
Computation and State Machines

Leslie Lamport

19 April 2008

Preface

For quite a while, I’ve been disturbed by the emphasis on language in com-
puter science. One result of that emphasis is programmers who are C++
experts but can’t write programs that do what they’re supposed to. The
typical computer science response is that programmers need to use the right
programming/specification/development language instead of/in addition to
C++. The typical industrial response is to provide the programmer with
better debugging tools, on the theory that we can obtain good programs by
putting a monkey at a keyboard and automatically finding the errors in its
code.

I believe that the best way to get better programs is to teach program-
mers how to think better. Thinking is not the ability to manipulate lan-
guage; it’s the ability to manipulate concepts. Computer science should be
about concepts, not languages. But how does one teach concepts without
getting distracted by the language in which those concepts are expressed?
My answer is to use the same language as every other branch of science
and engineering—namely, mathematics. But how should that be done in
practice? This note represents a small step towards an answer. It doesn’t
discuss how to teach computer science; it simply addresses the preliminary
question of what is computation.

Contents

1 Introduction 1

2 State Machines 2
2.1 Behaviors . 2
2.2 State Machines . 3
2.3 Other Kinds of Computations 6
2.4 Other Ways to Describe Computations 7

3 Programs as State Machines 8

4 Describing State Machines 11

5 Correctness 14
5.1 Invariance . 14

5.1.1 The Inductive Invariant Method 14
5.1.2 Composition of Relations and Weakest Preconditions . 15
5.1.3 The Floyd-Hoare Method 16

5.2 Refinement . 18
5.2.1 Data Refinement . 19
5.2.2 An Example of Data Refinement 20
5.2.3 Refinement with Stuttering 22
5.2.4 Invariance Under Stuttering 23

6 Conclusion 24

References 24

Appendix: The Definition of π(σ) 27

1 Introduction

Much of computer science is about state machines. This is as obvious a
remark as saying that much of physics is about equations. Why state some-
thing so obvious?

Imagine a world in which physicists did not have a single concept of
equations or a standard notation for writing them. Suppose that physicists
studying relativity wrote the “einsteinian” m↗c2 ←↩ E instead of E = mc2,

while those studying quantum mechanics wrote the “heisenbergian” E
c2
m

∧ ;
and that physicists were so focused on the syntax that few realized that these
were two ways of writing the same thing. In such a world, it would be worth
observing that relativity and quantum mechanics both used equations.

This imagined world of physics seems absurd. Its analog is the reality
of computer science today. Computation is a major topic of computer sci-
ence, and almost every object that computes is naturally viewed as a state
machine. Yet computer scientists are so focused on the languages used to
describe computation that they are largely unaware that those languages
are all describing state machines.

Teaching our imaginary physicists that einsteinians and heisenbergians
are different ways of writing equations would not lead to any new physics.
The equations of relativity are different from those of quantum mechanics.
Similarly, realizing that so much of computer science is about state machines
might not change the daily life of a computer scientist. The state machines
that arise in different fields of computer science differ in important ways,
and they may be best described with different languages. Still, it seems
worthwhile to point out what they have in common.

State machines provide a framework for much of computer science. They
can be described and manipulated with ordinary, everyday mathematics—
that is, with sets, functions, and simple logic. State machines therefore
provide a uniform way to describe computation with simple mathematics.

The obsession with language is a strong obstacle to any attempt at uni-
fying different parts of computer science. When one thinks only in terms
of language, linguistic differences obscure fundamental similarities. Simple
ideas can become complicated when they must be expressed in a particular
language. A recurring theme is the difficulty that arises when necessary
concepts cannot be introduced either because the language has no way of
expressing them or because they are considered to be politically incorrect.
(A number of different terms have been used to mean politically correct,
such as “fully abstract”, “observable”, and “denotational”.)

1

The purpose of this note is to indicate how computation is expressed with
state machines and how doing so can clarify the concepts underlying the
disparate languages for describing computations. Section 2 explains what
state machines are and how they can describe things that compute, and
Section 3 considers the important example of computer programs. Section 4
shows how state machines are described with mathematics. Section 5 delves
more deeply into the use of state machines in the area of computer science
that can be called correctness.

Many of the ideas expressed here appear, sometimes implicitly, in the
work of Yuri Gurevich and others on Abstract State Machines [7, 13, 15].
Much of that work has been motivated by the desire to describe the class of
effectively executable computations [14]. Readers who have studied Abstract
State Machines will find much here that is familiar, but viewed from a
somewhat different perspective.

2 State Machines

2.1 Behaviors

Much of computer science is about computing objects—objects that com-
pute. I begin by considering what a computation is. There are several ways
to define computation. For now, I take the simplest: a computation is a
sequence of steps, which I call a behavior. There are three common choices
for what a step is, leading to three different kinds of behavior:

Action Behavior A step is an action, which is just an element of some set
of actions. An action behavior is a sequence of actions.

State Behavior A step is a pair 〈s, t 〉 of states, where a state is an element
of some set of states. A state behavior is a sequence s1 → s2 →
s3 → · · · of states. The step 〈s i , s i+1 〉 represents a transition from
state s i to state s i+1.

State-Action Behavior A step is a triple 〈s, α, t 〉, where s and t are
states and α is an action. A state-action behavior is a sequence s1

α1−→
s2

α2−→ s3
α3−→ · · · . The step 〈s i , αi , s i+1 〉 represents a transition from

state s i to state s i+1 that is performed by action αi .

Behaviors can be finite or infinite. A finite behavior is said either to termi-
nate or to deadlock, depending on whether or not we like its final state (or
its final action, for action behaviors). When behaviors are expected to be

2

finite, sometimes infinite behaviors are said to diverge and finite behaviors
that end in undesired states are said to abort.

State and state-action behaviors are essentially equivalent. A state be-
havior can be regarded as a state-action behavior with only a single dummy
action ⊥. A state-action behavior can be represented as a state behavior
whose states are pairs, where s1

α1−→ s2
α2−→ s3

α3−→ · · · is most conveniently
represented as 〈⊥, s1 〉 → 〈α1, s2 〉 → 〈α2, s3 〉 → · · ·. Action behaviors are
usually specified by defining state-action behaviors and throwing away the
states.

2.2 State Machines

A computing object generates computations. When a computation is a state
behavior, such an object is naturally defined as a state machine. A state
machine is usually specified by a set S of states, a set I of initial states, and
a next-state relation N on S, so I ⊆ S and N ⊆ S × S. It generates all
state behaviors s1 → s2 → s3 → · · · such that:

S1. s1 ∈ I
S2. 〈s i , s i+1 〉 ∈ N , for all i .

S3. If the behavior is finite, then it ends in a state s for which there is no
state t with 〈s, t 〉 ∈ N .

A state-machine is said to be deterministic iff the next-state relation N is
a function—that is, iff for each state s there is at most one state t with
〈s, t 〉 ∈ N .

