```
The bakery algorithm originally appeared in:
    Leslie Lamport A New Solution of Dijkstra's Concurrent Programming Problem Communica-
    tions of the ACM 17, 8 (August 1974), 453-455
The code for the algorithm given in that paper is :
```

```
begin integer j;
```

begin integer j;
L1: choosing [i] := 1 ;
L1: choosing [i] := 1 ;
number[i] := 1 + maximum (number[1],..., number[N]);
number[i] := 1 + maximum (number[1],..., number[N]);
choosing[i] := 0;
choosing[i] := 0;
for j = 1 step l until N do
for j = 1 step l until N do
begin
begin
L2: if choosing[j] /= 0 then goto L2;
L2: if choosing[j] /= 0 then goto L2;
L3: if number[j] /= 0 and (number [j], j) < (number[i],i)
L3: if number[j] /= 0 and (number [j], j) < (number[i],i)
then goto L3;
then goto L3;
end;
end;
critical section;
critical section;
number[i] := 0;
number[i] := 0;
noncritical section;
noncritical section;
goto L1 ;
goto L1 ;
end

```
end
```

What makes the bakery algorithm interesting is that it doesn't assume that reading or writing a memory register is an atomic operation. Instead it assumes safe registers, which ensure only that a read that doesn't overlap a write obtains the current value of the register, but allows a read that overlaps a write to obtain any value of the correct type. This is modeled in TLA+ by letting the read be atomic but having a write operation perform a sequence of atomic writes of arbitrary type-correct values before atomically writing the desired value. (Only the shared registers number $[i]$ and choosing $[i]$ need be to be modeled in this way; operations to a process's local variables can be taken to be atomic.)
This PlusCal version of the Atomic Bakery algorithm is one in which variables whose initial values are not used are initialized to particular type-correct values. If the variables were left uninitialized, the PlusCal translation would initialize them to a particular unspecified value. This would complicate the proof because it would make the type-correctness invariant more complicated, but it would be more efficient to model check. We could write a version that is more elegant and easy to prove, but less efficient to model check, by initializing the variables to arbitrarily chosen type-correct values.
Extends Naturals, TLAPS
We first declare N to be the number of processes, and we assume that N is a natural number.
CONSTANT N
ASSUME $N \in N a t$
We define Procs to be the set $\{1,2, \ldots, N\}$ of processes.
Procs $\triangleq 1 \ldots N$
\prec is defined to be the lexicographical less-than relation on pairs of numbers.
$a \prec b \triangleq \vee a[1]<b[1]$

