
Acta Informatica 7, 15 --34 (1976)
�9 by Springer-Verlag 1976

The Synchronization of Independent Processes
Leslie Lamport

Received January 22, 1975

Summary. This paper considers the problem of programming a multiple process
system so that it continues to operate despite the failure of individual processes. A
powerful synchronizing primitive is defined, and it is used to solve some sample
problems. An algorithm is then given which implements this primitive under very
weak assumptions about the nature of interprocess communication, and a careful
informal proof of its correctness is given.

Introduction

As computers developed the ability to execute several I/0 operations con-
currently, sophisticated operating systems were introduced to take advantage of
this. I t was discovered that an operating system can be more easily designed and
implemented if it is considered to be a collection of separate asynchronous pro-
cesses [3]. Simple primitives can be used to synchronize the processes, while the
complexities of the actual hardware interrupt system are hidden in the imple-
mentation of these primitives. Once the primitives have been implemented,
everything else can be done in a reasonably hardware independent fashion.

Recently, there has been considerable interest in systems composed of several
independent computers [10]. The synchronizing procedures proposed for single
computer operating systems have relied upon a central synchronizing process,
either explicitly with monitors [7] or secretaries [5], or implicitly by relying upon
a central process to maintain semaphores [3] or other shared variables. Although
satisfactory for a single computer system, such approaches may be undesirable
for a multiple computer system because they imply reliance upon the single
hardware component which contains this central process.

This paper considers the problem of process synchronization without a cen-
tral synchronizing process. A powerful synchronizing primitive is defined which
generalizes the "conditional critical region" statement described in [1]. This
primitive provides simple solutions to many synchronization problems. An
algorithm to implement it is given which allows the system to continue normal
operation despite the failure of any individual process, and a careful informal proof
of its correctness is provided. I t is shown that a reasonably efficient implementa-
tion of the algorithm is possible.

The main purpose of the paper is to show that synchronization problems can
be solved without relying upon any central hardware component. This is done
by implementing the synchronizing primitive under minimal assumptions about
the nature of interprocess communication. The problem of language design is not

t 6 L. Lamport

considered, and we do not mean to imply that this primitive should be used in a
general programming language. However, we hope that future languages for
multiprocess systems make use of the ideas presented here.

This paper generalizes the results of a previous paper [8] which solved a
specific synchronization problem: the mutual exclusion problem. This problem
was also solved independently by Dijkstra [6] with no central synchronizing
process, under weaker assumptions about interprocess communication. His
solution recovers automatically from intermittent process errors, but unlike our
solution, his does not work if any process fails completely. A similar error recovery
feature can be added to our solution by making certain redundant computations,
but space does not permit us to discuss this.

1. The Problem

An Example
To motivate the discussion, we begin by describing a sample system. It is not

meant to be a general model, but just a simple example. The system consists of
a collection of independent computers and disk drives. Each computer has its
own memory and central processor, and operates completely asynchronously
with the other computers. It is connected to some subset of the other computers
by two-way communication channels. A channel can transmit interrupt signals
and data words.

Each computer is also connected by I/O channels to some subset of the disk
drives. An I/O channel can handle a single operation to read or write a continuous
block of data in the usual manner. A disk drive can perform only one operation
at a time, but it will automatically sequence concurrent 1/0 requests from different
computers. Note that a computer need not be connected to all other computers
and disk drives. I t is connected to another computer or to a disk drive by at most
one channel.

Each computer maintains its own private data files on the disks. Since a disk
can handle concurrent operations from different computers, to implement private
files it is only necessary to ensure that space on the disks is properly allocated to
individual computers. Efficient utilization of disk space requires that allocation
be done dynamically. We therefore have the following allocation problem: each
computer must be able to execute the operations of acquiring and releasing disk
tracks. This means that we must synchronize concurrent acquire operations by
two different computers so that the same track is not allocated to both of them.
If there are not enough free disk tracks, then a computer executing an acquire
operation will have to wait until the necessary number of tracks are released by
other computers. Note that the "dining philosophers" problem of [51 is a special
case of the allocation problem, since a " fork" can be represented by a disk drive
connected to two computers.

Several computers may also want to share a common data file. This causes
no problem if they just want to read from it. However, no other operations to the
file may be allowed while one process is updating it. This is called the readers/
writers problem, and was introduced in [2]. Since reading or updating the file
may require several individual I/0 operations, the disk bardware does not solve

The Synchronization of Independent Processes t 7

the problem for us. We must devise an algori thm to ensure tha t no other operat ion
to the file can take place while a computer is updat ing it.

I t is easy to solve these two problems if we let the necessary scheduling be done
by a central computer which communicates with all other computers. However,
we rule out such a solution because the failure of tha t computer would halt the
entire system. We must find solutions which allow the system to continue despite
the failure of any single component .

The Abstract System

We now formulate the problem in a more general, abstract fashion. We assume
a system of independent communicat ing processes. We will not bother to define
precisely w h a t a "process" is, but will use its cus tomary informal definition as
an algorithm executed by a processor. We assume a fixed collection of processes,
numbered from 1 through N. Each process has its own local memory. Interprocess
communicat ion is achieved by allowing one process to read from another process'
memory. We assume tha t reading or writing a single memory word is an indivisible
operation 1. A word might consist of just one bit. Later on, to permit more efficient
implementat ions we will introduce a mechanism by which processes can send
interrupt signals to one another. However, such a mechanism is not essential.
Note tha t any da ta i tem must reside in some process' memory.

