaviors, are
constructed as limits of finite approximations—a method often described as
“denotational”. This does not work with fairness because there exist se-
quences of fair behaviors whose limits are unfair—for example, let σ1, σ2, . . .
be the sequence of coint-flipping behaviors in which all actions of σn are
heads, except for every 2nth action, which is a tail. Each σn is fair, but the
limit as n goes to infinity is the behavior having only heads, which is unfair.

The topological approach of [2] solves this problem by considering only
convergent sequences and defining a topology in which sequences like the
above diverge. However, one might view this approach as:

Construct all sequences obtainable from the actions and throw
away those that do not converge.

This looks suspiciously like the more overtly axiomatic approach. The whole
distinction between constructive and axiomatic methods is probably illusory,
disappearing when methods are examined closely enough.

10



2.4 Programs and Implementations

2.4.1 Correctness of an Implementation

One question that a semantics of a programming language should answer is:
What does it mean for a compiler to be correct? Given a program Π in the
high-level language, the compiler transforms it into a program π in some
lower-level language. Correctness of the compiler means that π is a correct
implementation of Π, but what does that mean? To speak of correctness,
we must have formal semantics for both the high-level and the low-level
languages, so M[[Π]] and M[[π]] are defined. However, this is not enough to
determine what it means for M[[π]] to represent a correct implementation of
M[[Π]].

Consider the case of sequential programs, in which the semantics of a
program is a relation on the set of program states, the pair (s, t) being in
the relation M[[Π]] if and only if it is possible for program Π to start in state
s and terminate in state t. In this case, M[[Π]] and M[[π]] are relations on
two different sets of states. The states of Π specify the values of program
variables like x and y; the states of π might specify the values of machine
registers like memory location 3124 or the program counter. Correct imple-
mentation means that there is a correspondence between the sets of states
of Π and π such that, under this correspondence, every possible execution
of π is a possible execution of Π.

More formally, to establish a correspondence between the semantics of
the two sequential programs, we must define a mapping F from the states
of π to the states of Π. For example, suppose the variable x in Π of type
integer is implemented in π as a two-byte integer stored in bytes 3124 and
3125 of memory. If, in a state s of π, bytes 3124 and 3125 have the values
12 and 97, then the value of x in the state F (s) of Π is 12 × 256 + 97. In
general, correctness of the implementation means that for each pair (s, t) in
M[[π]], the pair (F (s), F (t)) must be in M[[Π]].

What about concurrent programs? As we have seen, the meaning of
a concurrent program must be expressed in terms of its behavior—either
directly, with a behavioral semantics, or indirectly with axioms about its
behavior. Let us therefore consider first a behavioral semantics, in which
M[[Π]] and M[[π]] are sets of behaviors. Intuitively, π is a correct implemen-
tation of Π if every possible behavior of π represents a possible behavior of
Π. We therefore need some way of interpreting behaviors of π as possible
behaviors of Π—that is a mapping F such that for any behavior σ in M[[Π]],
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F (σ) is a sequence of states and actions of Π. We can then say that π is a
correct implementation of Π if, for every σ in M[[π]], F (σ) is in M[[Π]].

In defining this mapping F , we are faced by the problem that Π and π
may have different grains of atomicity. An atomic operation of Π may be
implemented by a sequence of 42 atomic operations of π. For example, the
atomic operation

〈x := x+ 1 〉

of Π might be implemented in π by 42 machine-language operations. More-
over, interleaved among these 42 atomic operations of π might be other
machine-language operations that belong to the implementation of an oper-
ation from a different process of Π. It would therefore seem that the mapping
F must be quite complicated, taking sets of actions into single actions.

There is very simple solution to this problem—we require that to every
action of π there correspond a single action of Π. The execution of a single
atomic operation of Π might therefore be represented by 42 actions in a
behavior in M[[Π]]. The first 41 of these actions will be “stuttering” actions
that do not change the state of Π; the 42nd will do all the work. This makes
it conceptually very easy to define the mapping F from behaviors of π to
behaviors of Π. As in the sequential case, there must be a mapping F from
states of π to states of Π. We also assume that F maps actions of π to
actions of Π—for example, every machine-language instruction executed by
π corresponds to the execution of some atomic operation of Π.2 To extend
F to a mapping on behaviors, if σ is the behavior

s0
α1−→ s1

α2−→ · · ·

of π, we define F (σ) to be the behavior

F (s0)
F (α1)−→ F (s1)

F (α2)−→ · · ·

The implementation is correct if, for every behavior σ of M[[π]], F (σ) is a
behavior in M[[Π]].

This seems nice in theory, but how can it be achieved in practice? The
first 41 machine-language operations in the implementation of the atomic

2A single machine-language instruction could actually be used in the implementation
of several atomic actions of Π—for example, if it were part of a subroutine called during
the execution of several different statements of Π. The mapping F should therefore take
state, action pairs into actions, so the action αi of π is mapped into the action F (si−1, αi)
of Π. In other words, the state of π determines which atomic statement of Π is being
executed by the execution of a machine-language statement.
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assignment must change the state in such a way that they these changes are
invisible when viewed at the higher level. More precisely, the 41 intermediate
states of the computation must all be mapped by F into the same state as
the starting state. How is this possible?

A complete answer to this question is beyond the scope of this paper. The
trick lies in the definition of F , which must “unscramble” the intermediate
states in the appropriate way. I will not explain here how it is done. I
will only mention that, while it sounds like magic, it in fact is a simple
extension of the basic idea of invariance that underlies most concurrent
program verification. An explanation and examples can be found in [6] and
[8].

I won’t consider the problem of compiler correctness. The purpose of
this discussion is to point out that in order to permit a simple definition
of correctness of an implementation, I cannot define a semantics in which
the execution of an atomic program statement is always represented as a
single atomic action. I must allow “stuttering” actions. In the action-axiom
semantics, the specification of an action α must allow a finite series of null
transitions s α−→ s as well as the final action s α−→ t that “does the work”.

I have described correctness of an implementation in terms of a behav-
ioral semantics, where M[[Π]] is a set of behaviors. In an action-axiom
semantics, the meaning M[[Π]] of a program Π is a set of axioms that deter-
mines the set of possible behaviors. Section 5.7 explains how this concept
of correctness is translated into a relation between the sets of axioms M[[Π]]
and M[[π]]. The only observation I will make here is that the axioms of
M[[Π]] must permit stuttering actions. More precisely, these axioms should
not be able to distinguish stuttering; if an axiom is true for a behavior σ,
then it should also be true for the behavior obtained from σ by adding stut-
tering actions. This will be guaranteed by using a temporal logic in which
no formula can distinguish stuttering—a temporal logic with no “next-time”
operator.

2.4.2 The Interface

The semantics of a program is traditionally defined by describing how it
affects the values of variables. However, program variables are internal to
the program; all that a user sees is what he types into the program and what
the program types out to him. A semantics of a program should describe
its input and output, not just how it affects internal objects like variables.

Given the machine-dependence of most input and output, an explicit
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semantics for input and output seems like a useless exercise. Instead, ob-
serve that input and output can be representend by variables. A terminal
screen can be represented as a Boolean array, each element representing the
presence or absence of light at one point on the screen. Keyboard input
can be simulated through a variable whose value represents the sequence of
characters that have been typed but not yet processed. I will use the term
interface variables to describe variables that represent input and output.

In general, an interface variable describes the interaction between the
program and its environment. They are global or free variables, in contrast
to the local or bound variables that are declared in ordinary program dec-
larations. For example, variables declared in a Pascal var declaration are
local.

Let us again consider the mapping F , introduced above to define what
it means for a lower-level program π to be correct implementation of a
higher-level program Π. Recall that F describes how the variables of Π are
implemented in terms of the “variables” of π—the machine registers, if π is
a machine-language program. We really don’t care how the local variables
of Π are implemented, since they are not externally visible. The compiler is
free to implement local variables any way it wishes.

The compiler does not have such freedom in its implementation of in-
terface variables. The implementation of the interface variables must be
defined a priori if the program is to interact with its environment in a use-
ful way. For example, suppose that the terminal screen is represented by
a Boolean array. The semantics of the program Π would provide no infor-
mation about real output if the compiler could define the array elements to
represent completely arbitrarily points on the screen—or to represent the
values of arbitrary one-bit registers in the machine.

I have considered the implementation of the states of Π in terms of states
of π, but what about the implementation of actions? Just as there are local
and interface state functions, there are internal and external actions. Most
actions in a program behavior are internal, being caused by program execu-
tion. However, some actions represent operations external to the program—
for example, the actions that represent the entering of an input character.
The semantics of Π does not distinguish this operation, which changes the
value of the interface variable representing the input buffer, from program
operations that change the value of variables—for example, the program op-
eration that removes a character from the input buffer. The compiler is free
to implement internal actions of Π by any internal actions of π. However,
the external actions of Π must be implemented by fixed actions of π, which
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may be internal or external. For example, the sequence of actions of Π that
add a character to the input buffer may be implemented by a sequence of
actions external to π, representing external operations that put the charac-
ter into an input register and actions of π that move the character from the
input register into the memory registers that implement the input buffer.
The compiler would be of little use if it could implement the operation of
typing a character, defined in the semantics of Π simply as an operation that
changes the variable representing the input buffer, as an internal operation
of π that adds a randomly chosen character to the buffer.

Thus, the representation of local variables and internal actions of Π
by F may be arbitrary, but the representation of interface variables and
external actions must be fixed. The meaning M[[Π]] of Π can be defined in a
completely machine-independent fashion. The machine dependency, which
exists for any real compiler, is contained in the details of how interface
variables and external actions are to be implemented.

Thus far, I have been talking only about implementing a complete pro-
gram Π. We should consider the problem of implementing a single statement
S. In this case, all the global (undeclared) variables of S must be regarded
as interface variables, and their implementations must be fixed a priori. For
example, if statements S and T were to be implemented independently, their
implementations could be combined to implement S;T only if a variable x
common to both were implemented as the same set of machine registers.

Of course, one is seldom interested in implementing a single statement
of a program. These considerations would apply to a language that allows
separate compilation of components such as subroutines. I will not consider
the problem of separate compilation. My purpose in discussing implemen-
tation of individual statements is to point out that the concept of global
and local variables occurs at all levels of a program. Variables global to a
statement S may be local to a larger statement containing S.
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3 The Programming Language

The goal of this paper is to explain how the semantics of any programming
language can be defined, and not to give a complete semantics for aparticular
language. However, to show how the formalism works, it is helpful to define
rigorously the semantics of some language. I will therefore formally define
the semantics of a simple language called L, and will indicate informally how
the semantics of language primitives other than those in L can defined.

