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Summary. This paper considers the problem of programming a multiple process 
system so that  it continues to operate despite the failure of individual processes. A 
powerful synchronizing primitive is defined, and it is used to solve some sample 
problems. An algorithm is then given which implements this primitive under very 
weak assumptions about the nature of interprocess communication, and a careful 
informal proof of its correctness is given. 

Introduction 

As computers developed the ability to execute several I/0 operations con- 
currently, sophisticated operating systems were introduced to take advantage of 
this. I t  was discovered that  an operating system can be more easily designed and 
implemented if it is considered to be a collection of separate asynchronous pro- 
cesses [3]. Simple primitives can be used to synchronize the processes, while the 
complexities of the actual hardware interrupt system are hidden in the imple- 
mentation of these primitives. Once the primitives have been implemented, 
everything else can be done in a reasonably hardware independent fashion. 

Recently, there has been considerable interest in systems composed of several 
independent computers [10]. The synchronizing procedures proposed for single 
computer operating systems have relied upon a central synchronizing process, 
either explicitly with monitors [7] or secretaries [5 ], or implicitly by relying upon 
a central process to maintain semaphores [3] or other shared variables. Although 
satisfactory for a single computer system, such approaches may  be undesirable 
for a multiple computer system because they imply reliance upon the single 
hardware component which contains this central process. 

This paper  considers the problem of process synchronization without a cen- 
tral  synchronizing process. A powerful synchronizing primitive is defined which 
generalizes the "conditional critical region" statement described in [1]. This 
primitive provides simple solutions to many  synchronization problems. An 
algorithm to implement it is given which allows the system to continue normal 
operation despite the failure of any individual process, and a careful informal proof 
of its correctness is provided. I t  is shown that  a reasonably efficient implementa- 
tion of the algorithm is possible. 

The main purpose of the paper is to show that  synchronization problems can 
be solved without relying upon any central hardware component. This is done 
by implementing the synchronizing primitive under minimal assumptions about  
the nature of interprocess communication. The problem of language design is not 
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considered, and we do not mean to imply that this primitive should be used in a 
general programming language. However, we hope that future languages for 
multiprocess systems make use of the ideas presented here. 

This paper generalizes the results of a previous paper [8] which solved a 
specific synchronization problem: the mutual exclusion problem. This problem 
was also solved independently by Dijkstra [6] with no central synchronizing 
process, under weaker assumptions about interprocess communication. His 
solution recovers automatically from intermittent process errors, but unlike our 
solution, his does not work if any process fails completely. A similar error recovery 
feature can be added to our solution by making certain redundant computations, 
but space does not permit us to discuss this. 

1. The Problem 

An Example 
To motivate the discussion, we begin by describing a sample system. It  is not 

meant to be a general model, but just a simple example. The system consists of 
a collection of independent computers and disk drives. Each computer has its 
own memory and central processor, and operates completely asynchronously 
with the other computers. It  is connected to some subset of the other computers 
by two-way communication channels. A channel can transmit interrupt signals 
and data words. 

Each computer is also connected by I/O channels to some subset of the disk 
drives. An I/O channel can handle a single operation to read or write a continuous 
block of data in the usual manner. A disk drive can perform only one operation 
at a time, but it will automatically sequence concurrent 1/0 requests from different 
computers. Note that a computer need not be connected to all other computers 
and disk drives. I t  is connected to another computer or to a disk drive by at most 
one channel. 

Each computer maintains its own private data files on the disks. Since a disk 
can handle concurrent operations from different computers, to implement private 
files it is only necessary to ensure that space on the disks is properly allocated to 
individual computers. Efficient utilization of disk space requires that allocation 
be done dynamically. We therefore have the following allocation problem: each 
computer must be able to execute the operations of acquiring and releasing disk 
tracks. This means that we must synchronize concurrent acquire operations by 
two different computers so that the same track is not allocated to both of them. 
If there are not enough free disk tracks, then a computer executing an acquire 
operation will have to wait until the necessary number of tracks are released by 
other computers. Note that the "dining philosophers" problem of [51 is a special 
case of the allocation problem, since a " fork"  can be represented by a disk drive 
connected to two computers. 

Several computers may also want to share a common data file. This causes 
no problem if they just want to read from it. However, no other operations to the 
file may be allowed while one process is updating it. This is called the readers/ 
writers problem, and was introduced in [2]. Since reading or updating the file 
may require several individual I/0 operations, the disk bardware does not solve 
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the problem for us. We must  devise an algori thm to ensure tha t  no other  operat ion 
to the file can take place while a computer  is updat ing  it. 

I t  is easy to solve these two problems if we let the necessary scheduling be done 
by  a central  computer  which communicates  with all other  computers.  However,  
we rule out  such a solution because the failure of tha t  computer  would halt  the 
entire system. We must  find solutions which allow the system to continue despite 
the failure of any  single component .  

The Abstract System 

We now formulate the problem in a more general, abstract  fashion. We assume 
a system of independent  communicat ing processes. We will not  bother  to define 
precisely w h a t  a "process" is, but  will use its cus tomary  informal definition as 
an algorithm executed by  a processor. We assume a fixed collection of processes, 
numbered from 1 through N. Each  process has its own local memory.  Interprocess 
communicat ion is achieved by  allowing one process to read from another  process'  
memory.  We assume tha t  reading or writing a single memory  word is an indivisible 
operation 1. A word might  consist of just one bit. Later  on, to permit  more efficient 
implementat ions we will introduce a mechanism by  which processes can send 
interrupt  signals to one another. However,  such a mechanism is not  essential. 
Note tha t  any  da ta  i tem must  reside in some process'  memory.  