Nondeterministic state machines may also include fairness conditions
that require certain steps to occur if they are possible. In this case, S3 can
be a fairness condition that may or may not be required.

If a computation is a state-action behavior, then a computing object
is specified with a state-action machine. Such a machine is like a state
machine except that the next-state relation becomes a next-state set N
that is a subset of S × A × S, where A is the set of all actions. A state-
action machine is deterministic iff for every state s there is at most one pair
〈α, t 〉 with 〈s, α, t 〉 ∈ N .

Here are a few examples of computing objects and how they are described
by state or state-action machines.

Automata Many kinds of automata have been defined, the most well-
known being the Turing machine. A Turing machine is a state machine

3

whose state describes the contents of the tape, the internal state, and
the position of the read/write head. We can let the set of initial states
describe all tapes that represent valid inputs, or we can let each pos-
sible input tape define a different state machine, so the initial-state
set I contains only a single initial state. It should be obvious how
other kinds of automata are also naturally described as state or state-
action machines—for example, Moore machines, Mealy machines, and
other finite-state automata; pushdown automata; multi-tape Turing
machines; and cellular automata.

von Neumann Computers The state of a von Neumann computer spec-
ifies the contents of the memory and of all the registers, including a
program counter (pc) that contains the address of the next instruc-
tion to be executed. The next-state relation contains the pair 〈s, t 〉
of states iff executing the next instruction (the one specified by pc) in
state s produces state t . Output can be represented with an output
register; input can be represented with a read instruction that nonde-
terministically sets a memory location to an arbitrary value. (There
are a number of other ways to represent input and output as well.)
We usually let the set I of initial states contain all possible states.
However, if we are interested in a particular program executed on the
computer, we can let I be the set of all states containing the program in
some portion of memory, having legal inputs in the appropriate mem-
ory locations, and with pc containing the address of the program’s first
instruction.

Algorithms An algorithm is usually considered to be a recipe for generat-
ing behaviors. For a sequential algorithm, computational complexity
measures how many steps are in the behaviors it generates.1 As an
example of a concurrent algorithm, consider a distributed message
passing algorithm in which a set P of processes interact by sending
and receiving messages. A state is the cross product of local states of
all processes together with the state of the communication medium,
which describes the messages currently in transit. For a dynamic sys-
tem in which processes enter and leave, a process that is not currently
part of the system has a default inactive state. (If there is no bound
on the number of processes that can become active, then the set P is

1Some computer scientists think an algorithm is a function from inputs to outputs. If
that were true, then bubble sort and heap sort would be the same algorithm, since they
compute the same function.

4

infinite.) The next-state relation N is the union of:

• For each process p in P , a relation N p that describes the steps
performed by p. In a typical step, p receives a message and
responds by sending zero or more messages. If 〈s, t 〉 is in N p ,
then s and t can differ only in the local state of p and the state
of the communication medium.

• A relation C that describes internal steps of the communication
medium—for example, the loss of one or more messages. If 〈s, t 〉
is in C, then s and t can differ only in the state of the communi-
cation medium.

It is also possible to define N so it contains steps that are performed
simultaneously by multiple processes or by one or more process and
the communication medium. The use of state machines that allow
such simultaneous operations is sometimes (rather misleadingly) called
“true concurrency”.

BNF Grammars A BNF grammar can be described as a state machine
whose states are sequences of terminals and/or non-terminals. The
set of initial states contains only the sequence consisting of the single
starting non-terminal. The next-state relation is defined to contain
〈s, t 〉 iff s can be transformed to t by applying a production rule to
expand a single non-terminal.

Process Algebras A process algebra such as CCS [21] can be described
by state-action machines whose states are terms of the algebra. The
next-state set N contains 〈s, α, t 〉 iff s α−→ t is a transition of the
algebra. A term defines the state-action machine in which the set of
initial states contains only that term.

It would be an absurd trivialization to say that Turing machines and dis-
tributed algorithms are the same because they are state machines, just as
it would be absurd to say that relativity and quantum mechanics are the
same because they use equations. However, we would be suspicious if the
mathematics used to reason about equations depended on whether they were
written as einsteinians or as heisenbergians. Likewise, we should be suspi-
cious if completely different formalisms are used to prove termination of
Turing machines and of distributed algorithms. On the other hand, there is
a big difference between finite and infinite sets of states, so we would not be
surprised if the methods used to prove termination of finite state automata

5

and von Neumann computers were different from those used for Turing ma-
chines and distributed algorithms. (In practice, the number of states of a
von Neumann computer is so large that one proves its termination by the
same methods used for infinite-state state machines.)

2.3 Other Kinds of Computations

A state machine is a generator of computations. So far, I have taken a
computation to be a behavior. Other definitions of computation have been
proposed. I now briefly describe how a state or state-action machine is
considered to generate them.

One alternate definition of a computation is a state tree, which is a tree
whose nodes are labeled by states. A state tree describes the tree of possible
executions from the root’s state. A state machine generates every state tree
for which (i) the root node is in the set of initial states and (ii) a node
labeled with any state s has a child labeled with state t iff 〈s, t 〉 is in the
next-state relation.

We can also define a computation to be a state-action tree, which is a
state tree whose edges are labeled by actions. A state-action machine can be
viewed in the obvious way as a generator of state-action trees, where there
is an edge labeled α from a node labeled with state s to a child labeled with
state t iff 〈s, α, t 〉 is in the next-state set.

As with state-action behaviors, some formalisms delete the state labels
from state-action trees to obtain action trees with only the edges labeled.
This leads some to argue that we must describe computations with trees
because behaviors are not expressive enough. The classic example asserts
that the two trees

r
?r

¶
¶¶/

S
SSwr r

α

γβ

r
¶

¶¶/
S

SSwr r
? ?r r

αα

γβ

are generated by different machines that both generate the two action be-
haviors

· α−→ · β−→ · and · α−→ · γ−→ ·
Hence, it is claimed, two different systems generate the same behaviors. In
fact, the two systems generate the same behaviors only if political correctness
prevents mentioning the states, so one views only the actions. The state-
action behaviors generated by the state-action machines that produce the

6

two action trees are different because the machines have different sets of
states.

Another definition of a computation is a partially ordered multiset of
actions, called a pomset for short. A pomset is a set Π with an irreflexive
partial-order relation ≺, where the elements of Π are labeled with actions.
An element labeled by action α represents an execution of α, and e ≺
f means that the action execution represented by e precedes the action
execution represented by f . If neither e ≺ f nor f ≺ e holds, then the two
executions are said to be concurrent. The pomsets generated by a state-
action machine are defined to consist of all pomsets π(σ) such that σ is
a state-action behavior generated by the machine, where π(σ) is defined
intuitively as follows. Dropping the states from σ yields an action behavior
(a sequence of actions) that we can view as a totally ordered multiset of
actions. (It is a multiset because the same action can appear multiple times
in the computation.) We define π(σ) to be the pomset obtained from this
totally ordered multiset by eliminating orderings between pairs of elements
that represent concurrent action executions. Readers interested in pomsets
will find a precise definition of π(σ) in the appendix.

