
1240 PROCEEDINGS OF THE IEEE, VOL. 66, NO. 10, OCTOBER 1978

SIFT: Design and Analysis of a Fault-Tolerant
Computer for Aircraft Control

JOHN H. WENSLEY, LESLIE LAMPORT, JACK GOLDBERG, SENIOR MEMBER, IEEE,

AND CHARLES B. WEINSTOCK
MILTON W. GREEN, KARL N. LEVI'IT, P. M. MELLIAR-SMITH, ROBERT E. SHOSTAK,

Abstmt-SIFT (Softwue Implemented Fault Tolerance) is an
ldtmdme Coreputer fa criticd .ircnlt caltrd appkdom that
rhievesf.ulttdenncebytherep€hthoft&aamongproedng
units. The rmin procesing units are off-the -shelf minicomputers, with
sturdud microcomputers serving as the interface to the YO systean.
Faultiadrtioniarchievedbyusingrspedrllydes@?dredundantbus
system to interconnect the processhrg units. Error detection and
analysis and system recontigumtbn are performed by software. Iter-
ative tasks are redundantly executed, and the results of each iteration
are voted upon before being d. Thus, any single failure in a process-
ing unit or bus can be tolerated with triplication of tasks, and sub-
sequent faihues can be tolerated after remnfigunthn. Independent
execution by separate procesors meann that the processors need only
be loosely synchronized, and a n d f a u l t - t d m t synchroniution
method is d e s c n i . The SUT aoftwue is highly structured and is
formally specified using the SRldeveloped SPECIAL Innsuoge. Ihe
correctness of SIFT is to be proved using a hienrchy of formal modeis.
A Markov model is uaed both to analyze the reliability of the system
and to serve aa the formal requirement for the SIFT design. Axioms axe
&en to duncterize the high-level behavior of the system, from which
a correctness statement has been proved. An en-g test version
of SIFT is currently being built.

T
I. INTRODUCTION

HIS paper describes ongoing research whose goal is to
build an ultrareliable fault-tolerant computer system
named SIFT (Software Implemented Fault Tolerance).

In this introduction, we describe the motivation for SIFT
and provide some background for our work. The remainder of
the paper describes the actual design of the SIFT system.
Section I1 gives an overview of the system and describes the
approach to fault tolerance used in SIFT. Sections 111 and IV
describe the SIFT hardware and software,respectively. Section
V discusses the proof of the correctness of SIFT.

A . Motivation
Modern commercial jet transports use computers to carry

out many functions, such as navigation, stability augmentation,
flight control, and system monitoring. Although these com-
puters provide great benefits in the operation of the aircraft,
they are not critical. If a computer fails, it is always possible
for the aircrew t o assume its function, or for the function to
be abandoned. (This may require significant changes, such as
diversion to an alternative destination.) NASA, in its Air-
craft Energy Efficiency (ACEE) Program, is currently studying
the design of new types of aircraft to reduce fuel consumption.
Such aircraft will operate with greatly reduced stability
margins, which means that the safety of the flight will depend

NASA-Langley Research Center under Contract NASI-13792.
Manuscript received May 20, 1978. Thi, work w m supported by

The authors are with SRI International, Menlo Park, CA 94025.

upon active controls derived from computer outputs. Com
puters for this application must have a reliability that i!
comparable with other parts of the aircraft. The frequent13
quoted reliability requirement is that the probability o
failure should be less than per hour in a flight of ter
hours duration. A good review of the reliability requirement
associated with flight control computers appears in Murray e
al. [1 1. This reliability requirement is similar to that demandec
for manned space-flight systems.

A highly reliable computer system can have application
in other areas as well. In the past, control systems in critica
industrial applications have not relied solely on computers
but have used a combination of human and computer control
With the need for faster control loops, and with the increase
complexity of modem industrial processes, computer reliabilit
has become extremely important. A highly reliable compute
system developed for aircraft control can be used in suc
applications as well. Our objective in designing SIFT is t
achieve the reliability required by these applications in a
economic manner. Moreover, we want the resulting systel
to be as flexible as possible, so it can be easily adapted t
changes in the problem specification.

When failure rates are extremely small, it is impossible 1
determine their values by testing. Therefore, testing cannc
be used to demonstrate that SIFT meets its reliability requir
ments. It is necessary to prove the reliability of SIFT 1.
mathematical methods. The need for such a proof of I

liability has been a major influence on the design of SIFT.

B. Background
Our work on SIFT began with a study of the requiremm

for computing in an advanced commercial transport a i r c r s
[21, [3 1. We identified the computational and memory reqw
ments for such an application and the reliability requir
for the safety of the aircraft. The basic concept of the SI1
system emerged from a study of computer architectul
for meeting these requirements.

The second phase in the development of the SIFT syste
which has just been completed, was the complete design
the hardware and software systems [41, [SI. This design 1
been expressed formally by rigorous specifications that descrj
the functional intent of each part of the system. A ma
influence during this phase was the Hierarchical Design Methc
ology developed at SRI [lo]. A further influence has been 1
need to use formal program proving techniques to ensure 1

correctness of the software design.
The current phase of the development calls for the build

of an engineering model and the canying out of tests

0018-9219/78/1000-1240$00.75 0 1978 IEEE

WENSLEY e t al.: SIFT COMPUTER FOR AIRCRAFT CONTROL

demonstrate its fault-tolerant behavior. The engineering
model is intended to be capable of carrying out the calculations
required for the control of an advanced commercial transport
aircraft. SRI is responsible for the overall design, the software,
and the testing, while the detailed design and construction of
the hardware is being done by Bendix Corporation. The
engineering model is scheduled to be built by the middle
of 1979, with testing to be completed by the end of that year.
Work is also continuing at SRI on proving the correctness of
the system.

The study of fault-tolerant computing has in the past con-
centrated on failure modes of components, most of which are
no longer relevant. The prior work on permanent “stuck-at-
one” or “stuck-at-zero” faults on single lines is not appropriate
for considering the possible failure modes of modern LSI
circuit components, which can be very complex and affect the
performance of units in very subtle ways. Our design approach
makes no assumptions about failure modes. We distinguish
only between failed and nonfailed units. Since our primary
method for detecting errors is the corruption of data, the
particular manner in which the data are corrupted is of no
importance. This has important consequences for failure-
modes-and-effects analysis (FMEA), which is only required at
the interface between units. The rigorous, formal specifica-
tion of interfaces enables us to deduce the effects on one
unit of improper signals from a faulty unit.

Early work on fault-tolerant computer systems used fault
jetection and reconfiguration at the level of simple devices
such as flip-flops and adders. Later work considered units
such as registers or blocks of memory. With today’s LSI
Inits, it is no longer appropriate to be concerned with such
;mall subunits. The unit of fault detection and of reconfigura-
:ion in SIFT is a processor/memory module or a bus.

Several low-level techniques for fault tolerance, such as
mor detection and correction codes in memory, ,are not
ncluded in the design of SIFT. Such techniques could be in-
:orporated in SIFT, but would provide only a slight improve-
nent in reliability.

11. SIFT CONCEPT OF FAULT TOLERANCE
1. System Overview
As the name “Software Implemented Fault Tolerance”

nplies, the central concept of SIFT is that fault tolerance is
ccomplished as much as possible by programs rather than
ardware. This includes error detection and correction,
iagnosis, reconfiguration, and the prevention of a faulty
nit from having an adverse effect on the system as a whole.
The structure of the SIFT hardware is shown in Fig. 1.
omputing is carried out by the main processors. Each
cocessor’s results are stored in a main memory that is uniquely
isociated with the processor. A processor and its memory
‘e connected by a conventional high bandwidth connection.
he 1 / 0 processors and memories are structurally similar to
Le main processors and memories, but are of much smaller
)mputational and memory capacity. They connect to the
put and output units of the system which, for this applica-
m , are the sensors and actuators of the aircraft.
Each processor and its associated memory form a processing
odule, and each of the modules is connected to a multiple
IS system. A faulty module or bus is prevented from causing
ulty behavior in a nonfaulty module by the fault isolation
ethods described in Section 11-B.

D.

.
e h

CONTROLLER
0..

Busses

1241

PROCESSING
MODULES

Actuators
To From

Sensors

Fig. 1. Structure of the SIFT system.

The SIFT system executes a set of tasks, each of which
consists of a sequence of iterations. The input data to each
iteration of a task is the output data produced by the previous
iteration of some collection of tasks (which may include the
task itself). The input and output of the entire system is ac-
complished by tasks executed in the 1/0 processors. Reliability
is achieved by having each iteration of a task independently
executed by a number of modules. After executing the
iteration, a processor places the iteration’s output in the
memory associated with the processor. A processor that
uses the output of this iteration determines its value by
examining the output generated by each processor which
executed the iteration. Typically, the value is chosen by a
“two out of three” vote. If all copies of the output are not
identical, then an error has occurred. Such errors are re-
corded in the processor’s memory, and these records are used
by the executive system to determine which units are faulty.

SIFT uses the iterative nature of the tasks to economize on
the amount of voting, by voting on the state data of the air-
craft (or the computer system) only at the beginning of each
iteration. This produces less data flow along the busses than
with schemes that vote on the results of all calculations
performed by the program. It also has important implications
for the problem of synchronizing the different processors.
We must ensure only that the different processors allocated
to a task are executing the same iteration. This means that
the processors need be only loosely synchronized (e.g., to
within 50 ps), so we do not need tight synchronization to the
instruction or clock interval.

An important benefit of this loose synchronization is that an
iteration of a task can be scheduled for execution at slightly
different times by different processors. Simultaneous transient
failures of several processors will, therefore, be less likely to
produce correlated failures in the replicated versions of a task.

The number of processors executing a task can vary with the
task, and can be different for the same task at different

1242 PROCEEDINGS OF THE IEEE, VOL. 66, NO. 10, OCTOBER 1978

times-e.g., if a task that is not critical at one time becomes
critical at another time. The allocation of tasks t o modules
is in general different for each .module. It is determined
dynamically by a task called the global executive, which
diagnoses errors to determine which modules and buses are
faulty. When the global executive decides that a module has
become faulty, it “reconfigures” the system by appropriately
changing the allocation of tasks to modules. The global
executive and its interaction with the individual processors is
described in Section IV.

