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Abstmt-SIFT (Softwue Implemented Fault Tolerance) is an 
ldtmdme Coreputer fa criticd .ircnlt caltrd appkdom that 
rhievesf.ulttdenncebytherep€hthoft&aamongproedng 
units. The rmin procesing units are off-the -shelf minicomputers, with 
sturdud microcomputers serving as the interface to  the YO systean. 
Faultiadrtioniarchievedbyusingrspedrllydes@?dredundantbus 
system to interconnect the processhrg units. Error detection and 
analysis and system recontigumtbn are performed by software. Iter- 
ative tasks are redundantly executed, and the results of each iteration 
are voted upon before being d. Thus,  any single failure in a process- 
ing unit or bus can be tolerated  with triplication of tasks, and sub- 
sequent faihues can be tolerated after remnfigunthn. Independent 
execution  by separate procesors meann that the processors need only 
be loosely synchronized, and a n d  f a u l t - t d m t  synchroniution 
method is d e s c n i .  The SUT aoftwue is highly structured and is 
formally specified using the  SRldeveloped SPECIAL Innsuoge. Ihe  
correctness of SIFT is to  be proved using a hienrchy of formal modeis. 
A Markov model is uaed both to analyze the reliability of the system 
and to serve aa the formal requirement for the SIFT design. Axioms axe 
&en to  duncterize the high-level behavior of the system, from which 
a correctness statement has been proved. An en-g test version 
of SIFT is currently being built. 

T 
I. INTRODUCTION 

HIS paper describes ongoing research  whose  goal is to  
build an ultrareliable fault-tolerant computer system 
named SIFT  (Software  Implemented  Fault Tolerance). 

In  this  introduction, we describe the motivation  for  SIFT 
and provide some background for  our work. The remainder of 
the paper describes the  actual design of the SIFT  system. 
Section I1  gives an overview of the system and describes the 
approach to fault  tolerance used in SIFT. Sections 111 and IV 
describe the SIFT hardware and software,respectively. Section 
V discusses the proof of the correctness of SIFT. 

A .  Motivation 
Modern commercial jet  transports use computers to carry 

out many  functions,  such as navigation, stability  augmentation, 
flight control,  and system monitoring. Although these com- 
puters provide great benefits in the  operation of the  aircraft, 
they  are not critical. If a computer fails, it is always possible 
for  the aircrew t o  assume its  function,  or  for  the  function to 
be abandoned. (This may require significant  changes, such as 
diversion to an alternative destination.) NASA, in its Air- 
craft  Energy Efficiency (ACEE) Program, is currently  studying 
the design of new types of aircraft to reduce fuel consumption. 
Such aircraft will operate  with greatly reduced stability 
margins, which means that  the safety of the flight will depend 
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upon active controls derived from computer  outputs. Com 
puters  for this application must have a reliability that i! 
comparable  with other  parts of the  aircraft. The frequent13 
quoted reliability requirement is that  the  probability o 
failure should be  less than per hour in a flight of ter 
hours  duration. A good review of the reliability requirement 
associated with flight control computers appears in Murray e 
al. [ 1 1. This reliability requirement is similar to that demandec 
for manned space-flight systems. 

A highly  reliable computer system can  have application 
in other areas as  well. In the  past,  control systems in critica 
industrial applications have not relied  solely on computers 
but have  used a combination of human and computer control 
With the need for  faster  control  loops,  and  with  the  increase 
complexity of modem  industrial processes, computer reliabilit 
has  become  extremely important. A highly  reliable compute 
system developed for aircraft control can be  used in suc 
applications as  well. Our objective in designing SIFT is t 
achieve the reliability required by  these applications in a 
economic manner. Moreover,  we want the resulting systel 
to be as flexible as possible, so it can be  easily adapted  t 
changes in the problem specification. 

When failure rates are extremely small, it is impossible 1 
determine their values by testing. Therefore, testing cannc 
be  used to demonstrate  that  SIFT meets its reliability requir 
ments. It is  necessary to  prove the reliability of SIFT 1. 
mathematical  methods.  The need for such a proof of I 

liability has been a major  influence  on  the design  of SIFT. 

B. Background 
Our work on  SIFT began with a study of the requiremm 

for computing in an advanced commercial transport a i r c r s  
[ 21, [ 3 1. We identified the  computational and  memory reqw 
ments  for such an application and the reliability requir 
for  the  safety of the aircraft. The basic concept of the SI1 
system emerged from a study of computer architectul 
for meeting these requirements. 

The second phase in the development of the SIFT  syste 
which has just been completed, was the complete design 
the hardware and software systems [41, [SI. This design 1 
been expressed formally by rigorous specifications that descrj 
the  functional  intent of each part of the system. A ma 
influence  during this phase was the Hierarchical Design  Methc 
ology developed at  SRI [ lo].  A further influence has been 1 
need to use formal program proving techniques to  ensure 1 

correctness of the software design. 
The  current phase of the development calls for  the build 

of an engineering model and the  canying  out of tests 
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demonstrate its  fault-tolerant behavior. The  engineering 
model is intended to be capable of carrying out  the calculations 
required for  the  control of an advanced commercial transport 
aircraft.  SRI is responsible for  the overall  design, the  software, 
and the  testing, while the detailed design and  construction of 
the hardware is being done by Bendix Corporation.  The 
engineering model is scheduled to be built by the middle 
of 1979, with  testing to  be completed by the end of that  year. 
Work  is  also continuing at SRI on proving the correctness of 
the system. 

The  study of fault-tolerant  computing has in  the past con- 
centrated  on failure modes of components, most of which are 
no longer relevant. The  prior work on permanent “stuck-at- 
one”  or “stuck-at-zero” faults  on single  lines is not  appropriate 
for considering the possible failure modes of modern LSI 
circuit  components, which can be  very complex and affect the 
performance of units in very subtle ways.  Our  design approach 
makes no assumptions about failure modes. We distinguish 
only  between failed and nonfailed units. Since our primary 
method  for  detecting  errors is the  corruption of data,  the 
particular  manner in which the  data are corrupted is  of no 
importance. This  has important consequences for failure- 
modes-and-effects analysis (FMEA), which is only required at 
the  interface between units.  The rigorous, formal specifica- 
tion of interfaces enables us to deduce the  effects  on  one 
unit of improper signals from a faulty  unit. 

Early work on  fault-tolerant  computer systems used fault 
jetection and reconfiguration at the level  of simple devices 
such as flip-flops and adders. Later work considered units 
such  as  registers or blocks of memory. With today’s LSI 
Inits, it is no longer appropriate to be concerned  with such 
;mall subunits.  The  unit of fault detection and of reconfigura- 
:ion in SIFT is a processor/memory  module or a bus. 

Several  low-level techniques for  fault tolerance, such as 
mor detection  and  correction codes in memory, ,are not 
ncluded in the design  of SIFT. Such techniques  could be in- 
:orporated in SIFT,  but would provide only a slight improve- 
nent in reliability. 

11. SIFT CONCEPT OF FAULT TOLERANCE 
1. System Overview 
As the name  “Software  Implemented Fault Tolerance” 

nplies,  the  central concept of SIFT is that fault tolerance is 
ccomplished as much as  possible  by programs rather than 
ardware. This includes error  detection and correction, 
iagnosis, reconfiguration, and the prevention of a faulty 
nit from having an adverse effect on the system as a whole. 
The structure of the  SIFT hardware is shown in Fig. 1. 
omputing is carried out  by  the main processors. Each 
cocessor’s results are stored  in a main memory that is uniquely 
isociated with the processor. A processor and its memory 
‘e connected by a conventional high bandwidth  connection. 
he 1 / 0  processors and memories are structurally similar to 
Le main processors and memories, but  are of much smaller 
)mputational  and  memory  capacity. They connect to the 
put  and  output  units of the system which, for this applica- 
m ,  are  the sensors and actuators of the  aircraft. 
Each processor and its associated memory form a processing 
odule, and each of the modules is connected to a multiple 
IS system. A faulty  module  or  bus is prevented from causing 
ulty behavior in a nonfaulty  module by the  fault isolation 
ethods described in  Section 11-B. 

D. 

. 
e h  

CONTROLLER 
0.. 

Busses 

1241 

PROCESSING 
MODULES 

Actuators 
To From 

Sensors 

Fig. 1. Structure of the SIFT system. 

The SIFT system executes a set of tasks, each of  which 
consists of a sequence of iterations. The input  data to each 
iteration of a task  is the  output  data produced by the previous 
iteration of some collection of tasks (which may include the 
task itself). The input and output of the  entire system is ac- 
complished by tasks  executed in the 1/0 processors.  Reliability 
is  achieved by having each iteration of a task independently 
executed by a number of modules. After  executing the 
iteration, a processor places the iteration’s output in the 
memory associated with the processor. A processor that 
uses the  output of this iteration  determines its value  by 
examining the  output generated by each processor which 
executed the  iteration. Typically, the value  is chosen by a 
“two  out of three” vote. If all  copies of the  output are not 
identical,  then an error has occurred. Such errors are re- 
corded in the processor’s memory, and these records are used 
by the executive system to determine which units are faulty. 

SIFT uses the iterative nature of the tasks to economize on 
the  amount of voting, by voting on  the  state  data of the air- 
craft (or  the  computer system) only  at  the beginning  of each 
iteration. This produces less data flow along the busses than 
with schemes that vote on the results of all calculations 
performed by the program. It also  has important implications 
for  the problem of synchronizing the  different processors. 
We must ensure only that  the different processors allocated 
to a task are executing the same iteration. This means that 
the processors need  be only loosely synchronized (e.g., to 
within 50 ps), so we do not need tight  synchronization to  the 
instruction  or clock interval. 