$$
\vee(a[1]=b[1]) \wedge(a[2]<b[2])
$$

** this is a comment containing the PlusCal code *

```
--algorithm Bakery
{ variables num = [i\in Procs }\mapsto0], flag = [i\in Procs \mapsto FALSE]
    fair process ( }p\in\mathrm{ Procs )
        variables unchecked = {}, max = 0, nxt =1;
        { ncs:- while ( TRUE )
            { e1: either { flag[self]:= \negflag[self];
                goto e1}
    or { flag[self]:= TRUE;
                                unchecked := Procs \{self };
                                max := 0
                            } ;
    e2: while ( unchecked }\not={}
        { with ( i f unchecked )
            { unchecked := unchecked \{i};
                        if ( num[i]> max ) { max := num[i] }
                }
        } ;
            e3: either { with ( k\inNat ) { num[self]:=k } ;
                goto e3 }
    or { with (i\in{j\inNat:j>\operatorname{max}})
                        { num[self]:=i}
                    } ;
        e4: either { flag[self]:= \negflag[self];
                goto e4 }
    or { flag[self]:= FALSE;
                unchecked := Procs \{self }
                } ;
            w1: while ( unchecked }\not={}
        { with ( i unchecked ) {nxt:=i } ;
            await \negflag[nxt];
        w2: await \vee num [nxt]=0
                        \vee \num[self], self }\rangle\prec\langlenum[nxt],nxt\rangle
            unchecked := unchecked \{nxt};
        } ;
        cs: skip; the critical section;
        exit: either { with ( k\inNat ) { num[self]:=k} ;
                        goto exit }
        or { num[self]:=0 }
            }
        }
}
*** this ends the comment containg the pluscal code *********
BEGIN TRANSLATION (this begins the translation of the PlusCal code)
VARIABLES num, flag, pc, unchecked, max, nxt
```

```
vars \(\triangleq\langle n u m\), flag, pc, unchecked, max, nxt \(\rangle\)
ProcSet \(\triangleq\) (Procs)
Init \(\triangleq\) Global variables
    \(\wedge\) num \(=[i \in\) Procs \(\mapsto 0]\)
    \(\wedge\) flag \(=[i \in\) Procs \(\mapsto\) FALSE \(]\)
    Process \(p\)
    \(\wedge\) unchecked \(=[\) self \(\in\) Procs \(\mapsto\{ \}]\)
    \(\wedge\) max \(=[\) self \(\in\) Procs \(\mapsto 0]\)
    \(\wedge\) nxt \(=[\) self \(\in\) Procs \(\mapsto 1]\)
    \(\wedge p c=[\) self \(\in\) ProcSet \(\mapsto\) "ncs"]
\(n c s(s e l f) \triangleq \wedge p c[s e l f]=\) "ncs"
    \(\wedge p c^{\prime}=[p c \operatorname{EXCEPT}![s e l f]=" e 1 "]\)
    \(\wedge\) unchanged 〈num, flag, unchecked, max, nxt〉
\(e 1(s e l f) \triangleq \wedge p c[s e l f]=" e 1 "\)
    \(\wedge \vee \wedge\) flag \(^{\prime}=[\) flag EXCEPT \(![s e l f]=\neg f l a g[\) self \(]]\)
                \(\wedge p c^{\prime}=[p c \operatorname{EXCEPT}![s e l f]=\) "e1"]
                \(\wedge\) UnChanged 〈unchecked, max〉
            \(\vee \wedge\) flag \(^{\prime}=[\) flag EXCEPT \(![s e l f]=\) TRUE \(]\)
                \(\wedge\) unchecked' \(=[\) unchecked ExCEPT ! [self \(]=\) Procs \(\backslash\{\) self \(\}]\)
                \(\wedge \max ^{\prime}=[\) max EXCEPT \(![\) self \(]=0]\)
                \(\wedge p c^{\prime}=[p c \operatorname{EXCEPT}![s e l f]=\) "e2" \(]\)
            \(\wedge\) Unchanged \(\langle n u m, n x t\rangle\)
\(e 2(\) self \() \triangleq \wedge p c[s e l f]=" e 2 "\)
    \(\wedge\) IF unchecked \([\) self \(] \neq\{ \}\)
                then \(\wedge \exists i \in\) unchecked[self]:
                            \(\wedge\) unchecked \(^{\prime}=[\) unchecked EXCEPT \(![\) self \(]=\) unchecked \([\) self \(] \backslash\{i\}]\)
                            \(\wedge\) IF \(n u m[i]>\max [s e l f]\)
                            THEN \(\wedge\) max \(^{\prime}=[\) max EXCEPT \(![s e l f]=n u m[i]]\)
                        else \(\wedge\) true
                                    \(\wedge \max ^{\prime}=\max\)
                                    \(\wedge p c^{\prime}=[p c\) EXCEPT \(![s e l f]=" e 2 "]\)
                ELSE \(\wedge p c^{\prime}=[p c\) EXCEPT \(![s e l f]=" e 3 "]\)
                \(\wedge\) UNCHANGED 〈unchecked, max〉
    \(\wedge\) UnChanged \(\langle n u m\), flag, \(n x t\rangle\)
\(e 3(\) self \() \triangleq \wedge p c[\) self \(]=" e 3 "\)
        \(\wedge \vee \wedge \exists k \in\) Nat :
            \(n u m^{\prime}=[\) num EXCEPT \(![\) self \(]=k]\)
                \(\wedge p c^{\prime}=[p c \operatorname{EXCEPT}![s e l f]=" e 3 "]\)
            \(\vee \wedge \exists i \in\{j \in\) Nat \(: j>\max [\) self \(]\}:\)
            \(n u m^{\prime}=[\) num EXCEPT \(![s e l f]=i]\)
                \(\wedge p c^{\prime}=[p c \operatorname{EXCEPT}![s e l f]=" e 4 "]\)
```

```
    ^ UNCHANGED <flag, unchecked, max, nxt\rangle
e4(self )}\triangleq\pc[self ]="e4
    \wedge \ \lag' = [flag EXCEPT ![self]=\negflag[self]]
        \wedgec\mp@subsup{c}{}{\prime}=[pc EXCEPT ![self]="e4"]
        ^ UNCHANGED unchecked
            \vee ^ flag' = [flag EXCEPT ![self] = FALSE ]
                unchecked'}=[\mathrm{ unchecked EXCEPT ![self] = Procs \{self }]
            \wedge p\mp@subsup{c}{}{\prime}=[pc EXCEPT ![self] = "w1"]
    ^ UNCHANGED <num, max, nxt\rangle
w1(self )}\triangleq\wedgepc[self]="w1
    \ IF unchecked [self ] }={
        THEN }\wedge\existsi\inunchecked[self]
            nxt}\mp@subsup{}{}{\prime}=[nxt EXCEPT ![self]=i
            \wedge\negflag[nxt'[self]]
            \wedge c' }=[pc EXCEPT ![self]="w2"
            ELSE }\wedgep\mp@subsup{c}{}{\prime}=[pc EXCEPT ![self]="cs"
                    \wedgent'}=nx
    ^ UNCHANGED <num, flag, unchecked, max\rangle
w2(self )}\triangleq\wedgepc[self]="w2"
    \wedge \vee num[nxt[self]] = 0
        \vee \num[self], self }\rangle\prec\langlenum[nxt[self]], nxt[self]
    unchecked}\mp@subsup{}{}{\prime}=[\mathrm{ unchecked EXCEPT ![self]= unchecked [self]\{nxt[self]}]
    \wedge p\mp@subsup{c}{}{\prime}=[pc EXCEPT ![self] = "w1"]
    ^ UNCHANGED <num, flag, max, nxt\rangle
cs(self )}\triangleq\wedgepc[self]="cs
    \ TRUE
    \wedge p\mp@subsup{c}{}{\prime}=[pc EXCEPT ![self]= "exit"]
    ^ UNCHANGED <num, flag, unchecked, max, nxt\rangle
exit (self )}\triangleq\wedge \c[self ]="exit"
    \wedge ^ ` k \inNat:
        num'}=[\mathrm{ num EXCEPT ![self ] = k]
            \wedge p\mp@subsup{c}{}{\prime}=[pc EXCEPT ![self]="exit"]
            \vee ^num' = [num EXCEPT ![self] = 0]
            \wedge p\mp@subsup{c}{}{\prime}=[pc EXCEPT ![self] = "ncs"]
            ^ UNCHANGED <flag, unchecked, max, nxt\rangle
p(self )}\triangleqncs(self)\veee1(self)\veee2(self ) \veee3(self) \vee e4(self
            \veew1(self)}\veew2(self)\veecs(self)\vee exit(self
Next \triangleq(\exists\mathrm{ self }\in\mathrm{ Procs : p(self )})
Spec \triangleq^Init \wedge \square[Next ] vars
```