For deterministic state machines or state-action machines, the trees they
generate consist of a single path and the pomsets they generate are totally
ordered. Hence their trees and pomsets are equivalent to behaviors. The
different kinds of computations differ only for nondeterministic machines.

Different kinds of computation have different uses. Behaviors are natural
for discussing termination of a distributed algorithm, which means that all
of its behaviors are finite. Trees are natural for discussing termination of
a nondeterministic Turing machine, which usually means that its state tree
contains at least one leaf node.2 It can be difficult to define what fairness
conditions mean when computations are trees, so computations are most
often taken to be behaviors when fairness is important.

2.4 Other Ways to Describe Computations

Methods for describing computations by writing state machines have been
criticized for introducing extraneous details. Mentioning certain parts of
the state has been considered politically incorrect, and methods have been
proposed that avoid mentioning them—or even mentioning the state at all.

There is sometimes good reason why some part of the state should not
be described by a computation. For example, a specification of a memory

2A nondeterministic Turing machine is usually defined to terminate iff any of its pos-
sible executions does.

7

should describe the sequences of reads and writes that are permitted. The
contents of the memory can be considered part of the implementation and
should not be mentioned. Thus, we might describe a memory by a set of
action behaviors, where an action is something like set location 14 to −7
or read 33 from location 14. Alternatively, we might describe it as a set of
state behaviors, where the state describes only the contents of the memory’s
input and output registers, not the contents of memory locations.

We can use state machines to write such specifications by simply declar-
ing the unwanted part of the state to be hidden and not considered to be
part of a computation [1]. Methods in which a computation is taken to be
an action behavior often use state-action machines in which the entire state
is considered hidden—for example, I/O Automata [19].

Some computer scientists believe we should not mention the unwanted
part of the state, even if it is hidden. An alternative is to describe computa-
tions by a set of axioms—for example, using temporal logic [25]. However,
this simply does not work in practice for any but the most trivial examples.
The only practical method for describing nontrivial sets of computations is
with state machines. Methods that apparently describe computations di-
rectly without using hidden state work only if they can essentially encode a
state machine. For example, one can specify a set of computations with a
relation R between input streams and output streams, where R is defined
recursively using auxiliary functions that describe the hidden state [8].

3 Programs as State Machines

Programs generate computations, so they are obvious candidates to be
viewed as state machines. However, most computer scientists seem to think
about programs primarily in terms of their syntax, not their computations.
Consider the three C programs of Figure 1 that compute 7!. When asked
which of them differs the most from the other two, computer scientists usu-
ally answer Program 3. The reason they give is that Programs 1 and 2
use iteration while 3 uses recursion, or perhaps that 1 and 2 are imperative
while 3 is functional. However, iteration and recursion are different ways of
expressing computations; they do not necessarily express different computa-
tions. In terms of their computations, it is Program 2 that differs most from
the other two. The significant steps in computing 7! are the multiplications.
Programs 1 and 3 perform the same sequence of multiplications, which is
different from the sequence performed by Program 2. All three produce the
same result only because multiplication is commutative. (To see this, try

8

Program 1: #include <stdio.h>
main() { int f = 1, i = 2;

for (i = 1; i <= 7; ++i) f = i * f;
printf ("%d", f) ;

}

Program 2: #include <stdio.h>
main() { int f = 1, i ;

for (i = 7; 1 < i; --i) f = i * f;
printf ("%d", f) ;

}

Program 3: #include <stdio.h>
int fact(int i)

{ return (i == 1) ? 1 : i * fact(i-1); }
main() { printf ("%d", fact(7)); }

Figure 1: Three C programs for computing 7! .

replacing “*” with “-” in the programs and running them.)
To describe a program as a state machine, we must decide what con-

stitutes a step. How many steps are performed in executing the statement
f = i ∗ f of the programs in Figure 1? Does a single step change the value
of f to the product of the current values of i and f ? Are the evaluation of
i ∗ f and the assignment to f two steps? Are there three steps—the reading
of i , the reading of f , and the assignment to f ?

The output produced by executing a sequential program does not depend
on how many steps are performed in executing a statement like f = i ∗ f .
We can make a fairly arbitrary decision of what constitutes a step when
describing a sequential program as a state machine. For a C program, the
state will describe what program variables are currently defined, their values,
the contents of the heap and of the program’s call stack, the current control
point, and so on. Specifying how to translate any legal C program into
a state machine essentially means giving an operational semantics to the
language. Writing an operational semantics is the only practical method
of formally specifying the meaning of an arbitrary program written in a
language as complicated as C.

The output produced by executing a concurrent program can depend
upon how many separate steps are taken when executing a statement like

9

if n = 1 then 1 else n ∗ (n− 1)!

n∏

i=1

i

∏

i ∈ {j ∈ Z : 1 ≤ j ≤ n}
i

Figure 2: Three definitions of n!.

f = i ∗ f . Errors in concurrent programs often arise because what the
programmer thinks of as a single step is actually executed as multiple steps.
The programmer may think evaluating i ∗ f is a single step, but in an actual
execution a step of a different thread might occur between the reads of i
and f .

Most modern multiprocessor computers have weak memory models in
which a read or write of i or f is not a single step. These memory models
are usually specified in terms of axioms on computations instead of in terms
of state machines [3]. We can understand a state machine by mentally
executing it, but it is extremely difficult to understand the consequences of
a set of axioms. As a result, it is very hard to write multiprocess programs
that use unsynchronized reads and writes of shared variables that are correct
under such memory models. Instead, we usually program in a way that
permits accurate state-machine descriptions of our programs. For example,
accesses to shared variables are usually placed in a critical section whose
execution can be considered to be a single step. When programmers must
use unsynchronized reads and writes, as in operating system code, they seem
to use intuitive state machine models of the memory based on a particular
computer. Their code often does not work on a later-model computer with
a more highly optimized implementation of the same memory model.

Just because Programs 1 and 3 of Figure 1 generate the same sequences
of multiplications does not mean that their differences are unimportant.
The differences in the other steps they generate may affect their execution
speeds. For example, function calls are often more expensive than branches.
Moreover, the way a program is written can affect how easy it is to under-
stand, and consequently how easy it is to check its correctness. Consider the
three possible definitions of n ! in Figure 2. From the first definition, it is
more obvious that Program 3 computes 7!. On the other hand, the second

10

definition makes it is easier to see that Program 1 does. With the third
definition (where no ordering of the multiplications is implied), Programs
1 and 2 are most easily seen to compute the correct result and could be
considered most similar.

4 Describing State Machines

To use state machines, we need a language for describing them. Any lan-
guage for describing objects that compute can be viewed as describing state
machines, so there is a large choice of possible languages. Every computer
scientist will have her favorite—perhaps actor-based or a form of process
algebra. I will adopt the one language used in all other branches of sci-
ence and engineering—namely, mathematics. The formalism underlying this
mathematics was developed over a century ago and is considered standard
by most mathematicians. It consists of first-order logic and (untyped) set
theory.3 Several formal languages exist for expressing this standard mathe-
matics [2, 18], but I will just use mathematics informally here.