B. Fault Isolation
An important property required in all fault-tolerant com-

puters is that of fault isolation: preventing a faulty unit from
causing incorrect behavior in a nonfaulty unit. Fault isolation
is a more general concept than damage isolation. Damage
isolation means preventing physical damage from spreading
beyond carefully prescribed boundaries. Techniques for
damage isolation include physical bamers to prevent propaga-
tion of mechanical and thermal effects and electrical bamers-
e.g., high-impedance electrical connections and optical couplers.
In SIFT, such damage isolation is provided at the boundaries
between processing modules and buses.

Fault isolation in SIFT requires not only damage isolation,
but also preventing a faulty unit from causing incorrect
behavior either by corrupting the data of the nonfaulty unit,
or by providing invalid control signals. The control signals
include those that request service, grant service, effect timing
synchronization between units, etc.

Protection against the corruption of data is provided by the
way in which units can communicate. A processing module
can read data from any processing module’s memory, but it
can write only into its own memory. Thus a faulty processor
can corrupt the data only in its own memory, and not in that
of any other processing modules. All faults within a module
are treated as if they have the same effect: namely that they
produce bad data in that module’s memory. The system does
not attempt to distinguish the nature of a module fault. In
particular, it does not distinguish between a faulty memory
and a processor that puts bad data into an otherwise non-
faulty memory.

Note that a nonfaulty processor can obtain bad data if that
data is read from a faulty processing module or over a faulty
bus. Preventing these bad data from causing the generation of
incorrect results is discussed below in the section on fault
masking.

Fault isolation also requires that invalid control signals not
produce incorrect behavior in a nonfaulty unit. In general,
a faulty set of control signals can cause two types of faulty
behavior in another unit.

1) The unit carries out the wrong action (possibly by
doing nothing).

2) The unit does not provide service to other units.
In SIFT these two types of fault propagation are prevented

by making each unit autonomous, with its own control. Im-
proper control signals are ignored, and time-outs are used to
prevent the unit from “hanging up” waiting for a signal that
never arrives. The details of how this is done are discussed in
Section 111.

C. Fault Muking
Although a faulty unit cannot cause a nonfaulty processor

to behave incorrectly, it can provide the processor with bad

data. In order to completely mask the effects of the faulty
unit, we must ensure that these bad data does not cause the
processor to generate incorrect results. As we indicated above,
this is accomplished by having the processor receive multiple
copies of the data. Each copy is obtained from a different
memory over a different bus, and the processor uses majority
voting to obtain a correct version of the data. The most
common case will be the one in which a processor obtains
three copies of the data, providing protection from a single
faulty unit.

After identifying the faulty unit, the system will be recon-
figured t o prevent that unit from having any further effect.
If the faulty unit is a processing module, then the tasks that
were assigned t o it will be reassigned to other modules. If it
is a bus, then processors will request their data over other
buses. After reconfiguration, the system will be able to with-
stand a new failure-assuming that there are enough nonfaulty
units remaining.

Because the number of processors executing a task can vary
with the task and can be changed dynamically, SIFT has a
flexibility not present in most fault tolerant systems. The
particular application field-aircraft control-is one in which
different computations are critical to different degrees, and
the design takes advantage of this.

D. Scheduling
The aircraft control function places two types of timing

requirements on the SIFT system.
1) Output to the actuators must be generated with specified

frequency.
2) Transport delay-the delay between the reading of sensor!

and the generation of output to the actuators based upor
those readings-must be kept below specified limits.

To fulfill these requirements, an iteration rate is specifiec
for each task. The scheduling strategy must guarantee tha
the processing of each iteration of the task will be complete(
within the “time frame” of that iteration. It does not matte
when the processing is performed, provided that it is complete1
by the end of the frame. Moreover, the time needed to ex
ecute an iteration of a task is highly predictable. The iteratio!
rates required by different tasks differ, but they can be ac
justed somewhat to simplify the scheduling.

Four scheduling strategies were considered for SIFT:

1) fixed preplanned (nonpreemptive) scheduling;
2) priority scheduling;
3) deadline scheduling;
4) simply periodic scheduling.

Of these, fxed preplanned scheduling in which eac
‘iteration is run to completion, traditional in-flight contr,
applications, was rejected because it does not allow sufficiel
flexibility.

The priority-scheduling strategy, commonly used in gener;
purpose systems, can meet the real-time requirements if tl
tasks with the fastest iteration rates are given the highe
priorities. Under this condition, it is shown in [6] that i

tasks will be processed within their frames, for any pattern
iteration rates and processing times-provided the processi
load does not exceed ln(2) of the capacity of the process
(up to about 70 percent loading is always safe).

The deadline-scheduling strategy always runs the task whc
deadline is closest. It is shown in [6] that all the tasks will
processed within their frames provided the workload dc

WENSLEY et al.: SIFT COMPUTER FOR AIRCRAFT CONTROL

CLOCK TICKS

1 1 1 1 1 1 1
PRIORITY

FRAMES
LEVEL 1

TASKS

PRIORITY

FRAMES
L E V E L 2

TASKS

PRIORITY

FRAMES
L E V E L 3

TASKS

DIAG-

TASK
NOSTIC

-..... . -......I I........

I................... I).....

................. ...
Fig. 2. A typical schedule.

not exceed the capacity of the processor (1 00 percent loading
is permissible). Unfortunately, for the brief tasks character-
istic of flight-control applications, the scheduling overhead
eliminates the advantages of this strategy.

The simply periodic strategy is similar to the priority strategy,
but the iteration rates of the tasks are constrained so that
each iteration rate is an integral multiple of the next smaller
rate (and thus of all smaller rates). To comply with this
requirement, it may be necessary to run some tasks more
frequently than their optimum rate, but this is permissible in a
flight control system. It is shown in [6] that if the workload
does not exceed the capacity of the processor (100 percent
loading is possible), then simply periodic scheduling guarantees
that all tasks will complete within their frames.

The scheduling strategy chosen for the SIFT system is a
slight variant of the simply periodic method, illustrated by
Fig. 2. Each task is assigned to one of several priority levels.
Each priority level corresponds to an iteration rate, and
each iteration rate is an integral multiple of the next lower
one. In order to provide very small transport delays for
certain functions, and to allow rapid detection of any fault
which causes a task not to terminate, the scheme illustrated
In Fig. 2 is modified as follows. The time frame corresponding
:o highest priority level (typically 20 ms) is divided into a
lumber of subframes (typically 2 ms). The highest priority
:asks are run in specific subframes, so that their results can be
wailable to other tasks run in the next subframe, and they are
.equired t o complete within one subframe.
3. Processor Synchronization

The SIFT intertask and interprocessor communication
nechanism allows a degree of asynchronism between processors
nd avoids the lockstep traditional in ultrareliable systems. Up
o 50 /.LS of skew between processors can readily be accom-
Iodated, but even this margin cannot be assured over a
:n-hour period with free-running clocks unless unreasonable
:quirements are imposed on the clocks. Thus, the processors
lust periodically resynchronize their clocks to ensure that
o clock drifts too far from any other.
For reliability, the resynchronization procedure must be

nmune to the failure of any one clock or processor, and to a
iccession of failures over a period of time. In order to
larantee the high reliability required of SIFT, we cannot

1243

allow a system failure to be caused by any condition whose
probability cannot be quantified, regardless of how implausible
that condition may seem. This means that our synchronization
procedure must be reliable in the face of the worst possible
behavior of the failing component, even though that behavior
may seem unrealistically malicious. We can only exclude
behavior which we can prove to be sufficiently improbable.

The traditional clock resynchronization algorithm for
reliable systems is the median clock algorithm, requiring at
least three clocks. In this algorithm, each clock observes every
other clock and sets itself t o the median of the values that it
sees. The justification for this algorithm is that, in the presence
of only a single fault, the median value must either be the
value of one of the valid clocks or else it must lie between a
pair of valid clock values. In either case, the median is an
acceptable value for resynchronization. The weakness of
this argument is that the worst possible failure modes of the
clock may cause other clocks to observe different values
for the failing clock. Even if the clock is read by sensing the
time of a pulse waveform, the effects of a highly degraded
output pulse and the inevitable slight differences between
detectors can result in detection of the pulse at different
times.
In the presence of a fault that results in other clocks seeing

different values for the failing clock, the median resynchroni-
zation algorithm can lead to a system failure. Consider a
system of three clocks A , B , and C, of which C is faulty.
Clock A runs slightly faster than clock B. The failure mode
of clock C is such that clock A sees a value for clock C that is
slightly earlier than its own value, while clock B sees a value
for clock C that is slightly later than its own value. Clocks A
and B both correctly observe that the value of clock A is
earlier than the value of clock B . In this situation, clocks
A and B will both see their own value as the median value,
and therefore not change it. Both the good clocks A and
B are therefore resynchronizing onto themselves, and they will
slowly drift apart until the system fails.

It might be hoped that some relatively minor modification
to the median algorithm could eliminate the possibility of such
system failure modes. However, such hope is groundless.
The type of behavior exhibited by clock C above will doom to
failure any attempt to devise a reliable clock resynchronization
algorithm for only three clocks. It can be proved that, if
the failure-mode behavior is permitted to be arbitrary, then
there cannot exist any reliable clock resynchronization algo-
rithm for three clocks. The impossibility of obtaining exact
synchronization with three clocks is proved in [9]. The
impossibility of obtaining even the approximate synchroniza-
tion needed by SIFT has also been proved, but the proof is
too complex to present here and will appear in a future paper.
The result is quite general and applies not only to clocks,
but to any type of integrator which is subject to minor per-
turbations as, for example, inertial navigation systems.

Although no algorithm exists for three clocks, we have
devised an algorithm for four or more clocks which makes the
system immune to the failure of a single clock. The algo-
rithm has been generalized to allow the simultaneous failure
of M out of N clocks when N > 3M. Here, we only describe
the single-failure algorithm, without proving it correct. (Algo-
rithms of this type often contain very subtle errors, and
extremely rigorous proofs are needed to ensure their correct-
ness.) The general algorithm, and the proof of its correctness,
can be found in [9] . ,

1244 PROCEEDINGS OF THE IEEE, VOL. 66, NO. 10, OCTOBER 1918

The algorithm is carried out in two parts. In the first part,
each clock’ computes a vector of clock values, called the
interactive consistency vector, having an entry for every clock.
In the second part, each clock uses the interactive consistency
vector to compute its new value.