An important benefit of this loose synchronization is that an 
iteration of a task can be scheduled for execution at slightly 
different times by different processors. Simultaneous transient 
failures  of  several processors will, therefore, be less  likely to 
produce correlated failures in the replicated versions of a task. 

The number of processors executing a task can vary with the 
task,  and can be different  for  the same task at different 
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times-e.g., if a  task that is not critical  at one  time becomes 
critical at  another time.  The  allocation of tasks t o  modules 
is in general different  for  each .module. It is determined 
dynamically  by a  task called the global executive, which 
diagnoses errors to  determine which modules  and buses are 
faulty. When the global executive  decides that a  module  has 
become  faulty, it “reconfigures” the system  by appropriately 
changing the allocation of tasks to modules. The global 
executive  and its  interaction  with  the individual  processors is 
described in  Section IV. 

B. Fault Isolation 
An important  property  required in all fault-tolerant com- 

puters is that of fault  isolation: preventing a  faulty unit from 
causing incorrect behavior in a  nonfaulty  unit.  Fault  isolation 
is a  more general concept  than damage isolation. Damage 
isolation means preventing physical  damage from  spreading 
beyond carefully  prescribed boundaries.  Techniques for 
damage isolation  include physical bamers to  prevent  propaga- 
tion of  mechanical  and thermal  effects  and electrical bamers- 
e.g., high-impedance electrical  connections and optical  couplers. 
In SIFT, such  damage isolation is provided at  the boundaries 
between  processing modules  and buses. 

Fault  isolation  in  SIFT  requires  not  only damage isolation, 
but also preventing a  faulty  unit from  causing incorrect 
behavior either by corrupting  the  data of the  nonfaulty  unit, 
or by providing invalid control signals. The control signals 
include  those that request service, grant service, effect timing 
synchronization  between  units,  etc. 

Protection against the  corruption of data is provided  by the 
way in which units  can  communicate. A processing module 
can  read  data  from  any processing  module’s memory,  but  it 
can  write only into  its own  memory. Thus a  faulty processor 
can corrupt  the  data  only in its  own  memory,  and not  in  that 
of any  other processing modules. All  faults  within  a  module 
are treated as if they have the same effect: namely that they 
produce bad data  in that module’s memory. The system does 
not  attempt  to distinguish the  nature of a  module  fault. In 
particular, it does not distinguish between  a  faulty  memory 
and  a processor that  puts bad data into an otherwise  non- 
faulty  memory. 

Note that a  nonfaulty  processor  can  obtain bad data if that 
data is read from  a  faulty processing module or over a  faulty 
bus.  Preventing these bad data  from causing the generation of 
incorrect results is discussed  below in the section on  fault 
masking. 

Fault  isolation also requires that invalid control signals not 
produce  incorrect behavior in  a  nonfaulty unit. In general, 
a  faulty  set of control signals can cause two  types of faulty 
behavior in  another  unit. 

1)  The  unit carries out  the wrong action (possibly  by 
doing  nothing). 

2) The  unit  does  not  provide service to  other units. 
In  SIFT  these  two  types of fault  propagation are  prevented 

by  making  each unit  autonomous,  with  its  own  control.  Im- 
proper  control signals are ignored,  and  time-outs  are used to  
prevent the  unit  from “hanging up” waiting for  a signal that 
never arrives. The  details of how  this is done are discussed in 
Section 111. 

C. Fault Muking 
Although a  faulty  unit  cannot cause a  nonfaulty processor 

to behave incorrectly, it  can provide the processor with  bad 

data.  In  order to completely mask the effects of the  faulty 
unit,  we  must  ensure  that  these bad data  does  not cause the 
processor to  generate  incorrect results. As we indicated  above, 
this is accomplished by having the processor  receive multiple 
copies of the data. Each copy is obtained  from  a  different 
memory over a  different  bus,  and the processor uses majority 
voting to  obtain  a  correct version  of the  data. The  most 
common case will be  the  one  in which a processor obtains 
three copies  of the data, providing protection  from  a single 
faulty  unit. 

After  identifying the  faulty  unit,  the system will be recon- 
figured t o  prevent that  unit  from having any further  effect. 
If the faulty  unit is a processing module, then  the tasks that 
were  assigned t o  it will be  reassigned to  other modules. If it 
is a bus, then processors will request  their  data over other 
buses. After  reconfiguration, the system will be  able to with- 
stand  a new  failure-assuming that  there are enough  nonfaulty 
units remaining. 

Because the  number of  processors executing  a  task can  vary 
with the task and  can be changed dynamically, SIFT has a 
flexibility not present in most  fault  tolerant  systems.  The 
particular  application field-aircraft  control-is one  in which 
different  computations are critical to different degrees, and 
the design takes advantage  of this. 

D. Scheduling 
The  aircraft  control  function places two  types  of timing 

requirements on  the  SIFT system. 
1)  Output to the  actuators  must be generated  with specified 

frequency. 
2) Transport  delay-the delay between the reading of sensor! 

and the generation of output to  the  actuators based upor 
those readings-must  be kept below  specified limits. 

To fulfill these  requirements,  an  iteration  rate is specifiec 
for each task.  The scheduling strategy  must  guarantee tha 
the processing  of  each iteration of the task will be complete( 
within the  “time  frame” of that  iteration.  It  does  not  matte 
when the processing is performed, provided that  it is complete1 
by the end of the frame. Moreover, the time needed to  ex 
ecute  an  iteration of a  task is highly predictable.  The  iteratio! 
rates  required  by  different  tasks  differ,  but  they  can be ac 
justed  somewhat to  simplify the scheduling. 

Four scheduling strategies were considered for SIFT: 

1)  fixed  preplanned  (nonpreemptive)  scheduling; 
2) priority scheduling; 
3) deadline  scheduling; 
4) simply periodic scheduling. 

Of these, fxed preplanned scheduling in  which eac 
‘iteration is run to completion,  traditional in-flight contr, 
applications, was  rejected  because it does not allow sufficiel 
flexibility. 

The  priority-scheduling  strategy,  commonly used in gener; 
purpose  systems,  can  meet the real-time requirements if tl 
tasks  with the fastest iteration  rates are  given the highe 
priorities.  Under  this  condition, it is shown  in [6] that i 

tasks will  be  processed within  their frames, for  any  pattern 
iteration  rates  and processing  times-provided the  processi 
load does not exceed ln(2) of the capacity of the process 
(up to  about 70 percent loading is always safe). 

The deadline-scheduling strategy always runs the task  whc 
deadline is closest. It is shown in [6] that all the  tasks will 
processed within  their  frames provided the workload dc 



WENSLEY et  al.: SIFT COMPUTER  FOR AIRCRAFT CONTROL 

CLOCK  TICKS 

1 1 1 1 1 1 1  
PRIORITY 

FRAMES 
LEVEL 1 

TASKS 

PRIORITY 

FRAMES 
L E V E L  2 

TASKS 

PRIORITY 

FRAMES 
L E V E L  3 

TASKS 

DIAG-  

TASK 
NOSTIC 

-..... . -......I I........ 

I................... I)..... 

................. ....................................................... 
Fig. 2. A typical schedule. 

not exceed the  capacity of the processor (1 00 percent loading 
is permissible). Unfortunately, for  the brief tasks character- 
istic of flight-control applications, the scheduling overhead 
eliminates the advantages of this strategy. 

The simply periodic strategy is  similar to  the  priority  strategy, 
but  the  iteration rates of the tasks are constrained so that 
each iteration  rate is an integral multiple of the  next smaller 
rate (and thus of  all  smaller rates). To comply with this 
requirement,  it may  be  necessary to run some tasks more 
frequently  than  their  optimum  rate,  but this is permissible  in a 
flight control  system.  It is shown in [ 6 ]  that if the workload 
does not exceed the capacity of the processor (100  percent 
loading is possible), then simply periodic scheduling guarantees 
that all tasks will complete within their frames. 

The scheduling strategy chosen for  the SIFT system is a 
slight variant of the simply periodic method, illustrated by 
Fig. 2. Each  task  is  assigned to one of several priority levels. 
Each priority level corresponds to an iteration  rate, and 
each iteration  rate is an integral multiple of the  next lower 
one. In order to  provide very  small transport delays for 
certain functions, and to allow rapid detection of any fault 
which  causes a task not  to  terminate,  the scheme illustrated 
In Fig. 2 is modified as follows. The time frame corresponding 
:o highest priority level (typically 20 ms) is  divided into a 
lumber of subframes (typically 2 ms). The highest priority 
:asks are run in  specific subframes, so that  their results can be 
wailable to  other tasks run in the  next subframe,  and  they are 
.equired t o  complete within one subframe. 
3. Processor  Synchronization 

The SIFT intertask  and  interprocessor  communication 
nechanism  allows a degree  of asynchronism between processors 
nd avoids the  lockstep  traditional in ultrareliable systems. Up 
o 50 /.LS of skew between processors can readily be accom- 
Iodated,  but even this margin cannot be  assured  over a 
:n-hour period with free-running clocks unless unreasonable 
:quirements are imposed on the clocks. Thus, the processors 
lust periodically resynchronize their clocks to ensure that 
o clock drifts too far from any  other. 
For reliability, the resynchronization procedure must be 

nmune to the failure of any one clock or processor, and to a 
iccession of failures  over a period of time. In order to 
larantee  the high reliability required of SIFT, we cannot 
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allow a system failure to be  caused by any  condition whose 
probability  cannot be quantified, regardless of how implausible 
that condition may seem. This means that  our synchronization 
procedure must be  reliable in the face of the worst  possible 
behavior of the failing component, even though that behavior 
may seem unrealistically malicious. We can only  exclude 
behavior which  we  can prove to  be sufficiently improbable. 

