- MODULE Bakery

The bakery algorithm originally appeared in:

Leslie Lamport A New Solution of Dijkstra's Concurrent Programming Problem Communications of the ACM 17, 8 (August 1974), 453 – 455

The code for the algorithm given in that paper is :

```
begin integer j;
L1: choosing [i] := 1 ;
number[i] := 1 + maximum (number[1],..., number[N]);
choosing[i] := 0;
for j = 1 step 1 until N do
    begin
    L2: if choosing[j] /= 0 then goto L2;
    L3: if number[j] /= 0 and (number [j], j) < (number[i],i)
        then goto L3;
    end;
critical section;
number[i] := 0;
noncritical section;
goto L1 ;
end
```

What makes the bakery algorithm interesting is that it doesn't assume that reading or writing a memory register is an atomic operation. Instead it assumes safe registers, which ensure only that a read that doesn't overlap a write obtains the current value of the register, but allows a read that overlaps a write to obtain any value of the correct type. This is modeled in TLA+ by letting the read be atomic but having a write operation perform a sequence of atomic writes of arbitrary type-correct values before atomically writing the desired value. (Only the shared registers number[i] and choosing[i] need be to be modeled in this way; operations to a process's local variables can be taken to be atomic.)

This *PlusCal* version of the Atomic *Bakery* algorithm is one in which variables whose initial values are not used are initialized to particular type-correct values. If the variables were left uninitialized, the *PlusCal* translation would initialize them to a particular unspecified value. This would complicate the proof because it would make the type-correctness invariant more complicated, but it would be more efficient to model check. We could write a version that is more elegant and easy to prove, but less efficient to model check, by initializing the variables to arbitrarily chosen type-correct values.

EXTENDS Naturals, TLAPS

We first declare N to be the number of processes, and we assume that N is a natural number.

Constant NAssume $N \in Nat$

We define *Procs* to be the set $\{1, 2, \ldots, N\}$ of processes.

 $Procs \stackrel{\Delta}{=} 1 \dots N$

 \prec is defined to be the lexicographical less-than relation on pairs of numbers.

 $\begin{array}{rcl} a \prec b & \stackrel{\Delta}{=} & \lor a[1] < b[1] \\ & \lor (a[1] = b[1]) \land (a[2] < b[2]) \end{array}$

** this is a comment containing the *PlusCal* code *

--algorithm Bakery { variables $num = [i \in Procs \mapsto 0], flag = [i \in Procs \mapsto FALSE];$ fair process ($p \in Procs$) variables $unchecked = \{\}, max = 0, nxt = 1;$ { *ncs:*- while (TRUE) { e1: either { $flag[self] := \neg flag[self]$; goto e1 } $\{ flag[self] := TRUE; \}$ \mathbf{or} $unchecked := Procs \setminus \{self\};$ max := 0}; while (unchecked \neq {}) e2:{ with ($i \in unchecked$) { $unchecked := unchecked \setminus \{i\};$ if $(num[i] > max) \{ max := num[i] \}$ } }; either { with ($k \in Nat$) { num[self] := k } ; e3:goto e3 } { with ($i \in \{j \in Nat : j > max\}$) or $\{ num[self] := i \}$ }; either { $flag[self] := \neg flag[self]$; e4:goto e4 } $\{ flag[self] := FALSE; \}$ \mathbf{or} $unchecked := Procs \setminus \{self\}$ }; w1: while (unchecked \neq {}) with ($i \in unchecked$) { nxt := i } ; { await $\neg flag[nxt]$; w2: await $\lor num[nxt] = 0$ $\lor \langle num[self], self \rangle \prec \langle num[nxt], nxt \rangle;$ $unchecked := unchecked \setminus \{nxt\};$ }; skip; the critical section; cs:exit: either { with ($k \in Nat$) { num[self] := k } ; goto exit } $\{ num[self] := 0 \}$ \mathbf{or} } } } ****** *** this ends the comment containg the pluscal code

BEGIN TRANSLATION (this begins the translation of the *PlusCal* code) VARIABLES *num*, *flag*, *pc*, *unchecked*, *max*, *nxt*

vars \triangleq (num, flag, pc, unchecked, max, nxt)