We allow processes to fail at any t ime by halting. Since we want one process
to be able to continue despite the failure of other processes, it mus t be able to
read from a failed process' memory. If a failed process' m e m o r y could retain the
contents it had at the t ime of failure, then other processes could be blocked
indefinitely. For example, if a writer failed while its memory contents indicated
tha t it was writing, then it would block all other readers and writers. When a
process fails, we allow it to enter a mal]unctioning period during which reading
its memory m a y yield any arb i t rary va lues- -even fluctuating, incorrect ones.
However, we must assume tha t the process then reaches a quiescent state in which
each word of memory assumes some default value. For convenience, a program
variable is assumed to be encoded so tha t its default value is zero if it is a number,
/alse if it is a boolean, and r if it is a set. A failed process m a y be restar ted at
some predefined place in its algorithm.

In our sample system, a process is a program running on a single computer.
I t reads a word from another process' memory by sending a message to the appro-
priate computer and waiting for a reply. A computer is presumed to have some
error detection mechanism to shut itself down if it fails. I f a computer does no t
receive a response to a read memory request within some fixed length of time, then
it assumes tha t the other computer has failed and uses the default value. I n this
example, we are assuming tha t there is no communicat ion failure. The possibility
of such a failure presents additional difficulties and will be discussed in a future
paper.

The Synchronization Primitive
Our goal is to show tha t a class of synchronizat ion problems for our abst ract

system can be solved so tha t the system continues to function correctly despite

I We could actually use a weaker assumption, but it would complicate the proofs.

2 Acta Informatica, Vol. 7

t 8 L. Lamport

the failure of one or more processes. This will be done by defining a powerful
synchronizing primitive which permits simple solutions to m a n y synchronization
problems, including the ones described above, and then showing tha t this primitive
can be implemented by our system of abstract processes.

The primitive we will use is a generalization of the "condit ional critical
region" s ta tement described in [11. I t is expressed by a s ta tement of the following
form :

region mode when condition do critical section od

where mode assumes values from some arbi t rary finite set M, and condition is
some boolean function of the contents of processes' memories. We assume a
symmetr ic function con/lict: M • If two processes are concur-
rent ly executing region operations with values of mode equal to mode 1 and mode 2
respectively, then these processes are said to eon/lict if con/lict (mode 1, mode2) = true.

When a process executes a region statement, it first waits until it can enter
its critical section. In order to enter the critical section, the following two condi-
tions mus t hold:

C I. No conflicting process is in its critical section.

C2. The when condition equals true.

Enter ing the critical section is considered to be an instantaneous event, so C I
means tha t two conflicting processes cannot both be in their critical sections at
the same time.

Sensible use of the region s ta tement requires tha t some restrictions be made
on it. We will make the following restrictions.

R t . The mode value cannot change during execution of the region statement.

R2. If the when condition depends upon a word in another process' memory,
then tha t process can modify the word only within the critical section of a con-
flicting region statement.

R3. The critical section cannot contain another region statement.

Note tha t R 2 will prevent race conditions between operations tha t test and modify
the when condition. For convenience, we will also assume that a process' mode
value can be encoded in a single memory word. (This is trivially true if a process
always executes region statements with the same mode.)

The region s ta tement permits a simple solution to the readers/writers prob-
lem, in which reading and writing a specific file are done with the following opera-
tions:

R E A D

region (/ile, "reader") when true do read od

W R I T E

region (/ile, "writer") when true do write od

where con/lict ((/ilel, ml) , (/ile2, m2)) is true iff (if and only if)/ilel-----/ile ~ and m 1 or
m s equals "writer". Rule C t then guarantees tha t no other process can access a
file while a process is writing it.

The Synchronization of Independent Processes t 9

To illustrate the use of the region statement to solve the allocation problem,
we consider the simple case in which all processes have access to all disk drives,
and a process releases all tracks before acquiring any new ones. We let T denote
the set of all disk tracks, acquired [i] be the set of all tracks currently being used
by process i, and I sI denote the cardinality of a set S. Below are the operations
which process i executes to acquire n tracks and to release all acquired tracks.
Note that acquired Ei] is stored in the memory of process i, T is a constant, and
conflict (" allocate", "allocate") = true.

A CQ UIRE
region "allocate" when Y, l acquired [7"][+ n ~ [T I do

i=1
acquired[i] :=any nelements o~ (T-- Ui acquired[i])od

RELEASE
region "allocate" when ?rue do

acquired [i] : = ~ od

Conditions C t and C 2 imply that the required number of tracks are free when
the acquire operation's critical section is executed, provided that no process is
malfunctioning. Our assumption about the default values of variables implies
that a failed process automatically releases its tracks. No damage is done if
acquired [i] assumes arbitrary values while process/' is malfunctioning. However,
process i 's acquire operation may not be able to choose its tracks until/" reaches
its quiescent state and acquired [/'J assumes its default value $. (Of course, serious
errors may occur if a malfunctioning process writes onto tracks not allocated to
it.) The failed process may be restarted anywhere outside its region statements.

The reader should have no trouble generalizing this solution to the case in
which a process has access only to some subset of the disks. Two processes will
conflict only if they can both access the same disk. Allowing the incremental
acquisition of tracks requires a more complicated when condition in order to
avoid deadlock. We refer the interested reader to the "hankers algorithm" of [4].

Scheduling
In order to complete our specification of the region statement, we must say

more about when waiting processes are to enter their critical sections. Often, the
most difficult aspect of a synchronization problem is the scheduling of different
processes' actions. To perform this scheduling, we now introduce a mechanism
which allows one to specify the order in which conflicting processes should enter
their critical sections.

When a process begins execution of the region statement, it enters at the tail
end of a queue of processes waiting to enter their critical sections. For each pair of
distinct processes i, j, we assume an arbitrary boolean function should.precede (i, j)
whose value may depend upon the contents of processes' memories, the mode
value of waiting processes, and possibly other quantities external to our abstrac-
t ions-e.g. , the length of time processes have been in the waiting queue. We add
the following condition which must be met for process i to leave the waiting
queue and enter its critical section.