A clock p computes its interactive consistency vector as
follows. The entry of the vector corresponding to p itself is
set equal to p’s own clock value. The value for the entry
corresponding to another processor q is obtained by p as
follows.

1) Read 4’s value from q.
2) Obtain from each other clock r the value of q that

r read from q .
3) If a majority of these values agree, then the majority

value is used. Otherwise, the default value NIL (indicating
that q is faulty) is used.
One can show that if at most one of the clocks is faulty, then:
1) each nonfaulty clock computes exactly the same inter-
active consistency vector; and 2) the component of this vector
corresponding to any nonfaulty clock q is q’s actual value.

Having computed the interactive consistency vector, each
clock computes its new value as follows. Let 6 be the maximum
amount by which the values of nonfaulty processors may
disagree. (The value of 6 is known in advance, and depends
upon the synchronization interval and the rate of clock
drift.) Any component that is not within 6 of at least two
other components is ignored, and any NIL component is
ignored. The clock then takes the median value of the remain-
ing components as its new value.

Since each nonfaulty clock computes exactly the same
interactive consistency vector, each will compute exactly the
Same median value. Moreover, this value must be within 6
of the original value of each nonfaulty clock.
This is the basic algorithm that the SIFT processors will

use to synchronize their clocks. Each SIFT processor reads
the value of its own clock directly, and reads the value of an-
other processor’s clock over a bus. It obtains the value that
processor r read for processor q’s clock by reading from
processor r’s memory over a bus.

F. Reliability Prediction

A sufficiently catastrophic sequence of component failures
will cause any system to fail. The SIFT system is designed to
be immune to certain likely sequences of failures. To guarantee
that SIFT meets its reliability goals, we must show that the
probability of a more catastrophic sequence of failures is
sufficiently small.

The reliability goal of the SIFT system is to achieve a high
probability of survival for a short period of time-e.g., a ten-
hour flight-rather than a large mean time before failure
(MTBF). For a flight of duration T, survival will occur unless
certain combinations of failure events occur within the interval
T or have already occurred prior to the interval T and were
undetected by the initial checkout of the system. Operationally,
failures of the latter type are indistinguishable from faults that
occur during the interval T.

To estimate the probability of system failure we use a
finitestate Markov-like reliability model in which the state

logical operations. In SIFT, such a clock is actually a processor and
‘In the following discussion, a clock is assumed to be capable of

its internal clock.

transitions are caused by the events of fault occurrence,
fault detection, and fault “handling”. The combined prob-
ability of all event sequences that lead t o a failed state is the
system failure probability. A design goal for SIFT is to
achieve a failure rate of lo-’ per hour for a ten hour period.

For the reliability model, we assume that hardware fault
events and electrical transient fault events are uncorrelated
and exponentially distributed in t h e (constant failure rates).
These assumptions are believed to be accurate for hardware
faults because the physical design of, the system prevents
fault propagation between functional ‘units (processors and
buses) and because a multiple fault within one functional
unit is no more serious than a single fault. The model assumes
that all failures are permanent (for the duration of the flight),
so it does not consider transient errors. The effects of un-
correlated transient errors are masked by the executive system,
which requires a unit to make multiple errors before it con-
siders the unit to be faulty. It is believed that careful electrical
design can prevent correlation of transient errors between
functional units. The execution of critical tasks in “loose”
synchronism also helps protect against correlation of fast
transient erron. Failure rates for hardware have been estimated
on the basis of active component counts, using typical reli-
ability figures for similar hardware. For the main processors,
we obtain the rate l o4 per hour; for 1 /0 processors and buses,
we obtain IO-’ per hour.

For a SIFT system with about the same number of main
processing modules, 1/0 processing modules, and buses, it
can be shown that the large difference in failure rates between
a main processing module and an I/O processing modules or
bus implies that we need only consider main processing
module failures in our calculations. We can therefore let the
state of the system be represented in the reliability model as a
triple of integers (h , d , f) with h < d < f, where such a state
represents a situation in whichffailures of individual processors
have occurred, d of those failures have been detected, and h of
these detected failures have been “handled” by reconfiguration.
There are three types of possible state transition.

1) (h , d , f)+ (h , d , ft l) , representing the failure of a
processor.

2) (h , d , f) -+ (h , d + 1, f), d < f, representing the detection
of a failure.

3) (h , d , f) + (h t 1, d , f), h < d , representing the handling
of a detected failure.
This is illustrated in Fig. 3. .

The fmt two types of transition-processor failure a n d
failure detection, represented in Fig. 3 by straight arrows-
are assumed to have constant probabilities per unit time
However, the third type of transition-failure handling, rep
resented. in Fig. 3 by wavey arrows-represents the comple
tion of a reallocation procedure. We assume that this transitior
must occur within some fixed length of time 7.

A state (h , d , f) with h < d represents a situation in whicl
the system is reconfigurhg. To make the system immunl
to an additional failure while in this state is a difficult problem
since it means that the procedure t o reconfigure around
failure must work despite an additional, undetected failun
Rather than assuming that this problem could be solved, w
took the approach of trying t o insure that the time 7 that th
system remains in such a state is small enough to make i
highly unlikely for an additional failure to occur befor
reconfiguration is completed. We therefore made the pe:
simistic assumption that a processor failure which occw

WENSLEY et al.: SIFT COMPUTER FOR AIRCRAFT CONTROL 1245

p-p...7... lfd lid I fd

-...+@...
I fd A v...+

Transltlons:
ft - fault occurance
fd - fault detection
fh - fault handling
* - double fault

-

Fig. 3. The reliability model.

TABLE I

while the system is reconfiguring will cause a system failure.
Such failures are represented by the “doublefault” transitions
indicated by asterisks in Fig. 3. In our calculations, we assume
that each of these transitions results in a system failure.

We have calculated the probability of system failure through
a double fault transition, and also through reaching a state
with fewer than two nonfaulty processors, for which we say
that the system has failed because it has “run out of spare^."^
A brief summary of these failure probabilities for a five
processor system is shown in Table I.

III. THE SIFT HARDWARE

The SIFT system attempts to use standard units whenever
possible. Special design is needed only in the bus system
and in the interfaces between the buses and the processing
modules.

The major parameters of the SIFT system are shown in
Table 11. The column heading “Engineering Model” indicates
the system intended for initial construction, integration, and
testing. The column heading “Maximum” indicates the limits
to which the engineering model can be expanded with only
the procurement of additional equipment.

As described in Section 11, the fault-tolerant properties of
SIFT are based on the interconnection system between units
md upon the software system. The particular design of the
processors and memories is irrelevant to our discussion of
hult tolerance. We merely mention that the main processors
md memories are based on the BDmicroX computer-a
nodern, LSI-based 16-bit computer designed and manu-

Saee

Saae
b4L
S a l ?

factured by Bendix Corporation specifically for avionics or
similar applications. The 1/0 processors are based upon the
well-known 8080 microprocessor architecture.

To help the reader understand the operation of the units
and their interaction with one another, we describe the opera-
tion of the interconnection system in abstract terms. Fig. 4
shows the connections among processors, buses, and memories.
The varying replications of these C O M ~ C ~ ~ O ~ S are shown for
each type of unit. Within each unit are shown a number of
abstract registers that contain data or control information.
Arrows that terminate at a register indicate the flow of data
to the register. Arrows that terminate at the boundary of a
unit indicate control signals for that unit.

We explain the operation of the interconnection system by
describing how a processor p reads a word of data from
location w of memory m via bus b . We assume normal opera-
tion, in which no errors or timaouts occur. Processor p
initiates the READ operation by putting m and w into the
register P R E Q U E S T ~ , b) . Note that every processor has a
separate PREQUEST register for each bus to which it is con-
nected. When this register is loaded, a BUSREQUEST line
is set to request attention from the appropriate bus. The
processor must now wait until the requested bus and memory
units have completed their part of the operation.

Each bus unit contains a counter-driven scanner that con-
tinuously scans the PREQUEST and BUSREQUEST lines from
processors. When the scanner finds a processor that requires its
attention (BUSREQUEST high), it stops and the bus is said to
have been siezed by that processor. The bus’ counter then
contains the identifying number of the processor that has
seized it. When seized, the bus transfers the value w from the
processor to a register connected to memory m . When this
transfer has been completed, the MEMREQUEST line is raised
calling for attention from that memory. The bus then waits

‘The probability of system failure because of multiple underecred
for the memory to complete its actions.

aults has not been computed prefisely, but is expected to be corn- units contain counter-driven scanners that Operate
mable to the double fault values. in the same manner as those in the bus units-i.e., they con-