We allow processes to fail at any  t ime by  halting. Since we want  one process 
to be able to continue despite the failure of other  processes, it mus t  be able to 
read from a failed process'  memory.  If  a failed process' m e m o r y  could retain the 
contents it had at  the t ime of failure, then other  processes could be blocked 
indefinitely. For  example, if a writer failed while its memory  contents  indicated 
tha t  it was writing, then it would block all other  readers and writers. When  a 
process fails, we allow it to  enter a mal]unctioning period during which reading 
its memory  m a y  yield any  arb i t rary  va lues- -even  fluctuating, incorrect ones. 
However,  we must  assume tha t  the process then reaches a quiescent state in which 
each word of memory  assumes some default value. For  convenience, a program 
variable is assumed to be encoded so tha t  its default  value is zero if it is a number,  
/alse if it is a boolean, and r if it is a set. A failed process m a y  be restar ted at  
some predefined place in its algorithm. 

In  our  sample system, a process is a program running on a single computer.  
I t  reads a word from another  process'  memory  by  sending a message to the appro- 
priate computer  and waiting for a reply. A computer  is presumed to have some 
error detection mechanism to  shut  itself down if it fails. I f  a computer  does no t  
receive a response to a read memory request within some fixed length of time, then 
it assumes tha t  the other  computer  has failed and uses the default value. I n  this 
example, we are assuming tha t  there is no communicat ion failure. The possibility 
of such a failure presents additional difficulties and will be discussed in a future 
paper. 

The Synchronization Primitive 
Our goal is to show tha t  a class of synchronizat ion problems for our abst ract  

system can be solved so tha t  the system continues to function correctly despite 

I We could actually use a weaker assumption, but it would complicate the proofs. 
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the failure of one or more processes. This will be done by  defining a powerful 
synchronizing primitive which permits simple solutions to m a n y  synchronization 
problems, including the ones described above, and then showing tha t  this primitive 
can be implemented by  our system of abstract  processes. 

The primitive we will use is a generalization of the "condit ional  critical 
region" s ta tement  described in [11. I t  is expressed by a s ta tement  of the following 
form : 

region mode when condition do critical section od 

where mode assumes values from some arbi t rary  finite set M, and condition is 
some boolean function of the contents of processes' memories. We assume a 
symmetr ic  function con/lict: M •  If  two processes are concur- 
rent ly  executing region operations with values of mode equal to mode 1 and mode 2 
respectively, then these processes are said to eon/lict if con/lict (mode 1, mode2) = true. 

When a process executes a region statement,  it first waits until it can enter 
its critical section. In  order to enter the critical section, the following two condi- 
tions mus t  hold:  

C I. No conflicting process is in its critical section. 

C2. The when condition equals true. 

Enter ing the critical section is considered to be an instantaneous event, so C I 
means tha t  two conflicting processes cannot both be in their critical sections at 
the same time. 

Sensible use of the region s ta tement  requires tha t  some restrictions be made 
on it. We will make the following restrictions. 

R t .  The mode value cannot  change during execution of the region statement.  

R2.  If  the when condition depends upon a word in another process' memory,  
then tha t  process can modify the word only within the critical section of a con- 
flicting region statement.  

R3. The critical section cannot  contain another region statement.  

Note tha t  R 2 will prevent  race conditions between operations tha t  test and modify 
the when condition. For  convenience, we will also assume that  a process' mode 
value can be encoded in a single memory  word. (This is trivially true if a process 
always executes region statements  with the same mode.) 

The region s ta tement  permits a simple solution to the readers/writers prob- 
lem, in which reading and writing a specific file are done with the following opera- 
tions: 

R E A D  

region (/ile, "reader") when true do read od 

W R I T E  

region (/ile, "writer")  when true do write od 

where con/lict ((/ilel, ml) , (/ile2, m2) ) is true iff (if and only if )/ilel-----/ile ~ and m 1 or 
m s equals "writer".  Rule C t then guarantees tha t  no other process can access a 
file while a process is writing it. 
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To illustrate the use of the region statement to solve the allocation problem, 
we consider the simple case in which all processes have access to all disk drives, 
and a process releases all tracks before acquiring any new ones. We let T denote 
the set of all disk tracks, acquired [i] be the set of all tracks currently being used 
by process i, and I sI denote the cardinality of a set S. Below are the operations 
which process i executes to acquire n tracks and to release all acquired tracks. 
Note that acquired Ei] is stored in the memory of process i, T is a constant, and 
conflict (" allocate", "allocate") = true. 

A CQ UIRE 
region "allocate" when Y, l acquired [7"][ + n  ~ [ T I  do 

i=1 
acquired[i] :=any nelements o~ (T-- Ui acquired[i])od 

RELEASE 
region "allocate" when ?rue do 

acquired [i] : = ~ od 

Conditions C t and C 2 imply that the required number of tracks are free when 
the acquire operation's critical section is executed, provided that no process is 
malfunctioning. Our assumption about the default values of variables implies 
that a failed process automatically releases its tracks. No damage is done if 
acquired [i] assumes arbitrary values while process/' is malfunctioning. However, 
process i 's acquire operation may not be able to choose its tracks until/" reaches 
its quiescent state and acquired [/'J assumes its default value $. (Of course, serious 
errors may occur if a malfunctioning process writes onto tracks not allocated to 
it.) The failed process may be restarted anywhere outside its region statements. 

The reader should have no trouble generalizing this solution to the case in 
which a process has access only to some subset of the disks. Two processes will 
conflict only if they can both access the same disk. Allowing the incremental 
acquisition of tracks requires a more complicated when condition in order to 
avoid deadlock. We refer the interested reader to the "hankers algorithm" of [4]. 

Scheduling 
In order to complete our specification of the region statement, we must say 

more about when waiting processes are to enter their critical sections. Often, the 
most difficult aspect of a synchronization problem is the scheduling of different 
processes' actions. To perform this scheduling, we now introduce a mechanism 
which allows one to specify the order in which conflicting processes should enter 
their critical sections. 

