Specifying Systems

First Printing

Version of 18 June 2002
pdf file recreated 19 March 2020

Specifying Systems

The TLA+ Language and Tools for

Hardware and Software Engineers

Leslie Lamport

Microsoft Research

Boston e San Francisco e New York e Toronto e Montreal
London e Munich e Paris e Madrid
Capetown e Sydney e Tokyo e Singapore e Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and Addison-Wesley was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales.
For more information, please contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:
International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com
Library of Congress Cataloging-in-Publication Data

Lamport, Leslie
Specifying systems : the TLA+ language and tools for hardware and software
engineers / Leslie Lamport.
p. cm.
Includes bibliographical references and index.
ISBN 0-321-14306-X (alk. paper)
1. System design. 2. Computer systems—Specifications. 3. Logic, symbolic
and mathematical. I. Title.

QAT6.9.588 L35 2003 2002074369
004.271--dc21

Copyright (© 2003 by Pearson Education, Inc

All rights reserved. No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior consent of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please
submit a written request to:

Pearson Education, Inc.

Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116

Fax: (617) 848-7047

ISBN 0-321-14306-X
Text printed on recycled paper
123456789 10-MA-0605040302

First printing, July 2002

To Ellen

This whole book is but a draught—nay, but the draught of a draught.

Herman Melville

Contents

List of Figures and Tables
Acknowledgments

Introduction

Part I Getting Started

1 A Little Simple Math
1.1 Propositional Logic
1.2 Sets . . oo
1.3 Predicate Logic
1.4 Formulas and Language

2 Specifying a Simple Clock
2.1 Behaviors
2.2 AnHour Clock
2.3 A Closer Look at the Specification
2.4 The Specification in TLA™.
2.5 An Alternative Specification oL

3 An Asynchronous Interface
3.1 The First Specification
3.2 Another Specification
3.3 Types: AReminder
3.4 Definitions
3.5 Comments

4 A FIFO
4.1 The Inner Specification
4.2 Instantiation Examined

XV

xvii

11
12
14

15
15
15
18
19
21

23
24
28
30
31
32

35
35
37

ix

X CONTENTS

4.2.1 Instantiation Is Substitution. 37

4.2.2 Parametrized Instantiation 39

4.2.3 Implicit Substitutions 40

4.2.4 Instantiation Without Renaming 40

4.3 Hiding the Queue Lo o 41
44 ABounded FIFO 42
4.5 What We'’re Specifying oL 43

5 A Caching Memory 45
5.1 The Memory Interface 45
5.2 Functions L 48
5.3 A Linearizable Memory 51
5.4 Tuples as Functions Lo, 53
5.5 Recursive Function Definitions 54
5.6 A Write-Through Cache 54
5.7 Invariance L Lo 61
5.8 Proving Implementation o000 62

6 Some More Math 65
6.1 Sets 65
6.2 Silly Expressions oo 67
6.3 Recursion Revisited 0. 67
6.4 Functions versus Operators 69
6.5 Using Functions oo, 72
6.6 Choose. e 73

7 Writing a Specification: Some Advice 75
7.1 Why Specify 75
7.2 What to Specify o o 76
7.3 The Grain of Atomicity 76
7.4 The Data Structures L. 78
7.5 Writing the Specification 0oL 79
7.6 Some Further Hints. 80
7.7 When and How to Specify 83
Part II More Advanced Topics 85
8 Liveness and Fairness 87
8.1 Temporal Formulas 88
8.2 Temporal Tautologies 92
8.3 Temporal Proof Rules 95
8.4 Weak Fairness 96

8.5 The Memory Specification 100

CONTENTS

xi

9

10

8.5.1 The Liveness Requirement
8.5.2 Another Way to Write It
8.5.3 A Generalization

8.6 Strong Fairness oo
8.7 The Write-Through Cache
8.8 Quantification
8.9 Temporal Logic Examined
8.9.1 AReview
8.9.2 Machine Closure
8.9.3 Machine Closure and Possibility
8.9.4 Refinement Mappings and Fairness
8.9.5 The Unimportance of Liveness
8.9.6 Temporal Logic Considered Confusing
Real Time
9.1 The Hour Clock Revisited
9.2 Real-Time Specifications in General
9.3 A Real-Time Caching Memory
9.4 Zeno Specifications oL oo
9.5 Hybrid System Specifications
9.6 Remarkson Real Time
Composing Specifications
10.1 Composing Two Specifications
10.2 Composing Many Specifications
10.3 The FIFO e
10.4 Composition with Shared State
10.4.1 Explicit State Changes
10.4.2 Composition with Joint Actions.
10.5 A Brief Reviewo
10.5.1 A Taxonomy of Composition
10.5.2 Interleaving Reconsidered
10.5.3 Joint Actions Reconsidered
10.6 Liveness and Hiding
10.6.1 Liveness and Machine Closure
10.6.2 Hiding
10.7 Open-System Specifications
10.8 Interface Refinement
10.8.1 A Binary Hour Clock
10.8.2 Refining a Channel
10.8.3 Interface Refinement in General
10.8.4 Open-System Specifications
10.9 Should You Compose?

xii

CONTENTS

11 Advanced Examples

11.1

11.2

Specifying Data Structures
11.1.1 Local Definitions
11.1.2 Graphs
11.1.3 Solving Differential Equations
11.1.4 BNF Grammars
Other Memory Specifications
11.2.1 The Interface
11.2.2 The Correctness Condition
11.2.3 A Serial Memory 0L
11.2.4 A Sequentially Consistent Memory
11.2.5 The Memory Specifications Considered

Part IIT The Tools

12 The

13 The
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

14 The
14.1
14.2

14.3

14.4

Syntactic Analyzer

TLATEX Typesetter

Introductiono
Comment Shading Lo
How It Typesets the Specification
How It Typesets Comments
Adjusting the Output Format
Output Files
Trouble-Shooting oo
Using BTEX Commands

TLC Model Checker

Introduction to TLC
What TLC Can Cope With
14.2.1 TLC Values
14.2.2 How TLC Evaluates Expressions
14.2.3 Assignment and Replacement
14.2.4 Evaluating Temporal Formulas
14.2.5 Overriding Modules
14.2.6 How TLC Computes States
How TLC Checks Properties
14.3.1 Model-Checking Mode
14.3.2 Simulation Mode oo
14.3.3 Views and Fingerprints
14.3.4 Taking Advantage of Symmetry
14.3.5 Limitations of Liveness Checking
The TLC Module

169
170
170
172
174
179
183
183
185
188
195
200

CONTENTS

xiii

14.5 How to Use TLC
14.5.1 Running TLC
14.5.2 Debugging a Specification
14.5.3 Hints on Using TLC Effectively

14.6 What TLC Doesn’t Do.

14.7 The Fine Print

14.7.1 The Grammar of the Configuration File

14.7.2 Comparable TLC Values.

Part IV The TLA™' Language
Mini-Manual

15 The Syntax of TLAT

15.1 The Simple Grammar
15.2 The Complete Grammar
15.2.1 Precedence and Associativity
15.2.2 Alignment
15.2.3 Comments.
15.2.4 Temporal Formulas
15.2.5 Two Anomalies
15.3 The Lexemes of TLA®

16 The Operators of TLA™T

16.1 Constant Operators
16.1.1 Boolean Operators
16.1.2 The Choose Operator
16.1.3 Interpretations of Boolean Operators .
16.1.4 Conditional Constructs
16.1.5 The Let/In Construct
16.1.6 The Operators of Set Theory
16.1.7 Functions
16.1.8 Records
16.1.9 Tuples.
16.1.10 Stringso
16.1.11 Numbers

16.2 Nonconstant Operators
16.2.1 Basic Constant Expressions
16.2.2 The Meaning of a State Function
16.2.3 Action Operators
16.2.4 Temporal Operators

265

Xiv CONTENTS
17 The Meaning of a Module 317
17.1 Operators and Expressions 317
17.1.1 The Arity and Order of an Operator 318
17.1.2 M Expressions oo o 319
17.1.3 Simplifying Operator Application 320
17.1.4 Expressions oo 321
17.2 Levels e 321
17.3 Contexts 324
17.4 The Meaning of a A Expression 325
17.5 The Meaning of a Module 327
175.1 Extends 328
17.5.2 Declarations. 329
17.5.3 Operator Definitions 329
17.5.4 Function Definitions 329
17.5.5 Instantiation 330
17.5.6 Theorems and Assumptions 332
17.5.7 Submodules 332
17.6 Correctness of a Module 332
17.7 Finding Modules L o 333
17.8 The Semantics of Instantiation 334
18 The Standard Modules 339
18.1 Module Sequences oo 339
18.2 Module FiniteSets 340
18.3 Module Bags e 340
18.4 The Numbers Modules 344

List of Figures and Tables

Figures
2.1 The hour-clock specification—typeset and ASCII versions.
3.1 Our first specification of an asynchronous interface.
3.2 Our second specification of an asynchronous interface.
3.3 The hour-clock specification with comments.
4.1 The specification of a FIFO, with the internal variable ¢ visible.
4.2 A specification of a FIFO buffer of length N.
5.1 The specification of a memory interface.
5.2 The internal memory specification
5.3 The memory specification.
5.4 The write-through cache.
5.5 The write-through cache specification
9.1 The real-time specification of an hour clock.
9.2 The RealTime module for writing real-time specifications.
9.3 A real-time version of the linearizable memory specification. . . .
9.4 A real-time version of the write-through cache
10.1 A noninterleaving composite specification of the FIFO.
10.2 A joint-action specification of a linearizable memory.
10.3 A specification of a binary hour clock.
10.4 Refining a channel. L oL
11.1 A module for specifying operators on graphs.
11.2 A module for specifying the solution to a differential equation.
11.3 The definition of the grammar GSF for the language SE. .
11.4 The module BNFGrammars.
11.5 A module for specifying a register interface to a memory.
11.6 Module InnerSerial

143
150
160
162

175
178
183
184
186

XV

xvi LIST OF FIGURES AND TABLES

11.7 Module InnerSequential 201
14.1 The alternating bit protocol 223
14.2 Module MCAlternatingBit. 227
14.3 A configuration file for module MCAlternatingBit. 227
14.4 A specification of correctness of the alternating bit protocol. . . . 229
14.5 The standard module TLC. 248
14.6 The BNF grammar of the configuration file. 263
18.1 The standard Sequences module. 341
18.2 The standard FiniteSets module. 341
18.3 The standard Bags module. 343
18.4 The Peano module., . 345
18.5 The ProtoReals module 346
18.6 The standard Naturals module. 348
18.7 The standard Integers module. 348
18.8 The standard Reals module. 348
Tables
Table 1 The constant operators. 268
Table 2 Miscellaneous constructs. 269
Table 3 Action operators.o 269
Table 4 Temporal operators. 269
Table 5 User-definable operator symbols. 270
Table 6 The precedence ranges of operators. 271
Table 7 Operators defined in the standard modules. 272

Table 8 The ASCII representations of typeset symbols. 273

Acknowledgments

I have spent more than two and a half decades learning how to specify and
reason about concurrent computer systems. Before that, I had already spent
many years learning how to use mathematics rigorously. I cannot begin to thank
everyone who helped me during all that time. But I would like to express my
gratitude to two men who, more than anyone else, influenced this book. Richard
Palais taught me how even the most complicated mathematics could be made
both rigorous and elegant. Martin Abadi influenced the development of TLA
and was my collaborator in developing the ideas behind Chapters 9 and 10.

Much of what I know about applying the mathematics of TLA to the engi-
neering problems of complex systems came from working with Mark Tuttle and
Yuan Yu. Yuan Yu also helped turn TLAT into a useful tool for engineers by
writing the TLC model checker, ignoring my warnings that it would never be
practical. While writing the first version of the Syntactic Analyzer, Jean-Charles
Grégoire helped me fine tune the TLA™ language.

The following people made helpful comments on earlier versions of this book:
Dominique Couturier, Douglas Frank, Vinod Grover, David Jefferson, Sara
Kalvala, and Wolfgang Schreiner all pointed out mistakes. Kazuhiro Ogata
read the manuscript with unusual care and found a number of mistakes. Kapila
Pahalawatta found an error in the ProtoReals module. Paddy Krishnan also
found an error in the ProtoReals module and suggested a way to improve the
presentation. And I wish to extend my special thanks to Martin Rudalics, who
read the manuscript with amazing thoroughness and caught many errors.

Leslie Lamport
Palo Alto, California
4 March 2002

xvii

Introduction

This book will teach you how to write specifications of computer systems, using
the language TLA™. It’s rather long, but most people will read only Part I, which
comprises the first 83 pages. That part contains all that most engineers need to
know about writing specifications; it assumes only the basic background in com-
puting and knowledge of mathematics expected of an undergraduate studying
engineering or computer science. Part II contains more advanced material for
more sophisticated readers. The remainder of the book is a reference manual—
Part III for the TLA™ tools and Part IV for the language itself.

The TLA World Wide Web page contains material to accompany the book,
including the TLA™ tools, exercises, references to the literature, and a list of
corrections. There is a link to the TLA Web page on

http://lamport.org
You can also find the page by searching the Web for the 21-letter string
uidlamporttlahomepage

Do not put this string in any document that might appear on the Web.

What Is a Specification?

Writing is nature’s way of letting you
know how sloppy your thinking is.
— Guindon

A specification is a written description of what a system is supposed to do.
Specifying a system helps us understand it. It’s a good idea to understand a
system before building it, so it’s a good idea to write a specification of a system
before implementing it.

This book is about specifying the behavioral properties of a system—also
called its functional or logical properties. These are the properties that spec-
ify what the system is supposed to do. There are other important kinds of

properties that we don’t consider, including performance properties. Worst-
case performance can often be expressed as a behavioral property—for example,
Chapter 9 explains how to specify that a system must react within a certain
length of time. However, specifying average performance is beyond the scope of
the methods described here.

Our basic tool for writing specifications is mathematics. Mathematics is
nature’s way of letting you know how sloppy your writing is. It’s hard to be
precise in an imprecise language like English or Chinese. In engineering, impre-
cision can lead to errors. To avoid errors, science and engineering have adopted
mathematics as their language.

The mathematics we use is more formal than the math you've grown up
with. Formal mathematics is nature’s way of letting you know how sloppy
your mathematics is. The mathematics written by most mathematicians and
scientists is not really precise. It’s precise in the small, but imprecise in the large.
Each equation is a precise assertion, but you have to read the accompanying
words to understand how the equations relate to one another and exactly what
the theorems mean. Logicians have developed ways of eliminating those words
and making the mathematics completely formal and, hence, completely precise.

Most mathematicians and scientists think that formal mathematics, without
words, is long and tiresome. They’re wrong. Ordinary mathematics can be
expressed compactly in a precise, completely formal language. It takes only
about two dozen lines to define the solution to an arbitrary differential equation
in the DifferentialEquations module of Chapter 11. But few specifications need
such sophisticated mathematics. Most require only simple application of a few
standard mathematical concepts.

Why TLA*?