The language L contains an atomic assignment statement—one whose
execution is an indivisible, atomic action. L has the usual sequential control
structures: concatenation ( ; ), if and while statements, plus a fair cobegin.
The tests in while and if statements are also taken to be atomic. L has a
new statement that declares a local variable, so

new x : integer in S ni

declares x to be a local variable of type integer whose scope consists of the
statement S. The new statement has an optional init clause to specify the
initial value, so

new x : integer init 2 ∗ x in S ni

declares that the initial value of x in S is twice the value of the variable
x whose scope includes the new statement. The assignment of the initial
value to x is assumed to be an atomic action. The new statement also has
an optional alias clause that is used to declare that the new variable is the
alias for something else. For example,

new x : integer alias y in S ni

declares x to be an alias for y.
It may seem strange to introduce aliasing—a concept usually ignored

in simple examples—in the language L. Aliasing is an important concept
because it underlies the semantics of procedure calls. If proc is a procedure
defined with single integer-valued a call-by-name parameter param, then the
call proc(arg) can be simulated by the statement

new param : integer alias arg in S ni

where S is the body of proc. (Call by value and call by reference can be
simulated with call by name through the use of auxiliary variables.)
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For reasons that will be clear later, the concept of aliasing is central
to our semantics, and we will need to understand a more general kind of
aliasing than real programming languages usually allow. In particular, L
will allow a variable to be aliased to an expression. To understand what
that means, consider the declaration

new f : real alias 9 ∗ c/5 + 32 in S ni

In this case, we can think of f and c as representing a single temperature,
where f is its value in degrees Farenheit and c is its value in degrees Celsius.
The two assignment statements f := 32 and c := 0 have exactly the same
effect; executing either one changes the value of f to 32 and the value of c
to zero.

As another example, assume a type gaussian which represents a Gaus-
sian integer—a number of the form m+n

√
−1, where m and n are integers.

If x and y are variables of type integer, then

new z : gaussian alias x+ y ∗
√
−1 in S ni

defines z to be a variable of type gaussian whose real part is aliased to x
and whose imaginary part is aliased to y. Assigning a value to z in S also
assigns values to x and y so that the relation

z = x+ y ∗
√
−1

holds throughout the execution of S. Similarly, changing the value of x in
S also changes the value of z.

In the examples of alias clauses given so far, assigning a value to any
variable produces a well-defined result. However, this need not be the case.
Inside the body S of the statement

new c : integer alias a+ b in S ni

assigning a value to a or b changes the value of c in the obvious way, but
what is the result of assigning a value to c? I define an assignment to c to
be a nondeterministic statement that can change the values of a and b in
any way such that a+ b equals the new value of c.

However, I will assume that the aliasing relations are such that they
can always be maintained by the proper choice of values. More precisely, a
program is considered illegal if its execution would force the aliasing relations
to be violated. For example, the statement

new b : integer alias
√
a in S ni
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is illegal if, at any time during its execution, the value of a is not a perfect
square.

This approach to aliasing is similar to the one I will take for type
constraints—namely, a program is illegal if its execution would force a type
violation. For example, the statement

new b : boolean init ¬c in . . .

is illegal in any context in which c is not declared to be of type boolean.
While typing consistency is easy for a compiler to enforce in language

L, the consistency of aliasing relations can be determined at compile time
only if the kind of expression that can appear in an alias is restricted in
some way. In fact, some restriction is obviously necessary if the compiler is
to have any chance at compiling the code. Those restrictions are irrelevant
to our semantics, so they are not discussed.

The basic syntax of L is given by the syntax diagrams in Figure 1. I
will not bother to give a formal syntax for identifiers. The only types that I
will use in L are integer and boolean. Expressions are assumed to be the
usual ones constructed from variable names and the ordinary operations on
integers and booleans—for example, an expression like

(x ∗ y + z = 17) ⊃ (x > y ∨ ¬b)

I will enclose if and while tests, assignment statements, and the init clause
of a new statement in angle brackets to emphasize their atomicity.

In addition to the usual information, the syntax diagrams of Figure 1
also have labels attached to the nonterminal components. These labels are
called primitive selectors. A primitive selector identifies a component of a
compound statement—for example, the primitive selector then identifies the
“then-clause” of an if statement. The “. . .” label in the specifications of the
cobegin indicates that the primitive selectors for the clauses of a cobegin
are integers, and likewise for a list of statements.

In more formal terms, the primitive selectors label the edges in the parse
tree of a statement or program.3 A selector for a statement S is a sequence
of primitive selectors that represents a path starting from the root in S’s
parse tree. A selector identifies a component of a program or statement. For
example, the selector else, body, 2 identifies the substatement 〈 x := x+ 4 〉
in the following statement:

3Trivial nodes that have only a single son are eliminated from the parse tree, which
is why there is no primitive selector associated with the first box in the syntax diagram
defining a statement.
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Figure 1: Basic syntax of language L.
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if 〈x > 0 〉
then 〈 x := x+ 1 〉
else while 〈 y > 0 〉

do 〈 y := y − 1 〉;
〈 x := x+ 4 〉

od;
〈 y := 17 〉

fi

More formally, given a program or statement S, a substatement of S consists
of a pair S, γ, where γ is a selector for S. A substatement of S is, when
viewed by itself, a statement. I will often write something like: “T is the
substatement S, γ of S.” This means that the substatement, when viewed
alone, is the same as the statement T . However, T and S, γ are formally
two different kinds of objects—one is a complete statement and the other is
part of a statement.

The null selector selects the entire statement, so “S,” denotes S viewed
as a substatement of itself. Since “S,” looks rather strange, I will simply
write S to denote both the entire statement S and that statement viewed
as a substatement of itself.
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4 States and Actions

The meaning M[[S]] of a statement S will be a set of temporal logic axioms
defining the behaviors of S and a set of nontemporal axioms defining its set
of initial states. To give a semantics for these axioms, I must define the the
set S(S) of all possible states of S and the set A(S) of all possible actions
of S. The initial-state axioms then define a set of states—namely, the set of
all states in S(S) that satisfy those axioms; and the temporal axioms define
a set of behaviors—namely, the set of all sequences

s0
α1−→ s1

α1−→ · · ·

with si ∈ S(S) and αi ∈ A(S) that satisfy those axioms.
Intuitively, the state of a statement at some time during its execution

contains all the information needed to describe its possible behavior at future
times. To define the set S(S), we must consider what information must be
in the state of S.

4.1 Program Variables

The future behavior of a program certainly depends upon the current values
of its variables, so a state must specify the values of all program variables.
More precisely, a state in S(S) must include a mapping val from the set of
variables of S to a set of values. For the simple language L, in which all
variables are of type integer or boolean, the set of values consists of the
set Z ∪ {true , false}, where Z denotes the set of all integers.

Let S be the statement

cobegin S1 S2 coend

and suppose that S1 and S2 both contain new x statements. Each of these
statements declares a different variable, but both variables have the same
name x. Both of the variables named x may be defined at the same time,
and may have different values. To facilitate the discussion, I will use the
term identifier to denote the syntactic object constituting the name of a
variable, and the term variable to denote the variable itself. Thus, S has
two different variables having the same identifier x. This situation does not
arise in a sequential program because, at any instant during its execution,
there is at most one currently active variable for any identifier. However, it
does arise in concurrent programs and must be considered.
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To define val , we must define the value it assigns to each of the variables
of S, which requires giving different names to different variables. Assigning
unique names to variables is a nontrivial problem, since different variables
may be represented in the program by the same identifier. It is solved with
selectors. I let x(S, γ) be the name of the variable with identifier x that
is declared in a new statement whose selector in S is γ—in other words,
where γ is the path in the parse tree of S leading to the new statement.
A “global” variable with identifier x—that is, the variable denoted by an
occurrence of the identifier x outside the scope of any new x statement—is
given the name x().

I consider x() to be a variable of any statement S, even if the identifier
x never appears in S. For example, suppose S is the statement:

〈 y := y + 1 〉;
new z : in 〈 z := y 〉 ni

Then the variables of S consist of the single “bound” variable z(S, 2 ) plus
the infinite set of “free” variables x(), y(), z(), . . ., only one of which actually
appears in S. Even though the variable x() does not appear in S, it may
appear in other statements in the complete program. The correctness of a
program containing

cobegin S T coend

may depend upon the obvious fact that S does not change the value of x().
The value of x() is included as part of S’s state so we can say formally that
S does not change that value.

To summarize, defining the set of states S(S) of S requires defining the
set of variables of S. The variables of S consist of the following:

• For any new x statement of S with selector γ, the variable named
“x(S, γ)”.

• For any identifier x, the variable named “x()”.

The mapping val assigns a value to each of these variables.
The names of variables come up quite often when talking about pro-

grams. If S is a hundred page program, then the name x(S, γ) takes up
one hundred pages. Writing even the simplest statements about S would
therefore require quite a bit of paper. Such a practical consideration is as
irrelevant for the semantics of a programming language as is the cost of
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tape for the theory of Turing-machine computability. However, it does pose
a problem in writing examples, since a simple assertion about a five-line
program might take one or two pages. The solution is, of course, to give
names to statements and substatements. I will use the ordinary labeling
convention to do this. For example, consider the program.

s: if 〈 x > 0 〉
then 〈x := x+ 1 〉
else t: new y

in 〈 y := x 〉;
〈 x := y + 2 〉

ni;
〈 z := 17 〉

fi

The variable y declared by the new y statement will be called simply y(t of s).
However, you should remember that its complete formal name is:

y




if〈x > 0 〉
then . . .
else . . .

fi

, else, 1




4.2 Control Variables

There is more to a state than the values of program variables. To determine
the future behavior at some point during the execution of the statement

u: begin s: 〈 x := x+ 1 〉;
t: 〈 y := y + 1 〉

end

we need to know whether control is at the beginning of statement s, at
the beginning of statement t, or at the end of statment t. Since the state
must determine the statement’s possible future behavior, it must contain
this control information.