2*

20 L. Lamport

C 3. For every conflicting process j on the waiting queue:

(a) if j is before i on the queue, then should.precede(i, j)=true.
(b) if j is after i on the queue, then should.precede(i, i)=[alse.

We complete our specification with the following requirement.

C 4. Any process i for which conditions C 1-C 3 remain satisfied will eventually
enter its critical section.

Note that if should, precede (i, j) is always false for all i and j, then conflicting
processes enter their critical sections in the same order in which they began
executing their r e g i o n statements. The should.precede function specifies when
processes should enter out of turn. For example, in the readers/writers solution
let us define should, precede (i, j) to be true iff process i wants to write and process
j wants to read the same file. Then a waiting writer prevents any waiting process
from reading the file, so this gives writers a higher priority than readers. Con-
flicting writers enter their critical sections on a ~irst come, first served bases.

As another example, in the allocation solution let us define should.precede (i, j)
to be true iff process i 's when conditon is true and process j 's when condition is
false. Then other operations are not blocked by a process which is waiting to acquire
more tracks than are currently available. In particular, any release operation is
eventually executed.

This modified first-come-first-served scheduling procedure should solve the
scheduling aspect of most synchrol,iz~tion problems. Note that it is the user's
responsibility to make sure that his sm'dd.precede function eliminates the pos-
sibility of deadlock.

We will not specify any syntax for defining the conflict and should.precede
functions. We are not concerned with language design, and are not proposing
that this r eg ion statement be used in any real programming language.

2. The Implementation

Correctness
We require that our implementation of the r eg ion statement function correctly

regardless of the relative execution speeds of the different processes. When de-
signing such a inultiprocess algorithm, a careful proof of correctness is necessary
if subtle, time-dependent errors are to be avoided. However, we cannot give a
careful proof without defining more precisely what "correctness" means. The
subtlety of the problem is indicated by the following example. Suppose process t
maintains program variables a and b in its memory, with a = I and b = 0 initially.
I t then executes the following sequence of operations: a : = 0 ; b : = I. Meanwhile,
suppose process 2 evaluates the function a* b by fist reading the value of a then
the value of b, obtaining the value t for both variables. Process 2 thus decides
that a* b equals 1, despite the fact that a* b always remains equal to 0. As this
example indicates, it can be impossible for a process to determine the correct
value of a function which depends upon values stored in other processes' memories.
Hence, it might be impossible for any implementation to satisfy conditions C t -C 4.

Let us consider more closely the concept of correctness in our abstract system.
At any instant, the state of a process is specified by the contents of its memory

The Synchronization of Independent Processes 2t

and the value of its "program counter", the latter specifying where it is in the
execution of its algorithm. Executing the process produces a sequence of events.
The only events we will consider are those which test or modify a word of (some
process') memory. Such an event will usually change the process' state by changing
the program counter, and may also change the contents of its memory. For con-
venience, we assume that a process never stops generating events. (Halting can
be effected by a loop.)

Since we have assumed that reading or writing a single word of memory is an
indivisible event, it can be shown that there is a total temporal ordering of all
the events in the system. We denote this ordering by-->, so e-->] means that
event e preceded event]. The choice of the relation ---> is somewhat arbitrary. If e
and] are events in different processes which cannot causally effect one another
because of the time needed by a signal to propagate from one process to the other,
then we may arbitrarily define the ordering so that either e--->] or/--->e.

The state of the system at any instant consists of the contents of all processes'
memories and the values of their program counters. An execution of the system
consists of some valid initial state and a sequence of process events. This sequence
must be consistent with the initial state and the processes' algorithms. The
system state is defined between any two consecutive events of the execution.
Formalizing these concepts is a straightforward but tiresome task which we will
not attempt.

A correctness property of an algorithm is expressed as a theorem about
executions. The theorem can involve conditions on possible system states and
sequences of events, and it must be true for all possible executions of the system.
We have to formulate properties C I - C 4 as theorems of this type which must be
true for an implementation of the region primitive.

The statement "process i is in its critical section" is an assertion about the
values of process i 's program counter. Entering the critical section is an event in
the process which occurs before it executes any operation in the critical section.
For convenience, we define a failed or malfunctioning process to be outside its
region statement, so it does not conflict with any other process. This is purely
a matter of convention to simplify the statement of the correctness properties.
There is obviously no way to prevent a malfunctioning process from executing
its critical section at any time, and the value of a quiescent process' program
counter is irrelevant.

Whether or not two processes conflict is a function of their program counters
and, if they are both currently executing region statements, of their mode values.
We can thus restate conditions C t and C 2 as follows.

D t. Two conflicting processes cannot both be in their critical sections at the
same time.

D 2. When a process enters the critical section, its when condition must be true.

Before restating C3, we have to define the waiting queue more precisely.
There must be some part of a process' algorithm which represents the waiting
queue, so whether a process is in the queue is a function of its program counter.
We assume that a process which does not fail can leave the waiting queue only
by entering its critical section.

22 L. Lamport

One process must be able to decide if another is ahead of it in the queue.
Hence, for each i and i there must be some function of the contents of process
memories which specifies if process i precedes process /' in the queue. We let
@ (i) < @ (i) denote this function, so its value is true if i is before i in the waiting
queue.

The boolean function ~ (i) < ~(/') must be specified for any particular im-
plementation. We thus need some condition to guarantee that this function has
the desired properties. We would like to require that J# (i)< @ (i) be true if
process i entered the waiting queue before process i did. However, we also want
to require that a process should not have to wait to enter the waiting queue, and
one can show that both requirements cannot in general be satisfied.

Let the doorway denote the section of the algorithm from the beginning of the
r e g i o n statement until the process enters the waiting queue. We will make the
following requirement.

D 0. (a) There is a fixed bound on the number of process events in the execu-
tion of the doorway.