We specify a system by describing its allowed behaviors—what it may do in the
course of an execution. In 1977, Amir Pnueli introduced the use of temporal
logic for describing system behaviors. In principle, a system could be described
by a single temporal logic formula. In practice, it couldn’t. Pnueli’s temporal
logic was ideal for describing some properties of systems, but awkward for others.
So, it was usually combined with a more traditional way of describing systems.

In the late 1980’s, I invented TLA, the Temporal Logic of Actions—a simple
variant of Pnueli’s original logic. TLA makes it practical to describe a system by
a single formula. Most of a TLA specification consists of ordinary, nontemporal
mathematics. Temporal logic plays a significant role only in describing those
properties that it’s good at describing. TLA also provides a nice way to formalize
the style of reasoning about systems that has proved to be most effective in
practice—a style known as assertional reasoning. However, this book is about
specification; it says almost nothing about proofs.

Temporal logic assumes an underlying logic for expressing ordinary mathe-
matics. There are many ways to formalize ordinary math. Most computer sci-
entists prefer one that resembles their favorite programming language. I chose
instead the one that most mathematicians prefer—the one logicians call first-
order logic and set theory.

TLA provides a mathematical foundation for describing systems. To write
specifications, we need a complete language built atop that foundation. I ini-
tially thought that this language should be some sort of abstract programming
language whose semantics would be based on TLA. I didn’t know what kind of
programming language constructs would be best, so I decided to start writing
specifications directly in TLA. I intended to introduce programming constructs
as I needed them. To my surprise, I discovered that I didn’t need them. What
I needed was a robust language for writing mathematics.

Although mathematicians have developed the science of writing formulas,
they haven’t turned that science into an engineering discipline. They have de-
veloped notations for mathematics in the small, but not for mathematics in the
large. The specification of a real system can be dozens or even hundreds of pages
long. Mathematicians know how to write 20-line formulas, not 20-page formulas.
So, I had to introduce notations for writing long formulas. What I took from
programming languages were ideas for modularizing large specifications.

The language I came up with is called TLA™T. I refined TLA™ in the course
of writing specifications of disparate systems. But it has changed little in the
last few years. I have found TLAT to be quite good for specifying a wide class
of systems—from program interfaces (APIs) to distributed systems. It can be
used to write a precise, formal description of almost any sort of discrete system.
It’s especially well suited to describing asynchronous systems—that is, systems
with components that do not operate in strict lock-step.

About this Book

Part I, consisting of Chapters 1 through 7, is the core of the book and is meant to
be read from beginning to end. It explains how to specify the class of properties
known as safety properties. These properties, which can be specified with almost
no temporal logic, are all that most engineers need to know about.

After reading Part I, you can read as much of Part II as you like. Each of
its chapters is independent of the others. Temporal logic comes to the fore in
Chapter 8, where it is used to specify the additional class of properties known as
liveness properties. Chapter 9 describes how to specify real-time properties, and
Chapter 10 describes how to write specifications as compositions. Chapter 11
contains more advanced examples.

Part III serves as the reference manual for three TLA™T tools: the Syntactic
Analyzer, the TLATEX typesetting program, and the TLC model checker. If

you want to use TLAT, then you probably want to use these tools. They are
available from the TLA Web page. TLC is the most sophisticated of them.
The examples on the Web can get you started using it, but you’ll have to read
Chapter 14 to learn to use TLC effectively.

Part IV is a reference manual for the TLA™ language. Part I provides a
good enough working knowledge of the language for most purposes. You need
look at Part IV only if you have questions about the fine points of the syntax
and semantics. Chapter 15 gives the syntax of TLAT. Chapter 16 describes the
precise meanings and the general forms of all the built-in operators of TLA™;
Chapter 17 describes the precise meaning of all the higher-level TLA™ con-
structs such as definitions. Together, these two chapters specify the semantics
of the language. Chapter 18 describes the standard modules—except for module
RealTime, described in Chapter 9, and module TLC, described in Chapter 14.
You might want to look at this chapter if you're curious about how standard
elementary mathematics can be formalized in TLAT.

Part IV does have something you may want to refer to often: a mini-manual
that compactly presents lots of useful information. Pages 268-273 list all TLA™
operators, all user-definable symbols, the precedence of all operators, all opera-
tors defined in the standard modules, and the ASCII representation of symbols
like ®.

Part 1

Getting Started

A system specification consists of a lot of ordinary mathematics glued to-
gether with a tiny bit of temporal logic. That’s why most TLA™ constructs
are for expressing ordinary mathematics. To write specifications, you have to
be familiar with this ordinary math. Unfortunately, the computer science de-
partments in many universities apparently believe that fluency in C++ is more
important than a sound education in elementary mathematics. So, some readers
may be unfamiliar with the math needed to write specifications. Fortunately,
this math is quite simple. If exposure to C++ hasn’t destroyed your ability to
think logically, you should have no trouble filling any gaps in your mathematics
education. You probably learned arithmetic before learning C++, so I will as-
sume you know about numbers and arithmetic operations on them.! I will try
to explain all other mathematical concepts that you need, starting in Chapter 1
with a review of some elementary math. I hope most readers will find this review
completely unnecessary.

After the brief review of simple mathematics in the first chapter, Chapters
2 through 5 describe TLAY with a sequence of examples. Chapter 6 explains
some more about the math used in writing specifications, and Chapter 7 reviews
everything and provides some advice. By the time you finish Chapter 7, you
should be able to handle most of the specification problems that you are likely
to encounter in ordinary engineering practice.

ISome readers may need reminding that numbers are not strings of bits, and 233 x 233
equals 2%, not overflow error.

Chapter 1

A Little Simple Math

1.1 Propositional Logic

Elementary algebra is the mathematics of real numbers and the operators +,
—, * (multiplication), and / (division). Propositional logic is the mathematics
of the two Boolean values TRUE and FALSE and the five operators whose names
(and common pronunciations) are

A conjunction (and) = implication (implies)
V disjunction (or) = equivalence (is equivalent to)

— negation (not)

To learn how to compute with numbers, you had to memorize addition and
multiplication tables and algorithms for calculating with multidigit numbers.
Propositional logic is much simpler, since there are only two values, TRUE and
FALSE. To learn how to compute with these values, all you need to know are the
following definitions of the five Boolean operators:

A F A G equals TRUE iff both F and G equal TRUE.

V' FV G equals TRUE iff F or G equals TRUE (or both do).

- —F equals TRUE iff F' equals FALSE.

= F = (@ equals TRUE iff F equals FALSE or G equals TRUE (or both).

= F = G equals TRUE iff F and G both equal TRUE or both equal FALSE.

iff stands for if
and only if. Like
most mathemati-
cians, I use or to
mean and/or.

10 CHAPTER 1. A LITTLE SIMPLE MATH

We can also describe these operators by truth tables. This truth table gives the
value of F' = G for all four combinations of truth values of F and G:

F G F=d
TRUE | TRUE || TRUE
TRUE FALSE FALSE
FALSE | TRUE || TRUE
FALSE | FALSE TRUE

The formula F' = G asserts that F' implies G—that is, F' = G equals TRUE
iff the statement “F implies G” is true. People often find the definition of
= confusing. They don’t understand why FALSE = TRUE and FALSE = FALSE
should equal TRUE. The explanation is simple. We expect that if n is greater
than 3, then it should be greater than 1, so n > 3 should imply n > 1. Therefore,
the formula (n > 3) = (n > 1) should equal TRUE. Substituting 4, 2, and 0 for
n in this formula explains why F' = G means F implies G or, equivalently, if
F then G.

The equivalence operator = is equality for Booleans. We can replace = by
=, but not vice versa. (We can write FALSE = = TRUE, but not 24+ 2 =4.) It’s
a good idea to write = instead of = to make it clear that the equal expressions
are Booleans.!

Just like formulas of algebra, formulas of propositional logic are made up
of values, operators, and identifiers like z that stand for values. However,
propositional-logic formulas use only the two values TRUE and FALSE and the
five Boolean operators A, V, -, =, and =. In algebraic formulas, * has higher
precedence (binds more tightly) than +, so z+y+*2z means z+ (y+z). Similarly, —
has higher precedence than A and V, which have higher precedence than = and
=,s50 ~F A G = H means ((-F) A G) = H. Other mathematical operators like
+ and > have higher precedence than the operators of propositional logic, so
n>0=n—12>0means (n >0) = (n—1>0). Redundant parentheses can’t
hurt and often make a formula easier to read. If you have the slightest doubt
about whether parentheses are needed, use them.

The operators A and V are associative, just like + and *. Associativity of +
means that z + (y + z) equals (z + y) + z, so we can write z + y + z without
parentheses. Similarly, associativity of A and V lets us write F A G A H or
FvVv GV H. Like + and *, the operators A and V are also commutative, so FFA G
is equivalent to G A F', and F V G is equivalent to G V F.

The truth of the formula (z = 2) = (z + 1 = 3) expresses a fact about
numbers. To determine that it’s true, we have to understand some elementary
properties of arithmetic. However, we can tell that (z =2) = (z =2)V (y > 7)
is true even if we know nothing about numbers. This formula is true because
F = FV @G is true, regardless of what the formulas F and G are. In other

ISection 16.1.3 on page 296 explains a more subtle reason for using = instead of = for
equality of Boolean values.

1.2. SETS

11

words, F' = F V G is true for all possible truth values of its identifiers F' and
G. Such a formula is called a tautology.

In general, a tautology of propositional logic is a propositional-logic formula
that is true for all possible truth values of its identifiers. Simple tautologies like
this should be as obvious as simple algebraic properties of numbers. It should
be as obvious that FF = F V G is a tautology as that z < z + y is true for all
non-negative numbers z and y. One can derive complicated tautologies from
simpler ones by calculations, just as one derives more complicated properties of
numbers from simpler ones. However, this takes practice. You've spent years
learning how to manipulate number-valued expressions—for example, to deduce
that £ < —z+y holds iff 2xz < y does. You probably haven’t learned to deduce
that =F V G holds iff F = G does.

If you haven’t learned to manipulate Boolean-valued expressions, you will
have to do the equivalent of counting on your fingers. You can check if a formula
is a tautology by calculating whether it equals TRUE for each possible assignment
of Boolean values to its variables. This is best done by constructing a truth table
that lists the possible assignments of values to variables and the corresponding
values of all subformulas. For example, here is the truth table showing that
(F = G) = (—-FV G) is a tautology.

F G F=G -F -FVG (F=G)=-FVG
TRUE TRUE TRUE FALSE TRUE TRUE
TRUE FALSE FALSE FALSE FALSE TRUE
FALSE | TRUE TRUE TRUE TRUE TRUE
FALSE | FALSE TRUE TRUE TRUE TRUE

Writing truth tables is a good way to improve your understanding of propo-
sitional logic. However, computers are better than people at doing this sort
of calculation. Chapter 14 explains, on page 261, how to use the TLC model
checker to verify propositional logic tautologies and to perform other TLA™ cal-
culations.

1.2 Sets

Set theory is the foundation of ordinary mathematics. A set is often described
as a collection of elements, but saying that a set is a collection doesn’t explain
very much. The concept of set is so fundamental that we don’t try to define
it. We take as undefined concepts the notion of a set and the relation €, where
z € S means that z is an element of S. We often say is in instead of is an
element of.

A set can have a finite or infinite number of elements. The set of all natural
numbers (0, 1, 2, etc.) is an infinite set. The set of all natural numbers less than

12 CHAPTER 1. A LITTLE SIMPLE MATH

3 is finite, and contains the three elements 0, 1, and 2. We can write this set
{0,1,2}.

A set is completely determined by its elements. Two sets are equal iff they
have the same elements. Thus, {0,1,2} and {2, 1,0} and {0,0, 1,2, 2} are all the
same set—the unique set containing the three elements 0, 1, and 2. The empty
set, which we write {}, is the unique set that has no elements.

The most common operations on sets are

M intersection U union C subset \ set difference
Here are their definitions and examples of their use.

SN T The set of elements in both S and T.
{1,-1/2,3} n {1, 2,3,5, 7} = {1, 3}

SUT The set of elements in S or T (or both).
{1, -1/2} U {1,5,7} = {1, —-1/2, 5, 7}

S C T True iff every element of S is an element of T'.
{1,3} € {3,2, 1}

S\ T The set of elements in S that are not in 7.

{17_1/273} \ {17577} = {_1/273}

This is all you need to know about sets before we start looking at how to specify
systems. We’ll return to set theory in Section 6.1.

1.3 Predicate Logic

Once we have sets, it’s natural to say that some formula is true for all the
elements of a set, or for some of the elements of a set. Predicate logic extends
propositional logic with the two quantifiers

V universal quantification (for all)
3 existential quantification (there exists)

The formula Vz € S : F' asserts that formula F' is true for every element z in the
set S. For example, Vn € Nat:n + 1 > n asserts that the formula n+1 > n is
true for all elements n of the set Nat of natural numbers. This formula happens
to be true.

The formula 3z € S: F asserts that formula F' is true for at least one ele-
ment z in S. For example, 3n € Nat : n? = 2 asserts that there exists a natural
number n whose square equals 2. This formula happens to be false.

Formula F is true for some x in S iff F' is not false for all x in S—that is, iff
it’s not the case that —F is true for all z in S. Hence, the formula

(1.1) (3ze€S:F) = -(VzeS:-F)

1.3. PREDICATE LOGIC

13

is a tautology of predicate logic, meaning that it is true for all values of the
identifiers S and F.?

Since there exists no element in the empty set, the formula 3z € {}: F is
false for every formula F. By (1.1), this implies that ¥z € {} : F must be true
for every F.

The quantification in the formulas Vo € S: F and 3z € §: F is said to be
bounded, since these formulas make an assertion only about elements in the set
S. There is also unbounded quantification. The formula V z : F' asserts that F'
is true for all values x, and Jz : F asserts that F' is true for at least one value
of z—a value that is not constrained to be in any particular set. Bounded and
unbounded quantification are related by the following tautologies:

VzeS:F) = (Vz:(z€8)=F)
FzeS:F) Fz:(zeS)AF)

The analog of (1.1) for unbounded quantifiers is also a tautology:
Hz:F) = —-(Vz:-F)

Whenever possible, it is better to use bounded than unbounded quantification
in a specification. This makes the specification easier for both people and tools
to understand.

Universal quantification generalizes conjunction. If S is a finite set, then
V2 € S:F is the conjunction of the formulas obtained by substituting the dif-
ferent elements of S for z in F. For example,

Ve e{2,3,7:z<y®) = <)AB<y)A(T<y")

We sometimes informally talk about the conjunction of an infinite number of
formulas when we formally mean a universally quantified formula. For example,
the conjunction of the formulas z < y* for all natural numbers z is the formula
Vz € Nat : z < y®. Similarly, existential quantification generalizes disjunction.

Logicians have rules for proving predicate-logic tautologies such as (1.1), but
you shouldn’t need them. You should become familiar enough with predicate
logic that simple tautologies are obvious. Thinking of V as conjunction and 3
as disjunction can help. For example, the associativity and commutativity of
conjunction and disjunction lead to the tautologies

NMzeS:F)AN{MVMzeS§S: G =Wzel: FAG)
HzeS:F)v(3zeS:G) =3zeS: FVEG)
for any set S and formulas F' and G.