1246 PROCEEDINGS OF THE IEEE, VOL. 66, NO. 10, OCTOBER 1978

TABLE In1

BUSREQUEST
PREQUEST

m w
READ,N

4
I A

ToiFrom TolFrom
Other

Processors
1 1 I I

Other
Busses

I 1 DATA BCOUNTER READY BUSDATA

I . r
1 J

I
TolFrom t
Memories Busses

Other

MCOUNTER MEMREAD MEMDATA

0- MEMORY

Fig. 4. An abstract view of data transfers.
~~~ 

tinuously scan all  busses to determine which of them (if any) 
is requesting service.  When a  request  is  detected,  the  memory 
is said to be seized, and it reads the value w from  the bus. 
The memory  then  reads the  contents of its  location w into 
MEMDATA register, and raises the MEMREAD line to inform 
the  bus  that  the  data are available. The  memory leaves the 
state of MEMDATA and MEMREAD unchanged until  it  detects 
that the MEMREQUEST line  from  the bus has dropped, in- 
dicating that  the  bus has  received the  data  from  the MEMDATA 
register. The  memory  then  drops the MEMREAD line and 
resumes scanning the buses for  further requests. 

When the bus detects  that  the MEMREAD line from the 
memory is up, it transfers the  data in the MEMDATA register 
to the BUSDATA register, drops  the MEMREQUEsT line, and 

that  the  data is available. The bus leaves the  state  of  the 

that  the BUSREQUEST line from the processor has dropped, 
indicating that  the  processor  has received the  data  word.  The 
bus  then  drops  the DATAREADY line and resumes scanning the 
processors for  further  requests. 

Meanwhile, the processor that made  the original request has 
been waiting for  the DATAREADY line to be  raised by the  bus, 
at  which  time it reads  the  data from the BUSDATA register. 
After  completing  this  read,  it  drops  the BUSREQUEST line  and 
continues  with  other  operations. 
These actions have left the units  in  their original states. 

They are therefore  ready to  take  part  in  other  data  transfer 
operations. 

raises the DATAREADY line-indicating to  the PrOCesSOT 

BUSDATA and DATAREADY lines unchanged Until it detects 

D a t a :  
K t A U l h ( ? , > )  
A s a t  0 6  r e g i s t e r s ,   o n e  <or each bus b ,  t h a t  r e c e i v e  
l a t a   r e a l  fro3 another  2rocessor-  

PUEWbST(n,b) 
)1 s % t  of  c e y i s t e r s ,  one for each bus b, t h a t   h o l d   t h e  
p a r a x - t e r ~  o t  a rsouest to rea? one war* from  another 
?odUle'f me?orv over t h a t  %us. 

QIJSWE<?~12V(p,5) 
A s e t  e +  b o o l e a n s   t h a t   i n f l i c a t a  a request  fro. bus b .  

--- 
A c o n s t a n t   t h a t  is t h e  maximum time a proccssor  will 
u a l t  f o r  I bus a r t i o n .  

B U S  F4ILrn,D) 
L boo lean   in4 ica t ing   that   processor  P t imed-out  before 
r e c e l v l n q  d a t a  f rom bus h. 

Erterna l  Oata (generatnd by o t h e r   u n i t s ) :  
DAt lREAnV,  QllCLl1 ' tL  from RTS module 

Avstrac t  Proaram: 
KFM:FST(p,h)  := C,Y 

The precise behavior of the units can be described by ab- 
stract programs. Table 111 is an  abstract program for the 
processor to bus interface  unit.3  It shows the unit's auton- 
omous  control, and the  manner  in which the  unit  requests 
service. Note  how  time-outs are used to prevent any kind  of 
bus or memory failure from "hanging up"  the  unit.  Abstract 
programs for the  &her units are similar. 

The  interconnection system units designed  especially for the 
SIFT system are: 

1)  the  processor-to-bus interfaces; 
2) the busses; 
3 )  the bus-to-memory  interfaces. 

These units all operate  autonomously and contain  their  own 
control, which  is implemented as a simple microprogrammed 
controller.  For  example, the  bus  control  scanner  that  detects 
the processors' requests  for service is controlled by a  micro- 
program in a programmable  read-only  memory (PROM). 
The  contents of this PROM are used for two  purposes: first, 
part of the  data is fed back to  the PROM'S address register to 
determine which  word of the PROM is to be  read next;  second, 
part of the  data is  used as logic signals that  control  the  opera- 
tion of the  unit in  which the PROM resides. For  example, 
this second part could contain  data to open gates to allow 
the flow of information  from  one  unit to another.  Input 
signals to  the controller are applied to some of the bits of 
the PROM's address register, thereby  affecting which PROM 
words are read. 

The interface  units  (items  1  and 3 above) consist mainly oj  
a few registers, the controller,  and the gates necessary to effect 
the  data flow. The bus with  its  controller  (item 2) contains 5 

larger set of such gates, since each bus can allow data flom 
from every memory to every processor. We estimate thal 
the  complexity of a bus  unit, consisting of a bus togethe3 

'This program is only meant to illustrate the unit's main features;il 
does  not accurately describe the true behavior of the unit. 



WENSLEY cr d.: SIFT COMPUTER  FOR AIRCRAFT CONTROL 1247 

with all its  interfaces, is about 10 percent of that of a main 
processing module. The logical structure is such that an LSI 
version of an entire  bus unit will be practical for  future versions 
of SIFT. However, the engineering model will be a mixture 
of LSI and MSI (medium scale integration)  technology. 

The design of the interfaces  permits  simultaneous  operation 
of all units.  For example, a processor can simultaneously read 
data from its memory  and  from another  memory, while at 
the same time  another processor is reading from the first 
processor’s memory.  Such  simultaneous  operation is limited 
only  by  contention  at a memory unit. This contention is 
handled by conventional cycle-stealing techniques and causes 
little delay, since the memory cycle time is small (250 ns) 
compared to the  time needed to  transfer a full word through 
the bus (1 0 ps). 

Since several processors may attempt  to seize the same  bus, 
or several  busses may attempt to seize the same memory, a 
processor can have to  wait for  the completion of one or more 
other  operations before receiving  service. Such waiting should 
be insignificant because of the small amount of data  that is 
transmitted over the busses. 

IV. THE SOFTWARE SYSTEM 
The software of SIFT consists of the  application software 

and the executive software.  The application software per- 
forms  the  actual flight control computations.  The executive 
software is responsible for  the reliable execution of the appli- 
cation tasks, and  implements the  error  detection and recon- 
figuration mechanisms discussed in Section  .II. Additional 
support software to be run on a large support computer is 
also provided. 

From the  point of view  of the  software, a processing module 
-with its processor, memory, and associated registers-is a 
single  logical unit. We will therefore simply use the term 
“processor” to refer to a processing module for  the rest of 
the  paper. 

A .  The Application  Software 
The  application  software is structured as a set of iterative 

tasks. As described in Section 11-D, each task is run with a 
fixed iteration  rate which depends upon  its  priority.  The 
iteration  rate of a higher priority task is an integral multiple 
of the  iteration  rate of any  lower  priority  task. Every  task’s 
iteration  rate  is a simple fraction of the main clock frequency. 

The  fact  that a task is executed by several processors is in- 
visible to the  application software. In each iteration, an appli- 
cation task obtains its inputs by executing calls to the execu- 
tive software. After  computing its  outputs,  it makes them 
available  as inputs to the next iteration of tasks by executing 
calls to the executive software. The  input and output of a 
task iteration will consist of at most a few words of data. 

B. The SIFT Executive  Software 
Formal specifications of the executive software have been 

written  in a rigorous form using the SPECIAL  language [7] 
developed at SRI. These formal specifications are needed for 
the proof of the correctness of the system discussed in  Section 
V. Moreover, they are also intended to  force  the designer to 
produce a well-structured system. Good  structuring is essen- 
tial to the success  of SIFT. A sample of these SPECIAL specifi- 
cations is given in  the Appendix. The complete  formal specifi- 

TASKS 
GLOBAL 

EXECUTIVE 

LOCAL EXECUTIVE 

Fig. 5. Logical structure of the SIFT software system. 

cation is omitted from this paper. Instead, we informally 
describe the  important aspects of the design. 

The  SIFT executive software  performs the following 
functions: 

1)  run each task at  the required iteration  rate; 
2) provide correct  input values for each iteration of a critical 

3) detect  errors and diagnose their cause; 
4) reconfiire  the system to avoid the use of failed 

task (masking any  errors); 

components. 

To perform the last three  functions,  the executive software 
implements the techniques of redundant  execution and major- 
ity voting described in  Section 11. The executive software is 
structured  into  three  parts: 

1)  the global executive task; 
2) the local executive; 
3) the local-global communicating tasks. 

One global executive task is provided for  the whole system. 
It is run  just like a highly critical application task-being 
executed by  several processors and using majority voting to 
obtain  the  output of each iteration. It diagnoses errors to de- 
cide which units have failed, and determines the  appropriate 
allocation of tasks to processors. 

Each  processing module  has its own local executive and local- 
global communicating tasks. The local-global communicating 
tasks are  the  error  reporting task and the local reconfiguration 
task. Each of these tasks is  regarded as a separate task ex- 
ecuted on a single processor rather  than as a replication of 
some more global task, so there  are as many  separate  error 
reporting tasks and local reconfiguration tasks as there are 
processors. 

Fig. 5 shows the logical structure of the  SIFT software sys- 
tem. The replication of tasks  and  their allocation to proces- 
sors is not visible.  Tasks communicate  with one  another 
through buffers maintained by the local executives. Note that 
the single global executive task is aware of (and communi- 
cates  with)  each of the local executives, but  that  the local 
executives communicate  only with the single (replicated) 
global executive task and not with each other.  In this logical 
picture, application tasks communicate with each other and 
with the global executive, but  not with the local executives. 

Fig. 6 and Fig. 7 show where the logical components of  Fig. 
5 actually reside within SIFT. Note how critical tasks are 



PROCEEDINGS OF THE  IEEE, VOL. 66, NO. 10, OCTOBER 1978 

PROCESSOR 1 

( TASK  B 
APPLICATION 

BUFFER 

a. * VOTE 

PROCESSOR 2 

I 

I 

PROCESSOR 3 

BUFFER 

APPLICATION 
TASK A 

-- 

I 
BUS  SYSTEM 

Fig. 6. Arrangement of application tasks within  SIFT  configuration. 

PROCESSOR 1 

LOCAL 

URATION 

EXECUTIVE 

PROCESSOR 2 

EXECUTIVE 
GLOBAL 

PROCESSOR 3 

DOUBLE 

BUFFER  BUFFER 

1 \ 
/ I 