I will describe this control information in terms of the boolean-valued
control variables at , in, and after. For any substatement S, γ, there are
control variables at(S, γ), in(S, γ), and after(S, γ), where the values of these
variables equal true when

at(S, γ): control is at the beginning of substatement S, γ
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in(S, γ): control is at the beginning of or inside S, γ, but not at its exit
point. Note that at(S, γ) ⊃ in(S, γ) is always true.

after (S, γ): control is at the exit point of S, γ—that is, at the point just
after its execution is completed.

In addition to complete substatements, the at , in, and after variables are
also defined for certain parts of statements that denote atomic operations—
namely, the test of an if or while statement and the init clause of a new
statement (if it has one). Also, the control variables at(Π), in(Π), and
after (Π) are defined for a complete program Π.

The statement u above thus has eight control variables: at(u), in(u),
after (u), at(s of u), in(s of u), after(s of u), at(t of u), in(t of u), and
after (t of u). They are not all independent, however, since we have

at(u) = at(s of u)
after(u) = after(t of u)

in(u) = in(s of u) ∧ in(t of u)
after(s of u) = at(t of u) (1)

These equations represent aliasing relations between the control variables.
The study of these aliasing relations is deferred until later.

The mapping val that assigns values to variables must assign values to
the control variables as well as the ordinary program variables. Of course,
we must assume that at, in, and after are not identifiers, so they cannot be
used for ordinary program variables.

Variables like at , in, and after are sometimes called “dummy” or “ghost”
variables. This seems to imply that they are not as real as ordinary pro-
gram variables. Indeed, I have found that many computer scientists regard
their use as somewhat distasteful—perhaps even immoral. Control vari-
ables are every bit as real as ordinary program variables. They differ from
program variables only in that the programmer does not explicitly write
them. Every programmer knows that he can often simplify a program’s
control structure—that is, eliminate control variables—by adding program
variables; and, conversely, he can eliminate program variables by using a
more complex control structure—that is, by adding control variables. A
compiler handles both kinds of variables in very much the same way; in the
compiled version of a program, the values of program variables and control
variables are both encoded in terms of the contents of memory registers and
program-location counters.
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I therefore prefer to use the term implicit variables for variables other
than ordinary program variables. Some languages employ other implicit
variables besides control variables. For example, a language that provides
a buffered message-passing primitive will contain implicit variables whose
values describe the set of messages in the queues.

Ordinary program variables may be free (undeclared), like x(), or bound
(declared), like x(S, γ). I have written all control variables as bound vari-
ables, but are they really bound? Remember that the free variables are
interface variables and bound variables are internal ones. In order to use a
compiled version of a statement S, one must know where its starting and
ending control points are, but need know nothing of its internal control
points. This suggests that at(S), in(S), and after(S) are interface variables
for statement S, while, for any non-null selector γ, at(S, γ), in(S, γ), and
after (S, γ) are internal variables. The control variables at(S), in(S), and
after (S) are best viewed as undeclared and might better be written as at(),
in(), and after(). (They are not written that way both for historical reasons
and because it would tend to be confusing.) These variables are implicitly
declared, and aliased to other control variables, when S is written as part
of a larger statement.

4.3 Are There Other State Components?

Does a mapping val from variable names of S values tell us everything we
need to know about the current state of S in order to determine its future
behavior? At first glance, it might seem that it doesn’t. For example, what
is the effect of executing

s: x := y + 1

when the value of y is 17? The answer depends upon the type of x. If x is
of type integer, then the execution sets x to 18. However, if x is of type
boolean, then executing s produces an error.

Moreover, suppose x is of type integer and y = 17, so executing s changes
the value of x to 18. What does this execution do to the value of y? If y
is not aliased to x, then its value is left unchanged. However, if s appears
inside the statement

new y : integer alias x in . . . ni

then the value of y is also changed to 18.
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It would therefore seem that we should add types and aliasing informa-
tion to the state. In fact, we needn’t. The reason is that, in language L,
types and aliasing relations are static properties; they do not change during
execution of the program. Executing an action of L does not change the type
of a variable or any aliasing relations. (We sometimes think of executing a
new statement by first executing its declarations, but that makes no sense
because declarations are not actions.)

In a more complex language, types and aliasing relations can be dy-
namic. For example, in Pascal, if x is a variable of type pointer, then the
aliasing relation “x↑ is aliased to y” is dynamic, since its truth is changed
by assigning a new value to x. In these cases, it may be necessary to add
types and aliasing information to the state. However, in most languages,
aliasing relations among control variables will be static, and can be handled
the same way as in language L.

4.4 Renaming

For any statement S, let V(S) denote the set of names of variables of S. A
state val of S(S) is a mapping that assigns a value to each variable name in
V(S). For a compositional semantics, we must be able to derive information
about the states of S from information about the states of its component
substatements. This requires the fundamental concept of a renaming map-
ping.

Let statement T be the substatement S, γ of S. Every variable of T is a
variable of S, except that it may be known by a different name. I will define
ρS,γ to be the mapping on names such that if v is the name of a variable in
T , then ρS,γ(v) is the name of the corresponding variable in S. Hence,

ρS,γ : V(T ) → V(S)

The variable x(T, µ), which is the variable of T with identifier x that is
declared in the new statement T, µ, is called by the name x(S, γ, µ) when
it is regarded as a variable of S. Thus,

ρS,γ(x(T, µ)) = x(S, γ, µ)

A variable that has the name x() as a variable in T is undeclared in T .
If it is undeclared in S, then it has the same name as a variable of S, so
ρS,γ(x()) = x(). However, if it is declared in the new x statement S, ν, so
ν is a prefix of γ, then ρS,γ(x()) = x(S, ν).
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The renaming mappings compose in the natural way. If T is the sub-
statement S, γ of S, then for any substatement T, δ of T , we have

ρS,γ,δ = ρS,γ ◦ ρT,δ (2)

By taking this equality to be a definition, we can formally define ρS,γ for any
selector γ by defining it for all primitive selectors. This formal definition
should be obvious and is omitted.

Let T be the substatement S, γ of S. A state val of S(S) is a mapping
from V(S) to values, and ρS,γ is a mapping from V(T ) to V(S). The com-
position val ◦ ρS,γ is therefore a mapping from from V(T ) to values, which
is a state in S(T ). Thus, the mapping ρS,γ induces a mapping

ρ∗S,γ : S(S) → S(T )

from states of S to states of T , defined by

ρ∗S,γ(val ) def= val ◦ ρS,γ (3)

for any val ∈ S(S).4

It follows easily from (2) that the mappings ρ∗S,γ satisfy the following
“adjoint” form of (2).

ρ∗S,γ,δ = ρ∗T,δ ◦ ρ∗S,γ (4)

4.5 Actions

The states of S are defined using the set V(S) of variable names. The actions
of S will be defined in terms of a set A(S) of atomic-action names of S.

The atomic actions of S are the components written in angle brackets.
In the language L, there are just four kinds of atomic actions: assignment
statements, if tests, while tests, and init clauses (of new statements). (I
assume that the initial-value assignment of the new statement is performed
as a single atomic action.) The set A(S) of atomic-action names of S consists
of the set of all components S, γ of S such that γ is a selector for one of the
following: an assignment statement, the test component of an if statement,
the test component of a while statement, or the init component of a new
statement. For reasons having to do with defining compiler correctness that

4The renaming mapping ρ∗
S,γ has no connection with the mapping F discussed in

Section 2.4.1 between the states of an implementation and the states of a higher-level
program.
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are irrelevant to the remainder of this paper, if Π is a complete program,
then A(Π) is defined to contain one additional action name: the name λ,
which is the name of a null action.5

Since action names are just the names of substatements, the renaming
mappings can be applied to them in the usual way. Thus, if T is the sub-
statement S, γ of S, then

ρS,γ : A(T ) → A(S)

is defined in the obvious way—namely, ρS,γ(T, µ) = S, γ, µ.

4.6 States and Actions: A Formal Summary

For every statement S in the language L, I have defined the following:

• A set V(S) of variable names, consisting of:

– all program-variable names of the form x() for every identifier x
and of the form x(S, γ), where γ is the selector in S of a new x
statement.

– all control-variable names of the form at(S, γ), in(S, γ), and after(S, γ),
for all substatements S, γ of S.

• The set S(S) of states of S, which is defined defined to be the set of
all mappings

val : V(S) → Z ∪ {true, false}

• The set A(S) of atomic-action names of S, defined to be the set of all
components of the form S, γ where S, γ is a while or if test, an atomic
assignment, or an init clause of a new statement.

5The following example shows why the λ action is needed. Let S be the statement

x := x2

of program Π, and consider the 42 steps in the machine-language implementation π of Π
that execute statement S. As mentioned earlier, 41 of them will be stuttering actions that
leave the value of x unchanged. Before the first 41 steps have been executed, π’s state
may no longer have the information needed to deduce the initial value of x. For example,
after 20 steps, the state of π may show that x will wind up with the value 4, but may not
show whether it started equal to 2 or −2. This means that the single nonstuttering action
must be among the first 20 steps, and the remaining steps must be stuttering actions of
the statement following S. If S is the last statement of Π, then these remaining steps are
λ actions.
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• If T is the substatement S, γ of S, the renaming mappings

ρS,γ : V(T ) → V(S)
ρ∗S,γ : S(S) → S(T )ρS,γ : A(T ) → A(S)

These renaming mappings satisfy (2) and (4).
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5 Temporal Logic

In the action-axiom semantics, I use temporal logic to express the con-
straints describing when an action must eventually occur. Temporal logic,
introduced into the study of concurrent programs by Pnueli [13], is now
quite familiar. I will therefore only sketch the logic that I will need, and
refer the reader to [5] and the appendix of [6] for more details.

5.1 Predicates

The building-blocks of our temporal logic are predicates. For any program
statement S, I define a set of predicates. There are two kinds of predicates:
state predicates and action predicates.

A state predicate of S is just an expression constructed from variable
names in V(S), including control variable names. For example,

at(S, γ) ∨ ¬b() ⊃ x(S, µ) = y() + 1

I will also include as predicates such expressions as v ∈ Z, where v is a
variable name and Z denotes the set of integers.

Since a state in S(S) assigns a value to all variable names in V(S), it
assigns a value to a predicate. For any state s of S(S), I denote by s |= P
the value assigned to the state predicate P by the state s.

