
R. Monahan, V. Prevosto, J. Proença (Eds.): Formal
Integrated Development Environment 2019 (F-IDE 2019)
EPTCS 310, 2019, pp. 50–62, doi:10.4204/EPTCS.310.6

c© M.A. Kuppe, L. Lamport & D. Ricketts
This work is licensed under the
Creative Commons Attribution License.

The TLA+ Toolbox

Markus Alexander Kuppe
Microsoft Research

makuppe@microsoft.com

Leslie Lamport
Microsoft Research

Daniel Ricketts
Oracle Corporation

dan.s.ricketts@gmail.com

We discuss the workflows supported by the TLA+ Toolbox to write and verify specifications. We
focus on features that are useful in industry because its users are primarily engineers. Two features
are novel in the scope of formal IDEs: CloudTLC connects the Toolbox with cloud computing to
scale up model checking. A Profiler helps to debug inefficient expressions and to pinpoint the source
of state space explosion. For those who wish to contribute to the Toolbox or learn from its flaws, we
present its technical architecture.

1 Introduction

The TLA+ Toolbox combines a set of (command-line) tools into an integrated development environment
(IDE). Its primary goal it to make TLA+ more widely used. To encourage the use of the Toolbox, the
Toolbox is made freely available. It is developed by an open-source community.1 Section 2 describes the
main Toolbox workflows by showing how the Simple spec is model-checked and mechanically verified
inside the Toolbox.2 Section 3 shifts the discussion to the architecture and test infrastructure of the
Toolbox. We conclude with outlining future engineering and research-related work.

1.1 Background

TLA+ is a high-level, math-based, formal specification language used at companies such as Amazon and
Microsoft to design, specify, and document systems [16]. A system is specified by formulas expressed in
the Temporal Logic of Actions [6, 8], a variant of Pnueli’s original linear-time temporal logic [18]. Data
structures are represented with Zermelo-Fränkel set theory with choice. TLA+ is an untyped language
and thus simpler and more expressive than programming languages [13]. Generating code is not in the
scope of TLA+. It is implementation language agnostic and meant to find bugs above the code level.
Further material about TLA+ is available [8, 9, 10, 12], but is not needed for what follows.

The underlying tools, with which to check and reason about TLA+ specs, are the explicit state model
checker TLC and the TLA+ proof system (TLAPS). While TLC is used to check a finite model of a spec,
TLAPS supports deductive reasoning about a spec with infinitely many reachable states [1, 21]. Other
TLA+ tools are a parser to syntactically and semantically check a spec (SANY), a translator to transpile
a PlusCal algorithm into TLA+, and a pretty-printer to render TLA+ with LATEX.

2 Toolbox Features

The main parts of the Toolbox are the Spec Explorer, spec editors, model editors, and a Trace Explorer.
The goal is to keep the interface simple and intuitive. Functionality not needed by beginning users is
initially hidden.

1https://github.com/tlaplus/tlaplus
2https://github.com/tlaplus/Examples/tree/master/specifications/TeachingConcurrency

http://dx.doi.org/10.4204/EPTCS.310.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://github.com/tlaplus/tlaplus
https://github.com/tlaplus/Examples/tree/master/specifications/TeachingConcurrency

M.A. Kuppe, L. Lamport & D. Ricketts 51

2.1 Spec Explorer

Figure 1: Spec Explorer show-
ing five TLA+ specifications.
The active Simple specification
consists of three modules and a
single model with two history
items.

The Toolbox can host multiple TLA+ specifications. A spec has a root
module, a set of additional modules and — optionally — a collection
of models. All specifications are accessible from the Spec Explorer
(figure 1), but users can work on only one spec at a time. Contrary
to most Eclipse-based IDEs, specs can be exported from and imported
into the Toolbox from the file system.

2.2 Spec Editor

A spec editor provides the usual commands that are helpful to cre-
ate and edit TLA+ modules. The editor can also generate and show a
pretty-printed version of the module. It shows annotations when SANY
finds parsing errors.

2.2.1 PlusCal

The PlusCal algorithm language is a formally defined and verifiable
pseudocode that is translated into TLA+ [9]. PlusCal resembles an im-
perative programming language and is especially well suited to express
sequential and shared-memory multithreaded algorithms. Neither the
TLA+ concept of refinement nor fine-grained fairness constraints can
be expressed in PlusCal.

A PlusCal algorithm and its TLA+ translation go in the same TLA+ module (figure 3). The editor
has a command to automatically translate a PlusCal algorithm into TLA+. Users can quickly navigate
to and from its TLA+ translation, which can help them understand the PlusCal code. Note that PlusCal
is designed to make the TLA+ translation easy to read. The exposure to TLA+ is intended to encour-
age users to learn TLA+. Also, as mentioned above, refinement and some fairness constraints can be
expressed only in the TLA+ translation.