/ I 
BUS  SYSTEM 

GLOBAL 

Fig. 7. Arrangement of executive  within SIFT configuration. 

replicated on several processors. For  the  sake of clarity, many 
of the  paths by which  tasks read buffers have  been eliminated 
from Fig. 6 and Fig. 7. 
1) The Local-Global  Communicating  Tasks: Each proces- 

sor  runs  its  local  reconfiguration task and  error  reporting task 
at  a specified frequency,  just  like  any  other task. These two 
tasks  communicate  with  the global executive via buffers. 

The local executive  detects an error when it  obtains differ- 
ent  output values for  the same task iteration from  different 
processors! It reports all such errors to the error  reporting 

memory of another  procesdng  module. 
41t can also detect  that  a  time-out  occurred  while reading from the 

task.  The  error  reporting task performs  a preliminary analysis 
of these  errors,  and  communicates  its  results to  the global 
executive task. These results  are also used by the local execu- 
tive to  detect possibly faulty  units  before the global executive 
has  diagnosed the errors. For  example,  after several error 
reports involving a particular bus, the local  executive will 
attempt to use other busses in preference to  that one  until 
the global executive has  diagnosed the cause of the errors. 

The  local reconfguration  task  maintains  the tables used by 
the local  executive to schedule  the  execution of tasks. It does 
this using information provided to it by the global executive. 

The  interaction of the global executive and  the local-global 
communicating  tasks is shown in Fig. 8. 



WENSLEY e t  al.: SIFT COMPUTER  FOR AIRCRAFT CONTROL 1249 

1. Error handler in each  processor puts reports in 
error table. 

2. Error  reporter task in each  processor reads error 

the global executive. This  report is put  in a 
table and decides what conditions to report to 

buffer. 

3. Global executive (triplicated) reads each proceeor‘s 
buffer over three busses (to guard against bus 
errors) and votes for a plurality. 

4. Global executive, using the diagnosis provided by 
the  error  reporter, determines what  reconfiguration, 
if  any, is necerrary. If  a reconfiguration is neces- 
sary. a report is put  in a buffer. 

5. Local reconfiguration task in each procersor reads 
report  from each of the global executive buffers 
and votes to determine  plurality. 

6. Local reconfiguration task changer the scheduling 
table to reflect the global executive’s wishes. 

Fig. 8. Error reporting and reconfiguration. 

2 )  The  Global  Executive  Task: The global executive task 
uses the results of every  processor’s error  reporter task to 
determine which processing modules  and buses are  faulty. 
The problem of determining which units are faulty is discussed 
in Section IV-C below. When the global executive decides that 
a component has failed, it  initiates a reconfiguration by send- 
ing the  appropriate  information to the local reconfiguration 
task of each processor. The global executive may also recon- 
figure  the system as a result of directives from the application 
tasks. For example, an application task may report a change 
of  flight phase which changes the criticality of various tasks. 

To permit rapid reconfiguration, we require  that  the pro- 
gram for executing a task must reside in a processor’s memory 
before  the  task can be allocated to  that processor. In  the 
initial version of SIFT,  there will be a static assignment of 
programs to memories. The program for a critical task will 
usually reside in all main processor memories, so the task can 
be executed by any main processor. 

3) The  Local  Executive: The local executive is a collection 
of routines to perform the following functions:  1)  run each 
task allocated to it at  the task’s specified iteration  rate; 2) pro- 
vide input values to, and receive output values from each task 
iteration,  and 3) report  errors to the local executive task. 

A processor’s local executive routine can  be invoked from 
within that processor by a call from a running  task, by a clock 
interrupt,  or  by a call from another local executive routine. 
There are four  types of routines: 

1) error  handler; 
2) scheduler; 
3) buffer  interface  routines; 
4) voter. 

The error  handler  routine is invoked by  the  voter when  an 
error  condition is detected. It records  the  error in a processor1 
bus  error table, which is used by the  error  reporting task 
described above. 

The scheduler  routine is responsible for scheduling the ex- 
ecution of tasks.  Every task is  run  at a prespecified iteration 
rate  that defines a sequence of time frames within which the 
task must be run.  (For simplicity, we ignore the scheduling 
of the highest priority  tasks in subframes that was mentioned 
in  Section 11-D.) A single iteration of the task is executed 
within each of its frames, but it may be executed at  any  time 
during that frame. 

@ FRAME TqE 

OUTPUT  INPUT 

1 I CLOCK 

V I C K  

Fig. 9. T h e  double buffering mechanism. 

The scheduler is invoked by a clock interrupt  or by the 
completion of a task.  It always runs the highest priority task 
allocated to the processor that has not  yet finished executing 
the  iteration  for  its  current  time frame. Execution of a task 
may be interrupted by the  clock, in which case its  state is 
preserved until  execution is resumed-possibly after  the execu- 
tion of a higher priority  task. A task that has completed its 
current  iteration is not executed again until  after  the star t  of 
its next time  frame. 

The buffer  interface  routines are invoked by a task when it 
generates output  for  an  iteration. These routines  put  the  out- 
put  into a buffer reserved for  that  task. These output values 
are used  by the  voter  routines described below to  obtain  input 
for  the tasks.  Because a task may  be run at any time during 
its  time frame, the double-buffering scheme shown in Fig. 9 
is used. Each buffer consists of a double  buffer. In any one 
time  frame,  one of the buffers is  available for new data being 
generated by the task while the  other  contains  the  data gener- 
ated last time frame. It is  the  latter values that  are used to 
provide input  to  other tasks (and possibly to the same task). 
A t  the start of the  next time frame, the buffers are switched 
around. Provision is also made for communication  between 
processes operating at different frequencies. 

The voter  routine is invoked by a task to obtain  the  inputs 
for  its  current  iteration.  The task requests a particular  output 
from the previous iteration of second task-which may be the 
same task.  The  voter uses tables provided by the local recon- 
figuration task to determine what processors contain copies 
of that  output,  and  in which of their buffers. It reads the 
data  from each of these  buffers  and  performs a majority vote 
to obtain a single  value. If all the values do  not agree, then an 
error has occurred,  and  the  error  reporter is called. 

C. Fault Detection 
Fault  detection is the analysis  of errors to determine which 

components are faulty. In SIFT,  fault  detection is based upon 
the processor/bus error  table,  an m by n matrix, where m is 
the number of processors and n the  number of busses in the 
system. Each processor has its own processorlbus  error  table 
that is maintained by its local executive’s error handler. An 



1250 PROCEEDINGS OF THE  IEEE, VOL. 66, NO. 10, OCTOBER 1978 

entry X p [ i ,  j ]  in processor p’s table  represents  the  number of 
errors  detected  by processor p’s local  executive  that involve 
processor i and bus j .  Suppose  that processor p is reading 
from processor q using bus r .  There are five distinct kinds of 
errors that cause a  matrix value to change: 

1)  the  connection  from  bus r to processor q is faulty; 
2)  the  connection  from processor p to bus r is faulty; 
3) bus r is faulty; 
4) processor q is faulty; 
5) processor p is faulty ; 

Processor p’s error  reporting  task analyzes the  processor/bus 
error  table as follows to determine if any of these cases hold. 
Let e > 0 be a  threshold of errors that will be tolerated  for any 
processor/bus  combination.  It can deduce  that case 1  holds if 
the following conditions all hold: (i) X p [ q ,  rl >e,  (ii) there 
exists a bus j such that X p [ q ,  j ]  <e, and (iii) there  exists a pro- 
cessor i such  that X p [ i ,  r ]  < e .  Either case 2 or 3 may hold 
if X p [ i ,  rl > e  for all active processors i .  These two cases can 
only be distinguished by the global executive task, which has 
access to information  from all the processors. (Case 3 holds if 
all active processors report bus r faulty,  otherwise case 2 
holds.)  The  error  handler can deduce  that case 4 holds if 
X p [ q ,  j 1 > e for all active buses j .  The error  handler  cannot 
be depended  upon to  diagnose case 5 ,  since the failure of the 
processor executing  it  could cause the error  handler to decide 
that  any  (or  none) of the  other  four cases hold. 

Once the error  handler has performed  this analysis, the 
appropriate  action  must be taken. In case 1, processor p will 
stop using bus r to talk to processor q .  In cases 2 and 3, 
processor p will stop using bus r ,  and will report to  the global 
executive  that bus r is faulty. In case 4, processor p will 
report to  the global executive  task  that processor q is faulty. 

The global executive task makes the  fiial decision about 
which unit is faulty.  To do this,  it reads the  faulty processor 
reports provided by the error  reporting  task. If two  or  more 
processors report  that  another processor is faulty,  then  the 
global executive decides that this other processor has indeed 
failed. If two  or  more processors report  that  a bus is faulty, 
then  the global executive decides that  the bus has failed. 

The global executive may know that some  unit produced, 
errors,  but be unable to determine which is the faulty  unit. In 
that case, it must  await  further  information.  It can obtain 
such  information by allocating the  appropriate diagnostic 
tasks. If there is a faulty unit  (and  the  error  reports were not 
due to  transient  faults), then  it  should  obtain  the necessary 
information  in  a  short  time. 

It can be shown that in the presence of  a single fault,  the 
above procedure  cannot cause the global executive to declare 
a  nonfaulty  unit to  be faulty. With the  appropriately “mali- 
cious” behavior, a faulty unit may generate  error  reports with- 
out giving the global executive  enough  information  to  deter- 
mine that it is faulty. For  example, if processor p fails in such 
a way that it gives incorrect  results only to processor q ,  then 
the global executive  cannot decide whether  it is p or q that is 
faulty. However, the  majority voting technique will  mask 
these  errors  and prevent a system failure. 

D. The  Simulator 

An initial version  of the  SIFT system has  been coded  in 
Pascal. Since the avionics computer is not available at this 
