
module Boulanger

This is a PlusCal encoding of the Boulangerie Algorithm of Yoram Moses and Katia Patkin–a
variant of the Bakery Algorithm–and a proof that it implements mutual exclusion. The bakery
algorithm appeared in

Leslie Lamport A New Solution of Dijkstra’s Concurrent Programming Problem Communications
of the ACM 17, 8 (August 1974), 453− 455

The PlusCal encoding differs from the Moses-Patkin algorithm in one respect. To enter the critical
section, the PlusCal version examines other processes one at a time–in the while loop at label
w1. The Moses-Patkin algorithm performs those examinations in parallel. Because PlusCal does
not allow sub-processes, it would be difficult (but not impossible) to express that algorithm in
PlusCal . It would be easy to express their version in TLA+ (for example, by modifying the TLA+
translation of the PlusCal code), and it should be straightforward to convert the invariance proof

presented here to a proof of the more general version. I will leave that as an exercise for others.

I started with a PlusCal encoding and invariance proof of the Bakery Algorithm. The only non-
obvious part of that encoding is how it represented the safe registers assumed by the algorithm,
which are registers in which reads and writes are not atomic. A safe register is represented
by a variable r whose value is written by performing some number of atomic writes of non-
deterministically chosen “legal” values to r followed by a single write of the desired value. A read
of the register is performed by a single atomic read of r. It can be shown that this captures the
semantics of a safe register.

Starting from the PlusCal version of the Bakery Algorithm, it was easy to modify it to the
Boulangerie Algorithm (with the simplification described above). I model checked the algorithm
on some small models to convince myself that there were no trivial errors that would be likely to
arise from an error in the encoding. I then modified the invariant by a combination of a bit of
thinking and a fair amount of trial and error, finding errors in the invariant by model checking
very small models. (I checked it on two processes with chosen numbers restricted to be at most

3.)

When checking on a small model revealed no error in the invariant, I checked the proof with
TLAPS (the TLA+ proof system). The high level proof, consisting of steps 〈1〉1 − 〈1〉4, are
standard and are the same as for the Bakery Algorithm. TLAPS checks this simple four-step
proof for the Bakery Algorithm with terminal by proofs that just tell it to use the necessary
assumptions and to expand all definitions. This didn’t work for the hard part of the Boulangerie
Algorithm–step 〈1〉2 that checks inductive invariance.

When a proof doesn’t go through, one keeps decomposing the proof of the steps that aren’t proved
until one sees what the problem is. This decomposition is done with little thinking and no typing
using the Toolbox ’s Decompose Proof command. (The Toolbox is the IDE for the TLA+ tools.)
Step 〈1〉2 has the form A ∧B ⇒ C , where B is a disjunction, and the Decompose Proof command
produces a level − 〈2〉 proof consisting of subgoals essentially of the form A ∧ Bi ⇒ C for the
disjuncts Bi of B . Two of those subgoals weren’t proved. I decomposed them both for several
levels until I saw that in one of them, some step wasn’t preserving the part of the invariant that
asserts type-correctness. I then quickly found the culprit: a silly error in the type invariant in
which I had in one place written the set Proc of process numbers instead of the set Nat of natural
numbers. After correcting that error, only one of the level − 〈2〉 subgoals remained unproved:
step 〈2〉5. Using the Decompose Proof command as far as I could on that step, one substep
remained unproved. (I think it was at level 〈5〉.) Looking at what the proof obligations were, the
obvious decomposition was a two-way case split, which I did by manually entering another level
of subproof. One of those cases wasn’t proved, so I tried another two-way case split on it. That
worked. I then made that substep to the first step of the (level 〈3〉) proof of 〈2〉5, moving its proof
with it. With that additional fact, TLAPS was able to prove 〈2〉5 in one more step (the qed

step).
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The entire proof now is about 70 lines. I only typed 20 of those 70 lines. The rest either came
from the original Bakery Algorithm (8-line) proof or were generated by the Decompose Proof

Command.

I don’t know how much time I actually spent writing the algorithm and its proof. Except for the
final compaction of the (correct) proof of 〈2〉5, the entire exercise took me two days. However,
most of that was spent tracking down bugs in the Toolbox . We are in the process of moving the
Toolbox to a new version of Eclipse, and there are many bugs that must be fixed before it’s ready
to be released. I would estimate that it would have taken me less than 4 hours without Toolbox
bugs. I find it remarkable how little thinking the whole thing took.