The traditional clock resynchronization algorithm for 
reliable systems is the median clock algorithm, requiring at 
least three clocks.  In this  algorithm, each clock observes  every 
other clock and sets itself t o  the median of the values that it 
sees. The  justification  for  this algorithm is that, in the presence 
of only a single fault,  the median value must either be the 
value of one of the valid  clocks or else it must lie between a 
pair of valid clock values.  In either case, the median is an 
acceptable value for resynchronization. The weakness of 
this argument is that  the worst  possible failure modes of the 
clock may cause other clocks to observe different values 
for  the failing clock. Even  if the clock is  read by sensing the 
time of a pulse waveform, the  effects of a highly degraded 
output pulse and the inevitable slight differences between 
detectors can result in detection of the pulse at different 
times. 
In the presence of a fault that results in other clocks  seeing 

different values for  the failing clock, the median resynchroni- 
zation algorithm can lead to a system failure. Consider a 
system of three clocks A ,  B ,  and C, of which C is faulty. 
Clock A runs slightly faster  than clock B.  The failure mode 
of clock C is such that clock A sees a value for clock C that is 
slightly earlier than  its own value,  while clock B sees a value 
for clock C that is slightly later  than  its own value.  Clocks A 
and B both  correctly observe that  the value of clock A is 
earlier than  the value of clock B .  In this  situation, clocks 
A and B will both see their own value  as the median value, 
and  therefore  not change it. Both the good clocks A and 
B are therefore resynchronizing onto themselves, and they will 
slowly drift  apart  until  the system fails. 

It might be hoped that some relatively minor modification 
to  the median algorithm could eliminate the possibility of such 
system failure modes. However, such hope is groundless. 
The  type of behavior exhibited by clock C above will doom to 
failure any  attempt to devise a reliable clock resynchronization 
algorithm for only  three clocks. It can  be proved that, if 
the failure-mode behavior is permitted to  be arbitrary,  then 
there  cannot exist any reliable clock resynchronization algo- 
rithm  for  three clocks. The impossibility of obtaining exact 
synchronization with three clocks is proved in [9]. The 
impossibility of obtaining even the approximate synchroniza- 
tion needed by SIFT has also been proved, but  the proof is 
too complex to present  here  and will appear in a future paper. 
The result is quite general and applies not only to clocks, 
but to  any type of integrator which  is subject to  minor per- 
turbations as, for example,  inertial navigation systems. 

Although no algorithm exists for  three clocks, we have 
devised an algorithm for  four  or  more clocks which makes the 
system immune to the failure of a single clock. The algo- 
rithm has been generalized to allow the simultaneous failure 
of M out of N clocks  when N >  3M.  Here, we only describe 
the single-failure algorithm,  without proving it correct. (Algo- 
rithms of this  type  often  contain very subtle errors, and 
extremely rigorous proofs are needed to  ensure their correct- 
ness.) The general algorithm, and the proof of its correctness, 
can be found in [9] .  , 
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The  algorithm is carried out  in two parts. In the first part, 
each clock’ computes  a  vector of clock values, called the 
interactive  consistency vector, having an entry for every clock. 
In the second part,  each clock uses the interactive  consistency 
vector to  compute  its new value. 

A clock p computes  its interactive  consistency  vector as 
follows. The entry of the  vector  corresponding to  p itself is 
set  equal to  p’s own clock value. The value for the  entry 
corresponding to another processor q is obtained by p as 
follows. 

1) Read 4’s value from q.  
2) Obtain  from each other  clock r the value of q that 

r read from q . 
3) If a  majority of these values agree, then  the  majority 

value is used. Otherwise,  the default value NIL (indicating 
that q is faulty) is used. 
One can show that if at most one of the clocks is faulty, then: 
1) each nonfaulty clock computes  exactly  the same inter- 
active consistency  vector;  and 2) the  component of this  vector 
corresponding to any  nonfaulty clock q is q’s actual value. 

Having computed  the interactive consistency vector,  each 
clock computes  its new value as follows. Let 6 be the maximum 
amount  by which the values  of nonfaulty processors may 
disagree. (The value of 6 is known in advance, and  depends 
upon  the  synchronization  interval and the rate of clock 
drift.) Any component  that is not within 6 of at least two 
other  components is ignored,  and  any NIL component is 
ignored.  The clock then  takes  the  median value  of the remain- 
ing  components as its new value. 

Since each nonfaulty  clock  computes  exactly  the  same 
interactive  consistency  vector, each will compute  exactly  the 
Same median value. Moreover, this value must be within 6 
of the original value of each  nonfaulty  clock. 
This is the basic algorithm that the SIFT processors will 

use to  synchronize  their clocks. Each SIFT processor reads 
the value of its own clock directly, and reads the value of an- 
other processor’s clock over a bus. It  obtains  the value that 
processor r read for processor q’s  clock  by reading from 
processor r’s memory over a bus. 

F. Reliability  Prediction 

A sufficiently  catastrophic  sequence of component failures 
will cause any system to fail. The  SIFT system is designed to 
be immune to certain likely sequences of failures. To  guarantee 
that SIFT meets  its reliability goals, we must show that the 
probability of a  more  catastrophic  sequence of failures is 
sufficiently small. 

The  reliability goal of the SIFT system is to achieve a high 
probability of survival for  a short period of time-e.g.,  a ten- 
hour  flight-rather  than a large mean time  before  failure 
(MTBF). For  a flight of duration T, survival will occur unless 
certain  combinations of failure  events  occur within the interval 
T or have already occurred  prior to  the interval T and were 
undetected  by  the initial checkout of the  system.  Operationally, 
failures of the  latter  type are indistinguishable  from  faults that 
occur  during  the  interval T. 

To  estimate  the  probability of system failure we use a 
finitestate Markov-like reliability  model in  which the  state 

logical operations. In SIFT, such a  clock is actually a processor and 
‘In the following discussion, a  clock is assumed to  be capable of 

its internal clock. 

transitions are caused by  the  events of fault  occurrence, 
fault detection, and  fault  “handling”.  The  combined  prob- 
ability of all event sequences  that lead t o  a failed state is the 
system failure  probability. A design  goal for  SIFT is to 
achieve a  failure  rate of lo-’ per  hour  for  a  ten  hour  period. 

For  the reliability  model, we assume that  hardware fault 
events and electrical  transient  fault events are uncorrelated 
and  exponentially  distributed  in t h e  (constant  failure  rates). 
These assumptions  are believed to  be accurate  for  hardware 
faults because the physical design of, the system prevents 
fault  propagation  between  functional  ‘units (processors and 
buses) and because a  multiple  fault within one  functional 
unit  is  no  more serious than a single fault.  The  model assumes 
that all failures are permanent  (for  the  duration of the flight), 
so it  does  not  consider transient  errors.  The effects  of  un- 
correlated  transient  errors  are masked by the executive system, 
which requires a  unit to make  multiple  errors  before  it  con- 
siders the  unit to  be faulty. It is believed that careful  electrical 
design can prevent correlation of transient  errors  between 
functional  units.  The  execution of critical tasks in  “loose” 
synchronism also helps protect against correlation of fast 
transient erron. Failure  rates for  hardware have been  estimated 
on  the basis of active component  counts, using typical reli- 
ability figures for similar hardware.  For  the  main processors, 
we obtain  the  rate l o4  per hour; for 1 /0  processors and buses, 
we obtain IO-’ per hour. 

For a SIFT system with  about  the same  number of  main 
processing modules, 1/0 processing modules, and  buses, it 
can be shown that  the large difference  in failure rates  between 
a main processing module  and an I/O processing modules  or 
bus implies that we need  only  consider main processing 
module failures in our  calculations. We can therefore  let  the 
state of the system be represented  in  the  reliability  model as a 
triple of integers ( h ,  d , f) with h < d < f, where  such  a state 
represents  a  situation in whichffailures of individual processors 
have occurred, d of those failures have been detected,  and h of 
these  detected failures have been  “handled”  by  reconfiguration. 
There  are  three  types of possible state transition. 

1) ( h ,  d ,  f)+ ( h ,  d ,  ft l ) ,  representing  the  failure  of  a 
processor. 

2) ( h ,  d ,  f) -+ ( h ,  d + 1, f), d < f, representing  the  detection 
of a  failure. 

3 )  ( h ,  d ,  f )  + ( h  t 1, d ,  f), h < d ,  representing  the handling 
of a  detected  failure. 
This is illustrated in Fig. 3. . 

The fmt two  types of transition-processor  failure a n d  
failure  detection,  represented  in Fig. 3 by straight arrows- 
are assumed to have constant  probabilities  per unit time 
However, the third type of transition-failure  handling, rep 
resented. in Fig. 3 by wavey arrows-represents the  comple 
tion of a  reallocation  procedure. We assume that this  transitior 
must  occur within some  fixed  length of time 7. 

A state ( h ,  d ,  f) with h < d represents  a  situation in whicl 
the system is reconfigurhg.  To  make  the  system immunl 
to an  additional  failure while in this state is a  difficult  problem 
since it  means that  the  procedure t o  reconfigure  around 
failure  must work despite an additional,  undetected failun 
Rather  than assuming that this  problem  could be solved, w 
took  the  approach of trying t o  insure that the  time 7 that th 
system remains in  such  a  state is small enough to make i 
highly unlikely  for  an  additional  failure to occur befor 
reconfiguration is completed. We therefore  made  the pe: 
simistic  assumption that a processor failure  which occw 
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Fig. 3. The reliability  model. 

TABLE I 

while the system is reconfiguring will cause a system failure. 
Such  failures  are  represented  by the  “doublefault” transitions 
indicated  by  asterisks  in Fig. 3. In our calculations, we assume 
that  each of these  transitions  results  in  a system failure. 