A predicate is normally a boolean-valued expression, but I have not
restricted predicates in this way; y()+17 is just as much a predicate as ¬b().
The reason is that there is no way of knowing whether an expression has a
boolean value without knowing the types of all its variables, and the types
of undeclared variables are not known. We must have rules for computing
the value of y() + 17 even when the value of y() is true. I will handle this
problem by adding an additional undefined value, and define true + 17 to
equal undefined.

The presence of an undefined value means that we must be careful when
manipulating expressions, since the usual rules of arithmetic and logic don’t
hold. For example, x+1 > x does not equal true if x is a boolean. However,
x ∈ Z ⊃ (x+ 1 > x) should always have the value true.

It is necessary to allow predicates to have logical value variables (not to
be confused with program and control variables) and quantifiers. Thus,

∀η : x() + χ > y(S, γ) + η

is a predicate containing the free logical value variable χ, the bound logical
value variable η, and the two program variables x() and y(S, γ) in V(S). For
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any predicate P and state s of S(S), s |= P is a formula involving values
and value variables.

An action predicate of S is an expression of the form Act(S, γ), where
S, γ is a substatement of S. The action predicate Act(S, γ) defines a boolean-
valued function on the set A(S) that has the value true on an action-name
α if and only if α is the name of an atomic action of the substatement S, γ.
I write α |= Act(S, γ) to denote the value of Act(S, γ) on α. Remembering
that atomic-action names are just components S, µ of S, we see that S, µ |=
Act(S, γ) equals true if and only if µ = γ, ν for some ν.

Let PR(S) denote the set of all state and action predicates of S. Since
state predicates are built out of variable names and action predicates are all
of the form Act(S, γ), the renaming mappings induce mappings on predicates
in the obvious way. If T is the substatement S, γ of S, then

ρS,γ : PR(T ) → PR(S)

These renaming mappings satisfy the expected relation (2). Moreover, if P
is a tautotology of PR(T ), then ρS,γ is a tautology of PR(S).

5.2 The Unary Temporal Operators

I will begin with the simpler form of temporal logic, using only unary tem-
poral operators. The formulas of this logic are constructed from predicates,
the usual logical operations, and the two unary temporal operators ✸ and
✷. More precisely, for any statement S, the set TL(S) of temporal logic for-
mulas of S consists of all formulas constructed from PR(S) with the logical
operators and the unary operators ✸ and ✷.

Just as predicates are true or false for states, temporal logic formulas are
true or false for behaviors. Let B(S) denote the set of all finite and infinite
sequences of the form

s0
α1−→ s1

α2−→ · · · (5)

where the si are states in S(S) and the αi are atomic-action names in A(S).
We give a semantics for temporal logic formulas by defining σ |= A for any
behavior σ in B(S) and any temporal logic formula A in TL(S).

If σ is the sequence (5), for any nonnegative integer n let σ+n be the
sequence

sn
αn+1−→ sn+1

αn+2−→ · · ·
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unless σ is finite and n is less than the length m of σ, in which case σ+n

is defined to be the sequence consisting of the single state sm. We define
σ |= A inductively as follows.

• If A is a state predicate, then σ |= A
def= s0 |= A. (The value of a

state predicate is its value in the starting state.)

• If A is an action predicate, then σ |= A
def= α1 |= A. (The value of an

action predicate is its value for the first action.) However, if σ consists
of the single state s0 with no actions, then σ |= A

def= false .

• The logical connectives “distribute” in the obvious way. For example,

σ |= (A ∨B) def= (σ |= A) ∨ (σ |= B)

• The temporal operators are defined by

σ |= ✷A
def= ∀n : σ+n |= A

σ |= ✸A
def= ∃n : σ+n |= A

Note that ✸ is the dual of ✷—that is, ✷A ≡ ¬✸¬A for any A. The
operator ❀ is defined by

A ❀ B
def= ✷(A ⊃ ✸B)

Note also that ✷✸A has the intuitive meaning that A is true infinitely often.

5.3 The Binary Temporal Operators

While the unary temporal operator ✷, and the operators derivable from
it, are quite natural and easy to understand, they are not sufficiently ex-
pressive. We need an additional binary temporal operator. There are many
binary operators that are equivalent in the sense that one can be represented
by another. My favorite one, introduced in [6], is the operator ≤ , whose
semantics is defined as follows.

σ |= (A≤ B) def= ∀n : (∀m ≤ n : σ+m |= A) ⊃ σ+n |= B

Intuitively, A≤ B means that B holds for at least as long as A does—that
is, A holds for a length of time ≤ the length of time that B holds, so it
represents a “temporal ≤”.
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I will extend the definition of TL(S) to include temporal formulas con-
structed with the operator ≤ as well as ✷ and ✸. The unary operators can
be defined in terms of ≤ ; for example, ✷A ≡ true ≤ A. Thus, the single
operator ≤ is all we need.

The operator < is defined in terms of ≤ by

A< B
def= (A ∨ ¬B) ≤ B

A little thought shows that

σ |= (A< B) def= ∀n : (∀m < n : σ+m |= A) ⊃ σ+n |= B

so A< B means that A holds for a length of time < the length of time that
B holds. The operators < and ≤ obey the same transitivity relations that
< and ≤ do. For example,

(A≤ B) ∧ (B < C) ⊃ (A< C)

I will use ≤ to define a new type of temporal formula that is useful for
specifying actions. For any action name α ∈ A(S) and any predicates P and
Q, I define {P}〈α〉{Q} to be the temporal logic formula that means that
executing α starting in a state in which P is true can produce a state in
which Q is true. (It is just the ordinary Hoare triple for the atomic action α,
viewed as a temporal formula.) However, we must allow stuttering actions
of α which do nothing, and hence leave P true. The formal definition is

{P}〈α〉{Q} def= P ⊃ (Act(α) < P ∨Q)

Intuitively, σ |= {P}〈α〉{Q} asserts that if, P is true in the initial state of
σ and the first one or more actions of σ are α actions, then P ∨Q remains
true through the first state before the first action that is not an α action.
If Q ⊃ ¬Act(α) holds, which is the only case in which this is formula will
be used, then Q will be true only after the last of these initial α actions.
Hence, it asserts that α can perform a series of stuttering actions leaving P
true, and can also “finish” by making Q true.

The formula {P}〈α〉{Q} is used to describe how an action can change the
state. It is also necessary to state that an action does not change something.

I therefore introduce the formula e
α
#←, which asserts that the action α does

not change the value of the expression e. It is defined by

e
α
#← def= ∀η : (e = η) ⊃ Act(α)< (e = η)
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5.4 Renaming

Having already extended the renaming mappings to predicates, it is easy to
extend them to temporal logic formulas constructed from predicates. For
example, for any variable names v and w, we have

ρS,γ(✷(v ∨ ✸w)) = ✷(ρS,γ(v) ∨ ✸ρS,γ(w))

Thus, if T is the substatement S, γ of S,

ρS,γ : TL(T ) → TL(S)

The renaming mappings do not induce any mappings on behaviors. This
is because they map states and atomic-action names in opposite directions:

ρ∗S,γ : S(S) → S(T )
ρS,γ : A(T ) → A(S)

Since a behavior consists of an alternating sequence of states and action
names, the renaming mappings do not work on behaviors. This may be
the source of the difficulties encountered in trying to give a behavioral
semantics—one in which M[[S]] is a set of behaviors—to concurrent pro-
gramming languages

5.5 Temporal Logic as Semantics

For each statement S of the programming language, I have defined a set
TL(S) of temporal logic formulas, and a notion of semantic validity |= for
these formulas. In an action-axiom semantics, the meaning of S includes a
set of temporal logic formulas that must be satisfied by the behaviors of S.
This set of formulas is specified by giving axioms and inference rules, which
means that we have a logical system and a notion of a provable formula. I
will not discuss provability, and will restrict myself to validity.

I have defined σ |= A for a behavior σ and a temporal logic formula A,
but I have not defined the concept |= A—validity of a formula. For any
formula A ∈ TL(S), one usually defines |= A to equal true if and only if
σ |= A equals true for all behaviors σ in B(S).

The formulas A for which |= A is true are those that are true for all
sequences of states and actions from S, so their truth rests only on the
properties of S’s sets of states and actions, not on properties of S’s dynamic
behavior—for example, the formula ✷(x() ∈ Z ⊃ (x2 ≥ x)). A formula A
is said to valid for all behaviors in some subset Σ of B(S), written |=Σ A, if
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σ |= A = true for all σ ∈ Σ. The valid formulas for a program S are those
that are valid for the set of all behaviors of S.

Note that |=Σ false is true if and only if Σ is the empty set. The semantics
I give can produce contradictory sets of axioms for a program—axioms from
which one can deduce the formula false . This is not an inconsistency in the
system; rather it is an indication that there are no legal behaviors of the
program, so the program is illegal. This will be the case, for example, if a
program assigns a boolean value to a variable of type integer.

I consider the notion |=Σ of semantic validity only for sets Σ having the
property that for any σ ∈ Σ and any n ≥ 0: σ+n ∈ Σ. Intuitively, this
means that the temporal logic does not assume any preferred starting state.
Formally, this means that the truth of |= A implies the truth of |= ✷A—a
rule of inference known to logicians as the Necessitation Rule. This rule
implies that whenever we give a predicate P as a temporal-logic axiom, we
are really asserting that ✷P is true.

The validity of the Necessitation Rule means that it is impossible to write
a temporal logic formula which asserts that the program is executed only in
certain starting states. Thus, one should define the semantics M[[S]] of S
to consist of both a set of temporal logic axioms that constrain the allowed
behaviors of S and a set of nontemporal axioms—that is, predicates—that
constrain the starting state. The semantic meaning M[[S]] defines the set of
behaviors of S to be the set of all behaviors σ such that:

• σ |= A for every temporal axiom A ∈ M[[S]], and

• s0 |= A for every nontemporal axiom A ∈ M[[S]], where s0 is the
starting state of σ.

However, as I will show, it is not necessary to specify any initial states for a
substatement S of a program. The only initial-state specification that must
be added is that a complete program starts at its entry point.

5.6 There Won’t Be a Next Time

An important “feature” of the temporal logic I am using is that there is no
“next time” operator. There is no way in this logic to express the concept
of the next state in the behavior. In fact, no formula in the logic can distin-
guish between two behaviors that differ only in the addition of “stuttering”
actions—that is, where an action s α−→ t in the behavior is replaced by the
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finite sequence of actions

s
α−→ s

α−→ · · · α−→ s
α−→ t

It is the inability to distinguish stuttering that makes it easy to talk about
a lower-level program implementing a higher-level one.