This whole process was a lot easier than trying to write a convincing hand proof–a proof that I
would regard as adequate to justify publication of the proof.

extends Integers, TLAPS

We first declare N to be the number of processes, and we assume that N is a natural number.

constant N
assume N ∈ Nat

We define Procs to be the set {1, 2, . . . , N} of processes.

Procs
∆
= 1 . . N

≺ is defined to be the lexicographical less-than relation on pairs of numbers.

a ≺ b
∆
= ∨ a[1] < b[1]
∨ (a[1] = b[1]) ∧ (a[2] < b[2])

∗∗ this is a comment containing the PlusCal code *

--algorithm Boulanger
{ variable num = [i ∈ Procs 7→ 0], flag = [i ∈ Procs 7→ false] ;
fair process ( p ∈ Procs )
variables unchecked = {}, max = 0, nxt = 1, previous = − 1 ;
{ ncs :- while ( true )

{ e1: either { flag [self ] := ¬flag [self ] ;
goto e1 }

or { flag [self ] := true ;
unchecked := Procs \ {self } ;
max := 0

} ;
e2: while ( unchecked 6= {} )

{ with ( i ∈ unchecked )
{ unchecked := unchecked \ {i} ;
if ( num[i ] > max ) { max := num[i ] }

}
} ;

e3: either { with ( k ∈ Nat ) { num[self ] := k } ;
goto e3 }

or { num[self ] := max + 1 } ;
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e4: either { flag [self ] := ¬flag [self ] ;
goto e4 }

or { flag [self ] := false ;
unchecked := if num[self ] = 1

then 1 . . (self − 1)
else Procs \ {self }

} ;
w1: while ( unchecked 6= {} )

{ with ( i ∈ unchecked ) { nxt := i } ;
await ¬flag [nxt ] ;
previous := − 1 ;

w2: if ( ∨ num[nxt ] = 0
∨ 〈num[self ], self 〉 ≺ 〈num[nxt ], nxt〉
∨ ∧ previous 6= − 1
∧ num[nxt ] 6= previous )

{ unchecked := unchecked \ {nxt} ;
if ( unchecked = {} ) { goto cs }
else { goto w1 }

}
else { previous := num[nxt ] ;

goto w2 }

} ;
cs : skip ; the critical section;

exit : either { with ( k ∈ Nat ) { num[self ] := k } ;
goto exit }

or { num[self ] := 0 }
}

}
}

*** this ends the comment containg the pluscal code *********

BEGIN TRANSLATION (this begins the translation of the PlusCal code)

variables num, flag , pc, unchecked , max , nxt , previous

vars
∆
= 〈num, flag , pc, unchecked , max , nxt , previous〉

ProcSet
∆
= (Procs)

Init
∆
= Global variables

∧ num = [i ∈ Procs 7→ 0]
∧ flag = [i ∈ Procs 7→ false]
Process p

∧ unchecked = [self ∈ Procs 7→ {}]
∧max = [self ∈ Procs 7→ 0]
∧ nxt = [self ∈ Procs 7→ 1]
∧ previous = [self ∈ Procs 7→ − 1]
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∧ pc = [self ∈ ProcSet 7→ “ncs”]

ncs(self )
∆
= ∧ pc[self ] = “ncs”
∧ pc′ = [pc except ! [self ] = “e1”]
∧ unchanged 〈num, flag , unchecked , max , nxt , previous〉

e1(self )
∆
= ∧ pc[self ] = “e1”
∧ ∨ ∧ flag ′ = [flag except ! [self ] = ¬flag [self ]]

∧ pc′ = [pc except ! [self ] = “e1”]
∧ unchanged 〈unchecked , max 〉

∨ ∧ flag ′ = [flag except ! [self ] = true]
∧ unchecked ′ = [unchecked except ! [self ] = Procs \ {self }]
∧max ′ = [max except ! [self ] = 0]
∧ pc′ = [pc except ! [self ] = “e2”]