Since a state machine is described by the sets I and N , we could simply
use ordinary set notation to specify these sets. However, there is a simple
method of representing states that is used by most scientists and engineers.
A set of states is specified by a collection of state variables and their ranges,
which are sets of values. A state s assigns to every variable v a value s(v)
in its range. For example, physicists might describe the state of a particle
moving in one dimension by variables x (the particle’s position) and p (its
momentum) whose ranges are the set of real numbers. The state s t at a
time t is described by the real numbers s t(x) and s t(p), which physicists
usually write x (t) and p(t).

Scientists and engineers specify a subset of the set of states with a state
predicate, which is a Boolean-valued formula P whose free variables are
state variables. We say that a state s satisfies a state predicate P iff P
equals true when s(v) is substituted for v , for each state variable v . For
the particle example with real-valued variables x and p, the state predicate
x = 0 specifies the set of all states s such that s(x) = 0 and s(p) is any real
number.

Because most fields of science and engineering study continuous process-
es, there is no standard way to describe a relation on the set of states. For
this purposes, I use a transition predicate, which is a Boolean-valued formula

3There are several slightly different formulations of standard mathematics, but they
are essentially equivalent for scientific and engineering applications.

11

N whose free variables are primed and/or unprimed state variables. A pair
〈s, t 〉 of states satisfies N iff N equals true when s(v) is substituted for
v and t(v) is substituted for v ′, for each state variable v . For the particle
example, (x ′ = x + 1)∧ (p ′ > x ′) specifies the relation consisting of all pairs
〈s, t 〉 of states such that t(x) = s(x) + 1 and t(p) > t(x).

There is a natural isomorphism between state predicates and subsets
of the set S of states, where P ↔ P iff P is the set of states satisfying
state predicate P . If P ↔ P and Q ↔ Q, then P ∧ Q ↔ P ∩ Q and
P ∨ Q ↔ P ∪ Q. Similarly, there is an isomorphism between transition
predicates and relations on S, where ∧ corresponds to ∩ and ∨ to ∪ under
the isomorphism.

To specify a state machine, we give the state variables and their ranges,
and we write a state predicate Init and a transition predicate Next . I illus-
trate this with a state machine that describes the following C code, where
execution from one label to the next is considered to be a single step.

Program 4

int i , f = 1;
test : if (i > 1) mult :{ f = i ∗ f ; --i ; goto test ; } ;
done:

(The int declaration is considered to be a specification of the starting state
and not a statement to be executed.) We can describe Program 4 with the
variables i , f , and pc, where i and f have as range the set of integers and
the range of pc is the set {“test”, “mult”, “done”} of strings. The predicates
Init and Next are

Init ∆= (f = 1) ∧ (pc = “test”)

Next ∆= ((pc = “test”)
∧ (pc′ = if i > 1 then “mult” else “done”)
∧ (f ′ = f) ∧ (i ′ = i))

∨ ((pc = “mult”)
∧ (pc′ = “test”)
∧ (f ′ = i ∗ f)
∧ (i ′ = i − 1))

For this example, let us write a state s as [i 7→ s(i), f 7→ s(f), pc 7→ s(pc)].
The set of initial states consists of all states [i 7→ i0, f 7→ 1, pc 7→ “test”]
such that i0 is an integer. The next-state relation includes the pair of states

〈 [i 7→ −6, f 7→ 11, pc 7→ “mult”], [i 7→ −7, f 7→ −66, pc 7→ “test”] 〉

12

because Next equals true under the substitution

i ← −6, f ← 11, pc ← “mult”, i ′ ← −7, f ′ ← −66, pc′ ← “test”

The transition predicate Next is the disjunction of two formulas, each de-
scribing a piece of code that generates a step. The first disjunct describes
the if test; the second describes the bracketed statement labeled mult . Each
of these disjuncts is the conjunction of four formulas. Three of them specify
the new values of the three variables (their values in the second state) as a
function of their old values. The other conjunct contains no primes and is
an enabling condition—it is a state predicate that is satisfied by a state s iff
there exists a state t such that 〈s, t 〉 satisfies the transition predicate. Such
a disjunction of conjunctions is the canonical form of the predicate Next in
a state-machine specification.

The definition of the Next predicate of a state machine is usually built
up hierarchically from simpler definitions. For example, we could define the
formula Next of Program 4 as Test ∨ Mult , where Test and Mult are the
transition predicates that describe the pieces of code labeled test and mult ,
respectively. There can be many ways to decompose the definition of a next-
state transition predicate. For a state machine describing a multiprocess
algorithm, Next is usually defined to have the form ∃ p ∈ P : Proc(p), where
P is the set of processes and Proc(p) describes the steps of process p. If a
programming-language description of the algorithm has a variable x that is
local to each process, then the state-machine description has a corresponding
variable x whose value is a function with domain P , where x (p) represents
the value of process p’s copy of the variable.4

State-action machines are specified with an initial state predicate Init
and a state-transition predicate Nextα for each action α. A triple 〈s, α, t 〉
belongs to the next-state set iff 〈s, t 〉 satisfies Nextα. The set of all actions
is usually partitioned into parameterized sets of actions; for each such set
{α(i)} one specifies a parameterized state-transition predicate Nextα(i).

There are two standard methods of expressing fairness conditions: as
fairness requirements on transition predicates [12] (usually disjuncts of the
next-state transition predicate) and as temporal-logic formulas [23]. The
temporal logic TLA [18] combines these two approaches by allowing fair-
ness requirements on transition predicates to be written as temporal-logic

4In some esoteric formalisms devised by computer scientists, functions are higher-order
objects. In standard math, they are just sets of pairs; there is no fundamental difference
between a number and a function.

13

formulas. In fact, it allows the entire specification of a state machine to be
written as a single formula.

5 Correctness

I will illustrate how state machines can help reveal fundamental principles
by considering what is usually (rather misleadingly) called correctness, as in
“program correctness” or “proving correctness”. The area of correctness en-
compasses algorithms and systems, not just programs, and it covers writing
specifications whose correctness may never be proved.

I will consider only state machines viewed as generators of state behav-
iors. Most of the concepts introduced can be reformulated for state-action
machines as well, but having actions in addition to states makes them more
complicated. For simplicity, I will mostly ignore fairness.

Many of the concepts presented here have been explored in the study
of action systems and the refinement calculus, but with state machines de-
scribed using programming language notation [5, 6].

5.1 Invariance

5.1.1 The Inductive Invariant Method

A state predicate is an invariant of a state machine iff it is satisfied by all
reachable states—that is, by all states that occur in a behavior generated
by the state machine. Invariants play an important role in understanding
algorithms and programs. For example, a loop invariant is a state predicate
L that is always true at the beginning of some loop in a program. Predicate
L is a loop invariant iff AtLoop ⇒ L is an invariant of the program, where
AtLoop is a state predicate asserting that control is at the beginning of the
loop.