$$
\begin{aligned}
& \wedge \forall \text { self } \in \text { Procs }: \mathrm{WF}_{\text {vars }}((p c[\text { self }] \neq \text { "ncs" }) \wedge p(\text { self })) \\
& \wedge \forall \text { self } \in \text { Procs }: \mathrm{WF}_{\text {vars }}(\wedge e 1(\text { self }) \vee e 3(\text { self }) \vee e 4(\text { self }) \vee \text { exit }(\text { self }) \\
& \left.\wedge\left(p c^{\prime}[s e l f] \neq p c[\text { self }]\right)\right)
\end{aligned}
$$

END TRANSLATION (this ends the translation of the PlusCal code)

MutualExclusion asserts that two distinct processes are in their critical sections
MutualExclusion $\triangleq \forall i, j \in$ Procs $:(i \neq j) \Rightarrow \neg \wedge p c[i]=$ "cs"

$$
\wedge p c[j]=" c s "
$$

The Inductive Invariant
Type $O K$ is the type-correctness invariant.

```
TypeOK \(\triangleq \wedge\) num \(\in[\) Procs \(\rightarrow\) Nat \(]\)
    \(\wedge\) flag \(\in[\) Procs \(\rightarrow\) BOOLEAN \(]\)
    \(\wedge\) unchecked \(\in[\) Procs \(\rightarrow\) SUBSET Procs \(]\)
    \(\wedge\) max \(\in[\) Procs \(\rightarrow\) Nat \(]\)
    \(\wedge\) nxt \(\in[\) Procs \(\rightarrow\) Procs \(]\)
    \(\wedge p c \in[\) Procs \(\rightarrow\{\) "ncs", "e1", "e2", "e3",
                            "e4", "w1", "w2", "cs", "exit" \}]
```