5.7 Implementation Mappings

I can now continue the discussion, begun in Section 2.4, of what it means for
a lower-level program to correctly implement a higher-level one. Let Π be
the higher-level program and π be its lower-level implementation. From the
point of view of behaviors, we saw that there should be mappings F from
the states and actions of π to the states and actions of Π so that if σ is the
behavior

s0
α1−→ s1

α2−→ · · ·

of π, then F (σ), which is defined to be

F (s0)
F (α1)−→ F (s1)

F (α2)−→ · · ·

is a behavior of Π.
How are the mappings F defined? In action-axiom semantics, one never

mentions states, just state predicates—mappings from the state into a set
of Booleans. A state is determined by the values of all state predicates. To
define a mapping F : S(π) → S(Π), one defines a mapping F ∗ that maps
state predicates of Π into state predicates of π. Intuitively, F ∗ defines the
state predicates of Π in terms of the state predicates of π. For example,
F ∗(x(Π, γ) > 0) is the state predicate of π that “implements” the state
predicate x(Π, γ) > 0 of Π; in other words, it is the translation of the high-
level statement that the value of the variable x(Π, γ) is positive into a lower-
level statement involving the values of memory registers, program counters,
etc. Defining the mapping F ∗ requires describing how the variables (both
program and control variables) of Π are implemented by the “variables”
(machine registers) of π. The mappings F and F ∗ are related by

s |= F ∗(P ) ≡ F (s) |= P

for any state s in S(π) and state predicate P in PR(Π).
In a similar way, F ∗ is defined to map action predicates of Π into action

predicates of π, so F ∗ : PR(Π) → PR(π). Finding the mapping F ∗ is
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the heart of the proof that π correctly implements Π. The discussion in
Section 2.4 of the dual mapping F applies equally well to F ∗, and I will not
discuss further how F ∗ is actually constructed.

Since temporal logic formulas are constructed from predicates and tem-
poral operators, there is an obvious extension of F ∗ to a mapping from
TL(Π) to TL(π). For example,

F ∗(in(Π, ρ) < x(Π, γ) > 0) = F ∗(in(Π, ρ))< F ∗(x(Π, γ) > 0)

It follows from these definitions that for any behavior σ of π and any formula
A in TL(Π):

σ |= F ∗(A) ≡ F (σ) |= A

In terms of behaviors, π correctly implements Π if, for every possible
behavior σ of π, F (σ) is a possible behavior of Π. For simplicity, let us ignore
the initial-state specification, so the meaning M[[Π]] of Π in an action-axiom
semantics is a set of temporal logic axioms, and F (σ) is a possible behavior
of Π if and only if F (σ) |= A is true for all A ∈ M[[Π]]. But F (σ) |= A
is true if and only if σ |= F ∗(A) is, so π correctly implements Π if and
only if σ |= F ∗(A) is true for all A ∈ M[[Π]] and all behaviors σ of π. The
behaviors of π consist of the sequences satisfying all the axioms of M[[π]].
It follows from this that π correctly implements Π if, for every axiom A in
M[[Π]], F ∗(A) is implied by the axioms in M[[π]]. Thus, proving correctness
of the implementation involves deducing, from the axioms for π, the truth
of F ∗(A)—the translation of A into an assertion about π—for every axiom
A in M[[Π]].

As explained in Section 2.4, a compiler is free to implement local vari-
ables and internal actions in any fashion, but interface (global) variables
and external actions have a fixed implementation. The mapping F ∗ is de-
fined on state predicates by defining F ∗(v) in terms of the variables of π,
for every variable v of Π. The definition of F ∗(v) is arbitrary for a local
variable v, but is fixed for an interface variable. To prove the correctness of
an implementation, we are allowed to define F ∗(v) any way we like if v is a
local variable, but must use the predetermined definition if v is an interface
variable. Similar comments apply to actions.

I find it helpful to think of the semantics M[[Π]] of Π as the specifica-
tion of a lower-level implementation. When viewed this way, there is an
implicit existential quantification over the names of all local variables and
internal actions. More precisely, the specification consists of the conjunc-
tion of all the axioms in M[[Π]], with existential quantification over these
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variable and action names. The names of interface variables and external
actions represent fixed, externally defined objects.
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6 The Semantics of Language L

With these preliminaries out of the way, I can now give the semantics of
language L. This is done by defining the meaning M[[S]] of S, where S is
any statement or complete program. I define M[[S]] to consist of a set of
temporal logic axioms that specify the set of behaviors of S. As discussed
below, for a complete program Π, I will also need one nontemporal axiom—
that is, a predicate—to specify the starting state.

The basic idea behind achieving a compositional semantics is the re-
quirement that any axiom asserted about a statement T must be valid for
any statement containing T as a substatement. Of course, an axiom about
T must be renamed to become an axiom about a statement containing T .
The formal statement of this idea is:

Composition Principle: If T is substatement S, γ of S, then for
any formula A: if A ∈M[[T ]] then ρS,γA ∈M[[S, γ]].

6.1 Syntactic Predicates

I observed in Section 4.3 that there is information we need in order to define
M[[S]] that is not in the state of S—namely, type and aliasing information.
This information is not in the state because it is determined syntactically and
does not change during execution of S. Unfortunately, it may be determined
not by the syntax of S, but by the syntax of the complete program containing
S. For example, the aliasing relations defined by a new statement are not
known when defining M[[S]] for a statement S in its body.

For our simple language L, typing information can be handled by ordi-
nary axioms; the fact that a variable v is of type integer is expressed by the
requirement that the value of v always be an integer. Aliasing relations can
also be expressed by similar requirements—for example the aliasing relation
defined by

new z : gausian alias x+ y
√
−1 in . . .

is expressed by requiring that the value of z(S) always equals the value of
x() + y()

√
−1. However, the fact that z(S) is not aliased to the variable a()

cannot be expressed in this way.
The absence of aliasing relations is expressed with a new relation ⊥,

where v ⊥ w means intuitively that assigning a value to the variable named
v does not change the value of the variable named w, and vice-versa. An
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ordinary state predicate such as v = w, which asserts that the values of v
and w are equal, is true or false for a particular state. However, the truth
of the expression v ⊥ w depends only upon the syntactic structure of the
program; it is true for one state of S if and only if it is true for all states of
S.

An expression like v ⊥ w, whose value is a boolean that depends only
on the program syntax, is called a syntactic predicate. Unfortunately, if v
and w are undeclared variables of S, then the value of v ⊥ w depends upon
the syntax of the program that contains S, and its value is not determined
when we are defining M[[S]]. Thus, a syntactic predicate either has a definite
boolean value, or else has an undetermined value.

I will allow syntactic predicates to appear in a temporal logic formula
of TL(S) anywhere that an ordinary state predicate can. However, there is
no reason to write ✸(v ⊥ w), since if v ⊥ w is ever true, then it is always
true for every state of S. Formally, a syntactic predicate in a temporal logic
formula of TL(S) is viewed as a boolean constant if its value is determined
by S, and as a logical variable if its value is undetermined.

Formally, a syntactic predicate appearing in an axiom of M[[S]] is a
constant if its value is determined by S, and it is a logical variable if its
value is not determined. Thus, writing the syntactic predicate x(S, γ) ⊥
y(S, µ) is simply an “abbreviation” for either true or false, since the aliasing
relations of variables declared in S are determined. On the other hand, a
syntactic predicate such as x() ⊥ y() represents a logical variable, since
aliasing relations between undeclared variables are undetermined. Because
there is an implicit universal quantification over all free logical variables in
an axiom, an axiom containing a syntactic predicate is asserted to be true
whatever value is assigned to it.

We can apply renaming mappings to syntactic predicates in the obvious
way. Thus, if P is a syntactic predicate for T , and T is the substatement
S, γ of S, then ρS,γ(P ) is a syntactic predicate for S. When the predicate
P occurs in an axiom A of M[[T ]], the expression ρS,γ(P ) occurs in ρS,γ(A),
which, by the Composition Principle, is an axiom of M[[S]]. A little thought
reveals that, to ensure the validity of the Composition Principle, we want
the following property to hold:

Syntactic Composition Property : For any syntactic predicate P :
if the value of P is defined for T , then the value of ρS,γ(P ) is
also defined for S and equals the value of P .

The use of syntactic predicates is not really necessary. I could include
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the information that they express in the state. Had I done so, a syntac-
tic predicate having an undetermined value would become a component of
the state, and S(S) would include states having all possible values of that
predicate. A syntactic predicate whose value is determined in a statement S
could be represented either as a state component constrained to have only
one possible value, or as a constant.

6.1.1 Aliasing

The absence of aliasing will be expressed by the relation ⊥ between variable
names in V(S). This will be done axiomatically by defining a logical system
for deriving ⊥ relations To do this, I must first introduce a relation ≺,
where v ≺ {w1, . . . , wn} means that the variable name v is not directly
aliased to any variable names other than w1, . . . , wn. It is convenient to
extend this relation to a relation between sets of variable names, where
{v1, . . . , vm} ≺ {w1, . . . , wn} means that each of the variable names vi is not
directly aliased to any variable names other than the wj. We then have the
obvious inference rule:

For any sets V,W ∈ V(S): if V ′ ⊆ V , W ⊆ W ′, and V ≺ W ,
then V ′ ≺W ′.

The relation ⊥ on V(S) is defined so that v ⊥ w means that neither v
nor w is aliased, directly or indirectly, to the other. In other words, it means
that v #= w and there do not exist both a chain of ≺ relations from v and
a chain of ≺ relations from w that lead to a common variable name. This
leads to the following rules for deriving ⊥ relations.

• If v ≺ ∅, w ≺ ∅, and v #= w, then v ⊥ w.

• If v ⊥ w then w ⊥ v.

• If v ≺ {w1, . . . , wn}, w1 ⊥ w, . . . , wn ⊥ w, and v #= w, then v ⊥ w.

I extend ⊥ to a relation on finite sets by letting {v1, . . . , vn} ⊥ {w1, . . . , wn}
denote ∀i, j : vi ⊥ wj .