Combining a PlusCal algorithm and its TLA+ translation into a single spec poses the risk that they
get out of sync unnoticed. To alleviate this problem, a TLC feature of the next Toolbox release will issue
a warning if a translation has become stale.3

As seen in figure 2, a spec editor provides templates for PlusCal expressions. The goal of templates
is not to speed up typing — specs are usually short — but to guide novice users by putting the syntactical
and semantic documentation of PlusCal expressions at their fingertips. The user experience also resem-
bles that of familiar programming IDEs, but the lack of types and type inference limits word completion
to the syntax level.

2.2.2 Proofs

TLA+ proofs are not written interactively but are constructed hierarchically [7]. Hierarchical proofs
enable a non-linear proof style: Individual steps of a proof can be checked independently of other steps.
Also, steps can be decomposed into simpler steps should TLAPS fail to prove the higher-level steps.

3https://github.com/tlaplus/tlaplus/issues/296

https://github.com/tlaplus/tlaplus/issues/296

52 The TLA+ Toolbox

Figure 2: Completion for PlusCal expressions. The syntax and semantics of expressions are shown as
well.

In figure 3 we see a hierarchical TLA+ proof where lower-level, proven steps have been collapsed.
The green color indicates steps that TLAPS proved successfully while red indicates steps that it failed
to prove. A failed step is additionally displayed in the logging part, showing exactly what TLAPS was
trying to prove (see the right-hand side of figure 3).

A wizard exists to decompose a step to be proved into a sequence of simpler steps, based on the
logical structure of the step. For example, a step asserting the conjunction of properties can be proved by
steps that each assert one of those properties. The wizard can add these steps as a lower level proof, and
they can be verified separately with TLAPS. [2].

TLAPS maintains a fingerprint of every proof obligation so that it does not need to re-prove previ-
ously verified obligations. A user tells TLAPS to forget fingerprints from the Toolbox.

Unlike TLC, which is part of the Toolbox, users have to manually install TLAPS. The Toolbox will
automatically find the TLAPS installation.

2.3 Model

TLAPS can verify specifications with an infinite set of possible states. The explicit-state model checker,
however, would never finish if a user tries to verify a spec with an infinite state space. A primary goal of
TLC is that the spec need not be modified to be checked. Instead, a TLC model restricts the spec’s state
space to a finite set of possible states by assigning concrete values to parameters and by stating additional
bounds. To gain higher confidence, users typically check a spec on many separate models.

The Toolbox represents a TLC model by a model part, which also contains settings for how TLC
should be executed. Seasoned users will tune these settings and define additional checks that TLC should
perform.

Contrary to the proof system (section 2.2), the Toolbox provides a structural representation of a
model by grouping related inputs into tabs and sections. To guide users, inputs are validated when
entered. Warnings and suggested fixes are placed next to the inputs. The model is kept in sync with
the spec so that relevant changes, for example the addition or removal of a constant, are automatically
reflected in the model.

A model is associated with its respective spec in the Spec Explorer. The Spec Explorer also maintains
a history of model checker runs, each history entry storing the model checking result and snapshots of
the spec’s modules (figure 1 and section 2.3.2). A user can compare modules, which for example will
remind her of the differences between long model checking runs.

M.A. Kuppe, L. Lamport & D. Ricketts 53

Figure 3: A (split) spec editor showing a PlusCal algorithm and related safety properties (left) as well as
its partially collapsed TLAPS proof (center). The <2>2 leaf step failed to prove (red). The right-hand
side displays the expanded hypothesis of the failed obligation.

A model is stored as an XML file in the file system, so it can be checked into a source code manage-
ment system. This way, the user can reproduce model checking runs.

2.3.1 CloudTLC

With CloudTLC users can shift from a primarily sequential model checking workflow to one where
any number of models can be checked concurrently. Additionally, CloudTLC scales up explicit-state
model checking to more powerful hardware. This way, design variants or competing optimizations can
be quickly explored in parallel. This can be used either to reduce overall specification time or to enable
a broader exploration of the design space.

CloudTLC provisions a set of cloud instances and runs TLC on them. If a user opted to run model
checking on multiple instances, CloudTLC starts TLC in distributed mode [4]. Upon completion of
model checking, CloudTLC instances terminate automatically after a grace period. If the user keeps the
Toolbox open, it will show model checking progress and final results. Alternatively, the Toolbox may
be disconnected at any time; CloudTLC sends the results to a user-provided email address in a format
that can be imported into the Toolbox. In other words, CloudTLC is completely transparent: Toolbox
features such as the Profiler or Trace Explorer (sections 2.3.3 and 2.3.4 below) work as if model checking
runs locally.