When a process begins execution of the region statement, it enters at the tail 
end of a queue of processes waiting to enter their critical sections. For each pair of 
distinct processes i, j, we assume an arbitrary boolean function should.precede (i, j) 
whose value may depend upon the contents of processes' memories, the mode 
value of waiting processes, and possibly other quantities external to our abstrac- 
t ions-e.g. ,  the length of time processes have been in the waiting queue. We add 
the following condition which must be met for process i to leave the waiting 
queue and enter its critical section. 

2* 
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C 3. For every conflicting process j on the waiting queue: 

(a) if j is before i on the queue, then should.precede(i, j)=true. 
(b) if j is after i on the queue, then should.precede(i, i)=[alse. 

We complete our specification with the following requirement. 

C 4. Any process i for which conditions C 1-C 3 remain satisfied will eventually 
enter its critical section. 

Note that  if should, precede (i, j) is always false for all i and j, then conflicting 
processes enter their critical sections in the same order in which they began 
executing their r e g i o n  statements. The should.precede function specifies when 
processes should enter out of turn. For example, in the readers/writers solution 
let us define should, precede (i, j) to be true iff process i wants to write and process 
j wants to read the same file. Then a waiting writer prevents any waiting process 
from reading the file, so this gives writers a higher priority than readers. Con- 
flicting writers enter their critical sections on a ~irst come, first served bases. 

As another example, in the allocation solution let us define should.precede (i, j) 
to be true iff process i 's  when  conditon is true and process j 's when  condition is 
false. Then other operations are not blocked by a process which is waiting to acquire 
more tracks than are currently available. In particular, any release operation is 
eventually executed. 

This modified first-come-first-served scheduling procedure should solve the 
scheduling aspect of most synchrol,iz~tion problems. Note that  it is the user's 
responsibility to make sure that  his sm'dd.precede function eliminates the pos- 
sibility of deadlock. 

We will not specify any syntax for defining the conflict and should.precede 
functions. We are not concerned with language design, and are not proposing 
that  this r eg ion  statement be used in any real programming language. 

2. The Implementation 

Correctness 
We require that  our implementation of the r eg ion  statement function correctly 

regardless of the relative execution speeds of the different processes. When de- 
signing such a inultiprocess algorithm, a careful proof of correctness is necessary 
if subtle, time-dependent errors are to be avoided. However, we cannot give a 
careful proof without defining more precisely what "correctness" means. The 
subtlety of the problem is indicated by the following example. Suppose process t 
maintains program variables a and b in its memory, with a = I and b = 0 initially. 
I t  then executes the following sequence of operations: a : = 0 ;  b : =  I. Meanwhile, 
suppose process 2 evaluates the function a* b by  fist reading the value of a then 
the value of b, obtaining the value t for both variables. Process 2 thus decides 
that  a* b equals 1, despite the fact that  a* b always remains equal to 0. As this 
example indicates, it can be impossible for a process to determine the correct 
value of a function which depends upon values stored in other processes' memories. 
Hence, it might be impossible for any implementation to satisfy conditions C t -C  4. 

Let us consider more closely the concept of correctness in our abstract system. 
At any instant, the state of a process is specified by the contents of its memory 
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and the value of its "program counter", the latter specifying where it is in the 
execution of its algorithm. Executing the process produces a sequence of events. 
The only events we will consider are those which test or modify a word of (some 
process') memory. Such an event will usually change the process' state by changing 
the program counter, and may also change the contents of its memory. For con- 
venience, we assume that a process never stops generating events. (Halting can 
be effected by a loop.) 

Since we have assumed that reading or writing a single word of memory is an 
indivisible event, it can be shown that  there is a total temporal ordering of all 
the events in the system. We denote this ordering by-->, so e-->] means that  
event e preceded event ]. The choice of the relation ---> is somewhat arbitrary. If e 
and ] are events in different processes which cannot causally effect one another 
because of the time needed by a signal to propagate from one process to the other, 
then we may arbitrarily define the ordering so that either e--->] or/--->e. 

The state of the system at any instant consists of the contents of all processes' 
memories and the values of their program counters. An execution of the system 
consists of some valid initial state and a sequence of process events. This sequence 
must be consistent with the initial state and the processes' algorithms. The 
system state is defined between any two consecutive events of the execution. 
Formalizing these concepts is a straightforward but tiresome task which we will 
not attempt. 

A correctness property of an algorithm is expressed as a theorem about 
executions. The theorem can involve conditions on possible system states and 
sequences of events, and it must be true for all possible executions of the system. 
We have to formulate properties C I - C 4  as theorems of this type which must be 
true for an implementation of the region primitive. 

The statement "process i is in its critical section" is an assertion about the 
values of process i 's  program counter. Entering the critical section is an event in 
the process which occurs before it executes any operation in the critical section. 
For convenience, we define a failed or malfunctioning process to be outside its 
region statement, so it does not conflict with any other process. This is purely 
a matter of convention to simplify the statement of the correctness properties. 
There is obviously no way to prevent a malfunctioning process from executing 
its critical section at any time, and the value of a quiescent process' program 
counter is irrelevant. 

Whether or not two processes conflict is a function of their program counters 
and, if they are both currently executing region statements, of their mode values. 
We can thus restate conditions C t and C 2 as follows. 

D t. Two conflicting processes cannot both be in their critical sections at the 
same time. 

D 2. When a process enters the critical section, its when  condition must be true. 

Before restating C3, we have to define the waiting queue more precisely. 
There must be some part of a process' algorithm which represents the waiting 
queue, so whether a process is in the queue is a function of its program counter. 
We assume that a process which does not fail can leave the waiting queue only 
by entering its critical section. 
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One process must be able to decide if another is ahead of it in the queue. 
Hence, for each i and i there must be some function of the contents of process 
memories which specifies if process i precedes process /' in the queue. We let 
@ (i) < @ (i) denote this function, so its value is true if i is before i in the waiting 
queue. 

The boolean function ~ ( i ) <  ~(/') must be specified for any particular im- 
plementation. We thus need some condition to guarantee that  this function has 
the desired properties. We would like to require that  J# ( i )<  @ (i) be true if 
process i entered the waiting queue before process i did. However, we also want 
to require that  a process should not have to wait to enter the waiting queue, and 
one can show that  both requirements cannot in general be satisfied. 