Having given general rules for reasoning about ≺, I must define the
relation for variables names in S(S) for an arbitrary statement S. The value
of a syntactic predicate V ≺W or V ⊥W will be undetermined if V and W
both contain the names of undeclared variables of S. To define the values of
the ones that are determined, I will take the Syntactic Composition Property
as an axiom, and give a recursive definition based upon the structure of S.
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The first observation is that a program variable cannot be aliased to a
control variable, and vice-versa. I therefore require that v ⊥ w equal true
whenever v is a program variable and w is a control variable.

Since the only dependency relations on program variables are introduced
by the alias clauses of new statements, all dependency relations among
program variables are obtained from the Syntactic Composition Property
and the following axiom:

If S is the statement new x . . . alias exp . . . and y1, . . ., yn are
all the variable names in exp, then x(S) ≺ {y1(), . . . , yn()}.

I must now define the dependency relations on control variable names. I
will do this by assuming the Syntactic Composition Property and defining
the relations introduced by each language construct. There are a number
of aliasing relations that are similar to the ones introduced by an alias
clause, except that the aliasing relations for the control variables are implicit
in the program structure rather stated explicitly in a new statement. To
define the ≺ relations, I will write down these aliasing equations, where the
control variable comprising the left-hand side of an equation is considered
to depend upon each of the variables on the right-hand side. There is one
set of equations for each programming language construct.

Besides these aliasing equalities, some other aliasing relations are given
as boolean expressions—that is, asserting that the boolean expressions are
true. No dependency relations are implied by these expressions, but they
are listed here for future reference.

There is only one axiom that explicitly defines ⊥ relations; it is given
for the cobegin statement.

assignment in(S) = at(S)
¬(at(S) ∧ after (S))

if in(S, test) = at(S, test)
after (S, test) = at(S, then) ∨ at(S, else)
at(S) = at(S, test)
in(S) = in(S, test) ∨ in(S, then) ∨ in(S, else)
after (S) = after(S, then) ∨ after(S, else)
¬ (at(S, test) ∧ (in(S, then) ∨ in(S, else) ∨ after(S)))
¬(in(S, then) ∧ in(S, else))
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while at(S) = at(S, test)
in(S, test) = at(S, test)
after(S, test) = at(S, body) ∨ after (S)
after(S, body) = at(S, test)
in(S) = at(S, test) ∨ in(S, body)
¬ (at(S, test) ∧ (after (S) ∨ in(S, body)))

new There are two cases. If there is no init clause, then:

at(S) = at(S, body)
after(S) = after(S, body )

in(S) = in(S, body)

If there is an init clause, then:

at(S) = at(S, init)
in(S, init) = at(S, init)

after(S, init) = at(S, body)
in(S) = in(S, init) ∨ in(S, body)

after(S) = after(S, body )
¬(at(S, init) ∧ in(S, body))

cobegin If there are n clauses in the cobegin, then

at(S) = at(S, 1) ∧ . . . ∧ at(S, n)
after (S) = after (S, 1) ∧ . . . ∧ after (S, n)

in(S) = in(S, 1) ∧ . . . ∧ in(S, n)
{in(S, i), after (S, i)} ⊥ {in(S, j), after (S, j)} for i #= j

sequence If S is S1; . . . Sn, then for all i = 1, . . . , n:

after(S, i − 1) = at(S, i) if i > 0
in(S) = in(S, i)

¬(in(S, i) ∧ in(S, j)) for i #= j

program If S is the complete program, then

at(S) = at(S, body)
in(S) = in(S, body)

after(S) = after(S, body )
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A close study of these aliasing relations reveals that we can prove a
relation such as in(S, γ) ⊥ at(S, µ) if and only if the substatements S, γ and
S, µ lie in different clauses of a cobegin.

The ⊥ relations among program variables and the aliasing and ⊥ rela-
tions among control variables are regarded as axioms in a separate system
for reasoning about syntactic expressions. However, they play the same
function as axioms of M[[S]]. For example, if S, γ is an assignment state-
ment, then the aliasing relation ¬(at(S, γ) ∧ after(S, γ)) allows us to deduce
✸(¬at(S, γ)) from ✸after (S, γ).

6.1.2 Syntactic Typing Relations

Because the type structure of our language L is so simple, no explicit ref-
erence to types need appear in its semantics. However, this is not the case
for a language in which the action of an assignment statement is affected
by the types of its left- and right-hand sides—for example, if coercion was
performed. We would also have to introduce explicit reference to types if a
type mismatch in an assignment statement produced a run-time error or an
indeterminate result, or if it halted the process executing the assignment.

Explicit reference to types is done by introducing predicates such as
type(x) = integer. If the types of variables are determined syntactically
by the program text, then these predicates would be syntactic predicates.
Otherwise, they would have to be ordinary state predicates, and the state
would have to include components that determine their values.

6.1.3 Reasoning About Syntactic Expressions

Although a syntactic predicate like v ⊥ w resembles an ordinary state predi-
cate like v = 7, it is logically quite different. The variable name “v” denotes
the value of the variable in the expression v = 7, while it denotes the name
itself in v ⊥ w. For example, from the expressions v = 7 and w = v we
can deduce w = 7. However, from the syntactic expression u ⊥ v and the
ordinary expression w = v we cannot in general deduce u ⊥ w; just because
the values of two variables happen to be equal in some state does not im-
ply that the variables have the same aliasing relations. We can only make
that conclusion if w = v is a syntactic equality of names, rather than an
expression denoting equality of values.

By introducing syntactic predicates as a class of entities separate from
ordinary state predicates, with their own logical system for reasoning about
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them, I have circumvented the need to distinguish between the use of a
variable name as a name and as a value. In a syntactic predicate, a variable
name represents itself. In a state predicate, it represents the value of the
variable. Using two different logical systems avoids confusion. One cannot
make invalid deductions, like deducing a ⊥ relation from the equality of the
values of v and w, because inferences about ⊥ can be made only in the logic
for reasoning about syntactic predicates, whereas equality of values can be
expressed only with state predicates, and one reasons about them with a
separate logic.

For languages in which types and aliasing relations are dynamic prop-
erties, so they must be reflected in the state, we cannot use this trick for
separating the two different uses of variable names. We must then write
value(v) rather than the variable name v to denote the value of v. Equal-
ity of values is denoted by the predicate value(w) = value(v), and w = v
denotes equality of names.

6.1.4 Logical Name Variables

Just as I introduced logical value variables in state predicates, I will also
introduce logical name variables for syntactic predicates. A logical value
variable is a logical variable with an implicit range in the set of values that
a variable may have. Similarly, a logical name variable is a logical variable
with an implicit range in the set of names that a variable may have. I will
use the letter ν to denote a logical name variable.

The use of logical name variables has an important implication with re-
spect to renaming. Consider an axiom of the form ∀ν : A(ν). Viewed as
a formula in TL(S), it is equivalent to an infinite conjunction of the form
A(v1) ∧ A(v2) ∧ · · ·, where the vi are all the names in V(S). However, the
two formulas behave differently under a renaming mapping ρ. In particu-
lar, ρ(∀ν : A(ν)) equals ∀ν : ρ(A(ν)), so the renamed formula includes a
quantification over variable names not present in ρ(A(v1) ∧ · · ·).

6.2 Starting States

One might expect that the meaning M[[S]] of a statement S should include
a set of axioms that determine the set of starting states. However, consider
what the initial value of a program variable should be. The user has no way
of specifying it, since an init clause of a new statement is interpreted as an
executable action that replaces the initial value with the specified one. One
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might want to specify that the initial value of a variable v of type integer
should be an integer. However, M[[S]] will contain an axiom asserting that
this is true for every state during the execution of S, so it is therefore true of
the initial state. Similarly, the axioms in M[[S]] will assert that the aliasing
relations specified by new statements are true throughout the execution, so
they are also constrained to hold in the initial state.

What about the initial values of control variables? Surely we should
require that a statement S should start in a state in which at(S) is true.
However, this would be a mistake because it would violate the Composition
Principle, since ρT ;S,2(at(S)) should not be true of the starting state of the
sequence of statements T ;S, and our whole approach is based upon the
Composition Principle.

Remember that the only reason for specifying the starting state is to
be able to obtain from our semantics a set of behaviors. However, we are
really interested only in the set of behaviors of a complete program, not
of its substatements. There is no reason to constrain the starting states
of substatements; we need only constrain the starting state of a complete
program, which we do by simply assuming that at(Π) is true of the initial
state of a complete program Π. We can do this without violating the Com-
position Principle because a complete program cannot be part of any larger
statement.

6.3 Behavior Axioms

I now define the set M[[S]] of behavioral axioms for any statement and
complete program S. This will, of course, be done compositionally, giving a
set axioms for each language construct. Remember that in addition to the
axioms given explicitly below, M[[S]] also contains all the axioms implied by
the Composition Principle.

I will include in M[[S]] axioms to assert that the appropriate aliasing
relations hold throughout the execution of S. For control variables, those
aliasing relations were already described in Section 6.1.1. Rather than write
them over again, I will simply assume that the aliasing relations described
there appear as axioms in M[[S]] for the appropriate construct describing S.
For example, the list of axioms for the assignment given below are assumed
implicitly to include the axioms in(S) = at(S) and ¬at(S) ∧ after (S) from
Section 6.1.1. (However, the ⊥ relations given for the cobegin, being syn-
tactic predicates, are not axioms in M[[S]].)

In addition to the aliasing relations for control variables, we should also
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assert their types. Therefore, we implicitly add the axiom v ∈ {true , false}
to M[[S]] for every control variable v in V(S).

There are also axioms relating the action predicate Act(S) to the action
predicates of its components. For example, the axioms for a while statement
S would include the following:

• Act(S) ≡ Act(S, test) ∨ Act(S, body)

• ¬(Act(S, test) ∧ Act(S, body))

The first asserts that the only actions of S are the test action and the
actions of its body; the second asserts that the test action is not an action
of the body. These and similar axioms are assumed for all the constructs
and are not included. Note that these axioms are given only for compound
statements; there is no such axiom for the assignment statement.

In the following description of the axioms, formal axioms are followed
by their informal explanations. For any programming-language expression
exp, I let exp() denote the expression obtained by replacing every identifier
y in exp by the variable name y().

6.3.1 Assignment

If S is the statement 〈x := exp 〉, then M[[S]] contains the following axioms:

1. Act(S) ⊃ at(S)
The atomic statement S can be executed only when control is at S.

2. ∀η : {at(S) ∧ exp() = η}〈S〉{after (S) ∧ x() = η}
Executing S sets the value of x to exp and changes control from at(S)
to after(S).