Mathematicians use some obvious abbreviations for nested quantifiers. For
example,

2Strictly speaking, € isn’t an operator of predicate logic, so this isn’t really a predicate-logic
tautology.

14 CHAPTER 1. A LITTLE SIMPLE MATH

VeeS,ye T:F means Ve € S:(Vye T:F)
Jw,z,y,z€ S:F means Jwe S:(Jz e S:(JyeS:(F2€5:F)))

In the expression dz € S: F, logicians say that x is a bound variable and
that occurrences of z in F' are bound. For example, n is a bound variable in the
formula 3n € Nat:n + 1 > n, and the two occurrences of n in the subexpression
n + 1 > n are bound. A variable z that’s not bound is said to be free, and
occurrences of = that are not bound are called free occurrences. This terminology
is rather misleading. A bound variable doesn’t really occur in a formula because
replacing it by some new variable doesn’t change the formula. The two formulas

dne€ Nat:n+1>n dze Nat:z+1> =z

are equivalent. Calling n a variable of the first formula is a bit like calling a a
variable of that formula because it appears in the name Nat. Nevertheless, it is
convenient to talk about an occurrence of a bound variable in a formula.

1.4 Formulas and Language

When you first studied mathematics, formulas were statements. The formula
2% x > r was just a compact way of writing the statement “2 times z is greater
than z.” In this book, you are entering the realm of logic, where a formula is a
noun. The formula 2xz > z is just a formula; it may be true or false, depending
on the value of z. If we want to assert that this formula is true, meaning that
2 % x really is greater than z, we should explicitly write “2 x z > x is true.”

Using a formula in place of a statement can lead to confusion. On the
other hand, formulas are more compact and easier to read than prose. Reading
2%z > z is easier than reading “2* z is greater than z”; and “2xz > x is true”
may seem redundant. So, like most mathematicians, I will often write sentences
like

We know that z is positive, so 2 x z > .

If it’s not obvious whether a formula is really a formula or is the statement
that the formula is true, here’s an easy way to tell. Replace the formula with
a name and read the sentence. If the sentence is grammatically correct, even
though nonsensical, then the formula is a formula; otherwise, it’s a statement.
The formula 2 * x > = in the sentence above is a statement because

We know that z is positive, so Mary.
is ungrammatical. It is a formula in the sentence

To prove 2 x £ > x, we must prove that z is positive.
because the following silly sentence is grammatically correct:

To prove Fred, we must prove that z is positive.

Chapter 2

Specifying a Simple Clock

2.1 Behaviors

Before we try to specify a system, let’s look at how scientists do it. For centuries,
they have described a system with equations that determine how its state evolves
with time, where the state consists of the values of variables. For example, the
state of the system comprising the earth and the moon might be described by
the values of the four variables e_pos, m_pos, e_vel, and m_vel, representing the
positions and velocities of the two bodies. These values are elements in a 3-
dimensional space. The earth-moon system is described by equations expressing
the variables’ values as functions of time and of certain constants—namely, their
masses and initial positions and velocities.

A behavior of the earth-moon system consists of a function F from time
to states, F'(t) representing the state of the system at time ¢. A computer
system differs from the systems traditionally studied by scientists because we can
pretend that its state changes in discrete steps. So, we represent the execution
of a system as a sequence of states. Formally, we define a behavior to be a
sequence of states, where a state is an assignment of values to variables. We
specify a system by specifying a set of possible behaviors—the ones representing
a correct execution of the system.

2.2 An Hour Clock

Let’s start with a very trivial system—a digital clock that displays only the
hour. To make the system completely trivial, we ignore the relation between the
display and the actual time. The hour clock is then just a device whose display
cycles through the values 1 through 12. Let the variable hr represent the clock’s

15

16 CHAPTER 2. SPECIFYING A SIMPLE CLOCK

display. A typical behavior of the clock is the sequence
(21) [pr=11] = [r=12] = [r=1] = [br=2] — ---

of states, where [hr = 11] is a state in which the variable hr has the value 11.
A pair of successive states, such as [hr = 1] — [hr = 2], is called a step.

To specify the hour clock, we describe all its possible behaviors. We write an
initial predicate that specifies the possible initial values of hr, and a next-state
relation that specifies how the value of hr can change in any step.

We don’t want to specify exactly what the display reads initially; any hour
will do. So, we want the initial predicate to assert that hr can have any value
from 1 through 12. Let’s call the initial predicate HCini. We might informally

define HCini by The symbol =
means s defined
HCini = href{l,...,12} to equal.
Later, we’ll see how to write this definition formally, without the “...” that

stands for the informal and so on.

The next-state relation HCnat is a formula expressing the relation between
the values of hr in the old (first) state and new (second) state of a step. We
let hr represent the value of hr in the old state and hr’ represent its value in
the new state. (The ’ in hr’ is read prime.) We want the next-state relation to
assert that hr’ equals hr + 1 except if hr equals 12, in which case hr’ should
equal 1. Using an IF/THEN/ELSE construct with the obvious meaning, we can
define HCnzt to be the next-state relation by writing

HCnat £ hr' = 1F hr #12 THEN hr+1 ELSE 1

HCnat is an ordinary mathematical formula, except that it contains primed as
well as unprimed variables. Such a formula is called an action. An action is true
or false of a step. A step that satisfies the action HCnat is called an HCnzxt step.

When an HCnazt step occurs, we sometimes say that HCnzxt is executed.
However, it would be a mistake to take this terminology seriously. An action is
a formula, and formulas aren’t executed.

We want our specification to be a single formula, not the pair of formulas
HC'ini and HCnat. This formula must assert about a behavior that (i) its initial
state satisfies HCini, and (ii) each of its steps satisfies HCnat. We express (i) as
the formula HCini, which we interpret as a statement about behaviors to mean
that the initial state satisfies HCini. To express (ii), we use the temporal-logic
operator O (pronounced bozx). The temporal formula OF asserts that formula
F' is always true. In particular, OHCnzt is the assertion that HCnzt is true
for every step in the behavior. So, HCini A OHCnxt is true of a behavior iff
the initial state satisfies HCini and every step satisfies HCnzt. This formula
describes all behaviors like the one in (2.1) on this page; it seems to be the
specification we’re looking for.

2.2. AN HOUR CLOCK

17

If we considered the clock only in isolation and never tried to relate it to
another system, then this would be a fine specification. However, suppose the
clock is part of a larger system—for example, the hour display of a weather
station that displays the current hour and temperature. The state of the sta-
tion is described by two variables: hr, representing the hour display, and tmp,
representing the temperature display. Consider this behavior of the weather

station:
[hrll} [[hrlQ}_}
tmp = 23.5 tmp = 23.5 tmp 234
[hr:IQ} [hr:l}ﬁ.”
tmp = 23.3 tmp = 23.3
In the second and third steps, tmp changes but hr remains the same. These steps
are not allowed by OHCnat, which asserts that every step must increment hr.
The formula HCini A OHCnat does not describe the hour clock in the weather
station.

A formula that describes any hour clock must allow steps that leave hr
unchanged—in other words, hr’ = hr steps. These are called stuttering steps of
the clock. A specification of the hour clock should allow both HCnat steps and
stuttering steps. So, a step should be allowed iff it is either an HCnat step or
a stuttering step—that is, iff it is a step satisfying HCnat V (hr' = hr). This
suggests that we adopt HCini A O(HCnat V (hr' = hr)) as our specification.
In TLA, we let [HCnazt]p, stand for HCnat V (hr' = hr), so we can write the
formula more compactly as HCini A O[HCnat]p,.

The formula HCini A O[HCnat]p, does allow stuttering steps. In fact, it
allows the behavior

hr 12}

[hr=10] — [hr=11] — [hr=11] — [br=11] — ---

that ends with an infinite sequence of stuttering steps. This behavior describes
a clock whose display attains the value 11 and then keeps that value forever—in
other words, a clock that stops at 11. In a like manner, we can represent a
terminating execution of any system by an infinite behavior that ends with a
sequence of nothing but stuttering steps. We have no need of finite behaviors
(finite sequences of states), so we consider only infinite ones.

It’s natural to require that a clock does not stop, so our specification should
assert that there are infinitely many nonstuttering steps. Chapter 8 explains
how to express this requirement. For now, we content ourselves with clocks that
may stop, and we take as our specification of an hour clock the formula HC
defined by

HC = HCini A O[HCnat]p,

I pronounce
[HCnat]p, as
square HCnat sub
hr.

18 CHAPTER 2. SPECIFYING A SIMPLE CLOCK

2.3 A Closer Look at the Specification

A state is an assignment of values to variables, but what variables? The answer
is simple: all variables. In the behavior (2.1) on page 16, [hr = 1] represents
some particular state that assigns the value 1 to hr. It might assign the value
23 to the variable tmp and the value v/—17 to the variable m_pos. We can think
of a state as representing a potential state of the entire universe. A state that
assigns 1 to hr and a particular point in 3-space to m_pos describes a state of the
universe in which the hour clock reads 1 and the moon is in a particular place.
A state that assigns v/—2 to hr doesn’t correspond to any state of the universe
that we recognize, because the hour clock can’t display the value /—2. It might
represent the state of the universe after a bomb fell on the clock, making its
display purely imaginary.
A behavior is an infinite sequence of states—for example:

(2.2) [hr=11] = [hr=77.2] — [hr =782] — [hr =+/=2] — ---

A behavior describes a potential history of the universe. The behavior (2.2)
doesn’t correspond to a history that we understand, because we don’t know how
the clock’s display can change from 11 to 77.2. Whatever kind of history it
represents is not one in which the clock is doing what it’s supposed to.

Formula HC' is a temporal formula. A temporal formula is an assertion about
behaviors. We say that a behavior satisfies HC iff HC' is a true assertion about
the behavior. Behavior (2.1) satisfies formula HC. Behavior (2.2) does not,
because HC' asserts that every step satisfies HCnzt or leaves hr unchanged, and
the first and third steps of (2.2) don’t. (The second step, [hr = 77.2] — [hr =
78.2], does satisfy HCnat.) We regard formula HC to be the specification of
an hour clock because it is satisfied by exactly those behaviors that represent
histories of the universe in which the clock functions properly.

If the clock is behaving properly, then its display should be an integer from 1
through 12. So, hr should be an integer from 1 through 12 in every state of any
behavior satisfying the clock’s specification, HC'. Formula HCini asserts that
hr is an integer from 1 through 12, and OHCini asserts that HCini is always
true. So, OHCini should be true for any behavior satisfying HC. Another way
of saying this is that HC' implies OH('ini, for any behavior. Thus, the formula
HC = OHCini should be satisfied by every behavior. A temporal formula
satisfied by every behavior is called a theorem, so HC' = OHC(Cini should be a
theorem.! It’s easy to see that it is: HC implies that HCini is true initially (in
the first state of the behavior), and O[HCnat]p, implies that each step either
advances hr to its proper next value or else leaves hr unchanged. We can
formalize this reasoning using the proof rules of TLA, but we’re not going to
delve into proofs and proof rules.

ILogicians call a formula valid if it is satisfied by every behavior; they reserve the term
theorem for provably valid formulas.

2.4. THE SPECIFICATION IN TLA™

19

2.4 The Specification in TLA™

Figure 2.1 on the next page shows how the hour-clock specification can be written
in TLA™T. There are two versions: the ASCII version on the bottom is the actual
TLAT specification, the way you type it; the typeset version on the top is one
that the TLATEX program, described in Chapter 13, might produce. Before
trying to understand the specification, observe the relation between the two
syntaxes.

e Reserved words that appear in small upper-case letters (like EXTENDS) are
written in ASCII with ordinary upper-case letters.

e When possible, symbols are represented pictorially in Ascii—for example,
O is typed as [] and # as #. (You can also type # as /=.)

e When there is no good ASCII representation, TEX notation? is used—for
example, € is typed as \in. The major exception is =, which is typed as

A complete list of symbols and their ASCII equivalents appears in Table 8 on
page 273. 1 will usually show the typeset version of a specification; the AsciI
versions of all the specifications in this book can be found through the TLA Web
page.

Now let’s look at what the specification says. It starts with

: MODULE HourClock

which begins a module named HourClock. TLA™ specifications are partitioned
into modules; the hour clock’s specification consists of this single module.

Arithmetic operators like + are not built into TLAY, but are themselves
defined in modules. (You might want to write a specification in which + means
addition of matrices rather than numbers.) The usual operators on natural
numbers are defined in the Naturals module. Their definitions are incorporated
into module HourClock by the statement

EXTENDS Naturals

Every symbol that appears in a formula must either be a built-in operator of
TLAT, or else it must be declared or defined. The statement

VARIABLE hr

declares hr to be a variable.

2The TEX typesetting system is described in The TgXbook by Donald E. Knuth, published
by Addison-Wesley, Reading, Massachusetts, 1986.

20 CHAPTER 2. SPECIFYING A SIMPLE CLOCK

MODULE HourClock

EXTENDS Naturals

VARIABLE hr

HCini hr e (1..12)

HCnat hr' = 1F hr #12 THEN hr+1 ELSE 1

A

HC = HCini N O[HCnat]p,

> 1

THEOREM HC = OHCini

EXTENDS Naturals
VARIABLE hr

HCini == hr \in (1 .. 12)
HCnxt == hr’ = IF hr # 12 THEN hr + 1 ELSE 1
HC == HCini /\ [][HCnxt]_hr

THEOREM HC => [JHCini

Figure 2.1: The hour-clock specification—typeset and ASCII versions.

To define HCini, we need to express the set {1, ..., 12} formally, without
the ellipsis “...”. We can write this set out completely as

{1,2,3,4,5,6,7,8,9,10,11,12}

but that’s tiresome. Instead, we use the operator “..”, defined in the Naturals
module, to write this set as 1..12. In general .. is the set of integers from
through j, for any integers 7 and j. (It equals the empty set if j < i.) It’s now
obvious how to write the definition of HC'ini. The definitions of HCnat and HC
are written just as before. (The ordinary mathematical operators of logic and
set theory, like A and €, are built into TLA™.)

The line

! |
I 1

can appear anywhere between statements; it’s purely cosmetic and has no mean-
ing. Following it is the statement

THEOREM HC = OHCini

of the theorem that was discussed above. This statement asserts that the formula
HC = OHCini is true in the context of the statement. More precisely, it

2.5. AN ALTERNATIVE SPECIFICATION

21

asserts that the formula follows logically from the definitions in this module, the
definitions in the Naturals module, and the rules of TLAT. If the formula were
not true, then the module would be incorrect.

The module is terminated by the symbol

L

The specification of the hour clock is the definition of HC, including the
definitions of the formulas HCnzt and HCini and of the operators .. and +
that appear in the definition of HC. Formally, nothing in the module tells us
that HC rather than HCini is the clock’s specification. TLA™T is a language for
writing mathematics—in particular, for writing mathematical definitions and
theorems. What those definitions represent, and what significance we attach to
those theorems, lies outside the scope of mathematics and therefore outside the
scope of TLAT. Engineering requires not just the ability to use mathematics,
but the ability to understand what, if anything, the mathematics tells us about
an actual system.