CloudTLC’s startup time is dominated by the time it takes an IaaS provider to spin-up instances. To
reduce startup time, subsequent model checker runs re-use previously provisioned instances unless they
have already terminated. CloudTLC can also be started by running the Toolbox in command-line mode.
This is useful for automation such as running the TLC performance test suite (section 3.2).

54 The TLA+ Toolbox

2.3.2 Results

The status and progress of TLC checking a model is shown on the results part. The results include the
start and end wall-clock time, the probability of an incomplete state space exploration due to distinct
states falsely being considered equivalent, as well as global state-graph and action-level statistics. State-
graph statistics are:

• Diameter : The depth that TLC has reached in its exploration of the state-graph

• Distinct States: The cardinality of the set of reachable vertices of the state-graph

• (Total) States: The number of states examined by TLC as part of model checking

The ratio of distinct to examined states approximates the degree of the state-graph. Action statistics
— further discussed in section 2.3.3 — are similar to global state-graph statistics, except that they are
reported at the level of individual TLA+ actions and the diameter is undefined.

Plots of some statistics can be shown that indicate the remaining model checking time.4 Furthermore,
a state-graph may be visualized graphically. However, this is possible only for small graphs due to
the inherent complexity of laying out directed graphs. The description of a graph can be exported to
specialized tools such as Cytoscape [20].

2.3.3 Profiler

Engineers primarily rely on model checking, not theorem proving, and they want to verify large models.
This makes them not only users of CloudTLC (section 2.3.1), but also of the Toolbox’s Profiler. Profiling
a TLA+ model and its spec produces four different types of data:

• Invocation count : The number of times a TLA+ expression is evaluated

• Cost : The number of operations performed to enumerate the elements of a set or sets, should
enumeration be required to evaluate an expression

• States/Action: The number of states a particular TLA+ action caused to be examined

• Distinct States/Action: The number of distinct states an action produced

We call the first two data types evaluation statistics and collect them at the global as well as at the call-
chain level. To explain their differences, we assume an identical, constant cost for all expressions. This
way, a user can identify the biggest contributor to overall model checking time simply by looking at the
number of invocations. However, some expressions require the model checker to explicitly enumerate
data structures for which costs are the quantitative measure: For example, let S be the set of natural
numbers from N to M such that N �M in the TLA+ expression ∀s ∈ SUBSETS : s ⊆ S . The cost
of evaluating the expression is determined by the number of operations required by TLC to enumerate
all the subsets in SUBSETS (the powerset of S). This expression will be a major contributor to model
checking time even if its number of invocations is low.

With action statistics, a user can pinpoint the source of state space explosion at the action level. To
explain their application, consider figure 4a, which is a deliberately inefficient TLA+ translation of the
Simple algorithm shown in figure 3. The enablement predicate on line 50 of action b, consisting of the
two expressions x [s] = 1 and y [s] = 0, has been globally invoked the most. Related, action b has been
found to produce 87 states of which only 29 are distinct (see hover help in figure 4b). In contrast, action
a is much more efficient in terms of its total states to distinct states ratio. This draws the user’s attention

4The cardinality of the set of unexplored states plotted over time looks like a parabola.

M.A. Kuppe, L. Lamport & D. Ricketts 55

(a) (b)

Figure 4: The editor highlights individual action and evaluation statistics. Red boxes indicate actions
that are never enabled and dead expressions. The hover help displays TLA+ action statistics. Clicking
the heatmap at the bottom selects the corresponding expression or action.

to the enablement predicate of action b, which is weaker compared to the predicate pc [s] = “a” of action
a . The enablement predicate of b is true of states for any value of pc. While this does not violate the
specification’s safety properties, changing the enablement predicate of b to pc [s] = “b” puts the ratio
of total to distinct states in the region of the same ratio of action a . It also corresponds to the regular
translation of the Simple algorithm. Additionally, the enablement of action d on line 54 is evaluated 153
times. Yet, the numbers of total and distinct states are zero as indicated by the red boxes. This suggests
that there is either an error in the spec, or else that the user can delete action d .

As shown in figure 4a and 4b, the Toolbox highlights expressions with colors chosen from a one-
dimensional heatmap based on an expressions’ corresponding evaluation statistic. Expressions with the
highest number of invocations will be highlighted with a red color whereas those with no invocations will
be dark blue. The heatmap appears as a legend at the bottom of the editor and reveals the corresponding
editor location when clicked. Users can switch what the highlighting is based on between invocation
counts, costs, and the number of examined or distinct states. Additionally, users focus on a single call-
chain when they select an expression in the editor.

