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Introduction. Hamada [1] proved the following result about the pro­
pagation of singularities in the Cauchy problem for an analytic linear 
partial differential operator. Assume that the initial data are analytic at 
the point 0 except for singularities along a submanifold T of the initial 
surface containing 0. Let K(1\ • • •, K{m) be the characteristic surfaces of 
the operator emanating from T. Under the assumption that the K(i) have 
multiplicity one, he showed that the solution of the Cauchy problem is 
analytic at 0 except for logarithmic singularities along the K(i). We extend 
his result to the case where the K{i) have constant multiplicity. 

1. Definitions and theorem. Let Cn+1 denote the set of (n 4- l)-tuples 
x = (x°,. . . , xn) of complex numbers. Let S be an n-dimensional analytic 
submanifold of CM+1, and let T be an (n — l)-dimensional analytic sub-
manifold of S. Since our results are local, we can assume S = {(0, 
x1 , . . . ,x f ,)eCn + 1}andT = {(0,0, x2 , . . . ,x")eC" + 1}. 

Let Dt = d/dx\D = (D0 , . . . , D„), and let a:x -• a{x;D) be an analytic 
partial differential operator on a neighborhood of 0 in Cn+1. Let h(x;D) 
be the principal part of a(x ;D). We assume that S is not a characteristic 
surface of a at 0, so h(0 ; 1,0,..., 0) # 0. Let p = (p0, • • •, Pn) be an 
(n + l)-tuple of formal variables, so h(x ;p) is a homogeneous polynomial 
in p with analytic coefficients. 

We say that the operator a has constant multiplicity at 0 in the direction 
of Tif we can factor h as 

h(x;p) = [h1(x;p)r---[K(x;p)]k° 

for all x in a neighborhood of 0, where each ht(x \p) is a polynomial in 
p of degree mi with analytic coefficients, and the Zmf roots of the poly­
nomials ftf(0; T, 1,0,... ,0) in T are all distinct. If s = kx — 1, then a is 
said to be of multiplicity one at 0 in the direction of T. 

Assume now that a has constant multiplicity at 0 in the direction of 
T. It can be shown that we can find m = Zmf analytic characteristic 
functions cp{1\..., cpim) of h defined in a neighborhood N of 0 satisfying: 
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1. h(x;D q>{i\x)) = 0 for all xeN. 
2. ç>(0(0, x 1 , . . . , xn) = x1 for all (0, x 1 , . . . , xn) e JV n S. 
3. For each y e JV n S, the m numbers D0 cp{i)(y) are distinct. 
Note that this implies that the numbers D0 cp{i)(y) are the distinct roots 

of the polynomials h(y ; T, 1,0,..., 0) for each yeNnS. Let K(i) — 
{x:(p{i\x) = 0}, so each K(i) is a characteristic surface of a. 

Using these notations, we now state our result. 

THEOREM. Let a, JV, S, T, cpil) and K{i) be as above. Let v be an analytic 
function on JV, and let wj be an analytic function on N n(S — T)forj = 0, 
. . . , r — 1, where r is the degree of the operator a. Then there exists a 
neighborhood U ofO such that the Cauchy problem 

(1) a(x ; D)u(x) = i;(x), (DQMJO = ^(y), for y e S, j = 0, . . . , r - 1, 

has a solution u of the form 
m 

u(x) = X F(i)(x) + G(i)(x)log [<p(i\x)l 
; = i 

where each F(i) is analytic on U - K{i) and each G(i) is analytic on U. 

Hamada proved this result when a has multiplicity one. In this case, 
if each wj has at most a polar singularity along T, then each F{i) has at 
most a polar singularity along K(0. This is false in the general case, as is 
shown by the solution 

oo £ 1 t2k+l 

«a,y)=Zo(-l)fc
(-^TTy!7rr 

of the two-dimensional Cauchy problem 

d2u du / //x , du //x . 1 
â? ( t ' y)~Ty{u y) = ' u{ ' y ) = ' Sr( ' y ) = ? 

2. Method of proof. The problem is easily reduced to solving the 
Cauchy problem (1) with each wj = 0 and v analytic on JV — K{1\ It can 
be shown that we may also assume that h(x ;p) — hx(x ;p) • • • hs(x ;p), where 
each ht has multiplicity one in the direction of T and has <p(1),..., cp(m) 

as characteristic functions (so r = ms). 
Let the functions fk be the ones defined by Hamada satisfying dfjdt 

= f k _ ! , for all integers fc, and f0(t) = log t. The first step is to show that 
there exists a neighborhood V of 0 such that if v is of the form 

m oo 

(2) v(x) = I E « W A - i fo^*)], 
i = l fc=0 

with each i4f) analytic on V, then the Cauchy problem 
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ht(x ;D)u(x) = v(x\ (D0Yu(y) = 0, for y e S J = 0, . . . , m - 1, 

has a formal series solution of the form 
m ÖO 

with each u(
k
i} analytic on V. Moreover, bounds are obtained for the 

partial derivatives of the i4° in terms of those of the vf. This procedure is 
similar to the one used by Hamada. 

Employing this result 5 times shows that with v given by (2), the Cauchy 
problem 

hx(x ;D) hs(x ;D)u(x) « v(x% (Doyu(y) = 0, for y e S, ; = 0, . . . , r - 1, 

has a formal solution 
m oo 

u(x) = 1 1 4<>(x)A-1+,-s[<P(0(x)] 

with the w(# analytic on V. Again, bounds are obtained on the u(i}. 
Now we write a(x;D) = hx(x;D) • • • /is(x;D) + b(x;D\ where the 

degree of b is less than r. Using the above results, we solve the sequence 
of Cauchy problems 

(v(x) if<? = 0, 
hx(x;D)..-hJLx;D)jtx) = \ ' n^ J 1 

t -b(x;D), -^(x) if<?>0. 
(£o)>00 = 0, for j ; G SJ = 0, . . . , r - 1, 

to get 
f 3 \ m oo 
1 ' ,«(*) = S I X°(*)/*-«-*-»fo>(0(*)] 

with each qi4° analytic on K Then 

<? = o 

is easily seen to be a formal solution of (1) (with wj = 0). 
Now assume v(x) = ty(*)/~/[<p(1)(*)], with ^ analytic on K, and let the 

corresponding solution (4) be ut(x) = J J , x uj°(jc). Using the bounds on the 
€i4°, we can find a neighborhood W of 0 and demonstrate the absolute 
convergence of the sums (3) and (4) to prove that wj° is analytic on W — K{i\ 
Furthermore, we obtain a bound on u}° in terms of a bound on vt. 

Finally, we can write v(x) = £z°i t Vi(x)f-i[(p{i\x)] (plus an analytic term 
which is handled by the Cauchy-Kowalewski theorem). It can be shown 
that there is a neighborhood U of 0 such that the sums w(0(x) = £j*L x uf\x) 
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are absolutely convergent on U - K{i). It is then easily seen that the 
solution u(x) = YA=I w(l)(x) bas the desired form. 

3. Further generalizations. It is evident from the proof that the theorem 
remains valid if v has a singularity along any of the hypersurfaces K(i). 
The theorem is also true if v has a singularity on any hypersurface K 
containing T which is not tangent to S or to any K{i) at 0. 

By using different choices for the functions fk, the result can be ex­
tended to the case where the wj are p-valued analytic functions on 
N n(S — T)—i.e., multiple-valued functions finitely ramified about T— 
and v is a p-valued analytic function on N - K(i) or N - K. In this case, 
the F(0 become p-valued analytic functions on U — K{i). This result was 
also obtained by Wagschal [2] when a has multiplicity one. 
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