∧ unchanged 〈num, nxt , previous〉

e2(self )
∆
= ∧ pc[self ] = “e2”
∧ if unchecked [self ] 6= {}

then ∧ ∃ i ∈ unchecked [self ] :
∧ unchecked ′ = [unchecked except ! [self ] = unchecked [self ] \ {i}]
∧ if num[i ] > max [self ]

then ∧max ′ = [max except ! [self ] = num[i ]]
else ∧ true

∧max ′ = max
∧ pc′ = [pc except ! [self ] = “e2”]

else ∧ pc′ = [pc except ! [self ] = “e3”]
∧ unchanged 〈unchecked , max 〉

∧ unchanged 〈num, flag , nxt , previous〉

e3(self )
∆
= ∧ pc[self ] = “e3”
∧ ∨ ∧ ∃ k ∈ Nat :

num ′ = [num except ! [self ] = k ]
∧ pc′ = [pc except ! [self ] = “e3”]

∨ ∧ num ′ = [num except ! [self ] = max [self ] + 1]
∧ pc′ = [pc except ! [self ] = “e4”]

∧ unchanged 〈flag , unchecked , max , nxt , previous〉

e4(self )
∆
= ∧ pc[self ] = “e4”
∧ ∨ ∧ flag ′ = [flag except ! [self ] = ¬flag [self ]]

∧ pc′ = [pc except ! [self ] = “e4”]
∧ unchanged unchecked

∨ ∧ flag ′ = [flag except ! [self ] = false]
∧ unchecked ′ = [unchecked except ! [self ] = if num[self ] = 1

then 1 . . (self − 1)
else Procs \ {self }]

∧ pc′ = [pc except ! [self ] = “w1”]
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∧ unchanged 〈num, max , nxt , previous〉

w1(self )
∆
= ∧ pc[self ] = “w1”
∧ if unchecked [self ] 6= {}

then ∧ ∃ i ∈ unchecked [self ] :
nxt ′ = [nxt except ! [self ] = i ]

∧ ¬flag [nxt ′[self ]]
∧ previous ′ = [previous except ! [self ] = − 1]
∧ pc′ = [pc except ! [self ] = “w2”]

else ∧ pc′ = [pc except ! [self ] = “cs”]
∧ unchanged 〈nxt , previous〉

∧ unchanged 〈num, flag , unchecked , max 〉

w2(self )
∆
= ∧ pc[self ] = “w2”
∧ if ∨ num[nxt [self ]] = 0

∨ 〈num[self ], self 〉 ≺ 〈num[nxt [self ]], nxt [self ]〉
∨ ∧ previous[self ] 6= − 1
∧ num[nxt [self ]] 6= previous[self ]

then ∧ unchecked ′ = [unchecked except ! [self ] = unchecked [self ] \ {nxt [self ]}]
∧ if unchecked ′[self ] = {}

then ∧ pc′ = [pc except ! [self ] = “cs”]
else ∧ pc′ = [pc except ! [self ] = “w1”]

∧ unchanged previous
else ∧ previous ′ = [previous except ! [self ] = num[nxt [self ]]]

∧ pc′ = [pc except ! [self ] = “w2”]
∧ unchanged unchecked

∧ unchanged 〈num, flag , max , nxt〉

cs(self )
∆
= ∧ pc[self ] = “cs”
∧ true
∧ pc′ = [pc except ! [self ] = “exit”]
∧ unchanged 〈num, flag , unchecked , max , nxt , previous〉

exit(self )
∆
= ∧ pc[self ] = “exit”
∧ ∨ ∧ ∃ k ∈ Nat :

num ′ = [num except ! [self ] = k ]
∧ pc′ = [pc except ! [self ] = “exit”]

∨ ∧ num ′ = [num except ! [self ] = 0]
∧ pc′ = [pc except ! [self ] = “ncs”]

∧ unchanged 〈flag , unchecked , max , nxt , previous〉

p(self )
∆
= ncs(self ) ∨ e1(self ) ∨ e2(self ) ∨ e3(self ) ∨ e4(self )

∨ w1(self ) ∨ w2(self ) ∨ cs(self ) ∨ exit(self )

Next
∆
= (∃ self ∈ Procs : p(self ))

Spec
∆
= ∧ Init ∧2[Next ]vars
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∧ ∀ self ∈ Procs : WFvars((pc[self ] 6= “ncs”) ∧ p(self ))

END TRANSLATION (this ends the translation of the PlusCal code)

MutualExclusion asserts that two distinct processes are in their critical sections.