Let  the doorway denote the section of the algorithm from the beginning of the 
r e g i o n  statement  until the process enters the waiting queue. We will make the 
following requirement. 

D 0. (a) There is a fixed bound on the number of process events in the execu- 
tion of the doorway. 

(b) For any conflicting processes i and i on the waiting queue: if i entered the 
queue before i entered the doorway, then :~ (i) < :~ (i). 

Condition D 0 is a reasonable requirement to make on the implementation of the 
waiting queue. We cannot expect to determine which process entered the queue 
first unless they entered at "measurably  different" times. The time needed to 
execute the doorway, which by D 0 (a) is bounded, determines what "measurably  
different" means. Note that  D 0 (b) mentions only conflicting processes. This is 
because the relative position on the queue of non-conflicting processes is irrelevant. 

We can now consider condition C 3. I t  is possible for an implementation to 
satisfy D t and D 2 only because of restrictions R t and R 2. E.g., R 2 means that  
a waiting process will be able to correctly evaluate its when  condition while no 
conflicting process is in its critical section. Without some similar restriction on the 
should, precede function, it is impossible to satisfy C 3- Indeed, the example given 
above of evaluating a*b shows that  it may  be impossible for a process ever to 
obtain the correct value of should.precede (i, i). 

Let us consider the two parts of C 3 separately. In our readers/writers solution, 
C3 (a) states that  a writer in the waiting queue will enter its critical section 
before any conflicting process which is behind it in the queue. This is an important 
condition, because it ensures that  every write operation is eventually executed. 
Condition C 3 (b) states that  a reader will not enter its critical section if there is 
a conflicting writer behind it in the queue. However, it doesn't mat ter  if a reader 
enters its critical section even though a conflicting writer has just entered the 
waiting queue. In fact, there is no way to prevent such a possibility, since entering 
the critical section is effected by a single event. We will therefore not make 
C3 (b) a formal requirement, but will merely expect that  an implementation 
" t r y "  to satisfy it by  having process i evaluate should.precede(i , i) before en- 
tering its critical section, We modify C 3 (a) to obtain the following requirement. 

D 3- Let i and i be conflicting processes on the waiting queue, and assume that  
the  value of should.precede(i, i) does not depend upon any quantity which can 
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change while i and ~" are in the doorway or on the waiting queue. Then process i 
cannot enter its critical section if :~ (j) < ~ (i) and should, precede (i, j)=/alse. 

Condition C4 is different from C~-C3 because it asserts that  something must 
happen, whereas the others assert that  something must not happen. To state it 
precisely, we need some more definitions. A time interval is a finite sequence of 
consecutive events in an execution. I t  represents the operation of the system 
between the first and last of those events. For any positive integer P, a P-interval 
is a time interval containing at least P events from each process. Our assumption 
that processes never stop generating events means that every sufficiently long 
time interval is a P-interval. 

A function is said to be strongly constant on a time interval if it has a constant 
value during that interval, and every process which evaluates it during the 
interval obtains that value. In the example given above, the function a* b has the 
constant value 0 during a time interval, but it is not strongly constant because a 
process evaluated it an obtained the value 1. 

We can now restate C 4 more precisely as follows. 2 

D 4. There exist integers M and P such that at least one of the following con- 
ditions must be false at some point during any time interval consisting of M 
consecutive P-intervals. 

(a) Process i is in the waiting queue. 

(b) No process is malfunctioning. 

(c) No process which conflicts with process i is in its critical section. 

(d) Process i's when  condition is true. 

(e) For every process i on the waiting queue which conflicts with process i: 

(i) should, precede (i, i) and should, precede (~, i) are strongly constant. 

(ii) if ~ (i) < ~ (j) then should, precede (~, i) =/alse. 
(iii) if ~: (i) < :~ (i) then should, precede (i, ~) = true. 

Conditions (c)-(e) imply that D t - D  3 permit process i to enter its critical section. 
If these conditions hold, then we want i to go ahead and enter its critical section. 
Condition D 4 asserts that  if conditions (b)-(e) hold for a sufficiently long time, 
then (a) must become false, so process i must leave the waiting queue and enter 
its critical section. Note that (b) becomes false when a process fails, and remains 
false until it reaches its quiescent state. Hence, we allow a sequence of failures 
and restarts by other processes to keep process i indefinitely from entering its 
critical section. 

Finally, we observe that if two processes never conflict with one another, 
then there is no reason why they should have to communicate with each other. 
For example, in the general allocation problem, two computers need never 
exchange messages if they cannot both access the same disk. For each process i, 
let Con (i) denote the set of all other processes which can conflict with it. Then 
we require that process i read only from its own memory and the memories of 
processes in Con (i). Note that/" E Con (i) iff i E Con (~). 

2 Note that two consecutive P-intervals from a single 2 P-interval, but the converse 
is not true. 
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Waiting 

Synchronization requires that  one process be able to wait for another to 
complete an operation. This waiting will be expressed with the following statement: 

wai t  until  condition 

where condition is some boolean function of process variables. It  is logically 
equivalent to the following loop: 

label: if condition=false then  go to  label fi. 

This loop implements the wait  until  statement with busy waiting. Such an 
implementation is inefficient because it means that a physical processor is kept 
idling. For example, a computer waiting to acquire disk tracks would like to per- 
form other tasks instead of just executing this waiting loop. The synchronization 
of asynchronous processes always requires busy waiting. However, modern com- 
puters use interrupts to allow other operations to be performed while waiting. 
(The busy waiting occupies that part of the machine cycle which tests if an inter- 
rupt bit has been set.) 

The interrupt hardware of a computer can be used to implement sleep and 
a w a k e  operations, defined as follows. Assume a special type of boolean variable 
called an alarm. An alarm may be set true by any of several different processes, 
using the operation 

awake (alarm). 