We have calculated  the  probability of system failure  through 
a  double  fault  transition,  and also through reaching a state 
with fewer than  two  nonfaulty  processors,  for which we say 
that  the  system has failed because it has “run out of  spare^."^ 
A brief summary of these  failure  probabilities  for  a five 
processor system is shown  in Table I. 

III. THE SIFT HARDWARE 

The SIFT system attempts to  use standard  units whenever 
possible. Special design is needed  only  in  the  bus  system 
and in the interfaces  between the buses and the processing 
modules. 

The  major  parameters of the SIFT system are shown  in 
Table 11. The  column heading “Engineering Model” indicates 
the system intended  for  initial  construction,  integration,  and 
testing.  The  column heading “Maximum”  indicates the limits 
to which the engineering model  can be expanded  with  only 
the  procurement of additional  equipment. 

As described  in  Section 11, the fault-tolerant  properties of 
SIFT are based  on the  interconnection system between units 
md  upon  the  software  system.  The particular design of the 
processors and  memories is irrelevant to  our discussion of 
hult tolerance. We merely mention  that  the main processors 
md memories are based on  the BDmicroX computer-a 
nodern, LSI-based 16-bit  computer designed  and manu- 

Saee 

Saae 
b4L 
S a l ?  

factured  by Bendix Corporation specifically for avionics or 
similar applications.  The 1/0 processors are based upon  the 
well-known 8080 microprocessor  architecture. 

To  help  the reader understand  the  operation  of  the units 
and their interaction  with  one another, we describe the opera- 
tion of the  interconnection system in  abstract  terms. Fig. 4 
shows the  connections  among processors, buses, and memories. 
The varying replications of these C O M ~ C ~ ~ O ~ S  are shown  for 
each  type of unit. Within each  unit  are  shown  a  number of 
abstract registers that  contain data or  control  information. 
Arrows that  terminate  at  a register indicate the flow of  data 
to  the register. Arrows that  terminate  at  the  boundary of a 
unit  indicate control signals for that  unit. 

We explain  the  operation of the  interconnection system by 
describing how  a processor p reads  a word of  data  from 
location w of memory m via bus b .  We assume normal opera- 
tion, in which no errors or  timaouts occur. Processor p 
initiates the READ operation  by  putting m and w into  the 
register P R E Q U E S T ~ ,  b) .  Note  that every processor has a 
separate PREQUEST register for  each bus to which it is con- 
nected. When this register is  loaded,  a BUSREQUEST line 
is set to request  attention  from  the  appropriate  bus.  The 
processor must  now wait until the  requested bus  and memory 
units have completed  their  part of the  operation. 

Each  bus  unit  contains a counter-driven  scanner  that  con- 
tinuously scans the PREQUEST and BUSREQUEST lines from 
processors. When the  scanner finds a processor that requires its 
attention (BUSREQUEST high), it  stops and the bus is said to 
have been siezed by  that processor. The bus’ counter  then 
contains  the  identifying  number of the processor that has 
seized it. When seized, the  bus  transfers the value w from  the 
processor to  a register connected to  memory m .  When this 
transfer has been completed,  the MEMREQUEST line is raised 
calling for  attention from that memory.  The bus then waits 

‘The  probability of system failure because of multiple underecred 
for the memory to complete its actions. 