(b) For any conflicting processes i and i on the waiting queue: if i entered the
queue before i entered the doorway, then :~ (i) < :~ (i).

Condition D 0 is a reasonable requirement to make on the implementation of the
waiting queue. We cannot expect to determine which process entered the queue
first unless they entered at "measurably different" times. The time needed to
execute the doorway, which by D 0 (a) is bounded, determines what "measurably
different" means. Note that D 0 (b) mentions only conflicting processes. This is
because the relative position on the queue of non-conflicting processes is irrelevant.

We can now consider condition C 3. I t is possible for an implementation to
satisfy D t and D 2 only because of restrictions R t and R 2. E.g., R 2 means that
a waiting process will be able to correctly evaluate its when condition while no
conflicting process is in its critical section. Without some similar restriction on the
should, precede function, it is impossible to satisfy C 3- Indeed, the example given
above of evaluating a*b shows that it may be impossible for a process ever to
obtain the correct value of should.precede (i, i).

Let us consider the two parts of C 3 separately. In our readers/writers solution,
C3 (a) states that a writer in the waiting queue will enter its critical section
before any conflicting process which is behind it in the queue. This is an important
condition, because it ensures that every write operation is eventually executed.
Condition C 3 (b) states that a reader will not enter its critical section if there is
a conflicting writer behind it in the queue. However, it doesn't mat ter if a reader
enters its critical section even though a conflicting writer has just entered the
waiting queue. In fact, there is no way to prevent such a possibility, since entering
the critical section is effected by a single event. We will therefore not make
C3 (b) a formal requirement, but will merely expect that an implementation
" t r y " to satisfy it by having process i evaluate should.precede(i , i) before en-
tering its critical section, We modify C 3 (a) to obtain the following requirement.

D 3- Let i and i be conflicting processes on the waiting queue, and assume that
the value of should.precede(i, i) does not depend upon any quantity which can

The Synchronization of Independent Processes 23

change while i and ~" are in the doorway or on the waiting queue. Then process i
cannot enter its critical section if :~ (j) < ~ (i) and should, precede (i, j)=/alse.

Condition C4 is different from C~-C3 because it asserts that something must
happen, whereas the others assert that something must not happen. To state it
precisely, we need some more definitions. A time interval is a finite sequence of
consecutive events in an execution. I t represents the operation of the system
between the first and last of those events. For any positive integer P, a P-interval
is a time interval containing at least P events from each process. Our assumption
that processes never stop generating events means that every sufficiently long
time interval is a P-interval.

A function is said to be strongly constant on a time interval if it has a constant
value during that interval, and every process which evaluates it during the
interval obtains that value. In the example given above, the function a* b has the
constant value 0 during a time interval, but it is not strongly constant because a
process evaluated it an obtained the value 1.

We can now restate C 4 more precisely as follows. 2

D 4. There exist integers M and P such that at least one of the following con-
ditions must be false at some point during any time interval consisting of M
consecutive P-intervals.

(a) Process i is in the waiting queue.

(b) No process is malfunctioning.

(c) No process which conflicts with process i is in its critical section.

(d) Process i's when condition is true.

(e) For every process i on the waiting queue which conflicts with process i:

(i) should, precede (i, i) and should, precede (~, i) are strongly constant.

(ii) if ~ (i) < ~ (j) then should, precede (~, i) =/alse.
(iii) if ~: (i) < :~ (i) then should, precede (i, ~) = true.

Conditions (c)-(e) imply that D t - D 3 permit process i to enter its critical section.
If these conditions hold, then we want i to go ahead and enter its critical section.
Condition D 4 asserts that if conditions (b)-(e) hold for a sufficiently long time,
then (a) must become false, so process i must leave the waiting queue and enter
its critical section. Note that (b) becomes false when a process fails, and remains
false until it reaches its quiescent state. Hence, we allow a sequence of failures
and restarts by other processes to keep process i indefinitely from entering its
critical section.

Finally, we observe that if two processes never conflict with one another,
then there is no reason why they should have to communicate with each other.
For example, in the general allocation problem, two computers need never
exchange messages if they cannot both access the same disk. For each process i,
let Con (i) denote the set of all other processes which can conflict with it. Then
we require that process i read only from its own memory and the memories of
processes in Con (i). Note that/" E Con (i) iff i E Con (~).

2 Note that two consecutive P-intervals from a single 2 P-interval, but the converse
is not true.

24 L. Lamport

Waiting

Synchronization requires that one process be able to wait for another to
complete an operation. This waiting will be expressed with the following statement:

wai t until condition

where condition is some boolean function of process variables. It is logically
equivalent to the following loop:

label: if condition=false then go to label fi.

This loop implements the wait until statement with busy waiting. Such an
implementation is inefficient because it means that a physical processor is kept
idling. For example, a computer waiting to acquire disk tracks would like to per-
form other tasks instead of just executing this waiting loop. The synchronization
of asynchronous processes always requires busy waiting. However, modern com-
puters use interrupts to allow other operations to be performed while waiting.
(The busy waiting occupies that part of the machine cycle which tests if an inter-
rupt bit has been set.)

The interrupt hardware of a computer can be used to implement sleep and
a w a k e operations, defined as follows. Assume a special type of boolean variable
called an alarm. An alarm may be set true by any of several different processes,
using the operation

awake (alarm).

I t may be tested or set false only by the process to which it belongs. It is tested
by the operation

sleep (alarm)

which is equivalent to the statement

wait until alarm.

Since alarm cannot be reset by any other process, this is easily implemented with
interrupts.

The general wait until condition operation can be implemented by assigning
an alarm variable to condition. Any process which performs an operation that
might set condition true must also execute a subsequent a w a k e (alarm). The wait
until statement is then implemented as follows.

label: sleep (alarm) ;
alarm: = false;
if condition=false then go to label.