 $ProcSet \stackrel{\Delta}{=} (Procs)$ $Init \stackrel{\Delta}{=}$ Global variables \wedge num = [$i \in Procs \mapsto 0$] \wedge flag = [$i \in Procs \mapsto FALSE$] Process p $\land unchecked = [self \in Procs \mapsto \{\}]$ $\wedge max = [self \in Procs \mapsto 0]$ $\land nxt = [self \in Procs \mapsto 1]$ $\land pc = [self \in ProcSet \mapsto "ncs"]$ $ncs(self) \stackrel{\Delta}{=} \wedge pc[self] =$ "ncs" $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "e1"]$ \land UNCHANGED $\langle num, flag, unchecked, max, nxt \rangle$ $e1(self) \stackrel{\Delta}{=} \wedge pc[self] = "e1"$ $\wedge \vee \wedge flag' = [flag \text{ EXCEPT } ![self] = \neg flag[self]]$ $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "e1"]$ \wedge UNCHANGED \langle unchecked, max \rangle $\vee \wedge flag' = [flag \text{ EXCEPT } ! [self] = \text{TRUE}]$ \land unchecked' = [unchecked EXCEPT ![self] = Procs \ {self }] $\wedge max' = [max \text{ EXCEPT } ! [self] = 0]$ $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "e2"]$ \wedge UNCHANGED $\langle num, nxt \rangle$ $e2(self) \stackrel{\Delta}{=} \wedge pc[self] = "e2"$ \land IF unchecked[self] \neq {} THEN $\land \exists i \in unchecked[self]$: \wedge unchecked' = [unchecked EXCEPT ![self] = unchecked[self] \ {i}] \wedge IF num[i] > max[self]THEN $\wedge max' = [max \text{ EXCEPT } ! [self] = num[i]]$ ELSE \wedge TRUE $\wedge max' = max$ $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "e2"]$ ELSE $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "e3"]$ \wedge UNCHANGED (*unchecked*, *max*) \wedge UNCHANGED $\langle num, flag, nxt \rangle$ $e3(self) \stackrel{\Delta}{=} \wedge pc[self] = "e3"$ $\land \lor \land \exists k \in Nat:$ num' = [num EXCEPT ! [self] = k] $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "e3"]$ $\lor \land \exists i \in \{j \in Nat : j > max[self]\}:$ num' = [num EXCEPT ! [self] = i] $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "e4"]$

 \wedge UNCHANGED \langle flag, unchecked, max, nxt \rangle $e4(self) \stackrel{\Delta}{=} \wedge pc[self] = "e4"$ $\wedge \vee \wedge flag' = [flag \text{ EXCEPT } ![self] = \neg flag[self]]$ $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "e4"]$ \wedge unchanged unchecked $\vee \wedge flaq' = [flaq \text{ EXCEPT } ![self] = \text{FALSE}]$ \land unchecked' = [unchecked EXCEPT ![self] = Procs \ {self }] $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "w1"]$ \wedge UNCHANGED $\langle num, max, nxt \rangle$ $w1(self) \stackrel{\Delta}{=} \wedge pc[self] = "w1"$ \land IF unchecked[self] \neq {} THEN $\land \exists i \in unchecked[self]$: nxt' = [nxt EXCEPT ! [self] = i] $\wedge \neg flag[nxt'[self]]$ $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "w2"]$ ELSE $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "cs"]$ $\wedge nxt' = nxt$ \wedge UNCHANGED $\langle num, flag, unchecked, max \rangle$ $w2(self) \triangleq \wedge pc[self] = "w2"$ $\wedge \vee num[nxt[self]] = 0$ $\lor \langle num[self], self \rangle \prec \langle num[nxt[self]], nxt[self] \rangle$ \land unchecked' = [unchecked EXCEPT ![self] = unchecked[self] \ {nxt[self]}] $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "w1"]$ \wedge UNCHANGED $\langle num, flag, max, nxt \rangle$ $cs(self) \stackrel{\Delta}{=} \wedge pc[self] = "cs"$ \wedge TRUE $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "exit"]$ \wedge UNCHANGED $\langle num, flag, unchecked, max, nxt \rangle$ $exit(self) \stackrel{\Delta}{=} \wedge pc[self] = "exit"$ $\land \lor \land \exists k \in Nat:$ num' = [num EXCEPT ![self] = k] $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "exit"]$ $\vee \wedge num' = [num \text{ EXCEPT } ! [self] = 0]$ $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "ncs"]$ \wedge UNCHANGED \langle flag, unchecked, max, nxt \rangle $p(self) \triangleq ncs(self) \lor e1(self) \lor e2(self) \lor e3(self) \lor e4(self)$ $\lor w1(self) \lor w2(self) \lor cs(self) \lor exit(self)$ $Next \stackrel{\Delta}{=} (\exists self \in Procs : p(self))$ $Spec \triangleq \wedge Init \wedge \Box [Next]_{vars}$

 $\begin{array}{l} \wedge \forall \mathit{self} \in \mathit{Procs} : \mathrm{WF}_{\mathit{vars}}((\mathit{pc}[\mathit{self}] \neq ``\mathsf{ncs''}) \land \mathit{p}(\mathit{self})) \\ \wedge \forall \mathit{self} \in \mathit{Procs} : \mathrm{WF}_{\mathit{vars}}(\land \mathit{e1}(\mathit{self}) \lor \mathit{e3}(\mathit{self}) \lor \mathit{e4}(\mathit{self}) \lor \mathit{exit}(\mathit{self}) \\ \wedge (\mathit{pc'}[\mathit{self}] \neq \mathit{pc}(\mathit{self}))) \\ \end{array}$ END TRANSLATION (this ends the translation of the *PlusCal* code)

MutualExclusion asserts that two distinct processes are in their critical sections.

 $MutualExclusion \stackrel{\Delta}{=} \forall i, j \in Procs : (i \neq j) \Rightarrow \neg \land pc[i] = \text{"cs"} \land pc[j] = \text{"cs"}$ $\land pc[j] = \text{"cs"}$

The Inductive Invariant

TypeOK is the type-correctness invariant.