In summary, the Profiler makes different kinds of inefficiencies explicit. For those inefficiencies
related to the evaluation of expressions, the model provides a way for users to override TLA+ operators
with more efficient variants. An even more extreme optimization is to override TLA+ operators with
equivalent Java functions. Action statistics expose weaknesses in enablement predicates or spec errors.

The Profiler requires neither the specification nor the model to be modified to collect statistics. How-
ever, profiling has a non-negligible performance overhead and should be disabled when checking large
models. Profiling is unavailable when TLC runs in distributed mode.

56 The TLA+ Toolbox

2.3.4 Trace Explorer

Figure 5: A trace of a violated liveness property
(trace expressions in bold). The definitions of three
trace expressions are shown above the trace. The
expanded state shows the values of all variables and
trace expressions for state number five.

Should model checking find a violation of any of
the stated safety or liveness properties, the corre-
sponding error trace will be displayed in the Trace
Explorer as shown in figure 5. An error trace is a
sequence of states, and a state is an assignment of
values to variables.

The Trace Explorer colors the variables of a
state that have changed from the predecessor state.
Navigating from a state in the trace to the location
in the editor of the corresponding TLA+ action
(and if applicable, the corresponing PlusCal ex-
pression) is also supported. The Trace Explorer
can handle traces with thousands of states.

To study traces, the Trace Explorer supports
the evaluation of trace expressions. A trace ex-
pression can be a function of a state or a pair
of successive states [6, p. 4-5]. A trace expres-
sion may optionally be named to facilitate expres-
sion composition. A trace expression may be built
from all operators in the scope of the root module.
In addition, two built-in operators are available:

TEPosition Equal to the position of the corre-
sponding state in the error trace

TETrace A TLA+ sequence of states such that
TETrace[TEPosition] equals the state

at position TEPosition in the error trace

Note that these operators increase the expressive-
ness of trace expressions such that they can be
formed from the collection of variables of all
states of the trace. For example, trace expressions
can compare the values of variables of two or
more arbitrary states (see trace variables Clock,
Process, X, and Y in figure 5 and listing 1).
Users can write such expressions to format traces
that can be directly copied to third-party tools
[5]. Internally, the Toolbox evaluates trace expres-
sions by generating a special TLA+ module that
is checked by using the functionality discussed in
section 3.1.

M.A. Kuppe, L. Lamport & D. Ricketts 57

3 Toolbox Architecture

We are trying to make the Toolbox an industrial strength integrated development environment with sup-
port for all aspects of writing TLA+ specs. If possible, features are implemented at the back-end layer
to satisfy command-line aficionados, to support re-use, and to integrate with automation. Features not
core to TLA+, such as visualizations of the state-graph and error traces, are left to specialized third-party
tools to which relevant information is exported in compatible data formats.

To attract a wide range of users, the Toolbox is compatible with the three most common operating
systems: macOS, Windows, and Linux. The Toolbox requires no external dependencies except to gener-
ate PDFs. Primarily, this is because the Toolbox is written in Java and built on the Eclipse Rich Client
Platform (RCP) [15]. RCP provides a number of IDE features such as a help system, a desktop notifica-
tion system, and an update manager. RCP also defines usability guidelines and best practices that, while
not always applicable to a formal integrated development environment, help enforce a consistent user
experience. Others can add functionality by contributing extensions and OSGi services [14].

Building the Toolbox on top of RCP is not without drawbacks. RCP follows a quarterly release
schedule. Upgrading the Toolbox to a new RCP release frequently leads to subtle bugs that are not
detected by our tests. The rate at which macOS, Windows, and Linux innovate forces us to upgrade.
This causes significant manual work.

The Spec Explorer (section 2.1) is the primary interface to work with specs. However, users can also
create, move, or modify files at the OS level. This feature causes many incompatibilities and bugs, since
RCP wants files to be modified through its file system abstraction. As a result, the Spec Explorer and
editors get out of sync with the actual files. In hindsight, file operations should have been restricted to
the Toolbox or proper support should have been added to RPC; the workarounds at the Toolbox layer
continue to cause bugs.

Throughout the development of the Toolbox, it has become clear that RCP has to be considered a
whitebox component. In other words, projects built on top of RCP have to accept the burden of co-
ownership and contribute to its development.