Note that a delay is allowed between the execution of successive statements.

This method of implementing waiting may seem somewhat inefficient because
a condition is always tested after a process is awakened. However, it is foolproof
because no error can occur if (a) two separate a w a k e operations occur before
alarm is reset, thus awakening the process only once, or (b) a single a w a k e
operation sets alarm again after it has been reset by the newly awakened process,
thus awakening the process twice. No physical implementation of truly asyn-
chronous processes seems capable of eliminating both of these possibilities.

The Synchronization of Independent Processes 25

The only requirement for this implementation of the wait until s ta tement is
that a process always execute an awake operation when it changes a shared
variable to a value which might make a wait until condition true. (This applies
to the initialization, so alarm must initially be true if condit ion is true.) The
failure of a process might also make a condition true. We must therefore assume
that a process failure generates the appropriate awake operations after it reaches
its quiescent state. In practise, a process might awaken itself at regular intervals
with a clock interrupt in order to test the condition, so a failed process need not
actually awaken any other process ~.

This discussion shows that interrupts can be used to eliminate most of the
busy waiting from a wait until operation. Elimination of additional unnecessary
testing is a mat ter of program optimization. We cannot make any general state-
ments about it, since it will depend upon the details of the particular system's
hardware.

An obvious generalization of wait until is the s tatement

parallel wait (condition1, label 1 ; . . . ; condition,, label,) ;

which is equivalent to the following waiting loop:

label: if condition 1 then gota label I fi ;

if condit ion, t h e n g o t o label n fi;

goto label.

I t can be shown that any busy waiting loop can be eliminated by using parallel
wait operations. Implementat ion of parallel wait by interrupts should be obvi-
ous and will not be discussed.

A S i m p l e A lgor i thm

We first present an implementation of the region statement for the special
case in which the w h e n condition is always true and shou ld .p recede (i , i) is
always false for all i and i. Thus, a process enters its critical section when no
conflicting process is either in its critical section or ahead of it on the waiting
queue.

The algorithm is a simple extension of the one described in [8]. Before a
process enters the waiting queue, it chooses a number greater than that of any
other potentially conflicting process in the queue. The processes in the waiting
queue are ordered by the numbers they have chosen, the one with the lowest
number being at the head of the queue. If two processes i and i choose the same
number, then i is before j iff i < j.

The shared variables are: a boolean array choosing It :N]; an array number
[t : N l of non-negative integers; and an array mode El : N l of mode values. The i- th
element of each array is in the memory of process i. The element number Ell m a y
be stored in several individual memory words, but mode [i I must be stored in a
single word. All variables are assumed to be initialized to zero or /alse, except
mode EiJ which may have any initial value.

3 In many cases, the values of M and P in D4 and the execution speeds of the pro-
cesses can be used to determine how long a process should wait before awakening itself.

26 L, Lamport

Let ~ (i) denote the ordered pair (number [i], i). The relation < on ordered
pairs of non-negative integers is defined to be the usual lexicographical ordering,
except tha t zero is taken to represent an infinitely large integer. In other words,

(i) < @ (j) is true iff either

(i) 0 4: number [i] < number El'I, or

(ii) 0 = number [i] <: number [i], or

(iii) number [i] =number [i] and i <1".

This defines a total ordering of the N elements :~(t) :~(N). Note tha t the
boolean function ~ (i) < ~ (i) is always defined, but its value defines the order
of i and]' on the waiting queue only when they are both on the queue.

We introduce a new type of for s ta tement of the form

for all jES do ... od

where S is a set of integers. I t is similar to the usual f o r loop in tha t the do
clause is executed once for each value of j. However, the values of]" used are the
elements of S, and the executions for the different values can be done in any order.

Below is the algorithm to implement the s ta tement

region mode'valuei when true do critical section i od

in process i. For the sake of brevity, we write conflict (i, i) as an abbreviation for
conflict (mode [i], mode []'1). The symbol ~ denotes negation 4.

begin integer i;

] mode [i] : =mode.valuei;
choosing [i] : = t r u e ;

o number [i] : = any integer > maximum(number [i]: i~Con (i)}; O

I choosing [i] : = false;

~,[~ for all iCCon(i) do

I

wait until ~-,choosing []] or ~-~con/liet (i, j) ;
wait until #(i) < #(i) or~con/iict(i , i) oO;

critical section i ;
number [i] : ---- 0

end

Correctness o/the Simple Algorithm
Correctness properties D 0 -D 3 for this solution are deduced from the following

two assertions. Their proofs are essentially the same as those of the corresponding

4 Where the program does not indicate the order of execution of memory references--
for example, in evaluating the maximum function--the order is arbitrary. Recovery
from transient errors, in the spirit of [6], can be accomplished by recomputing mode [i]
and making sure that number Ei] > o in the waiting loops. A similar modification works
for the more general algorithm described later.

The Synchronization of Independent Processes 27

assertions in E81, and they are omitted. To conform to the notation of [8], we
define the bakery to consist of the waiting queue and the critical section.

Assertion 1. If processes i and i are in the bakery, iECon (i), and i entered the
bakery before i entered the doorway, then @ (i) < :~ (i).

Assert ion 2. If process i is in its critical section, process ~" is in the bakery,
and i E Con (i), then :~ (i) < ~ (i) or ,,~ conflict (i, i).

Condition D 0 (a) is evident, and D 0 (b) is implied by Assertion 1. Assertion 2
implies D t, since ~ (i) < ~ (j) and :~ (j') < ~: (i) cannot both be true. Condition
D 2 is trivially true for this special case. Condition D 3 is implied by Assertion 2,
since the t ruth value of :~ (i) < ~ (i) does not change when i enters its critical
section.