MutualExclusion
∆
= ∀ i , j ∈ Procs : (i 6= j )⇒ ¬∧ pc[i ] = “cs”

∧ pc[j ] = “cs”

The Inductive Invariant

TypeOK is the type-correctness invariant.

TypeOK
∆
= ∧ num ∈ [Procs → Nat ]
∧ flag ∈ [Procs → boolean ]
∧ unchecked ∈ [Procs → subset Procs]
∧max ∈ [Procs → Nat ]
∧ nxt ∈ [Procs → Procs]
∧ pc ∈ [Procs → {“ncs”, “e1”, “e2”, “e3”,

“e4”, “w1”, “w2”, “cs”, “exit”}]
∧ previous ∈ [Procs → Nat ∪ { − 1}]

Before(i , j ) is a condition that implies that num[i ] > 0 and, if j is trying to enter its critical

section and i does not change num[i ], then j either has or will choose a value of num[j ] for which

〈num[i ], i〉 ≺ 〈num[j ], j 〉

is true.

Before(i , j )
∆
= ∧ num[i ] > 0
∧ ∨ pc[j ] ∈ {“ncs”, “e1”, “exit”}
∨ ∧ pc[j ] = “e2”
∧ ∨ i ∈ unchecked [j ]
∨max [j ] ≥ num[i ]
∨ (j > i) ∧ (max [j ] + 1 = num[i ])

∨ ∧ pc[j ] = “e3”
∧ ∨max [j ] ≥ num[i ]
∨ (j > i) ∧ (max [j ] + 1 = num[i ])

∨ ∧ pc[j ] ∈ {“e4”, “w1”, “w2”}
∧ 〈num[i ], i〉 ≺ 〈num[j ], j 〉
∧ (pc[j ] ∈ {“w1”, “w2”})⇒ (i ∈ unchecked [j ])

∨ ∧ num[i ] = 1
∧ i < j

Inv is the complete inductive invariant.

Inv
∆
= ∧ TypeOK
∧ ∀ i ∈ Procs :
∧ (pc[i ] ∈ {“ncs”, “e1”, “e2”})⇒ (num[i ] = 0)
∧ (pc[i ] ∈ {“e4”, “w1”, “w2”, “cs”})⇒ (num[i ] 6= 0)
∧ (pc[i ] ∈ {“e2”, “e3”})⇒ flag [i ]
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∧ (pc[i ] = “w2”)⇒ (nxt [i ] 6= i)
∧ (pc[i ] ∈ {“e2”, “w1”, “w2”})⇒ i /∈ unchecked [i ]
∧ (pc[i ] ∈ {“w1”, “w2”})⇒

∀ j ∈ (Procs \ unchecked [i ]) \ {i} : Before(i , j )
∧ ∧ pc[i ] = “w2”
∧ ∨ (pc[nxt [i ]] = “e2”) ∧ (i /∈ unchecked [nxt [i ]])
∨ pc[nxt [i ]] = “e3”

⇒ max [nxt [i ]] ≥ num[i ]
∧ ∧ pc[i ] = “w2”
∧ previous[i ] 6= − 1
∧ previous[i ] 6= num[nxt [i ]]
∧ pc[nxt [i ]] ∈ {“e4”, “w1”, “w2”, “cs”}
⇒ Before(i , nxt [i ])

∧ (pc[i ] = “cs”)⇒ ∀ j ∈ Procs \ {i} : Before(i , j )

Proof of Mutual Exclusion

This is a standard invariance proof, where 〈1〉2 asserts that any step of the algorithm (including
a stuttering step) starting in a state in which Inv is true leaves Inv true. Step 〈1〉4 follows easily
from 〈1〉1 − 〈1〉3 by simple temporal reasoning, checked by the PTL (Propositional Temporal

Logic) backend prover.

theorem Spec ⇒ 2MutualExclusion
〈1〉 use N ∈ Natdefs Procs, Inv , TypeOK , Before, ≺ , ProcSet