3.1 Back-end integration

For latency reasons, the short-lived lightweight TLA+ tools such as the SANY parser, the PlusCal trans-
lator, and the pretty-printer are executed as part of the Toolbox process. Extending this functionality is
possible only via extensions and OSGi services, as discussed in section 3. However, the heavyweight
model checker and proof system spawn as separate processes. There are three reasons to spawn separate,
per-invocation processes:

• A back-end cannot be executed in-process because it is implemented in a language that cannot
execute on the Java VM. This is true for TLAPS, which is written in OCaml.

• Process separation acts as a circuit breaker; a crash of either a back-end or the Toolbox does not
interfere with the other process. For example, we do not want a Toolbox crash to also crash a
long-running model checker run. This safeguard is especially important while a back-end matures.

• The Java VM’s runtime parameters are fixed after Toolbox startup. Running a back-end as part of
the Toolbox causes the back-end to inherit the Toolbox’s parameters. The resource requirements
of back-ends are usually different from those of the Toolbox — for example, model checkers have
very high resource requirements (section 2.3.1).

58 The TLA+ Toolbox

3.1.1 Toolbox to Back-end

The Toolbox relies on an RCP framework to provide user-visible progress reports and cancellation sup-
port for the back-ends that it spawns.5 For that, back-ends have to implement an adapter that sets
command-line parameters. The primary parameters include the path to the TLA+ spec. In addition,
parameters may include performance-specific settings such as the number of cores a back-end may use.

The Toolbox serializes a subset of the model into a plain-text configuration file (section 2.3). This file
contains the TLA+ behavior spec as well as the invariants and properties to be checked. It also includes
definitions for all declared constants. Optionally, it may contain definition and operator overrides as well
as state and action constraints. The configuration is not specific to TLC and is therefore reusable by other
back-ends.

3.1.2 Back-end to Toolbox

The Toolbox parses back-end progress and results with a framework that is connected to the Toolbox UI
via the Model-View-Presenter (MVP) design pattern.6

1" @@ 3 :> "a" @@ 4 :> "a")
2@!@!@ENDMSG 2217 @!@!@
3@!@!@STARTMSG 2217:4 @!@!@
45: <next_action line 175, col 3 to line 209, col 2 of module TE>
5/\ X = 1
6/\ Y = 0
7/\ Process = 2
8/\ Clock = "{\"0\":1 , \"1\":2 , \"2\":1}"
9/\ x = (0 :> 1 @@ 1 :> 1 @@ 2 :> 1)
10/\ y = (0 :> 0 @@ 1 :> 1 @@ 2 :> 0)
11/\ pc = (0 :> "b" @@ 1 :> "Done" @@ 2 :> "b")
12@!@!@ENDMSG 2217 @!@!@
13@!@!@STARTMSG 2217:4 @!@!@
146: <next_action line 220, col 3 to line 254, col 2 of module TE>
15/\ X =

Listing 1: A chunk of TLC back-end output containing a single multi-line statement (line 4 to 11). The
statement encodes a state (constant 2217:4) and corresponds to the expanded state shown in figure 5.

A back-end specific parser has to read a stream of back-end output that can consist of variably sized
chunks of incomplete print statements. For efficiency reasons — error traces occasionally contain thou-
sands of states — and to simplify the implementation, parsing is based on special tokens and constants
that wrap the output. Parsing is performed in three stages:

1. It buffers chunks of characters into lines separated by a newline character

2. It identifies the lines that belong to a multi-line statement with the help of special tokens

3. It de-serializes a multi-line statement into Java objects via MVP

Listing 1 shows an example of a multi-line statement. In some cases, such as when error traces are
serialized, the multi-line statement is partially formatted to be valid TLA+.

In summary, the back-end integration is at a low enough level to free back-ends from providing high-
level interfaces such as a REST API. Instead, a back-end’s existing text-based IO can be reused. The

5https://www.eclipse.org/articles/Article-Concurrency/jobs-api.html
6https://en.wikipedia.org/wiki/Model-view-presenter

https://www.eclipse.org/articles/Article-Concurrency/jobs-api.html
https://en.wikipedia.org/wiki/Model-view-presenter

M.A. Kuppe, L. Lamport & D. Ricketts 59

flexibility of this low-level integration comes at a price: the lack of compile-time validation makes the
evolution of back-ends more difficult. For the model checker, this problem is alleviated by following
a synchronized release schedule. However, the evolution is still error-prone and requires significant
testing of the back-end and the Toolbox (section 3.2). Performance problems, related to parsing large
outputs, require low-level implementation optimizations. The maturity of the TLAPS back-end means
that its inputs and outputs seldom change. The Toolbox does not support graceful back-end termination
because the integration makes this impossible. Instead, the Toolbox could control TLC via its existing
Java Management Extension [17].