time,  the  executive is being  debugged on an available general- 
purpose  computer  (a DEC PDP-IO). To facilitate  this, a simu- 

lator has been constructed.  The  simulator uses  five asyn- 
chronous processes, each running  a  SIFT executive and a  “toy” 
set of application tasks. The  controlling process simulates  the 
actions of the  SIFT bus system and  facilitates  interprocess 
communications.  Faults  are  injected,  either  at  the processor 
or the bus levels, and a visual display of the system’s behavior 
is provided. This gives us a means of testing  software  in  the 
absence of the  actual  SIFT  hardware. 

v. THE PROOF OF CORRECTNESS 

A.  Concepts 

Estimates of the reliability of SIFT  are based upon  the as- 
sumption  that  the  software  operates  correctly. Since we know 
of no  satisfactory way to estimate  the  probability  that  a piece 
of software is incorrect, we are  forced to try to guarantee 
that  the  software is indeed correct. For  an  asynchronous 
multiprocess system such as SIFT,  the only way to  do this is 
to give a  rigorous  mathematical proof of its correctness. 

A rigorous proof of correctness  for  a system requires  a pre- 
cise statement of what  it  means  for the system to be correct. 
The  correctness of SIFT  must be expressed as a precise mathe- 
matical  statement  about  its behavior. Since the  SIFT system 
is composed of several processors and memories, such a state- 
ment  must describe the behavior of many  thousands of bits of 
information. We are  thus faced with the problem that  the 
statement of what  it  means  for the  SIFT  software to be cor- 
rect is too  complicated to be humanly  comprehensible. 

The  solution to this  problem is to  construct  a higher level 
“view” of the  SIFT  system  that is simpler than  the  actual sys- 
tem.  Such a view is called a model. When stated  in  terms of 
the ,simple  model, the requisite system properties can be made 
comprehensible.  The proof of correctness is then  performed 
in  two  steps:  1) we first prove that  the model possesses the 
necessary correctness  properties;  and 2) we then prove that 
the  model  accurately describes the  SIFT system [ 12). 

Actually,  different  aspects of correctness  are best expressed 
in  terms of different models. We use a  hierarchy of models. 
The system itself may be  viewed  as the  lowest level model. In 
order to prove that  the models  accurately describe the  SIFT 
system, we prove that each model  accurately describes the 
next lower-level one. 

B. Models 

We now make the  concept of a model  more precise. We 
define a model to consist of a set S of possible states, a  subset 
SO of S consisting of the set of possible initial  states,  and a 
transition rebtion -, on S. The  relation s -+ sr means that  a 
transition is possible from state s to  state s’. It is possible for 
the relations s + sr and s + S” both to hold for two different 
states sr and s”, so we allow nondeterministic behavior. A 
possible  behavior of the @stem  consists of a sequence of states 
SO, ~ 1 ,  * such  that SO is in SO and si + si+1 for  each i. Cor- 
rectness  properties are mathematical  statements  about  the 
possible behaviors of the  system. 

Note that  the behavior of a model  consists of a linear se- 
quence of transitions, even though  concurrent  operations  oc- 
cur  in  the  SIFT  system.  Concurrently  activity  can be repre- 
sented by transitions that change disjoint  components of the 
state, so that  the  order in which they  occur is irrelevant. 

Each state of the  model  represents  a  collection of states in 
the real system.  For  example,  in  the  reliability  model dis- 
cussed in  Section 11-F, the  state is a triple of integers (h ,  d,f) 



WENSLEY et al.: SIFT COMPUTER  FOR AIRCRAFT CONTROL 1251 

which contains  only  the  information  that f processors have 
failed, d of those failures have been detected,  and h of the 
detected failures have  been handled. A single model state 
corresponds to all possible states  the system could  reach 
through  any combination of f failures, d failure detections, 
and h reconfiirations. 

We now consider what it means for one model to accurately 
describe a lower level one. Let S, So, and -+ be the  set of 
states,  set of initial states,  and  transition  relation  for  the higher 
level model;  and let S’, Sb, and -+ ’ be the corresponding  quan- 
tities  for  the lower level model. Each state of the lower level 
model must  represent some state of the higher level one,  but 
different  lower level states can represent  the same higher 
level one.  Thus  there  must be a mapping REP: S’ -+ S, where 
REP(s!) denotes the higher-level state represented by s’. 

Having defined a correspondence  between the  states of the 
two models, we can require  that  the  two models  exhibit 
corresponding behavior. Since the lower level model repre- 
sents a more detailed description of the system, it may  contain 
more  transitions  than  the higher level one. Each transition  in 
the lower level model  should  either  correspond to a transition 
in the higher level one,  or else should describe a change in  the 
system that is  invisible in  the higher level model. This require- 
ment is embodied in the following two conditions. 

1) REP(&) is a subset of So. 
2) For all s’, t‘ in S’: if s’ +’ t) then  either: 

(a) REP(S‘) = REP(t‘); or 
(b) REP(s‘) -+ REP(t’). 

If these conditions  are satisfied, then we say that REP de- 
fines the lower level model to be a refinement of the higher 
level one. 

If a model is a refinement of a higher level one,  then any 
theorem about  the possible  behaviors of the higher level model 
yields a corresponding  theorem about  the possible  behaviors 
of the lower level one. This is  used to infer correctness of the 
lower level model (and  ultimately, of the system itself) from 
the correctness of the higher level one. 

A transition  in  the higher level model may represent a sys- 
tem action  that is represented by a sequence of transitions in 
the lower level one. For example, the  action of detecting a 
failure may be represented by a single transition in the higher 
level model. However, in a lower level model (such as the 
system itself),  detecting a failure may  involve a complex 
sequence of transitions. The second requirement means that 
in  order  to define REP, we must  defiie some  arbitrary  point 
at which the lower level model is considered to have detected 
the failure. This problem of defining exactly when the higher 
level transition  takes place in  the lower level model turns  out 
to be the major difficulty in constructing  the mapping REP. 

C. The Reliability  Model 
In  the reliability model, the  state consists of a triple ( h ,  d , f )  

of integers with h < d < f < p ,  where p is the  number of pro- 
cessors. The  transition  relation + is described in  Section 11-F, 
as is the meaning of the  quantities h ,  d ,  and f: 

Associated with each value of h is an integer sf@)  called its 
rafety factor, which has the following interpretation. If the 
system has reached a configuration in which h failures have 
been handled, then it can successfully cope with up  to  sf(h) 
3dditional (unhandled) failures. That is, the system should 
function correctly so long as f -  h ,  the  number of unhandled 
’ailures, is less than or equal to sf@).  The  state (h ,  d ,  f) is 
:alled safe i f f  - h G sf(h). 

To demonstrate  that  SIFT meets its reliability requirements, 
we must  show two things. 

1) If the system remains in a safe state  (one represented by a 
safe state in the reliability model), then it will behave correctly. 

2) The  probability of the system reaching an unsafe state is 
sufficiently small. 

Property 2) was  discussed in Section 11-F. The remainder of 
Section V describes our approach to proving 1). 

The reliability model is introduced specifically to allow us 
to discuss property 2). The  model  does not reflect the  fact 
that  SIFT is performing any  computations, so it cannot be 
used to state any correctness properties of the system. For 
that, a lower level model is needed. 

D. The Allocation  Model 
1)  An  Overview: SIFT  performs a number of iterative 

tasks. In the allocation model, a single transition  represents 
the execution of one  complete  iteration of all the tasks. As 
described in Section 11-D, most  tasks  are  not actually executed 
every iteration cycle. For  the allocation model, an  unexecuted 
task is considered to perform a null calculation,  producing  the 
same result it  produced during the previous iteration. 

The input used by a task in its  tth  iteration is the  output 
of the ( t  - 1)st  iterations of some (possibly empty)  set of 
tasks. Input to SIFT is modeled by a task executed on an 
1/0 processor which produces output  without requiring input 
from  other tasks. The  output which an 1 / 0  processor pro- 
duces is simply the  output of some task which it executes. 

In the allocation model, we make no  distinction between 
main processors and I/O processors. Bus errors  are  not repre- 
sented in the model. SIFT’S handling of them is invisible in 
the allocation model, and can be represented by a lower level 
model. 

The  fundamental correctness property of SIFT-property 
1) of Section V-C above-is stated  in terms of the allocation 
model as follows: if the system remains in a safe state,  then 
each nonfaulty processor produces  correct output for every 
critical task it executes. This implies the correctness of any 
critical output of SIFT generated by a nonfaulty 1 / 0  proces- 
sor. (The possibility of faulty I/O processors must be handled 
by redundancy in the  external environment.) 

The allocation of processors to tasks is effected by the  inter- 
action of the global executive task,  the local-global communi- 
cating tasks, and local executives, as described in Section IV. 
The  output of the  tth  iteration of a local-global communi- 
cating task uses  as input  the  output of the ( t  - 1)st  iteration 
of the global executive. During the  tth  iteration cycle, the 
local executive determines what the processor should be doing 
during the ( t  + 1)st cycle-i.e., what tasks it should execute, 
and what processor memories contain the  input values for each 
of these tasks. The processor executes a task by fetching each 
input from several processor memories, using a majority vote 
to determine the  correct value, and then computing the task’s 
output.’ We assume that a nonfaulty processor will compute 
the  correct  output value for a task if majority voting obtains 
the  correct value for each of the task’s inputs. 

The only part of the executive software that is explicitly 
represented in the allocation are the local-global communi- 
cating tasks. Although each processor’s  local-global communi- 
cating task is treated  in  SIFT as a separate  task, it is more 
convenient to represent  it in the allocation model as the execu- 

sented in the allocation model. 
’The  fault diagnosis performed by the global executive is not repre- 



1252 