〈1〉1. Init ⇒ Inv
by SMT def Init

〈1〉2. Inv ∧ [Next ]vars ⇒ Inv ′

〈2〉 suffices assume Inv ,
[Next ]vars

prove Inv ′

obvious
〈2〉1. assume new self ∈ Procs,

ncs(self )
prove Inv ′

by 〈2〉1, Z3 def Next , ncs, p, e1, e2, e3, e4, w1, w2, cs, exit , vars
〈2〉2. assume new self ∈ Procs,

e1(self )
prove Inv ′

by 〈2〉2, Z3 def Next , ncs, p, e1, e2, e3, e4, w1, w2, cs, exit , vars
〈2〉3. assume new self ∈ Procs,

e2(self )
prove Inv ′

by 〈2〉3, Z3 def Next , ncs, p, e1, e2, e3, e4, w1, w2, cs, exit , vars
〈2〉4. assume new self ∈ Procs,

e3(self )
prove Inv ′
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by 〈2〉4, Z3 def Next , ncs, p, e1, e2, e3, e4, w1, w2, cs, exit , vars
〈2〉5. assume new self ∈ Procs,

e4(self )
prove Inv ′

〈3〉 assume new i ∈ Procs ′, (pc[i ] ∈ {“w1”, “w2”})′
prove (∀ j ∈ (Procs \ unchecked [i ]) \ {i} : Before(i , j ))′

〈4〉1.case self = i
〈5〉 suffices assume new j ∈ ((Procs \ unchecked [i ]) \ {i})′

prove Before(i , j )′

obvious
〈5〉1.case i < j
by 〈4〉1, 〈5〉1, 〈2〉5, Z3 def ncs, p, e1, e2, e3, e4, w1, w2, cs, exit , vars
〈5〉2.case j ≤ i
〈6〉 unchecked ′[i ] = 1 . . (i − 1)

by 〈4〉1, 〈2〉5 def e4
〈6〉 qed
by 〈4〉1, 〈2〉5, Z3 def ncs, p, e1, e2, e3, e4, w1, w2, cs, exit , vars
〈5〉3. qed
by 〈5〉1, 〈5〉2

〈4〉2.case self 6= i
by 〈4〉2, 〈2〉5, Z3 def ncs, p, e1, e2, e3, e4, w1, w2, cs, exit , vars
〈4〉3. qed
by 〈4〉1, 〈4〉2

〈3〉 qed
by 〈2〉5, Z3 def ncs, p, e1, e2, e3, e4, w1, w2, cs, exit , vars

〈2〉6. assume new self ∈ Procs,
w1(self )

prove Inv ′

by 〈2〉6, Z3 def Next , ncs, p, e1, e2, e3, e4, w1, w2, cs, exit , vars
〈2〉7. assume new self ∈ Procs,

w2(self )
prove Inv ′

by 〈2〉7, Z3 def ncs, p, e1, e2, e3, e4, w1, w2, cs, exit , vars
〈2〉8. assume new self ∈ Procs,

cs(self )
prove Inv ′

by 〈2〉8, Z3 def Next , ncs, p, e1, e2, e3, e4, w1, w2, cs, exit , vars
〈2〉9. assume new self ∈ Procs,

exit(self )
prove Inv ′

by 〈2〉9, Z3 def Next , ncs, p, e1, e2, e3, e4, w1, w2, cs, exit , vars
〈2〉10.case unchanged vars
by 〈2〉10, Z3 def Next , ncs, p, e1, e2, e3, e4, w1, w2, cs, exit , vars
〈2〉11. qed
by 〈2〉1, 〈2〉10, 〈2〉2, 〈2〉3, 〈2〉4, 〈2〉5, 〈2〉6, 〈2〉7, 〈2〉8, 〈2〉9 def Next , p
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〈1〉3. Inv ⇒ MutualExclusion
by SMT def MutualExclusion

〈1〉4. qed
by 〈1〉1, 〈1〉2, 〈1〉3, PTL def Spec

Trying(i)
∆
= pc[i ] = “e1”

InCS (i)
∆
= pc[i ] = “cs”

DeadlockFree
∆
= (∃ i ∈ Procs : Trying(i)) ; (∃ i ∈ Procs : InCS (i))

StarvationFree
∆
= ∀ i ∈ Procs : Trying(i) ; InCS (i)

\ * Modification History

\ * Last modified Tue Dec 18 12:08:37 PST 2018 by lamport

\ * Created Thu Nov 21 15:54:32 PST 2013 by lamport
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