3.1.3 CloudTLC Back-end

CloudTLC has been implemented directly as part of the Toolbox (section 2.3.1 above). CloudTLC is built
on top of the frameworks discussed in section 3.1 and a multi-cloud toolkit that provides an abstraction
from individual IaaS providers.7 The sequence diagram in figure 6 shows the interaction between the
building blocks of CloudTLC:

Deploy The Toolbox queries the chosen IaaS provider via https for specifically tagged CloudTLC in-
stances. If the query result is empty, the Toolkit requests the IaaS provider to launch the given
number of instances. If it is non-empty, the Toolbox starts the returned instances and skips the
next provisioning phase.

Provision The Toolbox configures the stock OS and installs dependencies of the model checker. Au-
thentication credentials, needed by later phases of CloudTLC, are copied from the Toolbox’s envi-
ronment variables. The provisioning phase directly communicates with each instance via ssh.

Launch The Toolbox copies the spec and the model to the instance and starts the model checker. The
model checker continuously streams its output to the local Toolbox. TLC also sends the result to a
user-provided email address.

Terminate The instance will wait for a grace period for subsequent connection attempts. Afterwards,
it terminates itself if and only if email delivery has succeeded in the previous phase. Some IaaS
providers require the termination request to be authenticated, in which case the previously men-
tioned credentials are used.

Because the hardware specifications of cloud instances are known during development, the model checker
can be optimally deployed and configured. For example, the OS and TLC runtime parameters are hard-
coded. CloudTLC has been implemented for TLC, but it can be easily extended to new back-ends.
Likewise, it currently supports only Microsoft Azure, Amazon AWS, and Packet Net. Support for other
IaaS providers is possible because of the multi-cloud toolkit.

3.2 Testing

The Toolbox development follows a combination of the test-driven and the test-last methodologies. UI
tests are written by Toolbox developers and dedicated test engineers. A test suite of 178 unit, functional,
and end-to-end tests validates the main workflows of the Toolbox. However, the tests do not cover
TLAPS. Dedicated test suites exist for the model checker and the proof system.

7https://jclouds.apache.org/

https://jclouds.apache.org/

60 The TLA+ Toolbox

Toolbox Toolkit IaaS Instance Inbox

Deploy
Start instancehttps

IPhttps

Provision
Script, Config, Authssh

ackssh

Launch
TLC , Spec, Model ssh

Model-Check

Progressssh

Chunks

Resultssh

Chunks
Resultsmtp

Terminate
Authhttps

Import

Result

Figure 6: Sequence diagram of the Toolbox running
CloudTLC. Message labels show the logical payload and
subscripts indicate the communication protocol. For sim-
plicity, the deploy phase shows CloudTLC executing with
a single instance.

The Toolbox’s test execution is fully au-
tomated and runs on macOS, Linux, and
Windows as part of the automated build.
Builds are executed by a continuous integra-
tion system. While test results do not get
published, the build output of the continuous
integration system is publicly available.8 A
test suite of user-provided, real-world spec-
ifications continuously checks the perfor-
mance of TLC executed with CloudTLC.
Overall, the test suites provide a use-
ful safety measure to catch functional and
performance-related regressions early in the
development life-cycle.

4 Conclusion

Toolbox users write, model check, and de-
ductively reason about TLA+ specs. The
Toolbox has two features, which formal
IDEs usually do not provide:

• CloudTLC connects the TLA+ Tool-
box with cloud computing to enable
users to check larger models and to ex-
plore the design space faster

• The Profiler assists users in identifying
computationally expensive TLA+ ex-
pressions and to diagnose state space
explosion

The discussion of its architecture and test in-
frastructure should enable others to add new
Toolbox features and will hopefully inspire
the development of more formal IDEs.

Whether or not the Toolbox can be
considered successful in making the TLA+

specification language more widely used is
difficult to answer.9 Its previous release has
been downloaded approximately 20k times whereas the standalone model checker has seen one-tenth of
this number. The Toolbox has users at companies such as Amazon and Microsoft and it has an active
community of contributors.

8https://nightly.tlapl.us/
9The Toolbox asks users to share TLC executions statistics and to identify Toolbox installations.

https://nightly.tlapl.us/

M.A. Kuppe, L. Lamport & D. Ricketts 61

5 Future Work

Proofs The main challenge in writing an invariance proof is finding the inductive invariant. Trying to
prove an invalid inductive invariant wastes a lot of time. Model checking is useful to validate inductive
invariant candidates despite the enormous state space attached to it [11]. The trick is to randomly select
and check a subset of all type-correct initial states. With this approach, repeated model checking finds
violations with high probability after only a few runs. However, the Toolbox does not aggregate the
results of repeated model checking.