A transition predicate T is said to leave invariant a state predicate Inv
iff Inv ∧ T ⇒ Inv ′ holds, where Inv ′ is the formula obtained from Inv
by priming every state variable. This condition means that if a state s
satisfies Inv and 〈s, t 〉 satisfies T , then t satisfies Inv . A simple induction
argument shows that if Inv is implied by the initial predicate Init and is
left invariant by the next-state predicate Next , then Inv is an invariant of
the state machine. Such an invariant is called an inductive invariant of the
state machine. The inductive invariant method proves that P is an invariant
of a state machine by finding an inductive invariant Inv that implies P . In

14

other words, it consists of finding a formula Inv that satisfies

I1. Init ⇒ Inv
I2. Inv ∧Next ⇒ Inv ′

I3. Inv ⇒ P

It is easy to check that if P is an invariant of a state machine, then we
obtain an equivalent state machine—that is, one that generates the same
behaviors—by replacing the next-state transition predicate Next with P ∧
Next or with P ∧Next ∧ P ′.

5.1.2 Composition of Relations and Weakest Preconditions

If A and B are relations on S, their composition A · B is defined to be the
relation consisting of all pairs 〈s, t 〉 of states such that there exists a state
u with 〈s, u 〉 ∈ A and 〈u, t 〉 ∈ B. We define composition of transition pred-
icates so it corresponds to composition of relations under the isomorphism
between predicates and relations. In other words, we define the composition
A · B of transition predicates A and B so that if A ↔ A and B ↔ B, then
A ·B ↔ A·B. Letting x be the tuple 〈x 1, . . . , xn 〉 of all state variables and
letting v be a tuple 〈v1, . . . , vn 〉 of new variables, we can write

A · B = ∃ v1 ∈ X 1, . . . , vn ∈ X n : A[v/x ′] ∧ B [v/x]

where Xi is the range of xi, and A[v/x ′] and B [v/x] are the formulas obtained
by substituting vi for x′i in A and vi for xi in B , for all i .

We define the Kleene star operator for transition predicates by

A∗ ∆= Id ∨ A ∨ (A ·A) ∨ (A ·A ·A) ∨ . . .

where Id is the identity predicate (x′1 = x1) ∧ . . . ∧ (x′n = xn). Thus, a
state pair 〈s, t 〉 satisfies A∗ iff there are state pairs 〈s1, s2 〉, . . . , 〈s j−1, s j 〉
satisfying A with s = s1 and t = s j . The transition operator Init ∧ Next∗

is satisfied by all state pairs 〈s, t 〉 such that there is a behavior of the state
machine that starts in state s and contains state t .

A state predicate is a transition predicate that has no occurrences of
primed variables. If A is a transition predicate and P a state predicate,
then A · P is the state predicate that is satisfied by a state s iff there is a
state t satisfying P such that 〈s, t 〉 satisfies A.

For a state predicate P and action predicate A, we define wlp(A,P) to
equal the state predicate ¬(A · (¬P)). (The wlp stands for weakest liberal
precondition [9].) A state s satisfies wlp(A,P) iff, for every t such that 〈s, t 〉

15

satisfies A, the state t satisfies P . The following properties of wlp are easy
to check, where A and B are transition predicates, P and Q are predicates,
and Id is the identity transition predicate.

W1. wlp(Id ,P) ≡ P

W2. wlp(A · B ,P) ≡ wlp(A,wlp(B ,P))

W3. If A ⇒ B then wlp(B ,P) ⇒ wlp(A,P).

W4. Q ∧A ⇒ P ′ iff Q ⇒ wlp(A,P).

Since Id implies A∗, W1 and W3 imply wlp(A∗,P) ⇒ P . Since A·A∗ implies
A∗, W2 and W3 imply wlp(A∗,P) ⇒ wlp(A,wlp(A∗,P)), which by W4
implies that wlp(A∗,P) is an invariant of A∗. Hence, invariance conditions
I2 and I3 (Section 5.1.1) are satisfied when Inv equals wlp(Next∗,P). To
prove that P is an invariant of a state machine, we therefore need only prove
Init ⇒ wlp(Next∗,P).

The ability to prove invariance by proving Init ⇒ wlp(Next∗,P) implies
that the inductive invariant method is relatively complete. More precisely,
if the language for writing state and transition predicates is closed under the
operations of composition and taking the Kleene star, and if all valid formu-
las in the language are provable, then the invariance of any invariant state
predicate can be proved by verifying I1–I3 for a suitably chosen inductive
invariant Inv .

5.1.3 The Floyd-Hoare Method

The most widely-studied invariance property is partial correctness. A partial
correctness property of a program is specified by two state predicates: a
precondition Pre and a postcondition Post . The property asserts that if
the program is started in a state satisfying Pre and terminates, then its
final state satisfies Post . Let Terminated be the state predicate asserting
that a program is in a final state. The partial correctness property specified
by Pre and Post asserts that Terminated ⇒ Post is satisfied by all states
in all state-machine behaviors that start in a state satisfying Pre. In other
words, it is an invariant of the state machine obtained by changing the initial
predicate to Init ∧ Pre.

The Floyd-Hoare method for proving partial correctness [11, 16] anno-
tates the program text by attaching a state predicate Pc to each control
point c. It is a special case of the inductive invariant method in which the
inductive invariant Inv is the predicate ∀ c ∈ C : (pc = c) ⇒ Pc , where C is

16

the set of all control points and pc = c asserts that control is at c. For pre-
and postconditions Pre and Post , condition I1 reduces to Init ∧Pre ⇒ Pini

and I3 reduces to Pfin ⇒ Post , where ini is the initial control point and
fin is the final control point. To prove I2, the transition predicate Next is
written ∃ c ∈ Nextc , where Nextc describes the operation at control point c.
Condition I2 then reduces to verifying Inv ∧ Nextc ⇒ Inv ′ for each control
point c.

For example, suppose the program has variables x , y , and z and contains
the statement

c: x = y + 1 ; d : . . .

Then Nextc equals

(pc = c) ∧ (pc′ = d) ∧ (x ′ = y + 1) ∧ (y ′ = y) ∧ (z ′ = z)

and the condition Inv ∧Nextc ⇒ Inv ′ reduces to

Pc ∧ (x ′ = y + 1) ∧ (y ′ = y) ∧ (z ′ = z) ⇒ P ′
d (1)

If Pc and Pd do not mention pc, then this condition is equivalent to

Pc [y + 1/x] ⇒ Pd

where Pc [y+1/x] is Pc with y+1 substituted for x . This latter formula is the
standard Floyd-Hoare verification condition for the assignment statement
x = y + 1.