tion  on  that processor of a single replicated task whose output 
determines  the  complete allocation of tasks to processors. 

2)  The  States of the  Allocation  Model: We now describe 
the set of states of the allocation model. They  are  defined  in 
terms of the  primitive quantities  listed below, which are them- 
selves undefined.  (To  show  that  a lower level model is a re- 
finement of the allocation  model, we must defiie  these primi- 
tive quantities  in  terms of the primitive quantities of that 
lower level model.) The  descriptions of these  quantities  are 
given to help  the  reader  understand  the  model;  they have no 
formal significance. 

P 

K 

LE 

e 

sf 

A set of  proc.essors. It  represents  the  set of all proces- 
sors in the  system. 
A set of tasks. It  represents  the  set of all (critical) 
tasks in the system. 
An element of K. It is the single task that  represents all 
the local-global communicating tasks, as described 
above. 
A mapping  from the cross  product of K and the set of 
nonnegative integers into some unspecified set of  val- 
ues. The value of e ( k ,  t )  represents  the correct output 
of the  fth  iteration cycle of task k .  Thus, e describes 
what the  SIFT tasks should  compute.  It is a  primitive 
(i.e., undefined)  quantity  in  the  allocation  model b e  
cause we are not specifying the actual values the  tasks 
should  produce. (These values will, of course,  depend 
upon  the  particular  application tasks SIFT  executes, 
and the  inputs  from  the  external  environment.) 
The  safety factor  function  introduced in the reliability 
model. It remains a  primitive  quantity  in  the  allocation 
model. It can be thought of as a goal the system is 
trying to achieve. 

We define  the allocation  model state  to consist of the fol- 
lowing components.6 (Again, the  descriptions  are to assist 
the  reader and  are  irrelevant to the  proof.) 

t A nonnegative integer, It  represents  the  number of 
iteration cycles that have been  executed. 

F A subset of P. It  represents  the set of all failed 
processors. 

D A subset of F.  It  represents  the  set of all failed pro- 
cessors  whose failure has been  detected. 

c A mapping  from P X K into some unspecified set of 
values. The value c(p, k) denotes  the  output of task k 
as computed by processor p .  This value is presumably 
meaningless if p did not  execute  the  tth iteration of 
task k. 

3. The  Axioms of the  Model: We do  not  completely de- 
scribe the set of initial states So and the transition  relation -+ 

for  the allocation model. Instead, we  give the following list 
of axioms  about So and +. Rather  than giving their  formal 
statement, we simply give here  an  informal  description of the 
axioms. (Uninteresting  axioms dealing with such matters as 
initialization  are  omitted.) 

1) The value of c @ ,  L E )  during iteration cycle t ,  which 
represents  the  output of the  fth  iteration of processor p’s 
local-global communicating  task, specifies the tasks that p 
should execute during cycle t + 1 and the processors whose 
memories  contain input values for each such task. 

2) If a  nonfaulty processor p executes  a  task k during 

has been omitted. 
“TO simplify the dipcussion, one  component of our actual model 

PROCEEDINGS OF THE IEEE, VOL. 66, NO. 10, OCTOBER 1978 

iteration cycle t ,  and a majority of the copies of each input 
value to k received  by p are  correct, then  the value c(p, k) it 
computes will equal  the  correct value e ( k ,  t ) .  

3) Certain  natural  assumptions  are  made  about  the alloca- 
tion of tasks to processors specified by e(LE, t ) .  In  particular, 
we assume that  a)  no critical  tasks  are assigned to a processor 
in D (the set of processors known to be faulty),  and  b) when 
reconfiguring, the reallocation of tasks to processors is done 
in  such  a way that  the global executive never knowingly 
makes the system less tolerant of failure than  it  currently is. 

To prove that  a  lower level model is a  refinement of the 
allocation  model,  it will suffice to verify t h d  these  axioms 
are  satisfied. 

4)  The  Correspondence  with  the  Reliability  Model: In 
order to show that  the allocation  model is a  refinement of 
the reliability  model, we must  define  the  quantities h ,   d ,  and 
f of the reliability  model in  terms of the  state  components of 
the allocation  model-thereby defining the  function REP. 

The  definitions of d and f are  obvious;  they are just the  num- 
ber of elements in the sets D and F ,  respectively. To  define 
h ,  we must specify the precise point during the  “execution” of 
the allocation  model at which a  detected  failure is considered 
to be “handled.” Basically, the value of h is increased to h + 1 
when the  reconfiguration has  progressed to  the  point where  it 
can handle sf(h + 1) additional errors.  (The  function sf ap- 
pears in the  defiition.) We omit  the  details. 

5. The  Correctness Roof: Within the allocation  model, we 
can define  a  predicate C F ( t )  that expresses the  condition  that 
the system functions  correctly during the tth iteration  cycle. 
Intuitively,  it is the  statement  that every nonfaulty processor 
produces  the  correct  output  for every task it  executes.  The 
predicate CF(t) can be stated  more precisely as follows. 

If e(LE, t - 1) indicates that p should execute  a task k in K 
during the tth iteration cycle, and p is in P - F,  then  the value of 
c ( p ,  k) after the tth iteration e q u a l s  e(k, t ) .  

[ A  precise statement of’how e(LE, t - 1) indicates that p 
should  execute task k requires  some  additional  notation,  and 
is omitted.] 

We can define  the  predicate SAFE(t) to mean that  the sys- 
tem  is in a safe state  at  time t .  More precisely, SAFE(t) means 
that after the  tth iteration  cycle,  sf(h) >f - h ,  where f and h 
are defined above  as functions of the allocation  model  state. 
The basic correctness  condition  for  SIFT can be stated as 
follows. 

If SAFE(t’) is true for all t’ with 0 d tl d t ,  then CF(t) is 
true. 

A rigorous proof of this  theorem has  been developed, based 
upon  the  axioms  for  the  allocation model. The proof is toc 
long and detailed to include here. It will appear  in  the  find 
report to NASA at the conclusion of the  current phase of  thc 
project. 

E. Future  Work 
The basic correctness  property of SIFT has  been  statec 

and proved for the allocation model. What remains to be don1 
is to show that  the actual system is a refinement of the alloca 
tion model. Current plans call for  this to be done  in  terms o 
two lower level models. The  first of these is the operating 
system  model. The  allocation  model  represents all the corn 
putations in a given iteration cycle performed by  all the prc 
cesses  as a single transition.  The operating-system model w i  



WENSLEY et al.: SIFT COMPUTER  FOR AIRCRAFT CONTROL 

represent  the  asynchrony of the  actual computations. It will 
essentially be a high-level representation of the system that 
embodies the mechanisms used to synchronize the processors. 
The  proof that  the operating-system model is a refinement of 
the allocation model will  be a proof of correctness of these 
synchronizing mechanisms. 

The  next lower level model will  be the program model. It 
will essentially represent  the PASCAL  version of the  software. 
We expect  that proving the program model to be a refinement 
of the operating-system model will be done by the ordinary 
methods of program Verification [ 11 I . 

Finally, we must verify that  the system itself  is a correct 
refinement of the program model. This requires verifying first 
that  the Pascal programs are compiled correctly, and second 
that  the hardware  correctly  executes programs. (In  particular, 
this involves  verifying the fault-isolation properties of the 
hardware.) We have not  yet decided how to address these 
tasks. Although most of this verification is theoretically 
straightforward, it presents a difficult problem in practice. 

VI. CONCLUSIONS 

The  SIFT  computer development is an  attempt  to use 
modem  methods of computer design and verification to 
achieve fault-tolerant behavior for real-time, critical control 
systems. We believe that  the use of standard, mass-produced 
components helps to attain high reliability. Our basic  ap- 
proach,  therefore, involves the replication of standard  compo- 
nents, relying upon  the software to  detect and analyze errors 
and to dynamically reconfigure the system to bypass faulty 
units. Special hardware is needed only to isolate the  units 
from one  another, so a faulty  unit does not cause the failure 
of a nonfaulty one. 

We have chosen processor/memory  modules and bus 
modules as the basic units of fault  detection  and reconfigura- 
tion. These units  are at a high enough level to make system 
reconfiguration easy, and  are small and inexpensive enough to 
allow sufficient replication to achieve the desired reliability. 
Moreover, new advances in Large  Scale Integration will further 
reduce  their size and cost. 

By using software to achieve fault-tolerance,  SIFT allows 
considerable flexibility in  the choice of error handling policies 
and mechanisms. For example, algorithms for  fault masking 
and  reconfiguration can be  easily modified on  the basis  of 

1253 

operational experience. Novel approaches to  the tolerance of 
programming errors, such as redundant programming and re- 
covery blocks [8] can be incorporated. Moreover, it is fairly 
easy to enhance the performance of the system by adding 
more hardware. 

While  designing SIFT, we  have been concerned with proving 
that it meets its  stringent reliability requirements. We have 
constructed formal models with which to analyze the p r o b  
ability of system failure, and we intend to prove that these 
models accurately describe the behavior of the SIFT system. 
Our effort has included the use of formal specifications for 
functional modules. We hope to achieve a degree of system 
verification that has been unavailable in previous fault-tolerant 
architectures. 

Although the design  described in this paper  has been oriented 
toward the needs of commercial air transports,  the basic 
architectural  approach  has a wide applicability to critical real- 
time systems. Future work may extend this approach to  the 
design of fault-tolerant  software and more general fault- 
tolerant  control systems. 

APPENDIX A: 
SAMPLE SPECIAL SPECIFICATION 

This appendix  contains  an  example of a formal specification 
extracted from the specifications of the  SIFT executive soft- 
ware. The specification is written  in a language  called  SPECIAL, 
a formally defined specification language.  SPECIAL has been 
designed explicitly to permit the description of the results re- 
quired  from a computer program without constraining the  pro- 
grammer's  decisions as to how to  write the most efficient 
program. 

The function  that is  specified here is the local executive's 
voter  routine, described informally in  Section IV-A. This 