We now prove D4. To do this, we will show that if (b)-(e) remain true while
process i is in the waiting queue, then i must complete its fo r all loop and enter
its critical section within M P-intervals, for some M and P. Let the epilogue be
the part of the region statement's algorithm which follows the critical section.
Let us choose P large enough so that the execution of the doorway or of the
epilogue takes at most P events. We also choose P large enough so that process i
will complete a single iteration of its for all loop in one P-interval if its wait until
conditions are strongly constant and equal to true during that interval.

Assume that process i is executing the i-th iteration of its fo r all loop. Condi-
tions (c) and (e) imply that conflict(i, j) - - fa l se , or ~ (i) < ~(j) , or process ~' is
not in the bakery. To avoid extra terminology, we assume that process 1" enters
the region statement when it sets the value of mode [i]. Then exactly one of the
following five conditions must be true.

(t) conflict (i, ~) = true and 7" is executing the epilogue.
(2) conflict (i, i) = true and
(3) conflict (i, i) =/alse .
(4) conflict (i, i) = true and

i is outside the region statement.

i is in the doorway.
(5) conflict (i, i)----true and i is in the waiting queue and ~: (i) < ~: (i).

While i is in the bakery, each of these conditions can become false only when a
higher numbered condition becomes true. (In particular, (5) cannot become false
once it becomes true.) Conditions (1) and (4) must become false within one P-
interval. If any of the other three conditions remains true for one P-interval,
then process i must complete the i-th iteration of its fo r all loop during that
interval 5. This shows that process i must complete this iteration of its fo r all
loop within six P-intervals. Hence, it must enter its critical section within
6"1Con (i) l P-intervals. This completes the proof of D 4.

Bounding number [i~
One difficulty with this solution is that the values of number [i] could become

arbitrarily large. For N = 2, a simple modification allows the non-zero values of

5 We are using the assumption that mode [3"] is stored in a single memory word, since
this implies that if conflict (i, j) is constant then it is strongly constant. Without this
assumption, it would be possible for a slowly executing process i to remain indefinitely
in its waiting queue while a fast process executes a sequence of nonconflicting region
statements with differing mode values.

28 L. Lamport

number [i] to be chosen from the set {t, 2, 3}. We merely define the ordering < on
this set by I < 2, 2 < 3, 3 < t, and our algorithm remains correct. (The reader can
check that the above correctness proof is still valid.)

For N > 2, no such simple modification works. Hence, the general solution is
formally correct only for processes with infinitely long memory words. However,
finding a practical bound for number [i] is easy if we can be sure that each value
of number [i] is chosen to be at most one greater than a previously chosen value
of number [/'], for some/' . For example, if processes can enter the doorway at the
rate of at most one per microsecond, then after a century of operation the value
of number [i] would remain less than 253. Since the algorithm is correct even though
reading or writing number [i] may require several separate events, we can use
several memory words to provide a sufficient range of values for this variable.

However, if number [i] is a multiple word variable, then it is a non-trivial
problem to ensure that it is always at most one greater than some previously
chosen number [/']. Suppose, for example, that the value is stored one decimal
digit per word. If the value of number [k] increases from 99 to 100 while process i
is choosing the value of number [i], then i could read a value of t99 for number [k] --
thus choosing number [i] --> 200 although all previously chosen values of number [I']
were =< 100. I t is shown in [9] that this can be avoided by the following imple-
mentation rules.

11. Values of number [i] are written from right to left (least significant word
to most significant word) and are read from left to right.

12. number [i] is chosen to be the maximum of (i) its previous non-zero value
and (ii) t + maximum {number [I'] : i E Con (i)}.

In the event of process failure, rule 12 cannot be met if a failed process may
forget its previous value of number [i]. In that case, the failed process must not
restart until every read of number [i] which was initiated before it reached its
quiescent state has been completed. I t may then pretend that it is starting initially.
We must also assume that while process i is malfunctioning, a read of number [i]
does not obtain a value larger than the correct one.

A Sample Implementation

To illustrate how the details of an actual system can be used to obtain a more
efficient implementation, we now consider how the simple algorithm might be
implemented on our sample system of interconnected computers. First, we will
eliminate the choosing flags. Assume that one computer reads from another 's
memory by transmitting a read request. We can then assume that a process
never reads a partially written value. The basic idea is for process i to defer action
on any read requests it receives while it is in the doorway. Then choosing [i]
always appears false to any other process, so it becomes superfluous. However,
this can cause a deadlock because a process must read from other processes'
memories in order to leave the doorway. We must therefore have process i, while
in its doorway, read the value of number [1"] by a special urgent read request. If
process j receives an urgent read request for number [j] while in its doorway,
then it simply returns the value zero. This is a valid implementation of the algo-

The Synchronization of Independent Processes 29

rithm, because process 1" is just acting as if the read request occurred before it
began writing the new value of number ~'J. This implies that a computer should
never "swap out" a program while it is executing the doorway.

We assume that process i reads both mode [1"] and number [/'] with a single read
request, for 7" :~ i, Thus, it always obtains a "consis tent" pair of values.

We implement the wait until statement with sleep and awake operations,
using an array alarm [1 :N~ of alarm flags. A simple approach would be to have
a process awaken all connected processes upon leaving the bakery. However, we
will a t tempt to eliminate superfluous awake operations. Whether or not this is a
good idea will depend upon the actual hardware details.

To handle the problem of process failure, we simply assume that a failed
computer i performs an awake (alarm [j]) operation for each i ECon(i). (A more
practical approach would be to have each sleeping process periodically awaken
itself.)