If we replace x = y + 1 by an arbitrary statement S, then (1) becomes
Pc ∧ S ⇒ P ′

d, where S is the transition predicate that represents S. This for-
mula is the meaning of the Hoare triple {Pc}S{Pd}. In general, decompos-
ing condition I2 in this way for an arbitrary program yields the verification
conditions for the various kinds of statements in the programming language.

The relative completeness of the inductive invariant method, discussed
in Section 5.1.2 above, implies standard results about the relative complete-
ness of the Floyd-Hoare method for simple programming languages [4]. The
general completeness result for state machines assumes that one can write
predicates that describe the entire state. However, because computer sci-
entists are so fixated on languages, they often consider approaches like the
simple Floyd-Hoare method whose only state predicates are ones that can
be expressed in the programming language. Thus, they write state predi-
cates using only program variables and cannot mention parts of the state
like pc. For very simple sequential programming languages, the Floyd-Hoare
method is relatively complete even though its state predicates mention only

17

program variables. However, it is incomplete for a programming language
with procedures, since completeness requires the use of state predicates that
describe the calling stack.

For concurrent programs, we are interested in a richer class of invariance
properties. For example, mutual exclusion is the invariance of the state
predicate asserting that two different processes are not both in their critical
sections. The Owicki-Gries method [22] generalizes the Floyd-Hoare method
to concurrent programs. It involves assigning a state predicate P p

c to each
control point c of every process p. It is an instance of the inductive invariant
method in which the inductive invariant Inv is the conjunction of all formu-
las (pc(p) = c) ⇒ P p

c , where pc(p) is the current control point of process p’s
program. Using a similar decomposition of the next-state transition pred-
icate Next , condition I2 reduces to the Owicki-Gries method’s “sequential
consistency” and “interference freedom” conditions. However, even for the
simplest concurrent programming languages, this method is incomplete if
the state predicates P p

c cannot mention pc. With pc considered politically
incorrect, Owicki and Gries added dummy variables to the program to al-
low the control state to be mentioned in state predicates. This makes the
Owicki-Gries method complete for simple programming languages, since pc
can be introduced as a dummy variable.

The Owicki-Gries method is very easy to derive and to understand as
an instance of the inductive invariant method, as long as one can talk about
program control. However, it becomes rather mysterious when one refuses to
do so because the programming language doesn’t have a way of expressing it.
Dijkstra demonstrated how complicated the method can then appear [10].

5.2 Refinement

The concept of a computing object Y refining another computing object X
occurs in various guises. We sometimes say that Y implements X , and we
may call X and Y the specification and the implementation, the abstract
system and the concrete system, or the higher-level and lower-level specifica-
tions. The most common example is X a program in a higher-level language
and Y its compiled version. As in the case of compilation, we may start
with X and refine it to obtain Y. We may also start with Y and derive X
as a higher-level or more abstract view of Y. For example, we may explain
an algorithm Y by finding a more abstract algorithm X from which Y can
be derived.

For Y to refine X , there must be a notion of a computation cy of Y
refining a computation cx of X . Let’s write cy ∝ cx to mean that cy refines

18

cx . There are two basic notions of refinement. The first requires that X
and Y be equivalent under refinement, so ∝ is a 1-1 correspondence between
the computations of Y and of X . A popular example of this notion of
refinement is bisimulation [21]. The second concept of refinement is that for
every computation cy of Y there is a computation cx of X with cy ∝ cx .

Both concepts of refinement have their uses. However, for discussing
correctness, the second is the more appropriate one. Since we are here taking
computations to be state behaviors, we define a relation ∝ on behaviors to
be a refinement of X by Y iff for every behavior σ generated by Y there
is a behavior τ generated by X such that σ∝ τ . We now consider how the
relation ∝ is defined.

5.2.1 Data Refinement

Data refinement means replacing the data types used to describe the state
machine X by different data types—usually lower-level or more concrete
ones. For example, X might be defined in terms of a queue q that in Y is
represented by an array Arr , a pointer ptr to the queue’s first element, and
the queue’s length len.

A data refinement is specified by an abstraction relation R from the state
set SY of Y to the state set SX of X . In other words, R ⊆ SY × SX . If σ
is the behavior s1 → s2 → . . . in SY and τ is the behavior t1 → t2 → . . . ,
then we define the relation ∝R on behaviors by σ∝R τ iff σ and τ have the
same length and 〈s i , t i 〉 ∈ R for all i . We say that R is a data refinement
of X by Y iff ∝R is a refinement of X by Y.

Let x1, . . . , xn be the state variables of X and y1, . . . , ym be the state
variables of Y, and assume that the x i and y j are all distinct. The relation
R is then specified by a predicate R whose free variables are the x i and y j .
If X has no fairness conditions, then R is a data refinement if the following
two conditions are satisfied, where subscripts are used in the obvious way
to name the state machines’ defining predicates.

R1. InitY ∧ R ⇒ InitX
R2. NextY ∧ R ∧ R′ ⇒ NextX

As observed in Section 5.1.1, if Inv is an invariant of state machine Y, then
we can replace NextY by Inv ∧NextY ∧ Inv ′.

An important special case is when the abstraction relation R is a func-
tion. In that case, R is specified by n functions x i of m arguments, where
R equals

(x1 = x1(y1, . . . , ym)) ∧ . . . ∧ (xn = xn(y1, . . . , ym))

19

Let F be the predicate obtained from a predicate F by substituting x i ←
xi(y1, . . . , ym) and x ′i ← xi(y′1, . . . , y′m), for each i . Conditions R1 and R2
then become

R1f . InitY ⇒ InitX
R2f . NextY ⇒ NextX

When written this way, the abstraction function is called a refinement map-
ping [1]. In the example of refining a queue q by variables Arr , ptr , and
len, the refinement mapping is defined so that q(A, p, l) equals the contents
of the queue corresponding to Arr = A, ptr = p, and len = l .

When the state machines have fairness conditions, to prove refinement we
must also show that the fairness conditions of Y imply the fairness conditions
of X . In general, this is easier to do for a refinement mapping than for an
arbitrary data refinement.

5.2.2 An Example of Data Refinement

Starting from a state machine X , we can derive a state machine Y that
refines it by defining a suitable refinement mapping. As an instructive ex-
ample, we derive a simple but important algorithm for alternately executing
two operations A and B from a trivial algorithm. The trivial algorithm
might be written in a programming language as:

loop a:A ; b:B endloop

For simplicity, let’s suppose that operations A and B access only a single
variable x . This algorithm can be written as a state machine X with

InitX
∆= (pc = a) ∧ (x = x 0)

NextX
∆= ((pc = a) ∧ A ∧ (pc′ = b))
∨ ((pc = b) ∧ B ∧ (pc′ = a))

for suitable transition predicates A and B that mention only x and for some
initial value x 0.