aults has not been  computed  prefisely, but is expected to be corn- units contain counter-driven scanners that Operate 
mable to the  double  fault  values. in the same  manner as those in the  bus units-i.e., they  con- 
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Fig. 4. An abstract view  of data  transfers. 
~~~ 

tinuously scan all  busses to determine which of them (if any) 
is requesting service.  When a  request  is  detected,  the  memory 
is said to be seized, and it reads the value w from  the bus. 
The memory  then  reads the  contents of its  location w into 
MEMDATA register, and raises the MEMREAD line to inform 
the  bus  that  the  data are available. The  memory leaves the 
state of MEMDATA and MEMREAD unchanged until  it  detects 
that the MEMREQUEST line  from  the bus has dropped, in- 
dicating that  the  bus has  received the  data  from  the MEMDATA 
register. The  memory  then  drops the MEMREAD line and 
resumes scanning the buses for  further requests. 

When the bus detects  that  the MEMREAD line from the 
memory is up, it transfers the  data in the MEMDATA register 
to the BUSDATA register, drops  the MEMREQUEsT line, and 

that  the  data is available. The bus leaves the  state  of  the 

that  the BUSREQUEST line from the processor has dropped, 
indicating that  the  processor  has received the  data  word.  The 
bus  then  drops  the DATAREADY line and resumes scanning the 
processors for  further  requests. 

Meanwhile, the processor that made  the original request has 
been waiting for  the DATAREADY line to be  raised by the  bus, 
at  which  time it reads  the  data from the BUSDATA register. 
After  completing  this  read,  it  drops  the BUSREQUEST line  and 
continues  with  other  operations. 
These actions have left the units  in  their original states. 

They are therefore  ready to  take  part  in  other  data  transfer 
operations. 

raises the DATAREADY line-indicating to  the PrOCesSOT 

BUSDATA and DATAREADY lines unchanged Until it detects 

D a t a :  
K t A U l h ( ? , > )  
A s a t  0 6  r e g i s t e r s ,   o n e  <or each bus b ,  t h a t  r e c e i v e  
l a t a   r e a l  fro3 another  2rocessor-  

PUEWbST(n,b) 
)1 s % t  of  c e y i s t e r s ,  one for each bus b, t h a t   h o l d   t h e  
p a r a x - t e r ~  o t  a rsouest to rea? one war* from  another 
?odUle'f me?orv over t h a t  %us. 

QIJSWE<?~12V(p,5) 
A s e t  e +  b o o l e a n s   t h a t   i n f l i c a t a  a request  fro. bus b .  

--- 
A c o n s t a n t   t h a t  is t h e  maximum time a proccssor  will 
u a l t  f o r  I bus a r t i o n .  

B U S  F4ILrn,D) 
L boo lean   in4 ica t ing   that   processor  P t imed-out  before 
r e c e l v l n q  d a t a  f rom bus h. 

Erterna l  Oata (generatnd by o t h e r   u n i t s ) :  
DAt lREAnV,  QllCLl1 ' tL  from RTS module 

Avstrac t  Proaram: 
KFM:FST(p,h)  := C,Y 

The precise behavior of the units can be described by ab- 
stract programs. Table 111 is an  abstract program for the 
processor to bus interface  unit.3  It shows the unit's auton- 
omous  control, and the  manner  in which the  unit  requests 
service. Note  how  time-outs are used to prevent any kind  of 
bus or memory failure from "hanging up"  the  unit.  Abstract 
programs for the  &her units are similar. 

The  interconnection system units designed  especially for the 
SIFT system are: 

1)  the  processor-to-bus interfaces; 
2) the busses; 
3 )  the bus-to-memory  interfaces. 

These units all operate  autonomously and contain  their  own 
control, which  is implemented as a simple microprogrammed 
controller.  For  example, the  bus  control  scanner  that  detects 
the processors' requests  for service is controlled by a  micro- 
program in a programmable  read-only  memory (PROM). 
The  contents of this PROM are used for two  purposes: first, 
part of the  data is fed back to  the PROM'S address register to 
determine which  word of the PROM is to be  read next;  second, 
part of the  data is  used as logic signals that  control  the  opera- 
tion of the  unit in  which the PROM resides. For  example, 
this second part could contain  data to open gates to allow 
the flow of information  from  one  unit to another.  Input 
signals to  the controller are applied to some of the bits of 
the PROM's address register, thereby  affecting which PROM 
words are read. 

The interface  units  (items  1  and 3 above) consist mainly oj  
a few registers, the controller,  and the gates necessary to effect 
the  data flow. The bus with  its  controller  (item 2) contains 5 

larger set of such gates, since each bus can allow data flom 
from every memory to every processor. We estimate thal 
the  complexity of a bus  unit, consisting of a bus togethe3 

'This program is only meant to illustrate the unit's main features;il 
does  not accurately describe the true behavior of the unit. 
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with all its  interfaces, is about 10 percent of that of a main 
processing module. The logical structure is such that an LSI 
version of an entire  bus unit will be practical for  future versions 
of SIFT. However, the engineering model will be a mixture 
of LSI and MSI (medium scale integration)  technology. 

The design of the interfaces  permits  simultaneous  operation 
of all units.  For example, a processor can simultaneously read 
data from its memory  and  from another  memory, while at 
the same time  another processor is reading from the first 
processor’s memory.  Such  simultaneous  operation is limited 
only  by  contention  at a memory unit. This contention is 
handled by conventional cycle-stealing techniques and causes 
little delay, since the memory cycle time is small (250 ns) 
compared to the  time needed to  transfer a full word through 
the bus (1 0 ps). 

Since several processors may attempt  to seize the same  bus, 
or several  busses may attempt to seize the same memory, a 
processor can have to  wait for  the completion of one or more 
other  operations before receiving  service. Such waiting should 
be insignificant because of the small amount of data  that is 
transmitted over the busses. 

IV. THE SOFTWARE SYSTEM 
The software of SIFT consists of the  application software 

and the executive software.  The application software per- 
forms  the  actual flight control computations.  The executive 
software is responsible for  the reliable execution of the appli- 
cation tasks, and  implements the  error  detection and recon- 
figuration mechanisms discussed in Section  .II. Additional 
support software to be run on a large support computer is 
also provided. 

From the  point of view  of the  software, a processing module 
-with its processor, memory, and associated registers-is a 
single  logical unit. We will therefore simply use the term 
“processor” to refer to a processing module for  the rest of 
the  paper. 

A .  The Application  Software 
The  application  software is structured as a set of iterative 

tasks. As described in Section 11-D, each task is run with a 
fixed iteration  rate which depends upon  its  priority.  The 
iteration  rate of a higher priority task is an integral multiple 
of the  iteration  rate of any  lower  priority  task. Every  task’s 
iteration  rate  is a simple fraction of the main clock frequency. 

The  fact  that a task is executed by several processors is in- 
visible to the  application software. In each iteration, an appli- 
cation task obtains its inputs by executing calls to the execu- 
tive software. After  computing its  outputs,  it makes them 
available  as inputs to the next iteration of tasks by executing 
calls to the executive software. The  input and output of a 
task iteration will consist of at most a few words of data. 

B. The SIFT Executive  Software 
Formal specifications of the executive software have been 

written  in a rigorous form using the SPECIAL  language [7] 
developed at SRI. These formal specifications are needed for 
the proof of the correctness of the system discussed in  Section 
V. Moreover, they are also intended to  force  the designer to 
produce a well-structured system. Good  structuring is essen- 
tial to the success  of SIFT. A sample of these SPECIAL specifi- 
cations is given in  the Appendix. The complete  formal specifi- 

TASKS 
GLOBAL 

EXECUTIVE 

LOCAL EXECUTIVE 

Fig. 5. Logical structure of the SIFT software system. 

cation is omitted from this paper. Instead, we informally 
describe the  important aspects of the design. 

The  SIFT executive software  performs the following 
functions: 

1)  run each task at  the required iteration  rate; 
2) provide correct  input values for each iteration of a critical 

3) detect  errors and diagnose their cause; 
4) reconfiire  the system to avoid the use of failed 

task (masking any  errors); 

components. 

To perform the last three  functions,  the executive software 
implements the techniques of redundant  execution and major- 
ity voting described in  Section 11. The executive software is 
structured  into  three  parts: 

1)  the global executive task; 
2) the local executive; 
3) the local-global communicating tasks. 

One global executive task is provided for  the whole system. 
It is run  just like a highly critical application task-being 
executed by  several processors and using majority voting to 
obtain  the  output of each iteration. It diagnoses errors to de- 
cide which units have failed, and determines the  appropriate 
allocation of tasks to processors. 

Each  processing module  has its own local executive and local- 
global communicating tasks. The local-global communicating 
tasks are  the  error  reporting task and the local reconfiguration 
task. Each of these tasks is  regarded as a separate task ex- 
ecuted on a single processor rather  than as a replication of 
some more global task, so there  are as many  separate  error 
reporting tasks and local reconfiguration tasks as there are 
processors. 

Fig. 5 shows the logical structure of the  SIFT software sys- 
tem. The replication of tasks  and  their allocation to proces- 
sors is not visible.  Tasks communicate  with one  another 
through buffers maintained by the local executives. Note that 
the single global executive task is aware of (and communi- 
cates  with)  each of the local executives, but  that  the local 
executives communicate  only with the single (replicated) 
global executive task and not with each other.  In this logical 
picture, application tasks communicate with each other and 
with the global executive, but  not with the local executives. 

Fig. 6 and Fig. 7 show where the logical components of  Fig. 
5 actually reside within SIFT. Note how critical tasks are 
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Fig. 6. Arrangement of application tasks within  SIFT  configuration. 
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Fig. 7. Arrangement of executive  within SIFT configuration. 

replicated on several processors. For  the  sake of clarity, many 
of the  paths by which  tasks read buffers have  been eliminated 
from Fig. 6 and Fig. 7. 
1) The Local-Global  Communicating  Tasks: Each proces- 

sor  runs  its  local  reconfiguration task and  error  reporting task 
at  a specified frequency,  just  like  any  other task. These two 
tasks  communicate  with  the global executive via buffers. 

The local executive  detects an error when it  obtains differ- 
ent  output values for  the same task iteration from  different 
processors! It reports all such errors to the error  reporting 

memory of another  procesdng  module. 
41t can also detect  that  a  time-out  occurred  while reading from the 

task.  The  error  reporting task performs  a preliminary analysis 
of these  errors,  and  communicates  its  results to  the global 
executive task. These results  are also used by the local execu- 
tive to  detect possibly faulty  units  before the global executive 
has  diagnosed the errors. For  example,  after several error 
reports involving a particular bus, the local  executive will 
attempt to use other busses in preference to  that one  until 
the global executive has  diagnosed the cause of the errors. 

The  local reconfguration  task  maintains  the tables used by 
the local  executive to schedule  the  execution of tasks. It does 
this using information provided to it by the global executive. 

The  interaction of the global executive and  the local-global 
communicating  tasks is shown in Fig. 8. 
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1. Error handler in each  processor puts reports in 
error table. 

2. Error  reporter task in each  processor reads error 

the global executive. This  report is put  in a 
table and decides what conditions to report to 

buffer. 

3. Global executive (triplicated) reads each proceeor‘s 
buffer over three busses (to guard against bus 
errors) and votes for a plurality. 

4. Global executive, using the diagnosis provided by 