function is  called to obtain a value from one of the buffers 
used to communicate between tasks. The value required is 
requested over the bus system from every replication of this 
buffer, and a consensus value that masks any  errors is formed 
and  returned to the calling program. Errors are reported and 
provision  is made for buses that  do  not  obtain a value (due  to 
a nonresponding bus or memory)  and for  the possibility that 
there is no consensus. 

Notes following the specification are keyed to statements 
in  the specification. 

OVFUN read- buffer  (buffer-name i; address k; value safe) 
[processor  a; task t ]  
+ result r; 

EXCEPTIONS 
CARDINALITY(activated- buffers(a,i)) = 0; 
0 > k OR k >= buffer-size(i); 

EFFECTS 
EXISTS  SET,OF response 

w = responses(a, activated-buffers(a,i),  k): 
EXISTS SET-OF response 

z = {response b 1 b INSET w AND  b.flag }: 

IF(EX1STS  value  v; 
SET- OF response x' 1 
x = {response c I c INSET (w DIFF z)  

AND  c.val = v}: 



1254 PROCEEDINGS OF THE  IEEE, VOL. 66, NO. 10, OCTOBER 1978 

FORALL value u; 
SET- OF response y I 
y = {response d I d INSET (w DIFF x DIFF z) 

AND  d.val = u}: 
CARDINALITY (x) > CARDINALITY(y)) 

THEN(EX1STS  value v; 
SET-OF response x I 
x = {response c I c INSET (w DIFF z) 

AND  c.val = v} : 

FORALL value u; 
SET-OF response y I 
y = {response d I d INSET (w DIFF x DIFF z) 

AND  d.val = u} : 
CARDINALITY(x) > CARDINALITY(y); 

EFFECTS-OF er roda ,  w DIFF  x); 
r = v) 

ELSE(EFFECTS-OF errors(a, w); 
r = safe); 

Notes 
1) The  function ‘read- buffer’ takes three arguments and 

returns a result. The buffer-name ‘i’ is the name of a logical 
buffer which may be replicated in several  processors,  while 
the address ‘k’ is the  offset of the required word in  the buffer 
and ‘safe’ is the value to be returned if no consensus can be 
obtained.  The parameters ‘a’ and ‘t’ need not  be explicitly 
cited by the caller of this function  but  are deduced from  the 
context. 

2) Exception returns will be made if there are no active 
instances of the named buffer or if the  offset is not within 
the buffer. 

3) A response is obtained by interrogating a buffer in 
another processor. Each response is a record (also known as a 
“structure”,  containing a value field (“val”) and flag field 
(“flag”), the  latter  set if no response was obtained  from the 
bus or  store.  The  set ‘w’ of responses is the set obtained  from 
all of the activated buffers known to processor ‘a’. The  set 
’z’ is the subset of no-response  responses. 

4) First we must check that a plurality opinion exists. 
This section hypothesises that  there exists a consensus value 
‘v’ together with the  subset of responses ‘x’ that returned that 
value. 

5 )  Here  we consider all other values and establish for each 
of them  that fewer responses contained  this other value than 
contained the proposed consensus value. 

6) Having established that a consensus value  exists,  we  may 
now validly construct  it,  repeating  the criteria of stages [ 4 ]  
and [SI. It is important  to  note  that these are  not programs 
but logical criteria. The  actual  implementations would not 
repeat  the program. 

7) This section requires that any responses not  in  the set 
‘x’ (the  set ’x’ is the  set  reporting  the consensus value) should 
be reported as errors, and  the result is the consensus value ‘v’. 
The expression 

EFFECTS-OF errors(a, w DIFF X) 
indicates a state change in  the module that  contains  the 0- 
function “errors”. The specification indicates that  an  error 
report is loaded into a table associated with processor “a.” 

8) If there is no consensus value,  as determined by stages 

71 

[ 41 and [ 51, then all the responses must be reported as errors, 
and  the safe  value returned as the result. 

ACKNOWLEDGMENT 
The  authors wish to acknowledge the help of other members 

of the Computer Science Laboratory  who contributed to  the 
development of SIFT. Ln particular, Dr. William  H. Kautz 
helped in the formulation of the reliability model  and  with the 
diagnosis problem. Marshall Pease developed a proof showing 
that synchronization  could not be achieved with three clocks. 
Lawrence Robinson indirectly aided the project by his crea- 
tion of the hierarchical development  methodology. We are 
indebted to numerous individuals of  NASA-Langley Research 
Center: Nicholas  D.  Murray, the Project Monitor has provided 
early and  continuing guidance and encouragement, Billy  Dove 
has provided inspiration and support within the  context of a 
long-range NASA program of technology development for 
reliable aircraft control, Earl  Migneault first alerted  us to prob- 
lems  with the “obvious” solutions to  the clock synchroniza- 
tion problem, Sal  Bavuso has  continually reviewed our work 
on reliability modeling, and Brian Lupton and Larry Spencer 
have provided considerable valuable comments during the 
caurse of the work. 

REFERENCES 

multiprocessors,” AGARDograph No. 224, Integrity  in  Elec- 
N. D. Murray, A. L. Hopbins, and J. H.  Wensley, “Highly reliable 

tronic Flight Control Sys t em,  P. R. Kunhals,  Ed.,  Advisory 
Group for Aerospace  Research  and Development,  Neuilly Sur 
Seine, France, pp. 17.1-17.16, Apr. 1977. 
J. H. Wensley, e t  al., “Architecture,” vd. I of Design of a Fault 

nical  Report for  NASA, CR-132252, SRI International, Menlo 
Tolemnt  Airborne Digitcll Computer,” SRI  International  Tech- 

Park, CA.  Oct. 1973. 
R. S. Ratner, e? al., “Computational  requirements and tech- 

Computer, SRI  Technical  Report for NASA, CR-132253, SRI 
nology,” v d .  11 of Design of a Fault  Tolerant  Airborne Digital 

International,  Menlo Park, CA,  Oct. 1973. 

Roc. Fan Joint  Computer  Conf., AFIPS Press, Montvale,  NJ. 
I. H. Wensley,  “SIFT  software  implemented  fault  tolerance,” in 

J. H. Wensley, M. W. Green, K. N.  Levitt, and  R.  E. Shostak, 
“The design,  analysis,  and  verification of the  SIFT  fault  tolerant 
system,” Roc .  2nd Znt. Con$ So- Engineering, IEEE 
Catalog No. 7 6 ,  ch 1125-4 C, IEEE Computer Society, Long 

P. M. Melliar-Smith,  “Permissible  processor loadings for various 
&ach,  CA,  pp. 458-469,  1976. 

1972,VOl.  41, pp. 243-253. 



PROCEEDINGS OF THE  IEEE, VOL. 66, NO. 10, OCTOBER 1978  1255 

scheduling algorithms,” Memorandum, SRI International, Menlo 
Park,  CA. 1977. 

[ 7 )  L. Robinson and 0. Roubine, “SPECIAL-A specification and as- 
sertion language,” Technical  Report CSL-46, SRI International, 

[ 8 ]  B. Randell. “System structure for software fault tolerance,” 
Menlo  Park, CA, Jan. 1977. 

IEEE Trans. Software Eng., vol. SE-1(2), pp. 220-232, June 

[ 9 ]  M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in 
1975. 

the presence of  faults,” manuscript  in  preparation. 

[ 101 L. Robinson, K. N. Levitt, P. G. Neumann, and A. K. Saxena,  “A 
formal methodology for the design of operating system  software,” 
in Current  Trends in Processing Methodology, vol. 1, R.  T. Yeh, 
Ed. Englewood Cliffs, New Jersey: Prentice-Hall. 1976. 

[ 1 1 1  R. W. Floyd, “Assigning  meanings to programs,” Mathematical 
Aspects of Computer  Science, vol. 19, J. T. Schwartz, Ed. Provi- 
dence, RI: Amer.  Mathematical Society,  1967, pp. 19-32. 

[ 12 1 R. E. Shostak et al., “Proving the reliability of a fault-tolerant 
computer system,” Proc.  14rh IEEE Comput.  SOC. In?. Conf., 
San Francisco, CA, 1977. 

Architectures for Fault=Tolerant  Spacecraft 
Computers 

DAVID A. RENNELS 

Abmrrer-This paper ~~~tnmirizes the r e ~ u l t ~  of a long-term research The primary constraints on  the on-board computing system 
W fdt-tdexant ~~U~ for on-board proceasing are the requirements for long unattended life and severe restric- 

~ ~ ~ ~ ~ ~ ~ ~ ~ - - ~ ~ ~ t ~ ~ ~ ~ ~ f  
tions  on power, weight, and volume. Reliability is the  most 

fadt4d-t wem. % ,,,,d req&enb severe constraint which affects  the  computer  architecture in 
of spacecrrtt comppting rre descnlbed dong with the resulting &-time several  ways. In most cases only proven (5-1 O-year old) tech- 
computer architectum. = f*g PspeCts of* - are &- nology can be  used to minimize the chance of unexpected 
cussed: l )  to minhnize m the distrii- fail&e modes. Parts are  extensively tested  and screened for 
uted computer wstem, 2) hult-detectioa md recovery, 3) techniques to enhpnce lad testrbilitv. lad 4) ammrhes for reliability, driving their cost to  ten  or more  times  those in  the 

- .  
hnplementrtion. 

. - _ _  
commercial marketplace. Redundant processors, memories, 

F 
I .  INTRODUCTION 

AULT-TOLERANT computing has long been a require- 
ment  of  planetary spacecraft. These systems are built at 
costs of tens to hundreds of million-dollars and then  sent 

into space for several-years  mission during which repair is not 
possible. Failure of an on-board computer can mean loss of a 
mission. Thus redundant  backup  units  are carried along for 
the  computer and other critical subsystems, and faulty  units 
are automatically replaced with spares. The  Jet Propulsion 
Laboratory (JPL) of the California Institute of Technology has 
built  and  operated  spacecraft which have  successfully explored 
the Moon, Mars, Venus, and Mercury [ 1 1 .  Current spacecraft 
are  directed  toward  the  mysterious  outer  planets of Jupiter 
and  Saturn.  In  support of spacecraft reliability requirements, 
a program in  fault-tolerant  computing has been conducted at 
JPL for nearly 20 years. This paper summarizes the  results of 
this research and the  directions  it  has  taken  in response to  
changes in  the underlying circuit technology. 

Manuscript  received  May 6,  1978. 
The author is  with  the Jet Propulsion Laboratory, California Institute 

of  Technology, Pasadena, CA 91 103. 

and input/output  (I/O) circuits double or triple  the  amount of 
hardware that is used. Thus it can be safely said that reliability 
requirements  induce the majority of costs for on-board com- 

Typical power, weight, and volume requirements  are in  order 
of 30-50 W, 100 lbs, and a few thousand cubic inches. These 
physical constraints become especially  severe since redundant 
spare modules must be included. Thus  our early fault-tolerance 
efforts, which were based on relatively bulky  and power con- 
suming bipolar small-scale integrated (SSI) circuits, were ori- 
ented toward finding hardwareefficient  forms of fault-tolerant 
computer  architectures.  This  constraint has been somewhat 
reduced with the  current availability of low-power higher den- 
sity CMOS devices. 

The  JPL program in  fault-tolerant  computing has had two 
major parts. The first was the development of a fault-tolerant 
uniprocessor designated the  JPL self-testing and repairing 
(STAR) computer. This development was  carried out  under 
the  direction of A.  Avizienis between 1961 and 1972.  It was 
aimed at  the flight technology of the early 1970’s  (e.g., bipolar 
SSI/MSI and plated-wire memory)  and the results were  widely 
published [2].  A breadboard STAR computer was constructed 
and tested  in 1970-1972. 

puting. 

0018-9219/78/1000-1255$00.75 0 1978 IEEE 