3. ∀ν : {x(), at(S), after (S)} ⊥ ν ⊃ ν
S
#←

(Note that ν is a logical name variable.) The statement S does not
modify any variable not aliased to x, at(S), or after(S).

4. ✷✸Act(S) ⊃ ✸¬at(S)
There cannot be infinitely many actions of S while control remains
forever at S. (The reader may find this easier to understand if he
replaces the implication by a disjunction.) In other words, there can
be only finitely many stuttering actions of S before the assignment is
executed.
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An understanding of these axioms for assignment is crucial to an ap-
preciation of how action-axiom semantics works, so some further discussion
of them is in order. The four axioms are indeed action axioms, since they
describe the behavior of the assignment action S. The four axioms assert
the following:

1. When the action may occur.

2. What changes to the state components executing the action may per-
form.

3. What state components the action may not change.

4. When the action must change the state.

Every atomic program action is described by four similar axioms.
Note that axioms 1-3 assert safety properties, while axiom 4 states a

liveness property. From the axioms for the other statements, it will follow
that in language L, if at(S) ever becomes true, it can be made false only
by executing action S. Axiom 2 asserts that at(S) can then become false
only when after(S) becomes true and the assignment of exp to x occurs.
In a richer language, executing another statement might make at(S) be-
come false—for example, by aborting the process containing statement S.
However, Axioms 1-4 would still be valid.

Observe that Axiom 2 determines the value of x immediately after exe-
cution of S. However, it asserts nothing about x’s value after the execution
of any other action.

For language L, Axiom 4 implies that if at(S) is true then eventually
it will become false (thereby making after(S) true). However, this depends
upon the fact that that L does not have any form of unfair cobegin. The
axiom is valid for more general languages that do have these features.

It is instructive to consider what these axioms imply in case statement S
appears inside declarations that produce a type mismatch—say in which x is
of type integer and exp of type boolean. The axioms for those declarations
will imply that the value of x is always an integer and the value of exp
is always a boolean. It then follows from Axiom 2 that executing an S
action can never make at(S) false, since doing so would require setting
the value of x to a boolean, contradicting the axioms for the declarations.
However, I have already observed that, for language L, at(S) must eventually
become false. Thus, the set of axioms for the incorrect program—the one
producing a type mismatch in statement S—are contradictory, implying that
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only the empty set of behaviors satisfy them. However, in a richer language,
if S were contained inside an unfair cobegin, then the axioms might not
be contradictory, and might be satisfied by a behavior in which a process
remained stalled forever with at(S) true. In this case, the type mismatch
would force that process to “die”, allowing other processes to proceed.

6.3.2 The if Statement

If S is the statement if 〈 exp 〉 then . . . , then the following axioms are in
M[[S]]. They are the standard four action axioms—in this case, for the test
action. Note their similarity to the corresponding axioms for the assignment
statement.

1. Act(S, test) ⊃ at(S, test)
The test can be executed only when control resides at it.

2. {at(S, test)}〈S, test 〉{[at(S, then) ∧ exp()] ∨ [at(S, else) ∧ ¬exp()]}
Control remains at the beginning of the test until it either reaches the
entry point of the then clause with exp true, or else it reaches the
entry point of the else clause with exp false.

3. ∀ν : {at(S, test), after (S, test)} ⊥ ν ⊃ ν
S,test

#←
The test does not modify any variable it shouldn’t. (Again, ν is a
logical name variable.)

4. ✷✸Act(S, test) ⊃ ✸¬at(S, test)
There can be only finitely many stuttering actions of the test before it
is really executed. This is the only liveness axiom for the if statement.

6.3.3 The while Statement

The axioms for the statement while 〈 exp 〉 do . . . are analogous to the ones
for the if statement, and are given without comment.

1. Act(S, test) ⊃ at(S, test)

2. {at(S, test)}〈S, test 〉{(at(S, body) ∧ exp()) ∨ (after (S) ∧ ¬exp())}

3. ∀ν : {at(S, test), after (S, test)} ⊥ ν ⊃ ν
S,test

#←

4. ✷✸Act(S, test) ⊃ ✸¬at(S, test)
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6.3.4 The new Statement

The new statement is a declaration. If it has no init clause, then it performs
no new action. The axioms describing this statement therefore do not follow
the pattern for action axioms followed by the preceding statements. Instead,
they assert relations that hold throughout the execution.

If S is the statement

new x : type in . . .

then the following axiom is in M[[S]], where we identify integer with the
set Z and boolean with the set {true, false}.

1. x(S) ∈ type
The value of x is always consistent with the type declaration.

If S is the statement

new x : type alias exp in . . .

then M[[S]] contains the above axiom plus the following:

2. x(S) = exp()
The aliasing relation always holds.

If S is the statement

new x : type init exp in . . .

then the following axioms hold. The first is, of course, the same as for the
other versions of the new statement. The last four are the action axioms
for the initial-assignment action, following the standard pattern. They are
almost identical to the corresponding axioms for the assignment statement,
the only difference (in axiom 3 below) indicating that the init clause per-
forms an assignment to the variable x(S) declared in the new statement
rather than to the undeclared variable x().

1. x(S) ∈ type

2. Act(S, init) ⊃ at(S, init)

3. ∀η : {at(S, init) ∧ exp() = η}〈S〉{after (S, init) ∧ x(S) = η}

4. ∀ν : {x(S), at(S), after (S)} ⊥ ν ⊃ ν
S,init

#←

5. ✷✸Act(S, init) ⊃ ✸¬at(S, init)
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6.3.5 The cobegin Statement

If S is the statement

cobegin S1 . . . Sn coend

then the following axiom is in M[[S]].

1. ∀i s.t. 1 ≤ i ≤ n : (✷✸Act(S)) ⊃ (✷✸Act(S, i))
If S performs infinitely many actions, then each process of S performs
infinitely many actions. In other words, if S is never starved, then no
subprocess of S is starved. This is the fairness axiom.

6.3.6 Sequences of Statements

No new axioms are needed for the sequence of statements S1; . . . ; Sn. All
necessary properties are obtained from the aliasing relations among its con-
trol variables, the relations among its action predicates, and the Composition
Principle.

6.3.7 A Complete Program

If Π is a complete program, then the only additional axiom in M[[Π]] is:

1. in(Π) ⊃ Act(Π, body)
The complete program never stops executing until it reaches the end,
whereupon in(Π) becomes false.

This axiom asserts the absence of any external actions while control is in
progam Π, reflecting the absence of any explicit input or output in language
L.
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7 Other Language Features

While I have given a formal semantics only for the simple language L, action-
axiom semantics can be used to describe a wider variety of concurrent pro-
gramming language constructs than any other method I know of. In this
section, I will consider a few interesting constructs. In doing so, I will not
bother to give the usual axioms that describe the relations among control
variables and among action predicates.

7.1 Constructs That Constrain Their Environment

Most language constructs constrain the behavior of their components. For
example, an if statement determines when its then and else clauses can be
executed. The following three language constructs constrain the behavior of
a larger program containing them. They are therefore impossible to spec-
ify in a compositional, purely behavioral semantics. It is the Composition
Principle that makes them expressible with action-axiom semantics.

7.1.1 The assign processor Command

As described above, the statement

assign processor to . . .

directs the compiler to guarantee that the body of the statement gets its
share of computing cycles, so it is not starved. This is expressed by the
axiom:

in(S) ⊃ ✸Act(S)

7.1.2 Atomic Actions

One might want to introduce “angle brackets” as a language construct, so
〈S 〉 denotes that S is to be executed as an indivisible atomic action. This is
done by requiring that no other actions are interleaved with the executions
of S, expressed formally by:

Act(〈S 〉) ⊃ in(〈S 〉) ≤ Act(〈S 〉)
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7.1.3 Write Protection

Imagine a situation in which one wants the variable x to be modified only
in a particular statement, but to be accessible elsewhere. This might be
expessed by the following statement S:

encapsulate x in S′

The semantics of this statement are described formally by:

∀η : x() = η ⊃ (¬Act(S))< (x() = η)

which asserts that the value of x remains unchanged while any action not
in S is executed.

7.2 Synchronization and Communication

The bread and butter of concurrent programming language constructs are
the synchronization and interprocess communication mechanisms. I will
discuss only two.

7.2.1 Semaphores

The usual semaphore P and V operations are variants of the atomic assign-
ment statement: P (s) looking much like the assignment 〈 s := s − 1 〉 and
V (s) looking like 〈 s := s+ 1 〉. There are two basic differences. First of all,
the P (s) operation may be performed only when s is positive. One way of
expressing this is to change the first axiom of the assignment statement to:

Act(P (s)) ⊃ (at(P (s)) ∧ s > 0)

However, this would require changing other axioms, since deadlock is rep-
resented by the absence of any possible actions, and the axiom given above
for the complete program asserts that this is impossible.

The other way of handling this is to allow only stuttering actions of P (s)
to occur when s ≤ 0. This is achieved by replacing the second axiom of the
assignment statement with the following:

∀η : {at(P (s)) ∧ (x() = η)} 〈P (s)〉 {after (P (s)) ∧ (x() = η − 1 ≥ 0)}

The second change that must be made to the assignment axioms is in
the liveness condition. We can no longer require that an infinite number of
actions of P (s) cause the operation to be completed, since they might all

53



occur when s has the value zero. Several liveness axioms have been proposed
for the semaphore. Probably the most common are weak liveness, expressed
by

(✷(s > 0) ∧ ✷✸Act(P (s))) ⊃ ✷¬at(P (s))

and strong liveness, expressed by

(✷✸(s > 0) ∧ ✷✸Act(P (s))) ⊃ ✷¬at(P (s))

(They are discussed in [12].) In both these cases, the V (s) operation is just
an ordinary atomic assignment.

More complicated versions of the semaphore impose a specific queueing
discipline, like first-come-first-served, on the execution of competing P (s)
operations. They may require adding a queue of waiting processes to the
state, plus predicates to describe the state of the queue.

7.2.2 CSP-Like Communication Primitives

The easiest way to model the CSP “ ! ” and “ ? ” operations is in terms of
channels. We include the operations 〈 x?ξ 〉 and 〈 exp!ξ 〉 for any variable x
and expression exp. They denote CSP-like synchronous communication over
a channel named ξ. We modify the cobegin statement by adding a clause
of the form channels ξ1, . . . , ξm, which declares the channel names ξi.