I t  may be tested or set false only by the process to which it belongs. It  is tested 
by the operation 

sleep (alarm) 

which is equivalent to the statement 

wait until alarm. 

Since alarm cannot be reset by any other process, this is easily implemented with 
interrupts. 

The general wait  until  condition operation can be implemented by assigning 
an alarm variable to condition. Any process which performs an operation that  
might set condition true must also execute a subsequent a w a k e  (alarm). The wait  
until  statement is then implemented as follows. 

label: sleep (alarm) ; 
alarm: = false; 
if condition=false then  go to  label. 

Note that a delay is allowed between the execution of successive statements. 

This method of implementing waiting may seem somewhat inefficient because 
a condition is always tested after a process is awakened. However, it is foolproof 
because no error can occur if (a) two separate a w a k e  operations occur before 
alarm is reset, thus awakening the process only once, or (b) a single a w a k e  
operation sets alarm again after it has been reset by the newly awakened process, 
thus awakening the process twice. No physical implementation of truly asyn- 
chronous processes seems capable of eliminating both of these possibilities. 
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The only requirement for this implementation of the wait until s ta tement  is 
that  a process always execute an awake operation when it changes a shared 
variable to a value which might make a wait until condition true. (This applies 
to the initialization, so alarm must  initially be true if condit ion is true.) The 
failure of a process might also make a condition true. We must  therefore assume 
that  a process failure generates the appropriate awake operations after it reaches 
its quiescent state. In practise, a process might awaken itself at  regular intervals 
with a clock interrupt in order to test  the condition, so a failed process need not 
actually awaken any other process ~. 

This discussion shows that  interrupts can be used to eliminate most of the 
busy waiting from a wait until operation. Elimination of additional unnecessary 
testing is a mat ter  of program optimization. We cannot make any general state- 
ments about it, since it will depend upon the details of the particular system's  
hardware. 

An obvious generalization of wait until is the s tatement  

parallel wait (condition1, label 1 ; . . .  ; condition,,  label,) ; 

which is equivalent to the following waiting loop: 

label: if condition 1 then gota label I fi ; 

if  condit ion,  t h e n  g o t o  label n fi;  

goto label. 

I t  can be shown that  any busy waiting loop can be eliminated by  using parallel 
wait operations. Implementat ion of parallel wait by interrupts should be obvi- 
ous and will not be discussed. 

A S i m p l e  A lgor i thm 

We first present an implementation of the region statement  for the special 
case in which the w h e n  condition is always true and shou ld .p recede ( i , i  ) is 
always false for all i and i. Thus, a process enters its critical section when no 
conflicting process is either in its critical section or ahead of it on the waiting 
queue. 

The algorithm is a simple extension of the one described in [8]. Before a 
process enters the waiting queue, it chooses a number greater than that  of any  
other potentially conflicting process in the queue. The processes in the waiting 
queue are ordered by  the numbers they have chosen, the one with the lowest 
number being at the head of the queue. If  two processes i and i choose the same 
number, then i is before j iff i < j. 

The shared variables are: a boolean array choosing It :N];  an array number  
[t : N l of non-negative integers; and an array mode El : N l  of mode values. The i- th 
element of each array is in the memory  of process i. The element number  Ell m a y  
be stored in several individual memory  words, but  mode [i I must  be stored in a 
single word. All variables are assumed to be initialized to zero or /alse, except 
mode EiJ which may  have any initial value. 

3 In many cases, the values of M and P in D4 and the execution speeds of the pro- 
cesses can be used to determine how long a process should wait before awakening itself. 
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Let  ~ (i) denote the ordered pair (number [i], i). The relation < on ordered 
pairs of non-negative integers is defined to be the usual lexicographical ordering, 
except tha t  zero is taken to represent an infinitely large integer. In other words, 

(i) < @ (j) is true iff either 

(i) 0 4: number [i] < number El'I, or 

(ii) 0 = number [i] <: number [i], or 

(iii) number [i] =number [i] and i <1". 

This defines a total  ordering of the N elements :~(t)  . . . . .  :~(N).  Note tha t  the 
boolean function ~ (i) < ~ (i) is always defined, but  its value defines the order 
of i and ]' on the waiting queue only when they  are both on the queue. 

We introduce a new type of for s ta tement  of the form 

for all jES do ... od 

where S is a set of integers. I t  is similar to the usual f o r  loop in tha t  the do 
clause is executed once for each value of j. However,  the values of ]" used are the 
elements of S, and the executions for the different values can be done in any  order. 

Below is the algorithm to implement the s ta tement  

region mode'valuei when true do critical section i od 

in process i. For  the sake of brevity,  we write conflict (i, i) as an abbreviation for 
conflict (mode [i], mode []'1). The symbol ~ denotes negation 4. 

begin integer i; 

] mode [i] : =mode.valuei; 
choosing [i] : = t r u e ;  

o number [i] : =  any integer > maximum(number [i]: i~Con (i)}; O 

I choosing [i] : = false; 

~,[~ for all iCCon(i) do 

I 

wait  until ~-,choosing []] or ~-~con/liet (i, j) ; 
wait until #( i)  < #(i)  or~con/iict(i ,  i) oO; 

critical section i ; 
number [i] : ---- 0 

end 

Correctness o/the Simple Algorithm 
Correctness properties D 0 -D 3 for this solution are deduced from the following 

two assertions. Their proofs are essentially the same as those of the corresponding 

4 Where the program does not indicate the order of execution of memory references-- 
for example, in evaluating the maximum function--the order is arbitrary. Recovery 
from transient errors, in the spirit of [6], can be accomplished by recomputing mode [i] 
and making sure that  number Ei] > o in the waiting loops. A similar modification works 
for the more general algorithm described later. 
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assertions in E81, and they are omitted. To conform to the notation of [8], we 
define the bakery to consist of the waiting queue and the critical section. 