2.5 An Alternative Specification

The Naturals module also defines the modulus operator, which we write %. The
formula 7 % n, which mathematicians write ¢ mod n, is the remainder when i is
divided by n. More formally, i % n is the natural number less than n satisfying
i =gqg*xn+ (i % n) for some natural number ¢q. Let’s express this condition
mathematically. The Naturals module defines Nat to be the set of natural
numbers, and the assertion that there exists a ¢ in the set Nat satisfying a
formula F' is written 3¢ € Nat : F. Thus, if ¢ and n are elements of Nat and
n > 0, then 7 % n is the unique number satisfying

(i%ne0..(n—1)) AN(3geNat : i=qgxn+(i%n))

We can use % to simplify our hour-clock specification a bit. Observing that
(11 % 12)+1 equals 12 and (12 % 12)+1 equals 1, we can define a different next-
state action HCnzt2 and a different formula HC?2 to be the clock specification

HCnat2 = hr' = (hr % 12) + 1 HC2 = HCini A O[HCnzt2]y,

Actions HCnazt and HCnat2 are not equivalent. The step [hr = 24] — [hr = 25]
satisfies HCnzt but not HCnaxt2, while the step [hr = 24] — [hr = 1] satisfies
HCnzt2 but not HCnat. However, any step starting in a state with Arin 1 .. 12
satisfies HCnaxt iff it satisfies HCnaxt2. It’s therefore not hard to deduce that any
behavior starting in a state satisfying HCini satisfies O[HCnaxt]p, iff it satisfies
O[HCnat2]p,. Hence, formulas HC and HC2 are equivalent. In other words,
HC = HC?2 is a theorem. It doesn’t matter which of the two formulas we take
to be the specification of an hour clock.

22 CHAPTER 2. SPECIFYING A SIMPLE CLOCK

Mathematics provides infinitely many ways of expressing the same thing.
The expressions 6 + 6, 3 x4, and 141 — 129 all have the same meaning; they are
just different ways of writing the number 12. We could replace either instance
of the number 12 in module HourClock by any of these expressions without
changing the meaning of any of the module’s formulas.

When writing a specification, you will often be faced with a choice of how
to express something. When that happens, you should first make sure that the
choices yield equivalent specifications. If they do, then you can choose the one
that you feel makes the specification easiest to understand. If they don’t, then
you must decide which one you mean.

Chapter 3

An Asynchronous Interface

We now specify an interface for transmitting data between asynchronous devices.
A sender and a receiver are connected as shown here.

val

>
-

rdy
Sender Receiver

ack

Data is sent on val, and the rdy and ack lines are used for synchronization. The
sender must wait for an acknowledgment (an Ack) for one data item before it can
send the next. The interface uses the standard two-phase handshake protocol,
described by the following sample behavior:

val = 26 val = 37| 4. |val = 37

2 Send 37 Send 4
rdy = 0 — rdy = 1 — |rdy =1 —
ack = 0 ack = 0 ack =1

val = 4 Ack val = 4 Send 19 val = 19 Ack
rdy = 0| — |rdy = 0 — rdy = 1 —
ack = 1 ack = 0 ack = 0

(It doesn’t matter what value val has in the initial state.)

It’s easy to see from this sample behavior what the set of all possible behav-
iors should be—once we decide what the data values are that can be sent. But,
before writing the TLA™ specification that describes these behaviors, let’s look
at what I've just done.

In writing this behavior, I made the decision that val and rdy should change
in a single step. The values of the variables val and rdy represent voltages

23

24 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

on some set of wires in the physical device. Voltages on different wires don’t
change at precisely the same instant. I decided to ignore this aspect of the
physical system and pretend that the values of val and rdy represented by those
voltages change instantaneously. This simplifies the specification, but at the
price of ignoring what may be an important detail of the system. In an actual
implementation of the protocol, the voltage on the rdy line shouldn’t change
until the voltages on the val lines have stabilized; but you won’t learn that from
my specification. Had I wanted the specification to convey this requirement, I
would have written a behavior in which the value of val and the value of rdy
change in separate steps.

A specification is an abstraction. It describes some aspects of the system and
ignores others. We want the specification to be as simple as possible, so we want
to ignore as many details as we can. But, whenever we omit some aspect of the
system from the specification, we admit a potential source of error. With my
specification, we can verify the correctness of a system that uses this interface,
and the system could still fail because the implementer didn’t know that the val
line should stabilize before the rdy line is changed.

The hardest part of writing a specification is choosing the proper abstraction.
I can teach you about TLAT, so expressing an abstract view of a system as a
TLA™ specification becomes a straightforward task. But I don’t know how to
teach you about abstraction. A good engineer knows how to abstract the essence
of a system and suppress the unimportant details when specifying and designing
it. The art of abstraction is learned only through experience.

When writing a specification, you must first choose the abstraction. In a
TLA* specification, this means choosing the variables that represent the system’s
state and the granularity of the steps that change those variables’ values. Should
the rdy and ack lines be represented as separate variables or as a single variable?
Should val and rdy change in one step, two steps, or an arbitrary number of
steps? To help make these choices, I recommend that you start by writing the
first few steps of one or two sample behaviors, just as I did at the beginning of
this section. Chapter 7 has more to say about these choices.

3.1 The First Specification

Let’s specify the asynchronous interface with a module Asynchinterface. The
specification uses subtraction of natural numbers, so our module EXTENDS the
Naturals module to incorporate the definition of the subtraction operator “—”.
We next decide what the possible values of val should be—that is, what data
values may be sent. We could write a specification that places no restriction
on the data values. The specification could allow the sender first to send 37,
then to send v/—15, and then to send Nat (the entire set of natural numbers).
However, any real device can send only a restricted set of values. We could pick

3.1. THE FIRST SPECIFICATION

25

some specific set—for example, 32-bit numbers. However, the protocol is the
same regardless of whether it’s used to send 32-bit numbers or 128-bit numbers.
So, we compromise between the two extremes of allowing anything to be sent
and allowing only 32-bit numbers to be sent by assuming only that there is some
set Data of data values that may be sent. The constant Data is a parameter of
the specification. It’s declared by the statement

CONSTANT Data
Our three variables are declared by
VARIABLES val, rdy, ack

The keywords VARIABLE and VARIABLES are synonymous, as are CONSTANT and
CONSTANTS.

The variable rdy can assume any value—for example, —1/2. That is, there
exist states that assign the value —1/2 to rdy. When discussing the specification,
we usually say that rdy can assume only the values 0 and 1. What we really mean
is that the value of rdy equals 0 or 1 in every state of any behavior satisfying the
specification. But a reader of the specification shouldn’t have to understand the
complete specification to figure this out. We can make the specification easier
to understand by telling the reader what values the variables can assume in a
behavior that satisfies the specification. We could do this with comments, but I
prefer to use a definition like this one:

TypeInvariant = (val € Data) A (rdy € {0,1}) A (ack € {0,1})

I call the set {0,1} the type of rdy, and I call Typelnvariant a type invariant.
Let’s define type and some other terms more precisely.

e A state function is an ordinary expression (one with no prime or O) that
can contain variables and constants.

e A state predicate is a Boolean-valued state function.

e An invariant Inv of a specification Spec is a state predicate such that
Spec = OlInv is a theorem.

e A variable v has type T in a specification Spec iff v € T is an invariant of
Spec.

We can make the definition of Typelnvariant easier to read by writing it as
follows.

Typelnvariant = A val € Data
A rdy € {0,1}
A ack € {0,1}

26 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

Each conjunct begins with a A and must lie completely to the right of that
A. (The conjunct may occupy multiple lines). We use a similar notation for
disjunctions. When using this bulleted-list notation, the A’s or V’s must line up
precisely (even in the AsciI input). Because the indentation is significant, we can
eliminate parentheses, making this notation especially useful when conjunctions
and disjunctions are nested.

The formula Typelnvariant will not appear as part of the specification. We
do not assume that Typelnvariant is an invariant; the specification should imply
that it is. In fact, its invariance will be asserted as a theorem.

The initial predicate is straightforward. Initially, val can equal any element
of Data. We can start with rdy and ack either both 0 or both 1.

Init = A val € Data
A rdy € {0,1}
A ack = rdy

Now for the next-state action Next. A step of the protocol either sends a value
or receives a value. We define separately the two actions Send and Rcv that
describe the sending and receiving of a value. A Next step (one satisfying action
Next) is either a Send step or a Rcov step, so it is a Send V Rcv step. Therefore,
Next is defined to equal Send V Rcv. Let’s now define Send and Rcw.

We say that action Send is enabled in a state from which it is possible to
take a Send step. From the sample behavior above, we see that Send is enabled
iff rdy equals ack. Usually, the first question we ask about an action is, when
is it enabled? So, the definition of an action usually begins with its enabling
condition. The first conjunct in the definition of Send is therefore rdy = ack.
The next conjuncts tell us what the new values of the variables wval, rdy, and
ack are. The new value val’ of val can be any element of Data—that is, any
value satisfying val’ € Data. The value of rdy changes from 0 to 1 or from 1 to
0, so rdy’ equals 1 — rdy (because 1 =1 —0 and 0 = 1 — 1). The value of ack is
left unchanged.

TLAT defines UNCHANGED v to mean that the expression v has the same
value in the old and new states. More precisely, UNCHANGED v equals v’ = v,
where v’ is the expression obtained from v by priming all its variables. So, we
define Send by

Send = A rdy = ack
A val' € Data
Ardy =1—rdy
A UNCHANGED ack

(I could have written ack’ = ack instead of UNCHANGED ack, but I prefer to use
the UNCHANGED construct in specifications.)

A Rcw step is enabled iff rdy is different from ack; it complements the value
of ack and leaves val and rdy unchanged. Both val and rdy are left unchanged iff

3.1. THE FIRST SPECIFICATION

27

MODULE AsynchInterface

EXTENDS Naturals
CONSTANT Data
VARIABLES wval, rdy, ack

Typelnvariant = A wal € Data
A rdy € {0,1}
A ack € {0,1}

Init = A wal € Data
rdy € {0,1}
ack = rdy
Send £ A rdy = ack

val’ € Data

rdy’ =1 — rdy
UNCHANGED ack

rdy # ack

A ack’ =1 — ack

A UNCHANGED (wal, rdy)
Send V Rcv

Init A O [Next] (wval,rdy,ack)

> >>>> > > >

Rev

Next
Spec

e >

THEOREM Spec = O Typelnvariant

Figure 3.1: Our first specification of an asynchronous interface.

the pair of values wal, rdy is left unchanged. TLA™ uses angle brackets (and) to
enclose ordered tuples, so Rev asserts that (wval, rdy) is left unchanged. (Angle
brackets are typed in ASCII as << and >>.) The definition of Rcv is therefore

Rev = A rdy # ack
A ack! =1 — ack
A UNCHANGED (wal, rdy)

As in our clock example, the complete specification Spec should allow stuttering
steps—in this case, ones that leave all three variables unchanged. So, Spec allows
steps that leave (wal, rdy, ack) unchanged. Its definition is

Spec = Init A O[Newt](val,rdy,ack)

Module Asynchlnterface also asserts the invariance of Typelnvariant. It appears
in full in Figure 3.1 on this page.

28 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

3.2 Another Specification

Module Asynchlinterface is a fine description of the interface and its handshake
protocol. However, it’s not well suited for helping to specify systems that use
the interface. Let’s rewrite the interface specification in a form that makes it
more convenient to use as part of a larger specification.

The first problem with the original specification is that it uses three variables
to describe a single interface. A system might use several different instances of
the interface. To avoid a proliferation of variables, we replace the three variables
val, rdy, ack with a single variable chan (short for channel). A mathematician
would do this by letting the value of chan be an ordered triple—for example, a
state [chan = (—1/2, 0, 1)] might replace the state with val = —1/2, rdy = 0,
and ack = 1. But programmers have learned that using tuples like this leads to
mistakes; it’s easy to forget if the ack line is represented by the second or third
component. TLAT therefore provides records in addition to more conventional
mathematical notation.

Let’s represent the state of the channel as a record with val, rdy, and ack
fields. If r is such a record, then r.val is its val field. The type invariant asserts
that the value of chan is an element of the set of all such records r in which
r.val is an element of the set Data and r.rdy and r.ack are elements of the set
{0,1}. This set of records is written

[val : Data, rdy:{0,1}, ack:{0,1}]

The fields of a record are not ordered, so it doesn’t matter in what order we
write them. This same set of records can also be written as

[ack : {0,1}, val: Data, rdy:{0,1}]

Initially, chan can equal any element of this set whose ack and rdy fields are
equal, so the initial predicate is the conjunction of the type invariant and the
condition chan.ack = chan.rdy.

A system that uses the interface may perform an operation that sends some
data value d and performs some other changes that depend on the value d.
We'd like to represent such an operation as an action that is the conjunction
of two separate actions: one that describes the sending of d and the other that
describes the other changes. Thus, instead of defining an action Send that sends
some unspecified data value, we define the action Send(d) that sends data value
d. The next-state action is satisfied by a Send(d) step, for some d in Data, or
a Rcv step. (The value received by a Rev step equals chan.val.) Saying that
a step is a Send(d) step for some d in Data means that there exists a d in
Data such that the step satisfies Send(d)—in other words, that the step is an
3d € Data: Send(d) step. So we define

Next = (3d € Data : Send(d)) V Rev

3.2. ANOTHER SPECIFICATION

The Send(d) action asserts that chan’ equals the record r such that
r.val = d r.rdy = 1 — chan.rdy r.ack = chan.ack
This record is written in TLAT as
[val — d, rdy — 1 — chan.rdy, ack — chan.ack]

(The symbol — is typed in AscII as |->.) Since the fields of records are not
ordered, this record can just as well be written

[ack — chan.ack, val — d, rdy — 1 — chan.rdy)

The enabling condition of Send(d) is that the rdy and ack lines are equal, so we
can define

Send(d) =
A chan.rdy = chan.ack
A chan' = [val — d, rdy — 1 — chan.rdy, ack — chan.ack]

This is a perfectly good definition of Send(d). However, I prefer a slightly
different one. We can describe the value of chan’ by saying that it is the same
as the value of chan except that its val field equals d and its rdy field equals
1 — chan.rdy. In TLA™, we can write this value as

[chan EXCEPT l.wal = d, !.rdy =1 — chan.rdy]

Think of the ! as standing for the new record that the EXCEPT expression forms
by modifying chan. So, the expression can be read as the record ! that is
the same as chan except !.val equals d and !.rdy equals 1 — chan.rdy. In the
expression that !.rdy equals, the symbol @ stands for chan.rdy, so we can write
this EXCEPT expression as

[chan EXCEPT l.wal = d, !.rdy =1 — Q]
In general, for any record r, the expression
[r EXCEPT l.ci = ey, ..., l.cp, = €,]

is the record obtained from r by replacing r.c; with e;, for each i in 1 .. n. An
@ in the expression e; stands for r.c;. Using this notation, we define

Send(d) = A chan.rdy = chan.ack
A chan’ = [chan EXCEPT l.wal = d, !.rdy =1 — Q]

The definition of Rcv is straightforward. A value can be received when chan.rdy
does not equal chan.ack, and receiving the value complements chan.ack:

Rev = A chan.rdy # chan.ack
A chan’ = [chan EXCEPT !.ack =1 — Q]

The complete specification appears in Figure 3.2 on the next page.