Taming state space explosion by randomly selecting subsets of all reachable states is also useful to
validate for model checking lower-level proof steps [12]. The Toolbox should provide help for doing
this.

Profiler Engineers have expressed interest in overriding inefficient expressions with Java functions.
This is not easy to set up, especially for users unfamiliar with Java. Besides the setup of overrides, it is
an open question how users can assert the equivalence of Java functions with the TLA+ expression it is
overriding.

Trace Exploration The Trace Explorer is good for finding the source of an error, but its textural rep-
resentation is not very good for understanding the dynamics of a system. Schultz pioneered a graphical
trace animator that visualizes traces at the level of the problem domain [19]. The layout is specified in
TLA+, so users need not learn a new visualization language. The next Toolbox release will incorporate
this graphical trace animator.

Back-ends Konnov et al. built a symbolic model checker for TLA+, the results of which are encour-
aging [3]. We wish to integrate this model checker into the Toolbox as a new back-end. However, the
symbolic model checker requires users to provide type information when its type inference fails. How
the Toolbox can help users to work with types is unclear. Note that the type inference of the symbolic
checker could also be used to provide a more powerful completion support in the spec editor.

Acknowledgement

The development of the TLA+ Toolbox is a joint effort of INRIA and Microsoft Research. Simon
Zambrovski wrote and maintained the initial version of the Toolbox. The reviewers provided useful
comments and suggestions.

References
[1] Kaustuv C. Chaudhuri, Damien Doligez, Leslie Lamport & Stephan Merz (2008): A TLA+ Proof System.

arXiv:0811.1914 [cs]. Available at http://arxiv.org/abs/0811.1914.
[2] Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel Ricketts & Hernán Vanzetto

(2012): TLA+ Proofs. arXiv:1208.5933 [cs], doi:10/dgpd. Available at http://arxiv.org/abs/1208.
5933.

[3] Igor Konnov, Jure Kukovec & Thanh-Hai Tran (2019): TLA+ Model Checking Made Symbolic. Proceedings
of the ACM on Programming Languages 3(OOPSLA), pp. 1–30, doi:10.1145/3360549. Available at http:
//dl.acm.org/citation.cfm?doid=3366395.3360549.

[4] Markus Alexander Kuppe (2014): Distributed TLC. Available at http://tla2014.loria.fr/slides/
kuppe.pdf. (Accessed 2016-09-06).

http://arxiv.org/abs/0811.1914
http://dx.doi.org/10/dgpd
http://arxiv.org/abs/1208.5933
http://arxiv.org/abs/1208.5933
http://dx.doi.org/10.1145/3360549
http://dl.acm.org/citation.cfm?doid=3366395.3360549
http://dl.acm.org/citation.cfm?doid=3366395.3360549
http://tla2014.loria.fr/slides/kuppe.pdf
http://tla2014.loria.fr/slides/kuppe.pdf

62 The TLA+ Toolbox

[5] Markus Alexander Kuppe (2019): Visualizing TLA+ Toolbox Error Traces with ShiViz. Available at https:
//github.com/tlaplus/tlaplus/issues/267#issuecomment-481951259.

[6] Leslie Lamport (1994): The Temporal Logic of Actions. ACM Transactions on Programming Languages
and Systems 16(3), pp. 872–923, doi:10.1145/177492.177726. Available at http://portal.acm.org/
citation.cfm?doid=177492.177726.

[7] Leslie Lamport (1995): How to Write a Proof. The American mathematical monthly 102(7), pp. 600–608,
doi:10.2307/2974556. Available at http://www.jstor.org/stable/2974556.

[8] Leslie Lamport (2003): Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley, Boston.

[9] Leslie Lamport (2009): The PlusCal Algorithm Language. In Martin Leucker & Carroll Morgan, editors:
Theoretical Aspects of Computing - ICTAC 2009, 5684, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
36–60, doi:10/dcd6gv. Available at http://link.springer.com/10.1007/978-3-642-03466-4_2.

[10] Leslie Lamport (2012): How to Write a 21st Century Proof. Journal of Fixed Point Theory and Applications
11(1), pp. 43–63, doi:10.1007/s11784-012-0071-6. Available at http://link.springer.com/10.1007/
s11784-012-0071-6.

[11] Leslie Lamport (2018): Using TLC to Check Inductive Invariance. Available at http://lamport.
azurewebsites.net/tla/inductive-invariant.pdf. (Accessed 2018-08-16).

[12] Leslie Lamport (2019): Proving Safety Properties. Available at https://lamport.azurewebsites.net/
tla/proving-safety.pdf.