As explained in [9], we consider communication actions to be actions of
the channel, so Act(S) is identically false if S is a ! or ? operation. A
channel ξ has a separate atomic action for every pair of statements 〈 x?ξ 〉,
〈 exp!ξ 〉 contained in different clauses of the cobegin in which ξ is de-
clared. This atomic action is axiomatized much like the assignment state-
ment 〈x := exp 〉, except that its execution changes the values of the four
control variables at(x?ξ), after(x?ξ), at(exp!ξ), and after(exp!ξ).

To do this formally, we must extend our variable-naming convention
in the obvious way to channel variables and add new syntactic predicates
S, γ ∈ ! v and S, γ ∈ ? v to assert that the substatement S, γ is a ! or ?
operation of the channel named v. The safety axiom for the declaration of
channel ξ will be something like:

∀γ, µ, i, j s.t. i #= j : S, i, γ ∈ ! ξ(S) ∧ S, j, µ ∈ ? ξ(S) ⊃
∀η : {at(S, iγ) ∧ at(S, j, γ) ∧ ρS,i,γ(S, i, γ, left ()) = η}

〈 ξ(S) 〉 {after (S, iγ) ∧ after(S, j, γ) ∧ ρS,j,µ(S, j, µ, left()) = η}
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Note that ρS,i,γ(S, i, γ, left()) is the exp of exp!ξ, with all component vari-
ables appropriately renamed, and similarly for ρS,j,µ(S, j, µ, left()).

It is straightforward to extend this approach to guarded communication
commands such as 〈 exp → x?ξ 〉, which means that the communication
action may be carried out only if exp has the value true. The new safety
axiom is obtained from the above in much the same way that the safety
axiom for the P (s) semaphore operation is obtained from the corresponding
axiom for the assignment statement—the guards here playing the part of
the enabling condition s > 0 for the P (s) operation.

There are several different choices of liveness properties that one can
require of these channels. They are all basically simple to express with
temporal logic formulas. However, their formal statement requires some
careful manipulation of syntactic predicates, which I won’t bother doing.

The safety properties of CSP-like communication primitives are expressed
more easily with a formal semantics based only upon externally observable
actions, such as [11]. When shared variables are not allowed, such a seman-
tics can define the meaning of a process as the set of possible communications
it can engage in. However, this kind of semantics does not seem capable of
handling liveness properties easily.

7.3 Procedures

Although language L does not have procedures, its new statement contains
the basic mechanism needed for procedure calls. A call of a nonrecursive
procedure can be simulated by replacing the procedure call by new state-
ments plus the body of the procedure. For example, let proc be a procedure
with a declaration

procedure proc(a : integer, var b : boolean ) body

in which its first argument is call by value and its second is call by name.
The call proc(x+ y, z) can be translated to

new a init x+ y in new b alias z
in body ni ni

To handle call by reference parameters, one needs to introduce pointer vari-
ables into the language. Of course, aliasing and procedure calls become more
interesting when pointers and arrays are introduced, but a discussion of the
problems raised by pointers and arrays is beyond the scope of this paper.
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While this method of handling procedure calls works only for nonrecur-
sive procedures, the basic idea applies to recursive ones as well. Replacing
a procedure call by the body of the procedure produces an infinite program
text for recursive procedures; but nowhere have I made use of the assump-
tion that the program text is finite. Of course, the compositional method of
recursively defining M[[S]] no longer terminates with a finite set of axioms.
However, the definition can be viewed as an algorithm for enumerating an
infinite collection of axioms.

Thus, adding recursion means that M[[S]] consists of an infinite set of
axioms. It is in this case that the distinction between a semantics and a
proof system becomes evident. An infinite set of axioms is unsatisfactory
as a proof system, because ordinary logic provides no way of deducing a
conclusion whose correctness is based upon an infinite set of assumptions.
Such deductions are required to prove nontrivial properties of recursive pro-
grams. Thus, I have not provided a proof system for programs with recursive
procedures.

On the other hand, a semantics is concerned with validity, not proof.
The meaning of a program Π is the set of behaviors that satisfy the axioms
in M[[Π]], and this is well-defined even for an infinite set of axioms. The
problem of proof systems is discussed in the conclusion.

7.4 More General Types and Aliasing

Let us now consider a language in which a type mismatch does not pro-
duce an illegal program, but generates “incorrect” behavior. As mentioned
earlier, this requires adding predicates of the form type(x) = . . . , which
are syntactic predicates if types can be determined syntactically and state
predicates if types are dynamic.

First, suppose that a type mismatch in the assignment x := exp causes
x to be set nondeterministically to any value in its range. This is easily
represented by changing axiom 2 of the assignment to the following, where
type valid(x, η) is true if and only if the type of x permits it to be assigned
the value η.

∀η : {at(S) ∧ exp() = η} 〈S〉
{after (S) ∧ (x() = η ∨ ¬type valid(x(), η))}

Next, suppose that a type mismatch causes the assignment to “hang up”,
effectively deadlocking the process. This requires that axiom 4 be changed
so it does not demand termination in this case. There are several different
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liveness requirements one could make in this case, since the value of the
expression exp could change. One reasonable possibility is the following:

✷✸(Act(S) ∧ type valid(x(), exp())) ⊃ ✸¬at(S)

Allowing a more general form of aliasing, such as the one defined in [10],
presents a similar problem if one requires that an assignment which would
violate an aliasing constraint cause the process to hang up. One approach
to this is to put the aliasing constraints in the state, just as I did with type
constraints. The new state components would correspond to the “location”
values often used to handle aliasing.

7.5 Nonatomic Operations

Every construct that I have mentioned specifies the atomic actions. For
example, I have defined the semantics only of an atomic assignment state-
ment. It is easy to give the semantics of an assignment statement with
smaller atomic operations. For example, an assignment

〈x 〉 := 〈 exp 〉

in which the evaluation of exp and the changing of x are distinct atomic
operations can be represented by

〈 t := exp 〉; 〈x := t 〉

where t is an implicit variable. A similar translation is possible when the
evaluation of the right-hand side is broken into smaller atomic operations;
it is described in [4].

The situation changes when no atomicity is specified. For example, con-
sider an assignment statement x := y + 1 that has the expected effect only
if x and y are not modified by any other operation during the course of
its execution. If any such modification does take place, then x may be set
to any value consistent with its type. We can think of this assignment as a
compound statement for which we know nothing about its internal structure
except its partial correctness property (when executed alone) and the fact
that it always terminates (unless the process executing it is starved).

Handling such nonatomic operations requires a new class of state pred-
icate—the “generalized dynamic logic” predicates [S]P introduced in [7].
The second assignment axiom for an atomic assignment is replaced by the
following one for a nonatomic assignment x := exp:

∀η : {in(S) ∧ [S](x() = η)} 〈S〉 {after (S) ∧ x() = η}
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Note that the rules for reasoning about these generalized dynamic logic
predicates imply that

at(S) ⊃ ([S](x() = η) ≡ (exp = η))

The liveness axiom for a nonatomic assignment is simply

✷✸Act(S) ⊃ ✸¬in(S)
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8 Conclusion

I have given an axiomatic semantics for a simple concurrent programming
language L, and have indicated how the same method can be applied to
more complicated language constructs. Most of this paper has been devoted
to developing the fundamental ideas upon which the method is based. The
axioms themselves are reasonably simple—simple enough so I feel that they
do provide an understanding of the language constructs. For example, the
difference between a weakly fair and a strongly fair semaphore is described
quite concisely and precisely by their respective axioms.

A programming language semantics provides a logical basis for a proof
system for reasoning about programs in the language. One can talk about
the soundness and completeness of the proof system in terms of the seman-
tics. Note that it makes no sense to talk about soundness and completeness
of the semantics. Indeed, the semantics M[[S]] of a program can include con-
tradictory axioms; this simply means that there are no valid behaviors for
S, so there is something wrong with the program, not with the semantics.

The obvious task now is to investigate existing proof systems in terms
of this semantics. Unfortunately, such an undertaking is beyond the scope
of this paper. However, some brief remarks are in order. The Generalized
Hoare Logic (GHL) presented in [4] and [9] introduced at , in, and after
as predicates rather than variables. The relation ‖ used in [4] is just the
relation ⊥.

The semantics of GHL formulas was not stated with sufficient precision
in [4], since the relation between the statement S and its name, denoted ′S′,
was never made clear. A close examination of GHL reveals that there is an
implicit complete program Π, and that if S is the substatement Π, γ of Π,
then a formula written in terms of S should really be written in terms of
Π, γ.

To verify the soundness of GHL, one must express the GHL formula
{P}S {Q} as a temporal logic formula. As explained in [9], it suffices to
consider the case P = Q, for which the definition is simply:

{P}S {P} def= {P}〈Π, γ〉{P}

where S is the substatement Π, γ of the implied complete program Π. The
soundness of the general rules for reasoning about GHL formulas follows
easily from their interpretation as temporal logic formulas. The soundness of
the axioms and rules given in [4] for each language construct can be deduced
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from the axioms for the corresponding construct given here in Section 6.3,
together with the Composition Principle.

As described in [9], other logical systems for proving safety properties of
concurrent programs can be described in terms of GHL, so the soundness
of GHL can be used to prove the soundness of the other systems. GHL is
manifestly not a complete system for reasoning about concurrent programs,
since it does not address questions of liveness. It is not clear how to use our
semantics to prove completeness of GHL for the class of properties it can
express.

A method for proving liveness properties of programs is given in [12]. It
considers a simple language that is essentially the same as language L except
without the new statement. The method explicitly assumes a complete
program Π, and is based upon temporal logic plus the following single axiom:

Atomic Action Axiom: For any atomic action Π, γ of Π:

at(Π, γ) ⊃ ✸after (Π, γ)

To prove the soundness of this axiom, we must show that

✷(in(Π, γ) ⊃ ✸Act(Π, γ))

holds for every substatement and atomic action Π, γ of Π. This is intu-
itively clear, since the language contains only fair cobegin statements, and
is derivable from our axioms by induction on the size of Π. The above
Atomic Action Axiom then follows easily from our liveness axiom for com-
plete programs, the liveness axioms for the individual statements, plus the
Composition Principle. The additional axioms given in [12] for weakly and
strongly fair semaphore operations can similarly be derived from the ones I
gave earlier.
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