30 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

MODULE Channel

EXTENDS Naturals
CONSTANT Data
VARIABLE chan

Typelnvariant = chan € [val : Data, rdy:{0,1}, ack:{0,1}]

Init = A Typelnvariant
A chan.ack = chan.rdy

Send(d) = A chan.rdy = chan.ack

A chan' = [chan EXCEPT l.wal = d, !.rdy =1 — Q]
Rev = A chan.rdy # chan.ack

A chan' = [chan EXCEPT !.ack =1 — @]
Next = (3d € Data : Send(d)) V Rev
Spec = Init A O[Next] chan

THEOREM Spec = O Typelnvariant

Figure 3.2: Our second specification of an asynchronous interface.

3.3 Types: A Reminder

As defined in Section 3.1, a variable v has type T in specification Spec iff v € T
is an invariant of Spec. Thus, hr has type 1 .. 12 in the specification HC' of
the hour clock. This assertion does not mean that the variable hr can assume
only values in the set 1 .. 12. A state is an arbitrary assignment of values to
variables, so there exist states in which the value of hr is v/—2. The assertion
does mean that, in every behavior satisfying formula HC, the value of hr is an
element of 1 .. 12.

If you are used to types in programming languages, it may seem strange that
TLAT allows a variable to assume any value. Why not restrict our states to
ones in which variables have the values of the right type? In other words, why
not add a formal type system to TLAT? A complete answer would take us too
far afield. The question is addressed further in Section 6.2. For now, remember
that TLATis an untyped language. Type correctness is just a name for a certain
invariance property. Assigning the name Typelnvariant to a formula gives it no
special status.

3.4. DEFINITIONS

31

3.4 Definitions

Let’s examine what a definition means. If Id is a simple identifier like Imit
or Spec, then the definition Id = exp defines Id to be synonymous with the
expression exp. Replacing Id by exp, or vice-versa, in any expression does not
change the meaning of that expression. This replacement must be done after
the expression is parsed, not in the “raw input”. For example, the definition
z = a+ bmakes z ¢ equal to (a+b)*c, not to a+ b+ ¢, which equals a+ (bxc).

The definition of Send has the form Id(p) £ exp, where Id and p are identi-
fiers. For any expression e, this defines Id(e) to be the expression obtained by
substituting e for p in exp. For example, the definition of Send in the Channel
module defines Send(—5) to equal

A chan.rdy = chan.ack
A chan' = [chan EXCEPT !.wal = =5, l.rdy = 1 — Q]

Send(e) is an expression, for any expression e. Thus, we can write the formula
Send(—5) A (chan.ack = 1). The identifier Send by itself is not an expression,
and Send A (chan.ack = 1) is not a grammatically well-formed string. It’s non-
syntactic nonsense, like a + * b+ .

We say that Send is an operator that takes a single argument. We define
operators that take more than one argument in the obvious way, the general
form being

(3.1) Id(pi1,.-., pn))

where the p; are distinct identifiers and exp is an expression. We can consider
defined identifiers like Init and Spec to be operators that take no argument, but
we generally use operator to mean an operator that takes one or more arguments.
I will use the term symbol to mean an identifier like Send or an operator
symbol like +. Every symbol that is used in a specification must either be a built-
in operator of TLA™T (like €) or it must be declared or defined. Every symbol
declaration or definition has a scope within which the symbol may be used. The
scope of a VARIABLE or CONSTANT declaration, and of a definition, is the part of
the module that follows it. Thus, we can use Init in any expression that follows
its definition in module Channel. The statement EXTENDS Naturals extends the
scope of symbols like + defined in the Naturals module to the Channel module.
The operator definition (3.1) implicitly includes a declaration of the identi-
fiers p1, ..., pn whose scope is the expression exp. An expression of the form

JvesS : exp

has a declaration of v whose scope is the expression exp. Thus the identifier v
has a meaning within the expression ezp (but not within the expression 5).

32 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

A symbol cannot be declared or defined if it already has a meaning. The
expression

Fves:epl) N veT: exp2)

is all right, because neither declaration of v lies within the scope of the other.
Similarly, the two declarations of the symbol d in the Channel module (in the
definition of Send and in the expression 3d in the definition of Next) have
disjoint scopes. However, the expression

(Jvel: (expl ANJveT: exp2))

is illegal because the declaration of v in the second 3 v lies inside the scope of its
declaration in the first 3v. Although conventional mathematics and program-
ming languages allow such redeclarations, TLA™T forbids them because they can
lead to confusion and errors.

3.5 Comments

Even simple specifications like the ones in modules AsynchiInterface and Channel
can be hard to understand from the mathematics alone. That’s why I began with
an intuitive explanation of the interface. That explanation made it easier for
you to understand formula Spec in the module, which is the actual specification.
Every specification should be accompanied by an informal prose explanation.
The explanation may be in an accompanying document, or it may be included
as comments in the specification.

Figure 3.3 on the next page shows how the hour clock’s specification in
module HourClock might be explained by comments. In the typeset version,
comments are distinguished from the specification itself by the use of a different
font. As shown in the figure, TLA™T provides two ways of writing comments in
the AsCII version. A comment may appear anywhere enclosed between (* and
*). An end-of-line comment is preceded by *. Comments may be nested, so
you can comment out a section of a specification by enclosing it between (* and
*), even if the section contains comments.

A comment almost always appears on a line by itself or at the end of a line.
I put a comment between HCnat and = just to show that it can be done.

To save space, I will write few comments in the example specifications. But
specifications should have lots of comments. Even if there is an accompany-
ing document describing the system, comments are needed to help the reader
understand how the specification formalizes that description.

Comments can help solve a problem posed by the logical structure of a spec-
ification. A symbol has to be declared or defined before it can be used. In
module Channel, the definition of Spec has to follow the definition of Next,
which has to follow the definitions of Send and Rcv. But it’s usually easiest to

3.5. COMMENTS

33

MODULE HourClock

This module specifies a digital clock that displays the current hour. It ignores real
time, not specifying when the display can change.

EXTENDS Naturals
VARIABLE hr Variable hr represents the display.
HCini = hre (1..12) Initially, b~ can have any value from 1 through 12.

HCnazt This is a weird place for a comment. =
The value of hr cycles from 1 through 12.
hr' = IF hr # 12 THEN hr +1 ELSE 1

HC = HCini A O[HCnat]p,
The complete spec. It permits the clock to stop.

THEOREM HC = OHCini Type-correctness of the spec.

—————————————————————— MODULE HourClock --------—-——----——-———-
(kkok ok o skok ok ok ook ook ok ok ok ook ook ok oK ok ook ook ok ok ok ook o oK oK ok oK ok ook ook ok K ok ook ok ok Kok oK)
(* This module specifies a digital clock that displays *)
(* the current hour. It ignores real time, not *)
(* specifying when the display can change. *)
(ko ok ko ok ok ook ook ok ok ok oK ok ook ok oK ok K oK oK o Kok oK ok ook oK ok oK ok K ok ok ok oK ok ok Kok ok Kok ok)

EXTENDS Naturals

VARIABLE hr * Variable hr represents the display.

HCini == hr \in (1 .. 12) * Initially, hr can have any

* value from 1 through 12.

HCnxt (* This is a weird place for a comment. *) ==
(kkok ok ko kok ook ook o skok ok ok o ok ook ok Kok ook ook ook ok Kok ok ok ok oK ok ok Kok ok ok)

(* The value of hr cycles from 1 through 12. *)
(kkok ok sk ok ok ok ook o ok o ok ok ok ok o oK ook ok oK ok o ok o oK ook ok o ok oK ok ok oK ok ook oK ok oK)
hr’ = IF hr # 12 THEN hr + 1 ELSE 1

HC == HCini /\ [][HCnxt]_hr
(* The complete spec. It permits the clock to stop. *)

THEOREM HC => [JHCini * Type-correctness of the spec.

Figure 3.3: The hour-clock specification with comments.

34 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

understand a top-down description of a system. We would probably first want
to read the declarations of Data and chan, then the definition of Spec, then
the definitions of Init and Nezt, and then the definitions of Send and Rcv. In
other words, we want to read the specification more or less from bottom to top.
This is easy enough to do for a module as short as Channel; it’s inconvenient
for longer specifications. We can use comments to guide the reader through a
longer specification. For example, we could precede the definition of Send in the
Channel module with the comment

Actions Send and Rcv below are the disjuncts of the next-state action
Next.

The module structure also allows us to choose the order in which a spec-
ification is read. For example, we can rewrite the hour-clock specification by
splitting the HourClock module into three separate modules:

HCVar A module that declares the variable hr.

HCActions A module that EXTENDS modules Naturals and HCVar and de-
fines HC'ini and HChnat.

HCSpec A module that EXTENDS module HCActions, defines formula
HC(C', and asserts the type-correctness theorem.

The EXTENDS relation implies a logical ordering of the modules: HC'Var precedes
HCActions, which precedes HCSpec. But the modules don’t have to be read in
that order. The reader can be told to read HCVar first, then HCSpec, and finally
HCActions. The INSTANCE construct introduced below in Chapter 4 provides
another tool for modularizing specifications.

Splitting a tiny specification like HourClock in this way would be ludicrous.
But the proper splitting of modules can help make a large specification easier to
read. When writing a specification, you should decide in what order it should
be read. You can then design the module structure to permit reading it in that
order, when each individual module is read from beginning to end. Finally,
you should ensure that the comments within each module make sense when the
different modules are read in the appropriate order.

Chapter 4

A FIFO

Our next example is a FIFO buffer, called a FIFO for short—a device with which
a sender process transmits a sequence of values to a receiver. The sender and
receiver use two channels, in and out, to communicate with the buffer:

i t
n Buffer ou

Receiver

Y

Y

Sender

Values are sent over in and out using the asynchronous protocol specified by the
Channel module of Figure 3.2 on page 30. The system’s specification will allow
behaviors with four kinds of nonstuttering steps: Send and Rcv steps on both
the in channel and the out channel.

4.1 The Inner Specification

The specification of the FIFO first EXTENDS modules Naturals and Sequences.
The Sequences module defines operations on finite sequences. We represent a
finite sequence as a tuple, so the sequence of three numbers 3, 2, 1 is the triple
(3,2,1). The Sequences module defines the following operators on sequences:

Seq(S) The set of all sequences of elements of the set S. For example,
(3,7) is an element of Seq(Nat).

Head(s) The first element of sequence s. For example, Head ({3, 7)) equals 3.

35

36 CHAPTER 4. A FIFO

Tail(s) The tail of sequence s, which consists of s with its head removed.
For example, Tail((3,7)) equals (7).

Append(s, e¢) The sequence obtained by appending element e to the tail of
sequence s. For example, Append((3,7),3) equals (3,7,3).

sot The sequence obtained by concatenating the sequences s and ¢. For
example, (3,7) o (3) equals (3,7,3). (We type o in ASCII as \o.)

Len(s) The length of sequence s. For example, Len((3,7)) equals 2.

The FIFO’s specification continues by declaring the constant Message, which
represents the set of all messages that can be sent.! It then declares the variables.
There are three variables: in and out, representing the channels, and a third
variable ¢ that represents the queue of buffered messages. The value of ¢ is the
sequence of messages that have been sent by the sender but not yet received by
the receiver. (Section 4.3 has more to say about this additional variable q.)

We want to use the definitions in the Channel module to specify operations
on the channels in and out. This requires two instances of that module—one
in which the variable chan of the Channel module is replaced with the variable
in of our current module, and the other in which chan is replaced with out.
In both instances, the constant Data of the Channel module is replaced with
Message. We obtain the first of these instances with the statement

InChan = INSTANCE Channel WITH Data < Message, chan < in

For every symbol o defined in module Channel, this defines InChan!o to have
the same meaning in the current module as ¢ had in module Channel, except
with Message substituted for Data and in substituted for chan. For example,
this statement defines InChan! Typelnvariant to equal

in € [val: Message, rdy:{0,1}, ack:{0,1}]

(The statement does not define InChan!Data because Data is declared, not
defined, in module Channel.) We introduce our second instance of the Channel
module with the analogous statement

OutChan £ INSTANCE Channel WITH Data < Message, chan out

The initial states of the in and out channels are specified by InChan!Init and
OutChan!Init. Initially, no messages have been sent or received, so ¢ should

11 like to use a singular noun like Message rather than a plural like Messages for the name
of a set. That way, the € in the expression m € Message can be read is a. This is the same
convention that most programmers use for naming types.

4.2. INSTANTIATION EXAMINED

equal the empty sequence. The empty sequence is the 0-tuple (there’s only one,
and it’s written (), so we define the initial predicate to be

Init = A InChan!Init
A OutChan!Init

ANg=()

We next define the type invariant. The type invariants for in and out come from
the Channel module, and the type of ¢ is the set of finite sequences of messages.
The type invariant for the FIFO specification is therefore

TypeInvariant = A InChan! Typelnvariant
A OutChan! Typelnvariant
A q € Seq(Message)

The four kinds of nonstuttering steps allowed by the next-state action are de-
scribed by four actions:

SSend(msg) The sender sends message msg on the in channel.

BufRcv The buffer receives the message from the in channel and ap-
pends it to the tail of q.

BufSend The buffer removes the message from the head of ¢ and sends
it on channel out.

RRcv The receiver receives the message from the out channel.

The definitions of these actions, along with the rest of the specification, are in
module InnerFIFO of Figure 4.1 on the next page. The reason for the adjective
Inner is explained in Section 4.3 below.

4.2 Instantiation Examined

The INSTANCE statement is seldom used except in one idiom for hiding variables,
which is described in Section 4.3. So, most readers can skip this section and go
directly to page 41.

4.2.1 Instantiation Is Substitution

Consider the definition of Next in module Channel (page 30). We can remove
every defined symbol that appears in that definition by using the symbol’s def-
inition. For example, we can eliminate the expression Send(d) by expanding
the definition of Send. We can repeat this process. For example, the “—” that
appears in the expression 1 — @ (obtained by expanding the definition of Send)

38 CHAPTER 4. A FIFO

MODULE InnerFIFO

EXTENDS Naturals, Sequences

CONSTANT Message

VARIABLES in, out, ¢

InChan = INSTANCE Channel WITH Data < Message, chan < in
OutChan = INSTANCE Channel WITH Data < Message, chan < out

Init = A InChan!Init
A OutChan! Init

ANg={()

Typelnvariant = A InChan! TypeInvariant
A OutChan! Typelnvariant
A q € Seq(Message)

SSend(msg) = A InChan!Send(msg) Send msg on channel in.
A UNCHANGED (out, ¢)

BufRcv = A InChan!Rcv Receive message from channel in
Aq = Append(q, in.val) and append it to tail of g.
A UNCHANGED out

BufSend = ANgq 75 <> Enabled only if ¢ is nonempty.
A OutChan!Send(Head(q)) Send Head(q) on channel out
A ¢ = Tail(q) and remove it from gq.
A UNCHANGED in

RRcv = A OutChan! Recv Receive message from channel out.