Let us now refine the variable pc with two variables p and c whose range
is the set {0, 1}, defining the refinement mapping by

pc ∆= if p = c then a else b

x ∆= x

(2)

20

Since pc = a iff p = c, and pc = b iff p 6= c, and since A and B mention
only x , we have

InitX
∆= (p = c) ∧ (x = x 0)

NextX
∆= ((p = c) ∧ A ∧ (p′ 6= c′))
∨ ((p 6= c) ∧ B ∧ (p ′ = c′))

These predicates define a state machine with variables p, c, and x . However,
NextX does not have the canonical form of a next-state transition predicate
because its two disjuncts do not specify the values of p′ and c′ as functions of
p and c. We obtain our algorithm Y be defining a canonical-form transition
predicate NextY that implies NextX .

Let ⊕ be addition modulo 2, so 1⊕ 1 = 0. Since p and c can equal only
0 or 1, we have p 6= c iff p = c⊕ 1 or, equivalently, c = p⊕ 1. Each disjunct
of NextX is therefore satisfied iff either p′ = p ⊕ 1 and c′ = c, or p′ = p and
c′ = c ⊕ 1. The following transition predicate NextY thus implies NextX :

NextY
∆= ((p = c) ∧ A ∧ (p′ = p ⊕ 1) ∧ (c′ = c))

∨ ((p 6= c) ∧ B ∧ (p′ = p) ∧ (c′ = c ⊕ 1))

Let Y be the state machine with this next-state transition predicate and
with initial predicate InitY equal to InitX .

We defined NextY so it would satisfy R2f , and R1f trivially holds (be-
cause InitY is defined to equal InitX). Hence Y refines X under the refine-
ment mapping (2). Since the steps of a behavior of X alternately satisfy
A and B , and the refinement mapping leaves x unchanged, we deduce that
steps of Y also alternately satisfy A and B . Thus, like X , the state machine
Y describes an algorithm for alternately executing A and B operations.

Algorithm Y is an important hardware protocol called two-phase hand-
shake [20]. A device that performs operationA is joined to one that performs
B by two wires whose levels are represented by the values of p and c.

A B
-

¾

p

c

The first device performs an A operation when the levels of the two wires
are the same and complements the level of p. The second performs a B
operation when the levels of the two wires are different and complements
the level of c.

The key step in this derivation was the substitution of the expression pc
for the variable pc in the initial and next-state predicates. Such substitu-
tion is impossible in most languages for describing state machines, includ-
ing programming languages. There is no way to substitute for pc in the

21

programming-language representation of X , since pc doesn’t appear explic-
itly. Even if pc were described by a variable, it would make no sense to
substitute the expression pc for pc in a statement such as pc : = b.

5.2.3 Refinement with Stuttering

In data refinement, behaviors of state machine X and the corresponding
behaviors of its refinement Y have the same number of steps. More often,
a single step of X is refined to a sequence of steps of Y. As an example,
suppose X is a state machine representing a simple hour clock, described
by a variable hour that cycles through the values 1, 2, . . . , 12.5 A simple
refinement is a state machine Y representing an hour-minute clock, with
variables hr and min, in which min cycles through the values 0, 1, . . . , 59,
and hr is incremented when min changes from 59 to 0.

If we ignore the minute, then an hour-minute clock is just an hour clock.
So, we expect Y to implement X under the simple data abstraction defined
by the refinement mapping hour = hr . However, if σ is a behavior of the
hour-minute clock Y, then σ∝ τ only for a behavior τ with 59 steps that
leave the state unchanged between every step that increments hour—steps
that are called stuttering steps. The state machine X does not generate
such stuttering steps.

To describe this kind of refinement, we define the relation ∼ on state
behaviors by σ ∼ τ iff τ can be obtained from σ by adding or deleting
stuttering steps. We can then define the refinement ∝∼R for an abstraction
relation R by σ∝∼Rτ iff there exists a state behavior ρ such that σ∝R ρ and
ρ ∼ τ . If R is defined by the refinement mapping hour = hr , then ∝∼R is a
refinement of the hour state machine by the hour-minute state machine. In
such a case, we say that R is a data refinement with stuttering.

In Section 2.4, we saw that we sometimes want to specify a system with
a state machine in which some of the state is considered to be hidden. This
is usually done by letting the machine’s state set S be the Cartesian product
Sv × Sh of a set Sv of visible (also called external) states and a set Sh of
hidden (also called internal) states. If X and Y are two such specifications
with the same set Sv of visible states, then Y is said to implement X iff
every behavior of Y has the same visible states as some behavior of X . If V
is the abstraction relation defined by 〈〈v , h 〉, 〈w , j 〉〉 ∈ V iff v = w , then Y
implements X iff V is a data refinement with stuttering of X by Y.

Proving data refinement with stuttering is similar to proving ordinary
data refinement. In condition R2 or R2f of Section 5.2.1, we just replace

5We are ignoring the physical time that elapses between ticks.

22

NextX by NextX ∨ IdX , where IdX equals (x′1 = x1) ∧ · · · ∧ (x′n = xn) and
the x i are the state variables of X . However, stuttering can complicate the
proof of the fairness conditions of X .

In a wide variety of situations, from compilation to implementing a pro-
tocol by a distributed algorithm, refinement is data refinement with stutter-
ing. In most of these cases, the data refinement is defined by a refinement
mapping.

5.2.4 Invariance Under Stuttering

We can reduce data refinement with stuttering to ordinary data refinement
by simply requiring that a state machine’s next-state predicate allow stut-
tering steps. For example, the refinement mapping hour = hr is a data
refinement of the hour clock by the hour-minute clock because the hour
clock’s state machine generates behaviors that contain 59 (or more) stutter-
ing steps between changes to hour .

Requiring the next-state predicate to allow stuttering steps is a special
case of the general principle of invariance under stuttering6, which is that we
should never distinguish between two behaviors that differ only by stuttering
steps [17]. The idea behind this principle is that, in a state-based approach,
the state completely describes a system. If the state doesn’t change, then
nothing has happened. Therefore, two behaviors that differ only by stutter-
ing steps represent the same computation.

If the next-state relation N allows stuttering steps, then 〈s, s 〉 is in N
for all states s. Condition S3 in the definition of the behaviors generated
by a state machine (Section 2.2) then implies that every behavior is infinite.
A behavior that ends in an infinite sequence of stuttering steps is one in
which the computing object represented by the state machine has halted.
To disallow premature halting, we must add a fairness condition to disallow
behaviors that stutter forever in a state in which a non-stuttering step is
possible. (The requisite condition is weak fairness of the transition predicate
Next ∧¬Id , where Id is the predicate corresponding to the identity relation
on the set of states.)

Invariance under stuttering simplifies reasoning about refinement. How-
ever, it may not be a good idea for other applications.

6This use of invariance is unrelated to its use in Section 5.1

23

6 Conclusion

I have tried to show that state machines provide a simple conceptual frame-
work for describing computation. Some of the unification provided by this
framework may have passed unnoticed—for example, that there is no funda-
mental difference between termination and deadlock. Much of the discussion
has been quite superficial. For example, nothing was said about computa-
tional complexity except that it measures the number of steps in a behavior.
To measure complexity accurately enough so constant factors matter, one
must decide what operations should be counted. When computers were
slower, one counted floating point multiplications and divisions, but not
additions and subtractions; today, memory references are usually what mat-
ter. Deciding what operations to count means choosing what constitutes an
individual step of the state machine.