[13] Leslie Lamport & Lawrence C. Paulson (1999): Should Your Specification Language Be Typed. ACM Trans-
actions on Programming Languages and Systems 21(3), pp. 502–526, doi:10.1145/319301.319317. Available
at http://portal.acm.org/citation.cfm?doid=319301.319317.

[14] D. Marples & P. Kriens (Dec./2001): The Open Services Gateway Initiative: An Introductory Overview.
IEEE Communications Magazine 39(12), pp. 110–114, doi:10.1109/35.968820. Available at http://
ieeexplore.ieee.org/document/968820/.

[15] Jeff McAffer, Jean-Michel Lemieux & Chris Aniszczyk (2010): Eclipse Rich Client Platform, 2nd ed edition.
The Eclipse Series, Addison-Wesley, Upper Saddle River, NJ. OCLC: ocn262433527.

[16] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker & Michael Deardeuff (2015):
How Amazon Web Services Uses Formal Methods. Communications of the ACM 58(4), pp. 66–73,
doi:10.1145/2699417. Available at http://dl.acm.org/citation.cfm?doid=2749359.2699417.

[17] J. Steven Perry (2002): Java Management Extensions, 1st ed edition. O’Reilly, Beijing ; Cambridge [Mass.].
[18] Amir Pnueli (1977): The Temporal Logic of Programs. IEEE, pp. 46–57, doi:10.1109/SFCS.1977.32. Avail-

able at http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4567924.
[19] William Schultz (2018): An Animation Module for TLA+. Available at https://easychair.org/

smart-slide/slide/8V76#.
[20] P. Shannon (2003): Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction

Networks. Genome Research 13(11), pp. 2498–2504, doi:10.1101/gr.1239303. Available at http://www.
genome.org/cgi/doi/10.1101/gr.1239303.

[21] Yuan Yu, Panagiotis Manolios & Leslie Lamport (1999): Model Checking TLA+ Specifications. In Ger-
hard Goos, Juris Hartmanis, Jan van Leeuwen, Laurence Pierre & Thomas Kropf, editors: Correct Hard-
ware Design and Verification Methods, 1703, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 54–66,
doi:10/fr3fsd. Available at http://link.springer.com/10.1007/3-540-48153-2_6.

https://github.com/tlaplus/tlaplus/issues/267#issuecomment-481951259
https://github.com/tlaplus/tlaplus/issues/267#issuecomment-481951259
http://dx.doi.org/10.1145/177492.177726
http://portal.acm.org/citation.cfm?doid=177492.177726
http://portal.acm.org/citation.cfm?doid=177492.177726
http://dx.doi.org/10.2307/2974556
http://www.jstor.org/stable/2974556
http://dx.doi.org/10/dcd6gv
http://link.springer.com/10.1007/978-3-642-03466-4_2
http://dx.doi.org/10.1007/s11784-012-0071-6
http://link.springer.com/10.1007/s11784-012-0071-6
http://link.springer.com/10.1007/s11784-012-0071-6
http://lamport.azurewebsites.net/tla/inductive-invariant.pdf
http://lamport.azurewebsites.net/tla/inductive-invariant.pdf
https://lamport.azurewebsites.net/tla/proving-safety.pdf
https://lamport.azurewebsites.net/tla/proving-safety.pdf
http://dx.doi.org/10.1145/319301.319317
http://portal.acm.org/citation.cfm?doid=319301.319317
http://dx.doi.org/10.1109/35.968820
http://ieeexplore.ieee.org/document/968820/
http://ieeexplore.ieee.org/document/968820/
http://dx.doi.org/10.1145/2699417
http://dl.acm.org/citation.cfm?doid=2749359.2699417
http://dx.doi.org/10.1109/SFCS.1977.32
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4567924
https://easychair.org/smart-slide/slide/8V76#
https://easychair.org/smart-slide/slide/8V76#
http://dx.doi.org/10.1101/gr.1239303
http://www.genome.org/cgi/doi/10.1101/gr.1239303
http://www.genome.org/cgi/doi/10.1101/gr.1239303
http://dx.doi.org/10/fr3fsd
http://link.springer.com/10.1007/3-540-48153-2_6

	1 Introduction
	1.1 Background

	2 Toolbox Features
	2.1 Spec Explorer
	2.2 Spec Editor
	2.2.1 PlusCal
	2.2.2 Proofs

	2.3 Model
	2.3.1 CloudTLC
	2.3.2 Results
	2.3.3 Profiler
	2.3.4 Trace Explorer

	3 Toolbox Architecture
	3.1 Back-end integration
	3.1.1 Toolbox to Back-end
	3.1.2 Back-end to Toolbox
	3.1.3 CloudTLC Back-end

	3.2 Testing

	4 Conclusion
	5 Future Work