A UNCHANGED (in, q)

Next = Vv Imsg € Message : SSend(msg)
V BufRcv
V BufSend
V RRcv

Spec 2 Init A O[Next] (in, out, q)

THEOREM Spec = O Typelnvariant

Figure 4.1: The specification of a FIFO, with the internal variable ¢ visible.

4.2. INSTANTIATION EXAMINED

39

can be eliminated by using the definition of “—” from the Naturals module.
Continuing in this way, we eventually obtain a definition for Next in terms of
only the built-in operators of TLAT and the parameters Data and chan of the
Channel module. We consider this to be the “real” definition of Next in module
Channel. The statement

InChan = INSTANCE Channel WITH Data < Message, chan < in

in module InnerFIFO defines InChan!Next to be the formula obtained from
this real definition of Next by substituting Message for Data and in for chan.
This defines InChan! Next in terms of only the built-in operators of TLAT and
the parameters Message and in of module InnerFIFO.

Let’s now consider an arbitrary INSTANCE statement

IM £ INSTANCE M WITH p1 4— €1, ..., Pp < €n

Let ¥ be a symbol defined in module M and let d be its “real” definition. The
INSTANCE statement defines IM Y to have as its real definition the expression
obtained from d by replacing all instances of p; by the expression e;, for each 3.
The definition of IM!Y must contain only the parameters (declared constants
and variables) of the current module, not the ones of module M. Hence, the p;
must consist of all the parameters of module M. The e; must be expressions
that are meaningful in the current module.

4.2.2 Parametrized Instantiation

The FIFO specification uses two instances of module Channel—one with in
substituted for chan and the other with out substituted for chan. We could
instead use a single parametrized instance by putting the following statement in
module InnerFIFO:

Chan(ch) = INSTANCE Channel WITH Data < Message, chan < ch

For any symbol ¥ defined in module Channel and any expression ezp, this de-
fines Chan(ezp)!¥ to equal formula ¥ with Message substituted for Data and
erp substituted for chan. The Rcv action on channel in could then be writ-
ten Chan(in)!Rev, and the Send(msg) action on channel out could be written
Chan(out)! Send(msg).

The instantiation above defines Chan!Send to be an operator with two argu-
ments. Writing Chan(out)!Send(msg) instead of Chan!Send(out, msg) is just
an idiosyncrasy of the syntax. It is no stranger than the syntax for infix opera-
tors, which has us write a + b instead of +(a, b).

Parametrized instantiation is used almost exclusively in the TLA™ idiom for
variable hiding, described in Section 4.3. You can use that idiom without under-
standing it, so you probably don’t need to know anything about parametrized
instantiation.

40 CHAPTER 4. A FIFO

4.2.3 Implicit Substitutions

The use of Message as the name for the set of transmitted values in the FIFO
specification is a bit strange, since we had just used the name Data for the
analogous set in the asynchronous channel specifications. Suppose we had used
Data in place of Message as the constant parameter of module InnerFIFO. The
first instantiation statement would then have been

InChan = INSTANCE Channel WITH Data < Data, chan < in

The substitution Data < Data indicates that the constant parameter Data of
the instantiated module Channel is replaced with the expression Data of the
current module. TLAT allows us to drop any substitution of the form ¥ < 3,
for a symbol X. So, the statement above can be written as

InChan £ 1INSTANCE Channel WITH chan < in

We know there is an implied Data < Data substitution because an INSTANCE
statement must have a substitution for every parameter of the instantiated mod-
ule. If some parameter p has no explicit substitution, then there is an implicit
substitution p < p. This means that the INSTANCE statement must lie within
the scope of a declaration or definition of the symbol p.

It is quite common to instantiate a module with this kind of implicit substi-
tution. Often, every parameter has an implicit substitution, in which case the
list of explicit substitutions is empty. The WITH is then omitted.

4.2.4 Instantiation Without Renaming

So far, all the instantiations we’ve used have been with renaming. For exam-
ple, the first instantiation of module Channel renames the defined symbol Send
as InChan!Send. This kind of renaming is necessary if we are using multiple
instances of the module, or a single parametrized instance. The two instances
InChan!Init and OutChan!Init of Init in module InnerFIFO are different for-
mulas, so they need different names.

Sometimes we need only a single instance of a module. For example, suppose
we are specifying a system with only a single asynchronous channel. We then
need only one instance of Channel, so we don’t have to rename the instantiated
symbols. In that case, we can write something like

INSTANCE Channel WiTH Data < D, chan < x

This instantiates Channel with no renaming, but with substitution. Thus, it
defines Rcv to be the formula of the same name from the Channel module,
except with D substituted for Data and x substituted for chan. The expressions
substituted for an instantiated module’s parameters must be defined. So, this
INSTANCE statement must be within the scope of the definitions or declarations
of D and z.

4.3. HIDING THE QUEUE

41

4.3 Hiding the Queue

Module InnerFIFO of Figure 4.1 defines Spec to be Init A O[Next] . , the sort
of formula we’ve become accustomed to as a system specification. However,
formula Spec describes the value of variable ¢, as well as of the variables in and
out. The picture of the FIFO system I drew on page 35 shows only channels in
and out; it doesn’t show anything inside the boxes. A specification of the FIFO
should describe only the values sent and received on the channels. The variable
g, which represents what’s going on inside the box labeled Buffer, is used to
specify what values are sent and received. It is an internal variable and, in the
final specification, it should be hidden.

In TLA, we hide a variable with the existential quantifier 3 of temporal
logic. The formula 3z : F' is true of a behavior iff there exists some sequence of
values—one in each state of the behavior—that can be assigned to the variable
z that will make formula F true. (The meaning of 3 is defined more precisely
in Section 8.8.)

The obvious way to write a FIFO specification in which ¢ is hidden is with the
formula 3 ¢ : Spec. However, we can’t put this definition in module InnerFIFO
because ¢ is already declared there, and a formula 3 ¢ : ... would redeclare it. In-
stead, we use a new module with a parametrized instantiation of the InnerFIFO
module (see Section 4.2.2 on page 39):

[MODULE FIFO

CONSTANT Message
VARIABLES in, out

Inner(q) = INSTANCE InnerFIFO

Spec = 3q : Inner(q)!Spec
L

Observe that the INSTANCE statement is an abbreviation for

Inner(q) = INSTANCE InnerFIFO
WITH q < q, in < in, out < out, Message < Message

The variable parameter g of module InnerFIFO is instantiated with the parame-
ter g of the definition of Inner. The other parameters of the InnerFIFO module
are instantiated with the parameters of module FIFO.

If this seems confusing, don’t worry about it. Just learn the TLAT idiom for
hiding variables used here and be content with its intuitive meaning. In fact,
for most applications, there’s no need to hide variables in the specification. You
can just write the inner specification and note in the comments which variables
should be regarded as visible and which as internal (hidden).

42 CHAPTER 4. A FIFO

4.4 A Bounded FIFO

We have specified an unbounded FIFO—a buffer that can hold an unbounded
number of messages. Any real system has a finite amount of resources, so it can
contain only a bounded number of in-transit messages. In many situations, we
wish to abstract away the bound on resources and describe a system in terms
of unbounded FIFOs. In other situations, we may care about that bound. We
then want to strengthen our specification by placing a bound N on the number
of outstanding messages.

A specification of a bounded FIFO differs from our specification of the un-
bounded FIFO only in that action BufRcv should not be enabled unless there
are fewer than N messages in the buffer—that is, unless Len(q) is less than
N. It would be easy to write a complete new specification of a bounded FIFO
by copying module InnerFIFO and just adding the conjunct Len(q) < N to
the definition of BufRcv. But let’s use module InnerFIFO as it is, rather than
copying it.

The next-state action BNext for the bounded FIFO is the same as the FIFO’s
next-state action Next except that it allows a BufRcv step only if Len(q) is less
than N. In other words, BNext should allow a step only if (i) it’s a Next step
and (ii) if it’s a BufRcv step, then Len(q) < N is true in the first state. In other
words, BNext should equal

Next A (BufRcv = (Len(q) < N))

Module BoundedFIFO in Figure 4.2 on the next page contains the specification.
It introduces the new constant parameter N. It also contains the statement

ASSUME (N € Nat) A (N > 0)

which asserts that, in this module, we are assuming that N is a positive natu-
ral number. Such an assumption has no effect on any definitions made in the
module. However, it may be taken as a hypothesis when proving any theorems
asserted in the module. In other words, a module asserts that its assumptions
imply its theorems. It’s a good idea to state this kind of simple assumption
about constants.

An ASSUME statement should be used only to make assumptions about con-
stants. The formula being assumed should not contain any variables. It might
be tempting to assert type declarations as assumptions—for example, to add to
module InnerFIFO the assumption q € Seq(Message). However, that would be
wrong because it asserts that, in any state, ¢ is a sequence of messages. As we
observed in Section 3.3, a state is a completely arbitrary assignment of values
to variables, so there are states in which ¢ has the value v/—17. Assuming that
such a state doesn’t exist would lead to a logical contradiction.

You may wonder why module BoundedFIFO assumes that N is a positive
natural, but doesn’t assume that Message is a set. Similarly, why didn’t we

4.5. WHAT WE'RE SPECIFYING

MODULE BoundedFIFO

EXTENDS Naturals, Sequences
VARIABLES in, out
CONSTANT Message, N

ASSUME (N € Nat) A (N > 0)
Inner(q) = INSTANCE InnerFIFO

BNext(q) = A Inner(q)! Next
A Inner(q)!BufRcv = (Len(q) < N)

Spec = g : Inner(q)!Init A O[BNext(q)](in,out,q)

Figure 4.2: A specification of a FIFO buffer of length N.

assume that the constant parameter Data in our asynchronous interface speci-
fications is a set? The answer is that, in TLAY, every value is a set.?2 A value
like the number 3, which we don’t think of as a set, is formally a set. We just
don’t know what its elements are. The formula 2 € 3 is a perfectly reasonable
one, but TLA™ does not specify whether it’s true or false. So, we don’t have to
assume that Message is a set because we know that it is one.

Although Message is automatically a set, it isn’t necessarily a finite set. For
example, Message could be instantiated with the set Nat of natural numbers. If
you want to assume that a constant parameter is a finite set, then you need to
state this as an assumption. (You can do this with the IsFiniteSet operator from
the FiniteSets module, described in Section 6.1.) However, most specifications
make perfect sense for infinite sets of messages or processors, so there is no
reason to assume these sets to be finite.

4.5 What We’re Specifying

I wrote at the beginning of this chapter that we were going to specify a FIFO
buffer. Formula Spec of the FIFO module actually specifies a set of behaviors,
each representing a sequence of sending and receiving operations on the channels
in and out. The sending operations on in are performed by the sender, and the
receiving operations on out are performed by the receiver. The sender and
receiver are not part of the FIFO buffer; they form its environment.

Our specification describes a system consisting of the FIFO buffer and its
environment. The behaviors satisfying formula Spec of module FIFO represent
those histories of the universe in which both the system and its environment

2TLAY is based on the mathematical formalism known as Zermelo-Frinkel set theory, also
called ZF.

44 CHAPTER 4. A FIFO

behave correctly. It’s often helpful in understanding a specification to indicate
explicitly which steps are system steps and which are environment steps. We
can do this by defining the next-state action to be

Next = SysNext V EnvNext

where SysNext describes system steps and EnvNext describes environment steps.
For the FIFO, we have

SysNext
EnvNext

BufRcv V BufSend
(3msg € Message : SSend(msg)) V RRcv

A
A

While suggestive, this way of defining the next-state action has no formal sig-
nificance. The specification Spec equals Init A O[Next]. . ; changing the way we
structure the definition of Next doesn’t change its meaning. If a behavior fails
to satisfy Spec, nothing tells us if the system or its environment is to blame.

A formula like Spec, which describes the correct behavior of both the system
and its environment, is called a closed-system or complete-system specification.
An open-system specification is one that describes only the correct behavior of
the system. A behavior satisfies an open-system specification if it represents a
history in which either the system operates correctly, or it failed to operate cor-
rectly only because its environment did something wrong. Section 10.7 explains
how to write open-system specifications.

Open-system specifications are philosophically more satisfying. However,
closed-system specifications are a little easier to write, and the mathematics
underlying them is simpler. So, we almost always write closed-system speci-
fications. It’s usually quite easy to turn a closed-system specification into an
open-system specification. But in practice, there’s seldom any reason to do so.

Chapter 5

A Caching Memory

A memory system consists of a set of processors connected to a memory by some
abstract interface, which we label memint.

r-r—-——-- - -~ 1
[y
: memlInt :~<—> 1(\)/[
aE
L - - — — J

In this section we specify what the memory is supposed to do, then we specify a
particular implementation of the memory using caches. We begin by specifying
the memory interface, which is common to both specifications.

5.1 The Memory Interface

The asynchronous interface described in Chapter 3 uses a handshake protocol.
Receipt of a data value must be acknowledged before the next data value can be
sent. In the memory interface, we abstract away this kind of detail and represent
both the sending of a data value and its receipt as a single step. We call it a
Send step if a processor is sending the value to the memory; it’'s a Reply step
if the memory is sending to a processor. Processors do not send values to one
another, and the memory sends to only one processor at a time.

We represent the state of the memory interface by the value of the variable
memlInt. A Send step changes memlnt in some way, but we don’t want to
specify exactly how. The way to leave something unspecified in a specification
is to make it a parameter. For example, in the bounded FIFO of Section 4.4,
we left the size of the buffer unspecified by making it a parameter N. We’d

45

46 CHAPTER 5. A CACHING MEMORY

therefore like to declare a parameter Send so that Send(p, d) describes how
memlInt is changed by a step that represents processor p sending data value
d to the memory. However, TLAT provides only CONSTANT and VARIABLE
parameters, not action parameters.! So, we declare Send to be a constant
operator and write Send(p, d, memlInt, memlInt’) instead of Send(p, d).

In TLAT, we declare Send to be a constant operator that takes four argu-
ments by writing

CONSTANT Send(—, —, —, _)

This means that Send(p, d, miOld, miNew) is an expression, for any expressions
p, d, miOld, and miNew, but it says nothing about what the value of that
expression is. We want it to be a Boolean value that is true iff a step in which
memlInt equals miOld in the first state and miNew in the second state represents
the sending by p of value d to the memory.2 We can assert that the value is a
Boolean by the assumption

ASSUME V p, d, miOld, miNew :
Send(p, d, miOld, miNew) € BOOLEAN

This asserts that the formula
Send(p, d, miOld, miNew) € BOOLEAN

is true for all values of p, d, miOld, and miNew. The built-in symbol BOOLEAN
denotes the set {TRUE, FALSE}, whose elements are the two Boolean values TRUE
and FALSE.