Assertion 1. If processes i and i are in the bakery, iECon  (i), and i entered the 
bakery before i entered the doorway, then @ (i) < :~ (i). 

Assert ion 2. If process i is in its critical section, process ~" is in the bakery, 
and i E Con (i), then :~ (i) < ~ (i) or ,,~ conflict (i, i). 

Condition D 0 (a) is evident, and D 0 (b) is implied by Assertion 1. Assertion 2 
implies D t, since ~ (i) < ~ (j) and :~ (j') < ~: (i) cannot both be true. Condition 
D 2 is trivially true for this special case. Condition D 3 is implied by Assertion 2, 
since the t ruth value of :~ (i) < ~ (i) does not change when i enters its critical 
section. 

We now prove D4. To do this, we will show that  if (b)-(e) remain true while 
process i is in the waiting queue, then i must complete its fo r  all loop and enter 
its critical section within M P-intervals, for some M and P. Let the epilogue be 
the part  of the region statement's algorithm which follows the critical section. 
Let us choose P large enough so that  the execution of the doorway or of the 
epilogue takes at most P events. We also choose P large enough so that  process i 
will complete a single iteration of its for all loop in one P-interval if its wait until 
conditions are strongly constant and equal to true during that interval. 

Assume that  process i is executing the i-th iteration of its fo r  all loop. Condi- 
tions (c) and (e) imply that  conflict(i,  j ) - - fa l se ,  or ~ ( i )  < ~( j ) ,  or process ~' is 
not in the bakery. To avoid extra terminology, we assume that  process 1" enters 
the region statement when it sets the value of mode [i]. Then exactly one of the 
following five conditions must be true. 

(t) conflict (i, ~) = true and 7" is executing the epilogue. 
(2) conflict (i, i) = true and 
(3) conflict (i, i) =/alse .  
(4) conflict (i, i) = true and 

i is outside the region statement. 

i is in the doorway. 
(5) conflict (i, i)----true and i is in the waiting queue and ~: (i) < ~: (i). 

While i is in the bakery, each of these conditions can become false only when a 
higher numbered condition becomes true. (In particular, (5) cannot become false 
once it becomes true.) Conditions (1) and (4) must become false within one P-  
interval. If any of the other three conditions remains true for one P-interval, 
then process i must complete the i-th iteration of its fo r  all loop during that  
interval 5. This shows that  process i must complete this iteration of its fo r  all 
loop within six P-intervals. Hence, it must enter its critical section within 
6"1Con (i) l P-intervals. This completes the proof of D 4. 

Bounding  number [i~ 
One difficulty with this solution is that  the values of number [i] could become 

arbitrarily large. For N = 2, a simple modification allows the non-zero values of 

5 We are using the assumption that mode [3"] is stored in a single memory word, since 
this implies that if conflict (i, j) is constant then it is strongly constant. Without this 
assumption, it would be possible for a slowly executing process i to remain indefinitely 
in its waiting queue while a fast process executes a sequence of nonconflicting region 
statements with differing mode values. 
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number [i] to be chosen from the set {t, 2, 3}. We merely define the ordering < on 
this set by I < 2, 2 < 3, 3 < t, and our algorithm remains correct. (The reader can 
check that  the above correctness proof  is still valid.) 

For N > 2, no such simple modification works. Hence, the general solution is 
formally correct only for processes with infinitely long memory words. However, 
finding a practical bound for number [i] is easy if we can be sure that  each value 
of number [i] is chosen to be at most one greater than a previously chosen value 
of number [/'], for some/' .  For example, if processes can enter the doorway at the 
rate of at most one per microsecond, then after a century of operation the value 
of number [i] would remain less than 253. Since the algorithm is correct even though 
reading or writing number [i] may  require several separate events, we can use 
several memory words to provide a sufficient range of values for this variable. 

However, if number [i] is a multiple word variable, then it is a non-trivial 
problem to ensure that  it is always at most one greater than some previously 
chosen number [/']. Suppose, for example, that  the value is stored one decimal 
digit per word. If the value of number [k] increases from 99 to 100 while process i 
is choosing the value of number [i], then i could read a value of t99 for number [k] -- 
thus choosing number [i] --> 200 although all previously chosen values of number [I'] 
were =< 100. I t  is shown in [9] that  this can be avoided by the following imple- 
mentation rules. 

11. Values of number [i] are written from right to left (least significant word 
to most significant word) and are read from left to right. 

12. number [i] is chosen to be the maximum of (i) its previous non-zero value 
and (ii) t + maximum {number [I'] : i E Con (i)}. 

In the event of process failure, rule 12 cannot be met  if a failed process may  
forget its previous value of number [i]. In that  case, the failed process must not 
restart until every read of number [i] which was initiated before it reached its 
quiescent state has been completed. I t  may then pretend that  it is starting initially. 
We must also assume that  while process i is malfunctioning, a read of number [i] 
does not obtain a value larger than the correct one. 

A Sample Implementation 

To illustrate how the details of an actual system can be used to obtain a more 
efficient implementation, we now consider how the simple algorithm might be 
implemented on our sample system of interconnected computers. First, we will 
eliminate the choosing flags. Assume that  one computer reads from another 's  
memory by  transmitting a read request. We can then assume that  a process 
never reads a partially written value. The basic idea is for process i to defer action 
on any read requests it receives while it is in the doorway. Then choosing [i] 
always appears false to any other process, so it becomes superfluous. However, 
this can cause a deadlock because a process must read from other processes' 
memories in order to leave the doorway. We must therefore have process i, while 
in its doorway, read the value of number [1"] by a special urgent read request. If  
process j receives an urgent read request for number [j] while in its doorway, 
then it simply returns the value zero. This is a valid implementation of the algo- 
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rithm, because process 1" is just acting as if the read request occurred before it 
began writing the new value of number ~'J. This implies that  a computer should 
never "swap out"  a program while it is executing the doorway. 