The following program for computer i gives an implementation of the above
algorithm for this system of interconnected computers.

begin integer i, k;
I

0

L

mode [i] : ---- mode. valuei
number [i] : = t + maximum {number [j] : i E Con (i)};

~]~ for all iECon(i) do

1

while :~(i) < :~(i) and conflict(i, i) do
sleep (alarm [i]) od;

critical section i;

[numberEi]:=O;
~D

for all iE{i~Con(i): number[i] > 0 and conflict(i, i)} do
"~ if{kECon(i): @(k) < :~(i) and conflict(k, i) } = ~
O

] then awake (alarm [1"]) f i od

end

In the epilogue, process i need only read the values of number [j] and mode [j]
once for each iECon(i). I t can then save these values and use them as required
within the for all loop. This read of number [j] is a non-urgent one.

I t is easy to verify that this implementation still satisfies Assertions t and 2,
so D 0-D 3 hold. The proof of D 4 is the same as before, once we show that condi-
tions D4 (a)-(e) imply that process i is not sleeping. To do this, we assume that
i is asleep and obtain a contradiction. Suppose that i went to sleep during the
j - th iteration of the waiting queue's f o r all loop. Let e be the event of reading

30 L. Lamport

number [1"] and mode [I"] just before going to sleep, when process i found ~ (1') < ~ (i)
and conflict (i, ~) both to be true. Since ~" was in the bake ry a t event e, and no
process in Con (i) could have failed af ter event e (otherwise, b y our assumptions
it would awaken process i), conditions D 4 (c) and (e) imply tha t process j' left
the bake ry af ter event e 6. Moreover, b y our assumpt ion tha t i read number [1"]
and mode [1"1 with a single read request, ~' left the bakery with conflict (i, ~) = true.

Now let k be the process which most recently left the bakery with con]lict (i, k) =
true. I t mus t have left the bakery after event e. Since k did not awaken process i,
when executing the epilogue's f o r oil loop it must have found some other process l
still in the bake ry with ~ (l) < ~ (i) and conflict (l, i) both true. Process l mus t
then have left the bake ry af ter process k did, contradict ing our choice of k. Hence,
process i cannot be asleep.

The General Algori thm

We now describe an algori thm to implement the general s ta tement

region mode i when condition~ do critical section i od

in process i. For processes i and ~' with iECon(i) we assume a region s ta tement
of the form

region (i,]') do critical section(i, i) od

in process i and

region (j, i) do critical section(i ' i~ od

in process i. These have the p roper ty tha t process i cannot be in critical sectionii ' i)
while process ~" is in critical section(i ' O" These s ta tements are implemented by the
special case of the simple algori thm with N = 2 in which different processes
always conflict. Note tha t a region (i, i) s t a t ement and a region (i, i ') s t a t emen t
are implemented with disjoint sets of variables if j' =~i'.

Process i mainta ins a boolean variable precede [i, j] for iECon(i) . I ts value is
true only if i m a y enter critical section i before i enters critical section i. Process i
only sets this variable to true from inside a region (i, i) critical section. If i and j
conflict, then i will not set precede [i, 1"] t rue unless precede [1", i] is false. The use
of the region (i, j) s t a t ement thus prevents precede [i, j] and precede [1", i] from
both being true a t the same time.

The general algori thm for process i is given below. For convenience, it is
described with busy waiting. Pract ical implementa t ion is discussed later. The
boolean function m a y . precede (i, j) is defined to equal

number [1'] = 0 or ~,~con/lict (i, ~) or
[@ (i) < @ (1') and ~-~should.precede (~, i)] or
[:~ (j) < ~ (i) ond should, precede (i, i)].

If S is a set of boolean values, then ^ S denotes the logical and of all the elements
of S, so it equals true iff S ={true}. All booleans are initialized to /a lse .

6 Our assumptions allow us to consider the setting of number [~] to be a single event,
so number [j'] > 0 implies that j is in the bakery.

The Synchronization of Independent Processes

begin integer j;

3t

!

r

0
0

i

mode [i] : ----- modei;
number [i] : = any integer > maximum (number [j] : i E Con (i)} ;

whi le ~.. ,condition i or ~-~ ̂ (precede [i, j] : i ECon (i)} do
for al l 1"6Con(i) do

o if may" precede (i,])
~ then region (i, i) do

precede [i, i] : = ~-~precede [I", i] or
 con/lict (i, i /od

else precede [i, i] :=false
fl od

od;

critical section~
number [i] : = 0;
for al l iECon(i) do precede [i, i] :=false od

end

Note t h a t the use of the reg ion (i, i) s t a t ements eliminates the need for the
choosing flag.

Correctness o/the General Algorithm
The proof of correctness of the general a lgor i thm is similar to t ha t of the

simple algori thm. First, observe t ha t Assertion 1 holds for the general a lgor i thm
as well as the simple one, so D 0 is satisfied. In place of Assertion 2, we have
the following.

Assertion 2'. If precede [i, i] and precede [1", i] =true and jECon (i), then
con/lict (i, i) =]alse.

Proo/. We first define certain process events. Le t x denote ei ther one of i or/ ' ,
and let y denote the other one. Let wp~ denote the most recent event in which
process x wrote precede Ex, y]. Since precede[x, y l=true, wp, occurred while
executing the critical section of the reg ion (x, y) s ta tement . Le t rp~ and rm~
denote the reads of precede [y, x] and mode [y], respectively, during t ha t same
execution of the reg ion (x, y) s ta tement . Le t wm~ denote the event in which
process x wrote the current value of mode [x].

For each x, we have the following -~ relations among these events.

/ , rp~%

wmx wpx

r %

32 L. Lamport

(The temporal ordering of rpx and rm~ is immaterial.) Because of the symmetry
with respect to interchanging i and i, we can assume that wpj-+wpi. The mutual
exclusion property of the region (i,i) s tatement then implies that wpf-~rpi
and wpi--~rm~. Since wrnj---~wpj we also have wrnj-+rm i. Therefore, process i
set precede [i, j] true in event wpi after obtaining the current values of precede [j, i]
and con/lict (i, ~). Hence, the current value of con/lict (i, ~) must be/alse. []

In order to enter its critical section, process i must set precede [i, ~] true for
each i CCon(i). Assertion 2' therefore implies D I. Before entering its critical
section, i must evaluate eondition~ and find it true after first setting precede [i, i]
true for all j ECon(i). Hence, by Assertion 2' there cannot be any conflicting
process in its critical section while i is evaluating condition i. Restriction R 2 then
implies D 2.