This ASSUME statement asserts formally that the value of

Send(p, d, miOld, miNew)

is a Boolean. But the only way to assert formally what that value signifies would
be to say what it actually equals—that is, to define Send rather than making
it a parameter. We don’t want to do that, so we just state informally what
the value means. This statement is part of the intrinsically informal description
of the relation between our mathematical abstraction and a physical memory
system.

To allow the reader to understand the specification, we have to describe
informally what Send means. The ASSUME statement asserting that Send(...)
is a Boolean is then superfluous as an explanation. But it’s a good idea to
include it anyway.

IEven if TLAT allowed us to declare an action parameter, we would have no way to specify
that a Send(p, d) action constrains only memlInt and not other variables.

2We expect Send(p, d, miOld, miNew) to have this meaning only when p is a processor and
d a value that p is allowed to send, but we simplify the specification a bit by requiring it to
be a Boolean for all values of p and d.

5.1. THE MEMORY INTERFACE

47

A specification that uses the memory interface can use the operators Send
and Reply to specify how the variable memlInt changes. The specification must
also describe memlInt’s initial value. We therefore declare a constant parameter
InitMemlInt that is the set of possible initial values of memlint.

We also introduce three constant parameters that are needed to describe the
interface:

Proc The set of processor identifiers. (We usually shorten processor identifier
to processor when referring to an element of Proc.)

Adr The set of memory addresses.
Val The set of possible memory values that can be assigned to an address.

Finally, we define the values that the processors and memory send to one another
over the interface. A processor sends a request to the memory. We represent
a request as a record with an op field that specifies the type of request and
additional fields that specify its arguments. Our simple memory allows only
read and write requests. A read request has op field “Rd” and an adr field
specifying the address to be read. The set of all read requests is therefore the
set

[op : {“Rd"}, adr: Adr]

of all records whose op field equals “Rd” (is an element of the set {“Rd”} whose
only element is the string “Rd”) and whose adr field is an element of Adr. A
write request must specify the address to be written and the value to write. It is
represented by a record with op field equal to “Wr”, and with adr and val fields
specifying the address and value. We define MReq, the set of all requests, to
equal the union of these two sets. (Set operations, including union, are described
in Section 1.2 on page 11.)

The memory responds to a read request with the memory value it read.
We will also have it respond to a write request, and it seems nice to let the
response be different from the response to any read request. We therefore require
the memory to respond to a write request by returning a value NoVal that is
different from any memory value. We could declare NoVal to be a constant
parameter and add the assumption NoVal ¢ Val. (The symbol ¢ is typed in
ASCII as \notin.) But it’s best, when possible, to avoid introducing parameters.
Instead, we define NoVal by

NoVal = CHOOSE v : v ¢ Val

The expression CHOOSE z : F' equals an arbitrarily chosen value z that satisfies
the formula F'. (If no such z exists, the expression has a completely arbitrary
value.) This statement defines NoVal to be some value that is not an element of

48 CHAPTER 5. A CACHING MEMORY

MODULE Memorylnterface

VARIABLE memlint
CONSTANTS Send(_, — =, _), A Send(p, d, memlInt, memlInt') step represents processor p
sending value d to the memory.

Reply(_, — = _), A Reply(p, d, memInt, memInt’) step represents the memory
sending value d to processor p.

InitMemlInt, The set of possible initial values of memlInt.

Proc, The set of processor identifiers.
Adr, The set of memory addresses.
Val The set of memory values.

ASSUME V p, d, miOld, miNew : A Send(p, d, miOld, miNew) € BOOLEAN
A Reply(p, d, miOld, miNew) € BOOLEAN

MReq = [op:{“Rd”}, adr: Adr] U [op:{“Wr"}, adr: Adr, val: Val]

The set of all requests; a read specifies an address, a write specifies an address and a value.

NoVal = CHOOSE v : v ¢ Val An arbitrary value not in Val.

Figure 5.1: The specification of a memory interface.

Val. We have no idea what the value of NoVal is; we just know what it isn’t—
namely, that it isn’t an element of Val. The CHOOSE operator is discussed in
Section 6.6 on page 73.

The complete memory interface specification is module Memorylnterface in
Figure 5.1 on this page.

5.2 Functions

A memory assigns values to addresses. The state of the memory is therefore
an assignment of elements of Val (memory values) to elements of Adr (memory
addresses). In a programming language, such an assignment is called an array
of type Val indexed by Adr. In mathematics, it’s called a function from Adr to
Val. Before writing the memory specification, let’s look at the mathematics of
functions, and how it is described in TLAT.

A function f has a domain, written DOMAIN f, and it assigns to each element
z of its domain the value f[z]. (Mathematicians write this as f(z), but TLAT
uses the array notation of programming languages, with square brackets.) Two
functions f and g are equal iff they have the same domain and f[z] = g[z] for
all z in their domain.

The range of a function f is the set of all values of the form f[z] with z in
DOMAIN f. For any sets S and T, the set of all functions whose domain equals
S and whose range is any subset of T' is written [S — T].

5.2. FUNCTIONS 49

Ordinary mathematics does not have a convenient notation for writing an ex-
pression whose value is a function. TLAY defines [z € S — €] to be the function
f with domain S such that f[z] = e for every z € S.3 For example,

succ = [n € Nat v+ n+1]

defines succ to be the successor function on the natural numbers—the function
with domain Nat such that succ[n] = n + 1 for all n € Nat.
A record is a function whose domain is a finite set of strings. For example,
a record with wal, ack, and rdy fields is a function whose domain is the set
“val”, “ack”, “rdy”} consisting of the three strings “val”, “ack”, and “rdy”.
The expression r.ack, the ack field of a record r, is an abbreviation for r[“ack”].
The record

[val — 42, ack — 1, rdy — 0]
can be written

[Z E {“VB'”, Aéackﬂ’ Lery”} '_>
IF = “val” THEN 42 ELSE IF ¢ = “ack” THEN 1 ELSE 0]

The EXCEPT construct for records, explained in Section 3.2, is a special case of a
general EXCEPT construct for functions, where !.c is an abbreviation for ![“c”].
For any function f, the expression [f EXCEPT ![¢] =] is the function f that is
the same as f except with f [c] = e. This function can also be written

[t € DOMAINf — IF 2 = ¢ THEN e ELSE fl[z]]

assuming that the symbol z does not occur in any of the expressions f, ¢, and
e. For example, [succ EXCEPT ![42] = 86] is the function ¢ that is the same as
succ except that g[42] equals 86 instead of 43.

As in the EXCEPT construct for records, the expression e in

[f EXCEPT ![c] = €]

can contain the symbol @, where it means f[c]. For example,

[succ EXCEPT ![42] = 2% @] = [succ EXCEPT ![42] = 2 % succ[42]]
In general,
[f EXCEPT ![c1] = eq, ..., ecn] = en]

3The € in [z € S + e] is just part of the syntax; TLAT uses that particular symbol to help
you remember what the construct means. Computer scientists write Az : S.e to represent
something similar to [z € S — €], except that their A expressions aren’t quite the same as the
functions of ordinary mathematics that are used in TLAT.

20 CHAPTER 5. A CACHING MEMORY

is the function f that is the same as f except with f[cz] = ¢; for each i. More
precisely, this expression equals

[...[[f EXCEPT ![c1] = e1] EXCEPT ![ca] = €3] ... EXCEPT ![c,] = e,]

Functions correspond to the arrays of programming languages. The domain of a
function corresponds to the index set of an array. Function [f EXCEPT ![c] = €]
corresponds to the array obtained from f by assigning e to f[c¢]. A function
whose range is a set of functions corresponds to an array of arrays. TLAT defines
[f EXCEPT ![c][d] = e] to be the function corresponding to the array obtained
by assigning e to f[c][d]. It can be written as

[f EXCEPT ![c] = [@ EXCEPT ![d] = e]]

The generalization to [f EXCEPT ![c1]...[c,] = €] for any n should be obvious.
Since a record is a function, this notation can be used for records as well. TLAT

uniformly maintains the notation that o.c is an abbreviation for o[“c”]. For
example, this implies

[f EXCEPT ![c].d = e] = [f EXCEPT ![c][“d"] = €]
= [f EXCEPT ![c] = [@ EXCEPT !.d = €]]

The TLA™ definition of records as functions makes it possible to manipulate
them in ways that have no counterparts in programming languages. For example,
we can define an operator R such that R(r,s) is the record obtained from r by
replacing the value of each field ¢ that is also a field of the record s with s.c.
In other words, for every field ¢ of r, if ¢ is a field of s then R(r,s).c = s.c;
otherwise R(r,s).c = r.c. The definition is

R(r,s) = [c € DOMAINr IF ¢ € DOMAIN s THEN s[¢] ELSE r[c]]

So far, we have seen only functions of a single argument, which are the
mathematical analog of the one-dimensional arrays of programming languages.
Mathematicians also use functions of multiple arguments, which are the analog
of multi-dimensional arrays. In TLAT, as in ordinary mathematics, a function of
multiple arguments is one whose domain is a set of tuples. For example, f[5,3, 1]
is an abbreviation for f[(5,3,1)], the value of the function f applied to the triple

(5,3,1).
The function constructs of TLA™T have extensions for functions of multiple
arguments. For example, [g EXCEPT ![a, b] = e] is the function § that is the

same as g except with gla, b] equal to e. The expression
(5.1) [n € Nat, r € Real — n *r]

equals the function f such that f[n, r] equals nx*r, for all n € Nat and r € Real.
Just as Vie S:Vj € §:P can be written as Vi,j € §: P, we can write the
function [€ S, € S+ e as [i,j € S — e].

5.3. A LINEARIZABLE MEMORY

o1

Section 16.1.7 on page 301 describes the general versions of the TLAT func-
tion constructs for functions with any number of arguments. However, functions
of a single argument are all you’re likely to need. You can almost always replace
a function of multiple arguments with a function-valued function—for example,
writing f[a][b] instead of f[a, b].

5.3 A Linearizable Memory

We now specify a very simple memory system in which a processor p issues a
memory request and then waits for a response before issuing the next request.
In our specification, the request is executed by accessing (reading or modifying)
a variable mem, which represents the current state of the memory. Because
the memory can receive requests from other processors before responding to
processor p, it matters when mem is accessed. We let the access of mem occur
any time between the request and the response. This specifies what is called a
linearizable memory. Less restrictive, more practical memory specifications are
described in Section 11.2.

In addition to mem, the specification has the internal variables ctl and buf,
where ctl[p] describes the status of processor p’s request, and buf[p] contains
either the request or the response. Consider the request req that equals

[op — “Wr” | adr — a, val — v]

It is a request to write v to memory address a, and it generates the response
NoVal. The processing of this request is represented by the following three steps:

ctllp] = “rdy” | pegp |ctllp] = “busy”
buflp) = --- | — |buflp] = reg
mem[a] = --- memla] = -
po(py |ctllp] = “done”| gy [ctlp] = “rdy”
— |buf[p] = NoVal| — |buf[p] = NoVal
meml[a] = v meml[a] = v

A Req(p) step represents the issuing of a request by processor p. It is enabled
when ctl[p] = “rdy”; it sets ctl[p] to “busy” and sets buf[p] to the request. A
Do(p) step represents the memory access; it is enabled when ctl[p] = “busy”
and it sets ctl[p] to “done” and buf[p] to the response. A Rsp(p) step represents
the memory’s response to p; it is enabled when ctl[p] = “done” and it sets ctl[p]
to “rdy”.

Writing the specification is a straightforward exercise in representing these
changes to the variables in TLAT notation. The internal specification, with
mem, ctl, and buf visible (free variables), appears in module InternalMemory
on the following two pages. The memory specification, which hides the three
internal variables, is module Memory in Figure 5.3 on page 53.

92 CHAPTER 5. A CACHING MEMORY

[MODULE InternalMemory

EXTENDS Memorylnterface
VARIABLES mem, ctl, buf

! |
I 1

IInit = The initial predicate
N mem € [Ad?“ — Val] Initially, memory locations have any values in Val,
A ctl = [p € Proc — “rdy”} each processor is ready to issue requests,
A buf = [p € Proc — NoVal| each buf[p] is arbitrarily initialized to NoVal,
A memlInt € InitMemlInt and memlInt is any element of InitMemlInt.
Typelnvariant = The type-correctness invariant.
N mem € [Ad’f‘ — Val] mem is a function from Adr to Val.

A ctl € [PT‘OC — {“rdy”, “busy”, “done”}] ctl[p] equals “rdy”, “busy”, or “done”.
A buf € [PTOC — MReq U Val U {NO Val}] buf[p] is a request or a response.

A
Req (p) = Processor p issues a request.
A ctl [p} = “I’dy” Enabled iff p is ready to issue a request.
A dreq € MReq : For some request req:

A Send(p, req, memlInt, memlInt’) Send req on the interface.
A buf’ = [buf EXCEPT '[p] = Teq] Set buf[p] to the request.
A ctl’ = [ctl EXCEPT ![p] = “busy”] Set ctl[p] to “busy”.

A UNCHANGED mem

Do(p) = Perform p’s request to memory.
A ctl[p] = “busy” Enabled iff p’s request is pending.
A mem' =1F buf[p].op = “Wr”
THEN [mem EXCEPT Write to memory on a

[buf[p].adr] = buf[p].val] “Wr’ request.
ELSE mem Leave mem unchanged on a “Rd” request.
A buf’ = [buf EXCEPT

'[p] = 1F buf[p].op = “Wr” Set buf[p] to the response:
THEN NoVal NoVal for a write;
ELSE mem[buf [p].adr]] the memory value for a read.
A ctl’ = [ctl EXCEPT ![p] = “done”] Set ctl[p] to “done”.

A UNCHANGED memlint

Figure 5.2a: The internal memory specification (beginning).

5.4. TUPLES AS FUNCTIONS

Rsp(p) 2 Return the response to p’s request.
A ctl [p] = “done” Enabled iff req. is done but resp. not sent.
A Reply(p, buf[p], memInt, memlInt’) Send the response on the interface.
A ctl’ = [etl EXCEPT ![p] = “rdy”] Set ctl[p] to “rdy”.

A UNCHANGED (mem, buf)
INext = 3p € Proc : Req(p)V Do(p) V Rsp(p) The next-state action.

ISpec £ IInit A D[INeiUt](memInt,mem,ctl,buf) The specification.

THEOREM [Spec = O Typelnvariant

Figure 5.2b: The internal memory specification (end).

5.4 Tuples as Functions

Before writing our caching memory specification, let’s take a closer look at tu-
ples. Recall that (a, b, ¢) is the 3-tuple with components a, b, and ¢. In TLAT,
this 3-tuple is actually the function with domain {1,2, 3} that maps 1 to a, 2 to
b, and 3 to c¢. Thus, (a, b, ¢)[2] equals b.

TLA™ provides the Cartesian product operator x of ordinary mathematics,
where A x B x C is the set of all 3-tuples (a, b, ¢) such that a € 4, b € B, and
c € C. Note that A x B x C is different from A x (B x C), which is the set of
pairs (a,p) with a in A and p in the set of pairs B x C.