the  error  reporter, determines what  reconfiguration, 
if  any, is necerrary. If  a reconfiguration is neces- 
sary. a report is put  in a buffer. 

5. Local reconfiguration task in each procersor reads 
report  from each of the global executive buffers 
and votes to determine  plurality. 

6. Local reconfiguration task changer the scheduling 
table to reflect the global executive’s wishes. 

Fig. 8. Error reporting and reconfiguration. 

2 )  The  Global  Executive  Task: The global executive task 
uses the results of every  processor’s error  reporter task to 
determine which processing modules  and buses are  faulty. 
The problem of determining which units are faulty is discussed 
in Section IV-C below. When the global executive decides that 
a component has failed, it  initiates a reconfiguration by send- 
ing the  appropriate  information to the local reconfiguration 
task of each processor. The global executive may also recon- 
figure  the system as a result of directives from the application 
tasks. For example, an application task may report a change 
of  flight phase which changes the criticality of various tasks. 

To permit rapid reconfiguration, we require  that  the pro- 
gram for executing a task must reside in a processor’s memory 
before  the  task can be allocated to  that processor. In  the 
initial version of SIFT,  there will be a static assignment of 
programs to memories. The program for a critical task will 
usually reside in all main processor memories, so the task can 
be executed by any main processor. 

3) The  Local  Executive: The local executive is a collection 
of routines to perform the following functions:  1)  run each 
task allocated to it at  the task’s specified iteration  rate; 2) pro- 
vide input values to, and receive output values from each task 
iteration,  and 3) report  errors to the local executive task. 

A processor’s local executive routine can  be invoked from 
within that processor by a call from a running  task, by a clock 
interrupt,  or  by a call from another local executive routine. 
There are four  types of routines: 

1) error  handler; 
2) scheduler; 
3) buffer  interface  routines; 
4) voter. 

The error  handler  routine is invoked by  the  voter when  an 
error  condition is detected. It records  the  error in a processor1 
bus  error table, which is used by the  error  reporting task 
described above. 

The scheduler  routine is responsible for scheduling the ex- 
ecution of tasks.  Every task is  run  at a prespecified iteration 
rate  that defines a sequence of time frames within which the 
task must be run.  (For simplicity, we ignore the scheduling 
of the highest priority  tasks in subframes that was mentioned 
in  Section 11-D.) A single iteration of the task is executed 
within each of its frames, but it may be executed at  any  time 
during that frame. 

@ FRAME TqE 

OUTPUT  INPUT 

1 I CLOCK 

V I C K  

Fig. 9. T h e  double buffering mechanism. 

The scheduler is invoked by a clock interrupt  or by the 
completion of a task.  It always runs the highest priority task 
allocated to the processor that has not  yet finished executing 
the  iteration  for  its  current  time frame. Execution of a task 
may be interrupted by the  clock, in which case its  state is 
preserved until  execution is resumed-possibly after  the execu- 
tion of a higher priority  task. A task that has completed its 
current  iteration is not executed again until  after  the star t  of 
its next time  frame. 

The buffer  interface  routines are invoked by a task when it 
generates output  for  an  iteration. These routines  put  the  out- 
put  into a buffer reserved for  that  task. These output values 
are used  by the  voter  routines described below to  obtain  input 
for  the tasks.  Because a task may  be run at any time during 
its  time frame, the double-buffering scheme shown in Fig. 9 
is used. Each buffer consists of a double  buffer. In any one 
time  frame,  one of the buffers is  available for new data being 
generated by the task while the  other  contains  the  data gener- 
ated last time frame. It is  the  latter values that  are used to 
provide input  to  other tasks (and possibly to the same task). 
A t  the start of the  next time frame, the buffers are switched 
around. Provision is also made for communication  between 
processes operating at different frequencies. 

The voter  routine is invoked by a task to obtain  the  inputs 
for  its  current  iteration.  The task requests a particular  output 
from the previous iteration of second task-which may be the 
same task.  The  voter uses tables provided by the local recon- 
figuration task to determine what processors contain copies 
of that  output,  and  in which of their buffers. It reads the 
data  from each of these  buffers  and  performs a majority vote 
to obtain a single  value. If all the values do  not agree, then an 
error has occurred,  and  the  error  reporter is called. 

C. Fault Detection 
Fault  detection is the analysis  of errors to determine which 

components are faulty. In SIFT,  fault  detection is based upon 
the processor/bus error  table,  an m by n matrix, where m is 
the number of processors and n the  number of busses in the 
system. Each processor has its own processorlbus  error  table 
that is maintained by its local executive’s error handler. An 
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entry X p [ i ,  j ]  in processor p’s table  represents  the  number of 
errors  detected  by processor p’s local  executive  that involve 
processor i and bus j .  Suppose  that processor p is reading 
from processor q using bus r .  There are five distinct kinds of 
errors that cause a  matrix value to change: 

1)  the  connection  from  bus r to processor q is faulty; 
2)  the  connection  from processor p to bus r is faulty; 
3) bus r is faulty; 
4) processor q is faulty; 
5) processor p is faulty ; 

Processor p’s error  reporting  task analyzes the  processor/bus 
error  table as follows to determine if any of these cases hold. 
Let e > 0 be a  threshold of errors that will be tolerated  for any 
processor/bus  combination.  It can deduce  that case 1  holds if 
the following conditions all hold: (i) X p [ q ,  rl >e,  (ii) there 
exists a bus j such that X p [ q ,  j ]  <e, and (iii) there  exists a pro- 
cessor i such  that X p [ i ,  r ]  < e .  Either case 2 or 3 may hold 
if X p [ i ,  rl > e  for all active processors i .  These two cases can 
only be distinguished by the global executive task, which has 
access to information  from all the processors. (Case 3 holds if 
all active processors report bus r faulty,  otherwise case 2 
holds.)  The  error  handler can deduce  that case 4 holds if 
X p [ q ,  j 1 > e for all active buses j .  The error  handler  cannot 
be depended  upon to  diagnose case 5 ,  since the failure of the 
processor executing  it  could cause the error  handler to decide 
that  any  (or  none) of the  other  four cases hold. 

Once the error  handler has performed  this analysis, the 
appropriate  action  must be taken. In case 1, processor p will 
stop using bus r to talk to processor q .  In cases 2 and 3, 
processor p will stop using bus r ,  and will report to  the global 
executive  that bus r is faulty. In case 4, processor p will 
report to  the global executive  task  that processor q is faulty. 

The global executive task makes the  fiial decision about 
which unit is faulty.  To do this,  it reads the  faulty processor 
reports provided by the error  reporting  task. If two  or  more 
processors report  that  another processor is faulty,  then  the 
global executive decides that this other processor has indeed 
failed. If two  or  more processors report  that  a bus is faulty, 
then  the global executive decides that  the bus has failed. 

The global executive may know that some  unit produced, 
errors,  but be unable to determine which is the faulty  unit. In 
that case, it must  await  further  information.  It can obtain 
such  information by allocating the  appropriate diagnostic 
tasks. If there is a faulty unit  (and  the  error  reports were not 
due to  transient  faults), then  it  should  obtain  the necessary 
information  in  a  short  time. 

It can be shown that in the presence of  a single fault,  the 
above procedure  cannot cause the global executive to declare 
a  nonfaulty  unit to  be faulty. With the  appropriately “mali- 
cious” behavior, a faulty unit may generate  error  reports with- 
out giving the global executive  enough  information  to  deter- 
mine that it is faulty. For  example, if processor p fails in such 
a way that it gives incorrect  results only to processor q ,  then 
the global executive  cannot decide whether  it is p or q that is 
faulty. However, the  majority voting technique will  mask 
these  errors  and prevent a system failure. 

D. The  Simulator 

An initial version  of the  SIFT system has  been coded  in 
Pascal. Since the avionics computer is not available at this 
time,  the  executive is being  debugged on an available general- 
purpose  computer  (a DEC PDP-IO). To facilitate  this, a simu- 

lator has been constructed.  The  simulator uses  five asyn- 
chronous processes, each running  a  SIFT executive and a  “toy” 
set of application tasks. The  controlling process simulates  the 
actions of the  SIFT bus system and  facilitates  interprocess 
communications.  Faults  are  injected,  either  at  the processor 
or the bus levels, and a visual display of the system’s behavior 
is provided. This gives us a means of testing  software  in  the 
absence of the  actual  SIFT  hardware. 

v. THE PROOF OF CORRECTNESS 

A.  Concepts 

Estimates of the reliability of SIFT  are based upon  the as- 
sumption  that  the  software  operates  correctly. Since we know 
of no  satisfactory way to estimate  the  probability  that  a piece 
of software is incorrect, we are  forced to try to guarantee 
that  the  software is indeed correct. For  an  asynchronous 
multiprocess system such as SIFT,  the only way to  do this is 
to give a  rigorous  mathematical proof of its correctness. 

A rigorous proof of correctness  for  a system requires  a pre- 
cise statement of what  it  means  for the system to be correct. 
The  correctness of SIFT  must be expressed as a precise mathe- 
matical  statement  about  its behavior. Since the  SIFT system 
is composed of several processors and memories, such a state- 
ment  must describe the behavior of many  thousands of bits of 
information. We are  thus faced with the problem that  the 
statement of what  it  means  for the  SIFT  software to be cor- 
rect is too  complicated to be humanly  comprehensible. 

The  solution to this  problem is to  construct  a higher level 
“view” of the  SIFT  system  that is simpler than  the  actual sys- 
tem.  Such a view is called a model. When stated  in  terms of 
the ,simple  model, the requisite system properties can be made 
comprehensible.  The proof of correctness is then  performed 
in  two  steps:  1) we first prove that  the model possesses the 
necessary correctness  properties;  and 2) we then prove that 
the  model  accurately describes the  SIFT system [ 12). 

Actually,  different  aspects of correctness  are best expressed 
in  terms of different models. We use a  hierarchy of models. 
The system itself may be  viewed  as the  lowest level model. In 
order to prove that  the models  accurately describe the  SIFT 
system, we prove that each model  accurately describes the 
next lower-level one. 

B. Models 

We now make the  concept of a model  more precise. We 
define a model to consist of a set S of possible states, a  subset 
SO of S consisting of the set of possible initial  states,  and a 
transition rebtion -, on S. The  relation s -+ sr means that  a 
transition is possible from state s to  state s’. It is possible for 
the relations s + sr and s + S” both to hold for two different 
states sr and s”, so we allow nondeterministic behavior. A 
possible  behavior of the @stem  consists of a sequence of states 
SO, ~ 1 ,  * such  that SO is in SO and si + si+1 for  each i. Cor- 
rectness  properties are mathematical  statements  about  the 
possible behaviors of the  system. 

Note that  the behavior of a model  consists of a linear se- 
quence of transitions, even though  concurrent  operations  oc- 
cur  in  the  SIFT  system.  Concurrently  activity  can be repre- 
sented by transitions that change disjoint  components of the 
state, so that  the  order in which they  occur is irrelevant. 

Each state of the  model  represents  a  collection of states in 
the real system.  For  example,  in  the  reliability  model dis- 
cussed in  Section 11-F, the  state is a triple of integers (h ,  d,f) 
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which contains  only  the  information  that f processors have 
failed, d of those failures have been detected,  and h of the 