We assume that  process i reads both mode [1"] and number [/'] with a single read 
request, for 7" :~ i, Thus, it always obtains a "consis tent"  pair of values. 

We implement the wait until statement with sleep and awake operations, 
using an array alarm [1 :N~ of alarm flags. A simple approach would be to have 
a process awaken all connected processes upon leaving the bakery. However, we 
will a t tempt to eliminate superfluous awake operations. Whether or not this is a 
good idea will depend upon the actual hardware details. 

To handle the problem of process failure, we simply assume that a failed 
computer i performs an awake (alarm [j]) operation for each i ECon(i). (A more 
practical approach would be to have each sleeping process periodically awaken 
itself.) 

The following program for computer i gives an implementation of the above 
algorithm for this system of interconnected computers. 

begin integer i, k; 
I 

0 

L 

mode [i] : ---- mode. valuei 
number [i] : = t + maximum {number [j] : i E Con (i)}; 

~]~ for all iECon(i) do 

1 

while :~(i) < :~(i) and conflict(i, i) do 
sleep (alarm [i]) od; 

critical section i; 

[ numberEi]:=O; 
~D 

for all iE{i~Con(i): number[i ] > 0  and conflict(i, i)} do 
"~ if{kECon(i): @(k) < :~(i) and conflict(k, i ) } = ~  
O 

] then awake (alarm [1"]) f i  od 

end 

In the epilogue, process i need only read the values of number [j] and mode [j] 
once for each iECon(i). I t  can then save these values and use them as required 
within the for all loop. This read of number [j] is a non-urgent one. 

I t  is easy to verify that  this implementation still satisfies Assertions t and 2, 
so D 0-D 3 hold. The proof of D 4 is the same as before, once we show that  condi- 
tions D4 (a)-(e) imply that  process i is not sleeping. To do this, we assume that  
i is asleep and obtain a contradiction. Suppose that  i went to sleep during the 
j - th  iteration of the waiting queue's f o r  all loop. Let e be the event of reading 
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number  [1"] and mode [I"] just  before going to sleep, when process i found ~ (1') < ~ (i) 
and conflict (i, ~) both  to be true. Since ~" was in the bake ry  a t  event  e, and no 
process in Con (i) could have  failed af ter  event  e (otherwise, b y  our assumptions  
it would awaken process i), conditions D 4  (c) and (e) imply  tha t  process j' left 
the bake ry  af ter  event  e 6. Moreover, b y  our assumpt ion tha t  i read number  [1"] 
and mode [1"1 with a single read request, ~' left the bakery  with conflict (i, ~) = true. 

Now let k be the process which most  recently left the bakery  with con]lict (i, k) = 
true. I t  mus t  have left the bakery  after  event  e. Since k did not  awaken process i, 
when executing the epilogue's f o r  oil loop it must  have found some other  process l 
still in the bake ry  with ~ (l) < ~ (i) and conflict (l, i) both  true. Process l mus t  
then have  left the bake ry  af ter  process k did, contradict ing our choice of k. Hence, 
process i cannot  be asleep. 

The General Algori thm 

We now describe an algori thm to implement  the general s ta tement  

region mode i when condition~ do critical section i od 

in process i. For  processes i and ~' with iECon( i )  we assume a region s ta tement  
of the form 

region (i, ]') do critical section(i, i) od 

in process i and 

region (j, i) do critical section(i ' i~ od 

in process i. These have  the p roper ty  tha t  process i cannot  be in critical sectionii ' i) 
while process ~" is in critical section(i ' O" These s ta tements  are implemented  by  the 
special case of the simple algori thm with N = 2  in which different processes 
always conflict. Note tha t  a region (i, i) s t a t ement  and a region (i, i ') s t a t emen t  
are implemented  with disjoint sets of variables if j' =~i'. 

Process i mainta ins  a boolean variable precede [i, j] for iECon( i ) .  I ts  value is 
true only if i m a y  enter  critical section i before i enters critical section i. Process i 
only sets this variable to true from inside a region (i, i) critical section. If  i and j 
conflict, then i will not  set precede [i, 1"] t rue unless precede [1", i] is false. The use 
of the region (i, j) s t a t ement  thus prevents  precede [i, j] and precede [1", i] from 
both  being true a t  the same time. 

The  general algori thm for process i is given below. For convenience, it is 
described with busy  waiting. Pract ical  implementa t ion  is discussed later. The 
boolean function m a y .  precede (i, j) is defined to equal 

number  [1'] = 0 or ~,~con/lict (i, ~) or 
[@ (i) < @ (1') and ~-~should.precede (~, i)] or 
[ :~ (j) < ~ (i) ond should, precede (i, i)]. 

If  S is a set of boolean values, then ^ S denotes the logical and of all the elements  
of S, so it equals true iff S ={true}.  All booleans are initialized to /a lse .  

6 Our assumptions allow us to consider the setting of number [~] to be a single event, 
so number [j'] > 0 implies that  j is in the bakery. 
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begin integer j; 

3t 

! 

r 

0 
0 

i 

mode [i] : ----- modei; 
number [i] : = any  integer > maximum (number [j] : i E Con (i)} ; 

whi le  ~.. ,condition i or ~-~ ̂  (precede [i, j ] :  i ECon (i)} do 
for al l  1"6Con(i) do 

o if may" precede (i, ]) 
~ then region (i, i) do 

precede [i, i] : =  ~-~precede [I", i] or 
 con/lict (i, i /od 

else precede [i, i] :=false 
fl od 

od; 

critical section~ 
number [i] : = 0; 
for al l  iECon(i) do precede [i, i] :=false od 

end 

Note  t h a t  the use of the reg ion  (i, i) s t a t ements  eliminates the need for the 
choosing flag. 

Correctness o/the General Algorithm 
The proof of correctness of the general a lgor i thm is similar to t ha t  of the 

simple algori thm. First,  observe t ha t  Assertion 1 holds for the  general  a lgor i thm 
as well as the  simple one, so D 0 is satisfied. In  place of Assertion 2, we have  
the  following. 