$\operatorname{Before}(i, j)$ is a condition that implies that num $[i]>0$ and, if j is trying to enter its critical section and i does not change num $[i]$, then j either has or will choose a value of num $[j]$ for which
$\langle n u m[i], i\rangle \prec\langle n u m[j], j\rangle$
is true.

```
\(\operatorname{Before}(i, j) \triangleq \wedge\) num \([i]>0\)
    \(\wedge \vee p c[j] \in\{\) "ncs", "e1", "exit" \(\}\)
            \(\vee \wedge p c[j]=\) "e2"
                        \(\wedge \vee i \in\) unchecked \([j]\)
                                \(\vee \max [j] \geq\) num \([i]\)
            \(\vee \wedge p c[j]=\) "e3"
                \(\wedge \max [j] \geq\) num \([i]\)
            \(\vee \wedge p c[j] \in\{" e 4 ", \quad " w 1 ", " w 2 "\}\)
                \(\wedge\langle n u m[i], i\rangle \prec\langle n u m[j], j\rangle\)
                \(\wedge(p c[j] \in\{\) "w1", "w2" \(\}) \Rightarrow(i \in\) unchecked \([j])\)
```

Inv is the complete inductive invariant.
$\operatorname{Inv} \triangleq \wedge$ TypeOK
$\wedge \forall i \in$ Procs :
\wedge This conjunct is not needed for mutual exclusion, but it is needed to prove liveness.
$(p c[i] \in\{$ "ncs", "e1", "e2" $\}) \Rightarrow($ num $[i]=0)$
$\wedge(p c[i] \in\{$ "e4", "w1", "w2", "cs" $\}) \Rightarrow($ num $[i] \neq 0)$
$\wedge(p c[i] \in\{$ "e2", "e3" $\}) \Rightarrow$ flag $[i]$

$$
\begin{aligned}
& \wedge \text { This conjunct is not needed to prove mutual exclusion. It's needed to prove } \\
& \text { liveness, but it could be removed if the } \prec \text { in the wait condition were changed } \\
& \text { to } \preceq \text {. }
\end{aligned}
$$

```
Proof of Mutual Exclusion
This is a standard invariance proof, where \(\langle 1\rangle 2\) asserts that any step of the algorithm (including a stuttering step) starting in a state in which Inv is true leaves Inv true. Step \(\langle 1\rangle 4\) follows easily from \(\langle 1\rangle 1-\langle 1\rangle 3\) by simple temporal reasoning, but TLAPS does not yet do any temporal reasoning.
THEOREM Spec \(\Rightarrow \square\) MutualExclusion
\(\langle 1\rangle\) use \(N \in\) NatDefs Procs, Inv, TypeOK, Before, \(\prec\), ProcSet
\(\langle 1\rangle\) 1. Init \(\Rightarrow\) Inv
    BY SMT DEF Init
\(\langle 1\rangle 2\). Inv \(\wedge[\text { Next }]_{\text {vars }} \Rightarrow I n v^{\prime}\)
    BY \(Z 3\) DEF Next, ncs, \(p, e 1, e 2, e 3, e 4, w 1, w 2, c s\), exit, vars
\(\langle 1\rangle\). Inv \(\Rightarrow\) MutualExclusion
    BY SMT DEF MutualExclusion
\(\langle 1\rangle\) HIDE DEF Inv
\(\langle 1\rangle 4\). QED
    BY \(\langle 1\rangle 1,\langle 1\rangle 2,\langle 1\rangle 3\), PTL DEF \(S p e c\)
\(\vdash\)
    \(\operatorname{Trying}(i) \triangleq p c[i]=" \mathrm{e} 1 "\)
    \(\operatorname{InCS}(i) \triangleq p c[i]=" c s "\)
    DeadlockFree \(\triangleq(\exists i \in\) Procs: Trying \((i)) \leadsto(\exists i \in\) Procs : InCS \((i))\)
    StarvationFree \(\triangleq \forall i \in\) Procs: Trying \((i) \leadsto \operatorname{InCS}(i)\)
```

 * Modification History
 * Last modified Tue Dec 18 13:48:46 PST 2018 by lamport
 । Created Thu Nov 21 15:54:32 PST 2013 by lamport