detected failures have  been handled. A single model state 
corresponds to all possible states  the system could  reach 
through  any combination of f failures, d failure detections, 
and h reconfiirations. 

We now consider what it means for one model to accurately 
describe a lower level one. Let S, So, and -+ be the  set of 
states,  set of initial states,  and  transition  relation  for  the higher 
level model;  and let S’, Sb, and -+ ’ be the corresponding  quan- 
tities  for  the lower level model. Each state of the lower level 
model must  represent some state of the higher level one,  but 
different  lower level states can represent  the same higher 
level one.  Thus  there  must be a mapping REP: S’ -+ S, where 
REP(s!) denotes the higher-level state represented by s’. 

Having defined a correspondence  between the  states of the 
two models, we can require  that  the  two models  exhibit 
corresponding behavior. Since the lower level model repre- 
sents a more detailed description of the system, it may  contain 
more  transitions  than  the higher level one. Each transition  in 
the lower level model  should  either  correspond to a transition 
in the higher level one,  or else should describe a change in  the 
system that is  invisible in  the higher level model. This require- 
ment is embodied in the following two conditions. 

1) REP(&) is a subset of So. 
2) For all s’, t‘ in S’: if s’ +’ t) then  either: 

(a) REP(S‘) = REP(t‘); or 
(b) REP(s‘) -+ REP(t’). 

If these conditions  are satisfied, then we say that REP de- 
fines the lower level model to be a refinement of the higher 
level one. 

If a model is a refinement of a higher level one,  then any 
theorem about  the possible  behaviors of the higher level model 
yields a corresponding  theorem about  the possible  behaviors 
of the lower level one. This is  used to infer correctness of the 
lower level model (and  ultimately, of the system itself) from 
the correctness of the higher level one. 

A transition  in  the higher level model may represent a sys- 
tem action  that is represented by a sequence of transitions in 
the lower level one. For example, the  action of detecting a 
failure may be represented by a single transition in the higher 
level model. However, in a lower level model (such as the 
system itself),  detecting a failure may  involve a complex 
sequence of transitions. The second requirement means that 
in  order  to define REP, we must  defiie some  arbitrary  point 
at which the lower level model is considered to have detected 
the failure. This problem of defining exactly when the higher 
level transition  takes place in  the lower level model turns  out 
to be the major difficulty in constructing  the mapping REP. 

C. The Reliability  Model 
In  the reliability model, the  state consists of a triple ( h ,  d , f )  

of integers with h < d < f < p ,  where p is the  number of pro- 
cessors. The  transition  relation + is described in  Section 11-F, 
as is the meaning of the  quantities h ,  d ,  and f: 

Associated with each value of h is an integer sf@)  called its 
rafety factor, which has the following interpretation. If the 
system has reached a configuration in which h failures have 
been handled, then it can successfully cope with up  to  sf(h) 
3dditional (unhandled) failures. That is, the system should 
function correctly so long as f -  h ,  the  number of unhandled 
’ailures, is less than or equal to sf@).  The  state (h ,  d ,  f) is 
:alled safe i f f  - h G sf(h). 

To demonstrate  that  SIFT meets its reliability requirements, 
we must  show two things. 

1) If the system remains in a safe state  (one represented by a 
safe state in the reliability model), then it will behave correctly. 

2) The  probability of the system reaching an unsafe state is 
sufficiently small. 

Property 2) was  discussed in Section 11-F. The remainder of 
Section V describes our approach to proving 1). 

The reliability model is introduced specifically to allow us 
to discuss property 2). The  model  does not reflect the  fact 
that  SIFT is performing any  computations, so it cannot be 
used to state any correctness properties of the system. For 
that, a lower level model is needed. 

D. The Allocation  Model 
1)  An  Overview: SIFT  performs a number of iterative 

tasks. In the allocation model, a single transition  represents 
the execution of one  complete  iteration of all the tasks. As 
described in Section 11-D, most  tasks  are  not actually executed 
every iteration cycle. For  the allocation model, an  unexecuted 
task is considered to perform a null calculation,  producing  the 
same result it  produced during the previous iteration. 

The input used by a task in its  tth  iteration is the  output 
of the ( t  - 1)st  iterations of some (possibly empty)  set of 
tasks. Input to SIFT is modeled by a task executed on an 
1/0 processor which produces output  without requiring input 
from  other tasks. The  output which an 1 / 0  processor pro- 
duces is simply the  output of some task which it executes. 

In the allocation model, we make no  distinction between 
main processors and I/O processors. Bus errors  are  not repre- 
sented in the model. SIFT’S handling of them is invisible in 
the allocation model, and can be represented by a lower level 
model. 

The  fundamental correctness property of SIFT-property 
1) of Section V-C above-is stated  in terms of the allocation 
model as follows: if the system remains in a safe state,  then 
each nonfaulty processor produces  correct output for every 
critical task it executes. This implies the correctness of any 
critical output of SIFT generated by a nonfaulty 1 / 0  proces- 
sor. (The possibility of faulty I/O processors must be handled 
by redundancy in the  external environment.) 

The allocation of processors to tasks is effected by the  inter- 
action of the global executive task,  the local-global communi- 
cating tasks, and local executives, as described in Section IV. 
The  output of the  tth  iteration of a local-global communi- 
cating task uses  as input  the  output of the ( t  - 1)st  iteration 
of the global executive. During the  tth  iteration cycle, the 
local executive determines what the processor should be doing 
during the ( t  + 1)st cycle-i.e., what tasks it should execute, 
and what processor memories contain the  input values for each 
of these tasks. The processor executes a task by fetching each 
input from several processor memories, using a majority vote 
to determine the  correct value, and then computing the task’s 
output.’ We assume that a nonfaulty processor will compute 
the  correct  output value for a task if majority voting obtains 
the  correct value for each of the task’s inputs. 

The only part of the executive software that is explicitly 
represented in the allocation are the local-global communi- 
cating tasks. Although each processor’s  local-global communi- 
cating task is treated  in  SIFT as a separate  task, it is more 
convenient to represent  it in the allocation model as the execu- 

sented in the allocation model. 
’The  fault diagnosis performed by the global executive is not repre- 
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tion  on  that processor of a single replicated task whose output 
determines  the  complete allocation of tasks to processors. 

2)  The  States of the  Allocation  Model: We now describe 
the set of states of the allocation model. They  are  defined  in 
terms of the  primitive quantities  listed below, which are them- 
selves undefined.  (To  show  that  a lower level model is a re- 
finement of the allocation  model, we must defiie  these primi- 
tive quantities  in  terms of the primitive quantities of that 
lower level model.) The  descriptions of these  quantities  are 
given to help  the  reader  understand  the  model;  they have no 
formal significance. 

P 

K 

LE 

e 

sf 

A set of  proc.essors. It  represents  the  set of all proces- 
sors in the  system. 
A set of tasks. It  represents  the  set of all (critical) 
tasks in the system. 
An element of K. It is the single task that  represents all 
the local-global communicating tasks, as described 
above. 
A mapping  from the cross  product of K and the set of 
nonnegative integers into some unspecified set of  val- 
ues. The value of e ( k ,  t )  represents  the correct output 
of the  fth  iteration cycle of task k .  Thus, e describes 
what the  SIFT tasks should  compute.  It is a  primitive 
(i.e., undefined)  quantity  in  the  allocation  model b e  
cause we are not specifying the actual values the  tasks 
should  produce. (These values will, of course,  depend 
upon  the  particular  application tasks SIFT  executes, 
and the  inputs  from  the  external  environment.) 
The  safety factor  function  introduced in the reliability 
model. It remains a  primitive  quantity  in  the  allocation 
model. It can be thought of as a goal the system is 
trying to achieve. 

We define  the allocation  model state  to consist of the fol- 
lowing components.6 (Again, the  descriptions  are to assist 
the  reader and  are  irrelevant to the  proof.) 

t A nonnegative integer, It  represents  the  number of 
iteration cycles that have been  executed. 

F A subset of P. It  represents  the set of all failed 
processors. 

D A subset of F.  It  represents  the  set of all failed pro- 
cessors  whose failure has been  detected. 

c A mapping  from P X K into some unspecified set of 
values. The value c(p, k) denotes  the  output of task k 
as computed by processor p .  This value is presumably 
meaningless if p did not  execute  the  tth iteration of 
task k. 

3. The  Axioms of the  Model: We do  not  completely de- 
scribe the set of initial states So and the transition  relation -+ 

for  the allocation model. Instead, we  give the following list 
of axioms  about So and +. Rather  than giving their  formal 
statement, we simply give here  an  informal  description of the 
axioms. (Uninteresting  axioms dealing with such matters as 
initialization  are  omitted.) 

1) The value of c @ ,  L E )  during iteration cycle t ,  which 
represents  the  output of the  fth  iteration of processor p’s 
local-global communicating  task, specifies the tasks that p 
should execute during cycle t + 1 and the processors whose 
memories  contain input values for each such task. 

2) If a  nonfaulty processor p executes  a  task k during 

has been omitted. 
“TO simplify the dipcussion, one  component of our actual model 
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iteration cycle t ,  and a majority of the copies of each input 
value to k received  by p are  correct, then  the value c(p, k) it 
computes will equal  the  correct value e ( k ,  t ) .  

3) Certain  natural  assumptions  are  made  about  the alloca- 
tion of tasks to processors specified by e(LE, t ) .  In  particular, 
we assume that  a)  no critical  tasks  are assigned to a processor 
in D (the set of processors known to be faulty),  and  b) when 
reconfiguring, the reallocation of tasks to processors is done 
in  such  a way that  the global executive never knowingly 
makes the system less tolerant of failure than  it  currently is. 

To prove that  a  lower level model is a  refinement of the 
allocation  model,  it will suffice to verify t h d  these  axioms 
are  satisfied. 

4)  The  Correspondence  with  the  Reliability  Model: In 
order to show that  the allocation  model is a  refinement of 
the reliability  model, we must  define  the  quantities h ,   d ,  and 
f of the reliability  model in  terms of the  state  components of 
the allocation  model-thereby defining the  function REP. 

The  definitions of d and f are  obvious;  they are just the  num- 
ber of elements in the sets D and F ,  respectively. To  define 
h ,  we must specify the precise point during the  “execution” of 
the allocation  model at which a  detected  failure is considered 
to be “handled.” Basically, the value of h is increased to h + 1 
when the  reconfiguration has  progressed to  the  point where  it 
can handle sf(h + 1) additional errors.  (The  function sf ap- 
pears in the  defiition.) We omit  the  details. 

5. The  Correctness Roof: Within the allocation  model, we 
can define  a  predicate C F ( t )  that expresses the  condition  that 
the system functions  correctly during the tth iteration  cycle. 
Intuitively,  it is the  statement  that every nonfaulty processor 
produces  the  correct  output  for every task it  executes.  The 
predicate CF(t) can be stated  more precisely as follows. 

If e(LE, t - 1) indicates that p should execute  a task k in K 
during the tth iteration cycle, and p is in P - F,  then  the value of 
c ( p ,  k) after the tth iteration e q u a l s  e(k, t ) .  

[ A  precise statement of’how e(LE, t - 1) indicates that p 
should  execute task k requires  some  additional  notation,  and 
is omitted.] 

We can define  the  predicate SAFE(t) to mean that  the sys- 