I have gone into some detail only in the area of correctness. Even there,
much more can be said. For example, Hoare logic [16] was only touched
upon. It can be explained as a way of considering a state machine Y to be
a refinement of a high-level state machine X whose behaviors consist of at
most one step, where s → t is a behavior of X iff s is an initial state and t
a final state of Y. The next-state predicate of X is Next∗Y ∧ Terminated ′Y ,
where NextY is the next-state predicate of Y and TerminatedY is true iff
Y has terminated.

I have used mathematics in a simple, naive way to specify state ma-
chines. The one non-obvious idea that I mentioned is stuttering invariance
(Section 5.2.4). There are other sophisticated ideas that simplify the math-
ematics of state machines. One is to use a single state space for all state
machines, in which a state is an assignment of values to all possible vari-
ables. Variables not mentioned in the initial and next-state predicates can
assume any values. This mirrors ordinary mathematics, in which writing
x + y − 1 does not imply the non-existence of the variable z . The use of a
single state space makes it easier to relate different state machines and to
combine them in ways such as parallel composition.

Many languages are expressive enough to describe any state machine
and could thus also provide a uniform framework for describing computa-
tion. The advantage of state machines is that they can be described using
ordinary mathematics. Mathematics is simpler and more expressive than
any language I know that computer scientists have devised to describe com-
putations. It is the basis of all other branches of science and engineering.
Mathematics should provide the foundation for computer science as well.

24

References

[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82(2):253–284, May 1991.

[2] J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge
University Press, New York, 1996.

[3] Alpha Architecture Committee. Alpha Architecture Reference Manual.
Digital Press, Boston, third edition, 1998.

[4] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey—part one.
ACM Transactions on Programming Languages and Systems, 3(4):431–
483, October 1981.

[5] R. J. R. Back. Refinement calculus, part ii: Parallel and reactive pro-
grams. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, edi-
tors, Stepwise Refinement of Distributed Systems, volume 430 of Lecture
Notes in Computer Science, pages 67–93. Springer-Verlag, May/June
1989.

[6] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A
Systematic Introduction. Springer-Verlag, 1998. Graduate Texts in
Computer Science.

[7] Egon Börger and Robert Stärk. Abstract State Machines: A Method
for High-Level System Design and Analysis. Springer-Verlag, 2003.

[8] Manfred Broy. Functional specification of time-sensitive communicating
systems. ACM Transactions on Software Enginnering and Methodology,
2(1):1–46, 1993.

[9] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1976.

[10] Edsger W. Dijkstra. A personal summary of the Gries-Owicki theory. In
Edsger W. Dijkstra, editor, Selected Writings on Computing: A Per-
sonal Perspective, chapter EWD554, pages 188–199. Springer-Verlag,
New York, Heidelberg, Berlin, 1982.

[11] R. W. Floyd. Assigning meanings to programs. In Proceedings of the
Symposium on Applied Math., Vol. 19, pages 19–32. American Mathe-
matical Society, 1967.

25

[12] Nissim Francez. Fairness. Texts and Monographs in Computer Science.
Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986.

[13] Yuri Gurevich. Evolving algebra 1993: Lipari guide. In Egon Börger,
editor, Specification and Validation Methods, pages 9–36. Oxford Uni-
versity Press, 1995.

[14] Yuri Gurevich. Sequential abstract state machines capture sequential
algorithms. ACM Transactions on Computational Logic, 1(1):77–111,
July 2000.

[15] Yuri Gurevich, Philipp W. Kutter, Martin Odersky, and Lothar Thiele,
editors. Abstract State Machines, Theory and Applications, Interna-
tional Workshop, ASM 2000, Monte Verità, Switzerland, March 19-24,
2000, Proceedings, volume 1912 of Lecture Notes in Computer Science.
Springer, 2000.

[16] C.A.R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–583, October 1969.

[17] Leslie Lamport. What good is temporal logic? In R. E. A. Mason,
editor, Information Processing 83: Proceedings of the IFIP 9th World
Congress, pages 657–668, Paris, September 1983. IFIP, North-Holland.

[18] Leslie Lamport. Specifying Systems. Addison-Wesley, Boston, 2003.
Also available on the Web via a link at http://lamport.org.

[19] Nancy Lynch and Mark Tuttle. Hierarchical correctness proofs for dis-
tributed algorithms. In Proceedings of the Sixth Symposium on the Prin-
ciples of Distributed Computing, pages 137–151. ACM, August 1987.

[20] Carver Mead and Lynn Conway. Introduction to VLSI Systems, chap-
ter 7. Addison-Wesley, Reading, Massachusetts, 1980.

[21] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New
York, 1980.

[22] Susan Owicki and David Gries. Verifying properties of parallel
programs: An axiomatic approach. Communications of the ACM,
19(5):279–284, May 1976.

[23] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on the Foundations of Computer Science, pages 46–
57. IEEE, November 1977.

26

[24] Vaughan R. Pratt. Transition and cancellation in concurrency
and branching time. Mathematical Structures in Computer Science,
13(4):485–529, 2003.

[25] Richard L. Schwartz and P. M. Melliar-Smith. Temporal logic specifi-
cation of distributed systems. In Proceedings of the 2nd International
Conference on Distributed Computing Systems, pages 446–454. IEEE
Computer Society Press, April 1981.

Appendix: The Definition of π(σ)

To define the set of pomsets generated by state-action machine, we now
define the pomset π(σ) corresponding to a computation σ of the machine.
This definition was mentioned by Pratt [24, Section 2.2].

Let σ be the state-action computation

s1
α1−→ s2

α2−→ s3
α3−→ · · ·

For simplicity, assume that σ is an infinite sequence. Modifying the de-
finitions to apply to finite computations is straightforward but somewhat
tedious.

We begin by defining σ
i⇒ τ for a positive integer i and a computation

τ to mean that τ can be obtained from σ by interchanging αi with αi−1.
More precisely, σ

i⇒ τ is true (for i > 1) iff αi 6= αi−1 and τ is the same
as σ except with s i−1

αi−1−→ s i
αi−→ s i+1 replaced by s i−1

αi−→ t
αi−1−→ s i+1 for

some state t .
We next define the relation i ←↩σ j to mean that we can obtain com-

putations of the state-action machine by interchanging αj with αj−1, then
with αj−2, . . . , then with αi . More precisely, we inductively define i ←↩σ j
to hold iff either

• i = j or

• i < j and σ
j⇒ τ holds for some computation τ of the state machine

with i ←↩τ (j − 1).

Finally, we define π(σ) to be the set {e1, e2, . . .}, where each e i is labeled
by αi , with the partial order ≺ defined by e i ≺ e j iff i < j and i ←↩σ j does
not hold.

27