To prove D3, suppose i and j" are in the waiting queue, j'ECon(i) and :~(/') <
:~(i). Assertion t therefore implies that /" had entered the r eg lon statement
before i entered the waiting queue. Thus, j was in the region statement before i
began executing its while loop. Condition D 3 then follows from the definition of
may. precede (i, ~).

Finally, we prove D4. We must show that for some choice of M and P, if
(b)-(e) remain true for MP-in tervals while process i is in the waiting queue, then i
will enter its critical section. From the fact that our simple algorithm satisfies
D 0-D 4, we can conclude that there exist K and P such that process i will execute
one iteration of its while loop within KP-intervals . Let us choose P large enough
so that any process will execute its doorway or its epilogue within one P-interval.

The rest of the proof is now similar to that for the simple algorithm. For
each j E Con (i), one of the same five conditions must hold, except that condition
(5) is replaced by the following:

(5') con/lict (i, j)= true, and j' is in the waiting queue, and should.precede (i, ~)
and should.precede(i, i) are strongly constant, and [~ (i) < : ~ (i) and should.
precede (~, i) =-/alse, or else ~ (/') < ~ (i) and should, precede (i, i) = true].

Similar reasoning to that used about then shows that process i must enter its
critical section within ICon (i) l * (3 * K + 2) + t P-intervals.

Implementation Considerations
The algorithm given above uses busy waiting. In a practical implementation,

upon entering the bakery a process would spawn individual subprocesses to
evaluate condition i and to maintain each variable precede El, j]. These subprocesses
would be interrupt driven, and would sleep until something changed which required
their attention. The main process would sleep until the while condition became
false, at which time it would terminate the subprocesses and enter the critical
section.

I t is a complicated but straightforward programming task to translate the
algorithm into such a form. Since it requires the definition of a mechanism for
starting and aborting subprocesses, we will not bother to perform this translation.
We hope that our sample implementation of the simple algorithm will convince
the reader that a reasonably efficient implementation of the more complicated
general algorithm is also possible.

The Synchronization of Independent Processes 33

Conclusion

We have defined the general region primitive for synchronizing independent
processes. This primitive seems to permit simple solutions to those synchroniza-
tion problems which basically require the mutual exclusion of conflicting processes
from certain critical sections. Problems requiring explicit communication among
the processes will have more complicated solutions, and might benefit from
another primitive for exchanging messages. However, initially synchronizing the
communication will be a mutual exclusion problem. Once that has been solved,
designing the dialogue between processes is a straightforward matter .

We saw that the region primitive could be used to implement systems which
are insensitive to the failure of any individual process--assuming a reasonably
well-behaved form of process failure. An algorithm was then described which
showed tha t the primitive can be implemented with fairly minimal assumptions
about the nature of interprocess communication. This algorithm is also insensitive
to individual process failure, and can be implemented without too much busy
waiting. No detailed analysis of its efficiency was made because any real system
would probably allow stronger assumptions about interprocess communication,
thereby permitt ing a more efficient implementation. Our main purpose was to
show that a solution was possible even under weak assumptions.

If a system uses several independent hardware components, then one would
like it to continue to operate correctly despite the failure of any component.
Depending upon the application, "fai lure" might mean anything from physical
destruction to turning off for maintenance. By introducing the r e g i o n statement
and describing several applications of it, we hoped to show that this problem can
be approached from a general, high level language point of view. The algorithm
for the region s ta tement shows that this high level approach can actually be
implemented.

I t is more difficult to implement a true mult icomputer system than a multi-
process system for a single computer. The standard technique of simply disabling
interrupts at crucial times is no longer sufficient. (Observe tha t a monitor [7] is
just an elegant abstraction of this technique.) Careful proofs of correctness are
necessary if subtle, t ime-dependent errors are to be avoided. Writing such proofs
enabled us to discover errors in earlier versions of these algorithms.

Acknowledgement. This work has been influenced by several enjoyable and infor-
mative discussions with Robert Keller.

References
t. Brinch Hansen, P. : Concurrent programming concepts. Computing Surveys 5,

223-245 (t973)
2. Courtois, P. J., Heymans, F., Parnas, D. L. : Concurrent control with "Readers"

and "Writers". Comm. ACM 14, 667-668 (197t)
3. Dijkstra, E. W. : The structure of the " T H E " multiprogramming system. Comm.

ACM 11, 34t-346 (1968)
4. Dijkstra, E. W.: Cooperating sequential processes. In: Genuys, F. (ed.): Pro-

gramming Languages. New York: Academic Press 1968, p. 43-t12
5. Dijkstra, E. W. : Hierarchical ordering of sequential processes. Acta Inforrnatica

I, 115-138 (1971)

3 Acta Informati0a, Vol. 7

34 L. Lamport

6. Dijkstra, E. W. : Self-stabilizing systems in spite of distributed control. Comm.
ACM 17, 643-644 (1974)

7. Hoare, C. A. R.: A structured paging system. Computer J. 16, 209-214 (1973)
8. Lamport, L.: A new solution of Dijkstra's concurrent programming problem.

Comm. ACM 17, 453-455 (1974)
9. Lamport, L. : On concurrent reading and writing. To appear in Comm. ACM

10. Nilsen, R .N. (ed.): Distributed function computer architectures. Computer 7,
15-37 (1974)

Leslie Lamport
Massachusetts Computer
Associates, Inc.
26. Princess Street
Wakefield, Mass. 01880
USA