tem  is in a safe state  at  time t .  More precisely, SAFE(t) means 
that after the  tth iteration  cycle,  sf(h) >f - h ,  where f and h 
are defined above  as functions of the allocation  model  state. 
The basic correctness  condition  for  SIFT can be stated as 
follows. 

If SAFE(t’) is true for all t’ with 0 d tl d t ,  then CF(t) is 
true. 

A rigorous proof of this  theorem has  been developed, based 
upon  the  axioms  for  the  allocation model. The proof is toc 
long and detailed to include here. It will appear  in  the  find 
report to NASA at the conclusion of the  current phase of  thc 
project. 

E. Future  Work 
The basic correctness  property of SIFT has  been  statec 

and proved for the allocation model. What remains to be don1 
is to show that  the actual system is a refinement of the alloca 
tion model. Current plans call for  this to be done  in  terms o 
two lower level models. The  first of these is the operating 
system  model. The  allocation  model  represents all the corn 
putations in a given iteration cycle performed by  all the prc 
cesses  as a single transition.  The operating-system model w i  
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represent  the  asynchrony of the  actual computations. It will 
essentially be a high-level representation of the system that 
embodies the mechanisms used to synchronize the processors. 
The  proof that  the operating-system model is a refinement of 
the allocation model will  be a proof of correctness of these 
synchronizing mechanisms. 

The  next lower level model will  be the program model. It 
will essentially represent  the PASCAL  version of the  software. 
We expect  that proving the program model to be a refinement 
of the operating-system model will be done by the ordinary 
methods of program Verification [ 11 I . 

Finally, we must verify that  the system itself  is a correct 
refinement of the program model. This requires verifying first 
that  the Pascal programs are compiled correctly, and second 
that  the hardware  correctly  executes programs. (In  particular, 
this involves  verifying the fault-isolation properties of the 
hardware.) We have not  yet decided how to address these 
tasks. Although most of this verification is theoretically 
straightforward, it presents a difficult problem in practice. 

VI. CONCLUSIONS 

The  SIFT  computer development is an  attempt  to use 
modem  methods of computer design and verification to 
achieve fault-tolerant behavior for real-time, critical control 
systems. We believe that  the use of standard, mass-produced 
components helps to attain high reliability. Our basic  ap- 
proach,  therefore, involves the replication of standard  compo- 
nents, relying upon  the software to  detect and analyze errors 
and to dynamically reconfigure the system to bypass faulty 
units. Special hardware is needed only to isolate the  units 
from one  another, so a faulty  unit does not cause the failure 
of a nonfaulty one. 

We have chosen processor/memory  modules and bus 
modules as the basic units of fault  detection  and reconfigura- 
tion. These units  are at a high enough level to make system 
reconfiguration easy, and  are small and inexpensive enough to 
allow sufficient replication to achieve the desired reliability. 
Moreover, new advances in Large  Scale Integration will further 
reduce  their size and cost. 

By using software to achieve fault-tolerance,  SIFT allows 
considerable flexibility in  the choice of error handling policies 
and mechanisms. For example, algorithms for  fault masking 
and  reconfiguration can be  easily modified on  the basis  of 
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operational experience. Novel approaches to  the tolerance of 
programming errors, such as redundant programming and re- 
covery blocks [8] can be incorporated. Moreover, it is fairly 
easy to enhance the performance of the system by adding 
more hardware. 

While  designing SIFT, we  have been concerned with proving 
that it meets its  stringent reliability requirements. We have 
constructed formal models with which to analyze the p r o b  
ability of system failure, and we intend to prove that these 
models accurately describe the behavior of the SIFT system. 
Our effort has included the use of formal specifications for 
functional modules. We hope to achieve a degree of system 
verification that has been unavailable in previous fault-tolerant 
architectures. 

Although the design  described in this paper  has been oriented 
toward the needs of commercial air transports,  the basic 
architectural  approach  has a wide applicability to critical real- 
time systems. Future work may extend this approach to  the 
design of fault-tolerant  software and more general fault- 
tolerant  control systems. 

APPENDIX A: 
SAMPLE SPECIAL SPECIFICATION 

This appendix  contains  an  example of a formal specification 
extracted from the specifications of the  SIFT executive soft- 
ware. The specification is written  in a language  called  SPECIAL, 
a formally defined specification language.  SPECIAL has been 
designed explicitly to permit the description of the results re- 
quired  from a computer program without constraining the  pro- 
grammer's  decisions as to how to  write the most efficient 
program. 

The function  that is  specified here is the local executive's 
voter  routine, described informally in  Section IV-A. This 
function is  called to obtain a value from one of the buffers 
used to communicate between tasks. The value required is 
requested over the bus system from every replication of this 
buffer, and a consensus value that masks any  errors is formed 
and  returned to the calling program. Errors are reported and 
provision  is made for buses that  do  not  obtain a value (due  to 
a nonresponding bus or memory)  and for  the possibility that 
there is no consensus. 

Notes following the specification are keyed to statements 
in  the specification. 

OVFUN read- buffer  (buffer-name i; address k; value safe) 
[processor  a; task t ]  
+ result r; 

EXCEPTIONS 
CARDINALITY(activated- buffers(a,i)) = 0; 
0 > k OR k >= buffer-size(i); 

EFFECTS 
EXISTS  SET,OF response 

w = responses(a, activated-buffers(a,i),  k): 
EXISTS SET-OF response 

z = {response b 1 b INSET w AND  b.flag }: 

IF(EX1STS  value  v; 
SET- OF response x' 1 
x = {response c I c INSET (w DIFF z)  

AND  c.val = v}: 
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FORALL value u; 
SET- OF response y I 
y = {response d I d INSET (w DIFF x DIFF z) 

AND  d.val = u}: 
CARDINALITY (x) > CARDINALITY(y)) 

THEN(EX1STS  value v; 
SET-OF response x I 
x = {response c I c INSET (w DIFF z) 

AND  c.val = v} : 

FORALL value u; 
SET-OF response y I 
y = {response d I d INSET (w DIFF x DIFF z) 

AND  d.val = u} : 
CARDINALITY(x) > CARDINALITY(y); 

EFFECTS-OF er roda ,  w DIFF  x); 
r = v) 

ELSE(EFFECTS-OF errors(a, w); 
r = safe); 

Notes 
1) The  function ‘read- buffer’ takes three arguments and 

returns a result. The buffer-name ‘i’ is the name of a logical 
buffer which may be replicated in several  processors,  while 
the address ‘k’ is the  offset of the required word in  the buffer 
and ‘safe’ is the value to be returned if no consensus can be 
obtained.  The parameters ‘a’ and ‘t’ need not  be explicitly 
cited by the caller of this function  but  are deduced from  the 
context. 

2) Exception returns will be made if there are no active 
instances of the named buffer or if the  offset is not within 
the buffer. 

3) A response is obtained by interrogating a buffer in 
another processor. Each response is a record (also known as a 
“structure”,  containing a value field (“val”) and flag field 
(“flag”), the  latter  set if no response was obtained  from the 
bus or  store.  The  set ‘w’ of responses is the set obtained  from 
all of the activated buffers known to processor ‘a’. The  set 
’z’ is the subset of no-response  responses. 

4) First we must check that a plurality opinion exists. 
This section hypothesises that  there exists a consensus value 
‘v’ together with the  subset of responses ‘x’ that returned that 
value. 

5 )  Here  we consider all other values and establish for each 
of them  that fewer responses contained  this other value than 
contained the proposed consensus value. 

6) Having established that a consensus value  exists,  we  may 
now validly construct  it,  repeating  the criteria of stages [ 4 ]  
and [SI. It is important  to  note  that these are  not programs 
but logical criteria. The  actual  implementations would not 
repeat  the program. 

7) This section requires that any responses not  in  the set 
‘x’ (the  set ’x’ is the  set  reporting  the consensus value) should 
be reported as errors, and  the result is the consensus value ‘v’. 
The expression 

EFFECTS-OF errors(a, w DIFF X) 
indicates a state change in  the module that  contains  the 0- 
function “errors”. The specification indicates that  an  error 
report is loaded into a table associated with processor “a.” 

8) If there is no consensus value,  as determined by stages 
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[ 41 and [ 51, then all the responses must be reported as errors, 
and  the safe  value returned as the result. 
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Architectures for Fault=Tolerant  Spacecraft 
Computers 

DAVID A. RENNELS 

Abmrrer-This paper ~~~tnmirizes the r e ~ u l t ~  of a long-term research The primary constraints on  the on-board computing system 
W fdt-tdexant ~~U~ for on-board proceasing are the requirements for long unattended life and severe restric- 

~ ~ ~ ~ ~ ~ ~ ~ ~ - - ~ ~ ~ t ~ ~ ~ ~ ~ f  
tions  on power, weight, and volume. Reliability is the  most 

fadt4d-t wem. % ,,,,d req&enb severe constraint which affects  the  computer  architecture in 
of spacecrrtt comppting rre descnlbed dong with the resulting &-time several  ways. In most cases only proven (5-1 O-year old) tech- 
computer architectum. = f*g PspeCts of* - are &- nology can be  used to minimize the chance of unexpected 
cussed: l )  to minhnize m the distrii- fail&e modes. Parts are  extensively tested  and screened for 
uted computer wstem, 2) hult-detectioa md recovery, 3) techniques to enhpnce lad testrbilitv. lad 4) ammrhes for reliability, driving their cost to  ten  or more  times  those in  the 

- .  
hnplementrtion. 

. - _ _  
commercial marketplace. Redundant processors, memories, 

F 
I .  INTRODUCTION 

AULT-TOLERANT computing has long been a require- 
ment  of  planetary spacecraft. These systems are built at 
costs of tens to hundreds of million-dollars and then  sent 

into space for several-years  mission during which repair is not 
possible. Failure of an on-board computer can mean loss of a 
mission. Thus redundant  backup  units  are carried along for 
the  computer and other critical subsystems, and faulty  units 
are automatically replaced with spares. The  Jet Propulsion 
Laboratory (JPL) of the California Institute of Technology has 
built  and  operated  spacecraft which have  successfully explored 
the Moon, Mars, Venus, and Mercury [ 1 1 .  Current spacecraft 
are  directed  toward  the  mysterious  outer  planets of Jupiter 
and  Saturn.  In  support of spacecraft reliability requirements, 
a program in  fault-tolerant  computing has been conducted at 
JPL for nearly 20 years. This paper summarizes the  results of 
this research and the  directions  it  has  taken  in response to  
changes in  the underlying circuit technology. 
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and input/output  (I/O) circuits double or triple  the  amount of 
hardware that is used. Thus it can be safely said that reliability 
requirements  induce the majority of costs for on-board com- 

Typical power, weight, and volume requirements  are in  order 
of 30-50 W, 100 lbs, and a few thousand cubic inches. These 
physical constraints become especially  severe since redundant 
spare modules must be included. Thus  our early fault-tolerance 
efforts, which were based on relatively bulky  and power con- 
suming bipolar small-scale integrated (SSI) circuits, were ori- 
ented toward finding hardwareefficient  forms of fault-tolerant 
computer  architectures.  This  constraint has been somewhat 
reduced with the  current availability of low-power higher den- 
sity CMOS devices. 

The  JPL program in  fault-tolerant  computing has had two 
major parts. The first was the development of a fault-tolerant 
uniprocessor designated the  JPL self-testing and repairing 
(STAR) computer. This development was  carried out  under 
the  direction of A.  Avizienis between 1961 and 1972.  It was 
aimed at  the flight technology of the early 1970’s  (e.g., bipolar 
SSI/MSI and plated-wire memory)  and the results were  widely 
published [2].  A breadboard STAR computer was constructed 
and tested  in 1970-1972. 

puting. 
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