Before(i, j) is a condition that implies that num[i] > 0 and, if j is trying to enter its critical section and i does not change num[i], then j either has or will choose a value of num[j] for which

 $\langle num[i], i \rangle \prec \langle num[j], j \rangle$

is true.

$$\begin{array}{rcl} Before(i,\,j) &\triangleq& \wedge num[i] > 0 \\ && \wedge \lor pc[j] \in \{\,``ncs",\,``e1",\,``exit"\,\} \\ && \vee \land pc[j] = ``e2" \\ && \wedge \lor i \in unchecked[j] \\ && \vee max[j] \geq num[i] \\ && \vee \land pc[j] = ``e3" \\ && \wedge max[j] \geq num[i] \\ && \vee \land pc[j] \in \{\,``e4",\,``w1",\,``w2"\,\} \\ && \wedge (num[i],\,i) \prec \langle num[j],\,j) \\ && \wedge (pc[j] \in \{\,``w1",\,``w2"\,\}) \Rightarrow (i \in unchecked[j]) \end{array}$$

Inv is the complete inductive invariant.

$$\begin{split} Inv &\triangleq \wedge TypeOK \\ & \wedge \forall i \in Procs: \\ & \wedge \forall i \in Procs: \\ & \wedge \text{ This conjunct is not needed for mutual exclusion, but it is needed to prove liveness.} \\ & (pc[i] \in \{\text{``ncs''}, \text{``e1''}, \text{``e2''}\}) \Rightarrow (num[i] = 0) \\ & \wedge (pc[i] \in \{\text{``e4''}, \text{``w1''}, \text{``w2''}, \text{``cs''}\}) \Rightarrow (num[i] \neq 0) \\ & \wedge (pc[i] \in \{\text{``e2''}, \text{``e3''}\}) \Rightarrow flag[i] \end{split}$$

∧ This conjunct is not needed to prove mutual exclusion. It's needed to prove liveness, but it could be removed if the \prec in the wait condition were changed to \preceq .

$$\begin{array}{l} (pc[i] = ``w2") \Rightarrow (nxt[i] \neq i) \\ \land \ pc[i] \in \{ ``w2", ``w1", ``w2" \} \Rightarrow i \notin unchecked[i] \\ \land (pc[i] \in \{ ``w1", ``w2" \}) \Rightarrow \\ \forall j \in (Procs \setminus unchecked[i]) \setminus \{i\} : Before(i, j) \\ \land \land (pc[i] = ``w2") \\ \land \lor (pc[nxt[i]] = ``e2") \land (i \notin unchecked[nxt[i]]) \\ \lor pc[nxt[i]] = ``e3" \\ \Rightarrow max[nxt[i]] \geq num[i] \\ \land (pc[i] = ``cs") \Rightarrow \forall j \in Procs \setminus \{i\} : Before(i, j) \end{array}$$

Proof of Mutual Exclusion

This is a standard invariance proof, where $\langle 1 \rangle^2$ asserts that any step of the algorithm (including a stuttering step) starting in a state in which *Inv* is true leaves *Inv* true. Step $\langle 1 \rangle^4$ follows easily from $\langle 1 \rangle 1 - \langle 1 \rangle^3$ by simple temporal reasoning, but *TLAPS* does not yet do any temporal reasoning.

THEOREM Spec $\Rightarrow \Box MutualExclusion$ $\langle 1 \rangle$ USE $N \in NatDEFS Procs, Inv, TypeOK, Before, <math>\prec$, ProcSet $\langle 1 \rangle 1.$ Init \Rightarrow Inv BY SMT DEF Init $\langle 1 \rangle 2.$ Inv $\land [Next]_{vars} \Rightarrow Inv'$ BY Z3 DEF Next, ncs, p, e1, e2, e3, e4, w1, w2, cs, exit, vars $\langle 1 \rangle 3.$ Inv \Rightarrow MutualExclusion BY SMT DEF MutualExclusion $\langle 1 \rangle$ HIDE DEF Inv $\langle 1 \rangle 4.$ QED BY $\langle 1 \rangle 1, \langle 1 \rangle 2, \langle 1 \rangle 3, PTL$ DEF Spec Trying(i) $\triangleq pc[i] = "e1"$

 $\begin{array}{lll} Trying(i) &\triangleq pc[i] = "e1" \\ InCS(i) &\triangleq pc[i] = "cs" \\ DeadlockFree &\triangleq (\exists i \in Procs : Trying(i)) \rightsquigarrow (\exists i \in Procs : InCS(i)) \\ StarvationFree &\triangleq \forall i \in Procs : Trying(i) \rightsquigarrow InCS(i) \end{array}$

 $\backslash*$ Last modified $\mathit{Tue}\ \mathit{Dec}\ 18\ 13{:}48{:}46\ \mathit{PST}\ 2018$ by $\mathit{lamport}$

 \backslash * Created Thu Nov 21 15:54:32 PST 2013 by lamport