Assertion 2'. If  precede [i, i] and precede [1", i] =true and jECon (i), then 
con/lict (i, i) = ]alse. 

Proo/. We first define certain process events.  Le t  x denote  ei ther one of i or/ ' ,  
and let y denote  the  other  one. Let  wp~ denote the most  recent  event  in which 
process x wrote  precede Ex, y]. Since precede[x, y l=true,  wp, occurred while 
executing the critical section of the reg ion  (x, y) s ta tement .  Le t  rp~ and rm~ 
denote the reads of precede [y, x] and mode [y], respectively,  during t ha t  same 
execution of the reg ion  (x, y) s ta tement .  Le t  wm~ denote the event  in which 
process x wrote the  current  value of mode [x]. 

For each x, we have  the following -~ relations among  these events.  

/ ,  rp~% 

wmx wpx 

r %  
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(The temporal ordering of rpx and rm~ is immaterial.) Because of the symmetry  
with respect to interchanging i and i, we can assume that  wpj-+wpi. The mutual 
exclusion property of the region (i,i) s tatement then implies that  wpf-~rpi 
and wpi--~rm~. Since wrnj---~wpj we also have wrnj-+rm i. Therefore, process i 
set precede [i, j] true in event wpi after obtaining the current values of precede [j, i] 
and con/lict (i, ~). Hence, the current value of con/lict (i, ~) must be/alse. [] 

In order to enter its critical section, process i must set precede [i, ~] true for 
each i CCon(i). Assertion 2' therefore implies D I. Before entering its critical 
section, i must  evaluate eondition~ and find it true after first setting precede [i, i] 
true for all j ECon(i). Hence, by Assertion 2' there cannot be any conflicting 
process in its critical section while i is evaluating condition i. Restriction R 2 then 
implies D 2. 

To prove D3, suppose i and j" are in the waiting queue, j'ECon(i) and :~(/') < 
:~(i). Assertion t therefore implies that  /" had entered the r eg lon  statement 
before i entered the waiting queue. Thus, j was in the region statement before i 
began executing its while loop. Condition D 3 then follows from the definition of 
may. precede (i, ~). 

Finally, we prove D4. We must show that  for some choice of M and P, if 
(b)-(e) remain true for MP-in tervals  while process i is in the waiting queue, then i 
will enter its critical section. From the fact that  our simple algorithm satisfies 
D 0-D 4, we can conclude that  there exist K and P such that  process i will execute 
one iteration of its while loop within KP-intervals .  Let us choose P large enough 
so that  any process will execute its doorway or its epilogue within one P-interval. 

The rest of the proof is now similar to that  for the simple algorithm. For 
each j E Con (i), one of the same five conditions must hold, except that  condition 
(5) is replaced by  the following: 

(5') con/lict (i, j )= true, and j' is in the waiting queue, and should.precede (i, ~) 
and should.precede(i, i) are strongly constant, and [ ~ ( i ) < : ~ ( i )  and should. 
precede (~, i) =-/alse, or else ~ (/') < ~ (i) and should, precede (i, i) = true]. 

Similar reasoning to that  used about then shows that  process i must enter its 
critical section within ICon (i) l * (3 * K +  2) + t P-intervals. 

Implementation Considerations 
The algorithm given above uses busy waiting. In a practical implementation, 

upon entering the bakery a process would spawn individual subprocesses to 
evaluate condition i and to maintain each variable precede El, j]. These subprocesses 
would be interrupt driven, and would sleep until something changed which required 
their attention. The main process would sleep until the while condition became 
false, at which time it would terminate the subprocesses and enter the critical 
section. 

I t  is a complicated but straightforward programming task to translate the 
algorithm into such a form. Since it requires the definition of a mechanism for 
starting and aborting subprocesses, we will not bother to perform this translation. 
We hope that  our sample implementation of the simple algorithm will convince 
the reader that  a reasonably efficient implementation of the more complicated 
general algorithm is also possible. 
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Conclusion 

We have defined the general region primitive for synchronizing independent 
processes. This primitive seems to permit  simple solutions to those synchroniza- 
tion problems which basically require the mutual  exclusion of conflicting processes 
from certain critical sections. Problems requiring explicit communication among 
the processes will have more complicated solutions, and might benefit from 
another primitive for exchanging messages. However, initially synchronizing the 
communication will be a mutual  exclusion problem. Once that  has been solved, 
designing the dialogue between processes is a straightforward matter .  

We saw that  the region primitive could be used to implement systems which 
are insensitive to the failure of any individual process--assuming a reasonably 
well-behaved form of process failure. An algorithm was then described which 
showed tha t  the primitive can be implemented with fairly minimal assumptions 
about the nature of interprocess communication. This algorithm is also insensitive 
to individual process failure, and can be implemented without too much busy 
waiting. No detailed analysis of its efficiency was made because any real system 
would probably allow stronger assumptions about  interprocess communication, 
thereby permitt ing a more efficient implementation. Our main purpose was to 
show that  a solution was possible even under weak assumptions. 

If  a system uses several independent hardware components, then one would 
like it to continue to operate correctly despite the failure of any component. 
Depending upon the application, "fai lure" might mean anything from physical 
destruction to turning off for maintenance. By introducing the r e g i o n  statement  
and describing several applications of it, we hoped to show that  this problem can 
be approached from a general, high level language point of view. The algorithm 
for the region s ta tement  shows that  this high level approach can actually be 
implemented. 

I t  is more difficult to implement a true mult icomputer system than a multi- 
process system for a single computer. The standard technique of simply disabling 
interrupts at  crucial times is no longer sufficient. (Observe tha t  a monitor [7] is 
just an elegant abstraction of this technique.) Careful proofs of correctness are 
necessary if subtle, t ime-dependent errors are to be avoided. Writing such proofs 
enabled us to discover errors in earlier versions of these algorithms. 
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