The Sequences module defines finite sequences to be tuples. Hence, a se-
quence of length n is a function with domain 1 .. n. In fact, s is a sequence iff
it equals [i € 1 .. Len(s) — s[i]] . Below are a few operator definitions from the
Sequences module. (The meanings of the operators are described in Section 4.1.)

Head(s) = s[1]
Tail(s) = [i€1..(Len(s) —1)— s[i+1]]
sot = [iel.. (Len(s)+ Len(t)) —

IF i < Len(s) THEN s[i] ELSE t[i — Len(s)]]

MODULE Memory

[
EXTENDS Memorylnterface
Inner(mem, ctl, buf) = INSTANCE InternalMemory

I Spec = Amem, ctl, buf : Inner(mem, ctl, buf)!ISpec

Figure 5.3: The memory specification.

04 CHAPTER 5. A CACHING MEMORY

5.5 Recursive Function Definitions

We need one more tool to write the caching memory specification: recursive
function definitions. Recursively defined functions are familiar to programmers.
The classic example is the factorial function, which I'll call fact. It’s usually
defined by writing

fact[n] = 1IF n=0 THEN 1 ELSE n * fact[n — 1]

for all n € Nat. The TLA™T notation for writing functions suggests trying to
define fact by

fact = [n € Nat—1F n =0 THEN 1 ELSE n * fact[n — 1]|

This definition is illegal because the occurrence of fact to the right of the = is
undefined—fact is defined only after its definition.

TLAT does allow the apparent circularity of recursive function definitions.
We can define the factorial function fact by

fact[n € Nat] = 1F n =0 THEN 1 ELSE n * fact[n — 1]

In general, a definition of the form f[z € 5] £ ¢ can be used to define recursively
a function f with domain S.

The function definition notation has a straightforward generalization to def-
initions of functions of multiple arguments. For example,

Acker[m, n € Nat] =
IF m=0 THEN n+1
ELSE IF n =0 THEN Acker[m — 1, 0]
ELSE Acker[m — 1, Acker[m, n — 1]

defines Acker[m, n] for all natural numbers m and n.
Section 6.3 explains exactly what recursive definitions mean. For now, we
will just write recursive definitions without worrying about their meaning.

5.6 A Write-Through Cache

We now specify a simple write-through cache that implements the memory spec-
ification. The system is described by the picture of Figure 5.4 on the next page.
Each processor p communicates with a local controller, which maintains three
state components: buf[p], ctl[p], and cache[p]. The value of cache[p] represents
the processor’s cache; buf[p] and ctl[p] play the same role as in the internal
memory specification (module InternalMemory). (However, as we will see be-
low, ctl[p] can assume an additional value “waiting”.) These local controllers

5.6. A WRITE-THROUGH CACHE

95

. bus

cache[p]

Processor p memint | | buf [p] N

LV w]

men
.

Figure 5.4: The write-through cache.

communicate with the main memory wmem,* and with one another, over a bus.
Requests from the processors to the main memory are in the queue mem@ of
maximum length @QLen.

A write request by processor p is performed by the action DoWr(p). This is
a write-through cache, meaning that every write request updates main memory.
So, the DoWr(p) action writes the value into cache[p] and adds the write request
to the tail of mem@). When the request reaches the head of mem@, the action
Mem@QWr stores the value in wmem. The Do Wr(p) action also updates cache[q]
for every other processor ¢ that has a copy of the address in its cache.

A read request by processor p is performed by the action DoRd(p), which
obtains the value from the cache. If the value is not in the cache, the action
RdMiss(p) adds the request to the tail of mem@ and sets ctl[p] to “waiting”.
When the enqueued request reaches the head of mem(@, the action Mem@QRd
reads the value and puts it in cache[p], enabling the DoRd(p) action.

We might expect the Mem@QRd action to read the value from wmem. How-
ever, this could cause an error if there is a write to that address enqueued in
mem() behind the read request. In that case, reading the value from mem-
ory could lead to two processors having different values for the address in their
caches: the one that issued the read request, and the one that issued the write
request that followed the read in mem@. So, the Mem@QRd action must read
the value from the last write to that address in mem(@, if there is such a write;
otherwise, it reads the value from wmem.

4We use the name wmem to distinguish this variable from variable mem of module
InternalMemory. We don’t have to, since mem is not a free (visible) variable of the actual
memory specification in module Memory, but it helps us avoid getting confused.

06 CHAPTER 5. A CACHING MEMORY

Eviction of an address from processor p’s cache is represented by a separate
Evict(p) action. Since all cached values have been written to memory, eviction
does nothing but remove the address from the cache. There is no reason to evict
an address until the space is needed, so in an implementation, this action would
be executed only when a request for an uncached address is received from p and
p’s cache is full. But that’s a performance optimization; it doesn’t affect the
correctness of the algorithm, so it doesn’t appear in the specification. We allow
a cached address to be evicted from p’s cache at any time—except if the address
was just put there by a Mem@QRd action for a read request whose DoRd(p)
action has not yet been performed. This is the case when ctl[p] equals “waiting”
and buf[p].adr equals the cached address.

The actions Req(p) and Rsp(p), which represent processor p issuing a request
and the memory issuing a reply to p, are the same as the corresponding actions
of the memory specification, except that they also leave the new variables cache
and mem(@ unchanged, and they leave unchanged vmem instead of mem.

To specify all these actions, we must decide how the processor caches and
the queue of requests to memory are represented by the variables mem(@) and
cache. We let mem@ be a sequence of pairs of the form (p, req), where req is
a request and p is the processor that issued it. For any memory address a, we
let cache[p][a] be the value in p’s cache for address a (the “copy” of a in p’s
cache). If p’s cache does not have a copy of a, we let cache[p][a] equal NoVal.

The specification appears in module Write ThroughCache on pages 57—59.
I’ll now go through this specification, explaining some of the finer points and
some notation that we haven’t encountered before.

The EXTENDS, declaration statements, and ASSUME are familiar. We can
reuse some of the definitions from the InternalMemory module, so an INSTANCE
statement instantiates a copy of that module with wmem substituted for mem.
(The other parameters of module InternalMemory are instantiated by the pa-
rameters of the same name in module Write ThroughCache.)

The initial predicate Init contains the conjunct M !IInit, which asserts that
ctl and buf have the same initial values as in the internal memory specification,
and that wmem has the same initial value as mem does in that specification.
The write-through cache allows ctl[p] to have the value “waiting” that it didn’t
in the internal memory specification, so we can’t reuse the internal memory’s
type invariant M! Typelnvariant. Formula Typelnvariant therefore explicitly
describes the types of wmem, ctl, and buf. The type of mem@ is the set of
sequences of (processor, request) pairs.

The module next defines the predicate Coherence, which asserts the basic
cache coherence property of the write-through cache: for any processors p and
g and any address a, if p and ¢ both have copies of address a in their caches,
then those copies are equal. Note the trick of writing = ¢ {y, z} instead of the
equivalent but longer formula (z # y) A (z # 2).

5.6. A WRITE-THROUGH CACHE

[MODULE WriteThroughCache

EXTENDS Naturals, Sequences, MemorylInterface
VARIABLES wmem, ctl, buf, cache, mem@
CONSTANT QLen

ASSUME (QLen € Nat) A (QLen > 0)

A
M = INSTANCE InternalMemory WITH mem — wmem
1

' ., A
Init = The initial predicate
A M IInit wmem, buf, and ctl are initialized as in the internal memory spec.
A cache = All caches are initially empty (cache[p][a] = NoVal for all p, a).

[p € Proc — [a € Adr — NoVal]]
A memQ = <> The queue mem(@ is initially empty.

Typelnvariant = The type invariant.
A wmem € [Adr — Val]
A ctl € [Proc — {“rdy”, “busy”, “waiting”, “done” }]
A buf € [Proc = MReqU Val U {NoVal}]
A cache € [Proc — [Adr — Val U {NoVal}]]
A mem(@ € Seq(PTOC X MReq) mem(@ is a sequence of (proc., request) pairs.

A
Coherence = Asserts that if two processors’ caches both have copies
VY p,q € Proc, a € Adr - of an address, then those copies have equal values.

(NoVal ¢ {cachelp][a], cache[q][a]}) = (cache[p][a] = cache[q][a])

Req(p) = Processor p issues a request.
M!Req(p) A UNCHANGED (cache, mem(@))

RSp(p) = The system issues a response to processor p.

M!Rsp(p) A UNCHANGED (cache, mem(@))

. N
RdMiss (p) = Enqueue a request to write value from memory to p’s cache.

A (ctl[p] = “busy”) A (buf[p].op = “Rd”) Enabled on a read request when
N cache[p] [buf [p].adr] = NoVal the address is not in p’s cache
A Len(mem@Q) < QLen and mem(@ is not full.

A mem@Q' = Append(mem@, (p, buf[p})) Append (p,request) to memQ@Q.
A ctl’ = [ctl EXCEPT ![p] = “waiting”] Set ctl[p] to “waiting”.

A UNCHANGED {memlInt, wmem, buf, cache)

Figure 5.5a: The write-through cache specification (beginning).

98 CHAPTER 5. A CACHING MEMORY

DORd(p) 2 Perform a read by p of a value in its cache.

A ctllp] € {“busy”, “waiting” } Enabled if a read

A buf [p}.op = “Rd” request is pending and
A cache[p][buf[p].adr] # NoVal address is in cache.

A buf’ = [buf EXCEPT '[p] = cache[p][buf[p].adr]] Get result from cache.
A ctl’ = [ctl EXCEPT ![p] = “done”] Set ctl[p] to “done”.

A UNCHANGED (memlInt, wmem, cache, mem@)

Do W’I“(p) = Write to p’s cache, update other caches, and enqueue memory update.
LET r = buf [p} Processor p’s request.
IN A (Ctl[p] = “busy”) A (r.op = “Wr”) Enabled if write request pending
A Len(memQ) < QLen and mem(@ is not full.
A cache' = Update p’s cache and any other cache that has a copy.

[q € Proc— 1F (p = q) V (cache[q][r.adr] # NoVal)
THEN [cachelq] EXCEPT ![r.adr] = r.val]
ELSE cache[q]]

A mem@' = Append(mem@, {p,)) Enqueue write at tail of mem@.
N buf’ = [buf EXCEPT ![p] = No Val] Generate response.
A ctl’ = [ctl EXCEPT ![p] = “done”] Set ctl to indicate request is done.

A UNCHANGED (memlInt, wmem)

2

vmem The value wmem will have after all the writes in mem@ are performed.

LET f[l e€0.. Len(memQ)] = The value wmem will have after the first
IF 7 =0 THEN wmem © writes in mem(@ are performed.
ELSE IF memQ[i][2].op = “Rd”
THEN f[i — 1]
ELSE [f[¢ — 1] EXCEPT ![mem@Q[i][2].adr] =
mem@[i][2].val]
IN f[Len(mem@)]

N
MemQ@QWr = Perform write at head of mem@ to memory.

LET 7 2 Head(memQ)[?] The request at the head of mem@.
IN A (mem@ # () A (r.op = “Wr”) Enabled if Head(mem@) a write.

A wmem’ = Perform the write to memory.
[wmem EXCEPT ![r.adr] = r.val]
A memQ’ = Tail(memQ) Remove the write from mem@.

A UNCHANGED (memlInt, buf, ctl, cache)

Figure 5.5b: The write-through cache specification (middle).

5.6. A WRITE-THROUGH CACHE

99

MemQRd

LET p
T

IN

A
A
A

A
= Perform an enqueued read to memory.

= Head(mem@)[1] The requesting processor.
= Head(memQ)[2] The request at the head of memQ@.

(mem@ # ()) A (r.op = “Rd”) Enabled if Head(memQ) is a read.
mem@’ = Tail(memQ) Remove the head of memQ@.

cache’ = Put value from memory or mem@ in p’s cache.

[cache EXCEPT ![p][r.adr] = vmem/[r.adr]|

A UNCHANGED (memlInt, wmem, buf, ctl)

E"U’iclf(p7 a) = Remove address a from p’s cache.
N (Ctl[p} = “Waiting”) = (buf [p].adr #+ a) Can’t evict a if it was just read

A cache’ = [cache EXCEPT ![p][a] = NoVal]

into cache from memory.

A UNCHANGED (memlInt, wmem, buf, ctl, mem@)

Next =

Spec =

!

V dp € Proc : V Req(p) V Rsp(p)
V RdMiss(p) V DoRd(p)V DoWr(p)
V Ja € Adr : Evict(p, a)

V MemQWr Vv MemQRd

Init AO [Neztkmemlnt, wmem, buf, ctl, cache, memQ)

THEOREM Spec = O(Typelnvariant A Coherence)

!

I

LM =

INSTANCE Memory The memory spec. with internal variables hidden.

I THEOREM Spec = LM!SpeC Formula Spec implements the memory spec.

Figure 5.5¢c: The write-through cache specification (end).

The actions Req(p) and Rsp(p), which represent a processor sending a re-
quest and receiving a reply, are essentially the same as the corresponding actions
in module InternalMemory. However, they must also specify that the variables
cache and mem@, not present in module InternalMemory, are left unchanged.

In the definition of RdMiss, the expression Append(mem@, {p, buf[p])) is the
sequence obtained by appending the element (p, buf[p]) to the end of mem@.

The DoRd(p) action represents the performing of the read from p’s cache.

If ctl[p]

= “busy”, then the address was originally in the cache. If ctl[p] =

“waiting”, then the address was just read into the cache from memory.

The DoWr(p) action writes the value to p’s cache and updates the value in
any other caches that have copies. It also enqueues a write request in mem@.
In an implementation, the request is put on the bus, which transmits it to the
other caches and to the mem@ queue. In our high-level view of the system, we
represent all this as a single step.

60 CHAPTER 5. A CACHING MEMORY

The definition of DoWr introduces the TLA' LET/IN construct. The LET
clause consists of a sequence of definitions whose scope extends until the end of
the IN clause. In the definition of Do Wr, the LET clause defines r to equal buf[p]
within the IN clause. Observe that the definition of r contains the parameter p
of the definition of DoWr. Hence, we could not move the definition of r outside
the definition of Do Wr.

A definition in a LET is just like an ordinary definition in a module; in
particular, it can have parameters. These local definitions can be used to shorten
an expression by replacing common subexpressions with an operator. In the
definition of DoWr, I replaced five instances of buf[p] by the single symbol r.
This was a silly thing to do, because it makes almost no difference in the length
of the definition and it requires the reader to remember the definition of the
new symbol r. But using a LET to eliminate common subexpressions can often
greatly shorten and simplify an expression.

A LET can also be used to make an expression easier to read, even if the
operators it defines appear only once in the IN expression. We write a specifica-
tion with a sequence of definitions, instead of just defining a single monolithic
formula, because a formula is easier to understand when presented in smaller
chunks. The LET construct allows the process of splitting a formula into smaller
parts to be done hierarchically. A LET can appear as a subexpression of an IN
expression. Nested LETs are common in large, complicated specifications.

Next comes the definition of the state function vmem, which is used in defin-
ing action Mem@Rd below. It equals the value that the main memory wmem
will have after all the write operations currently in mem@ have been performed.
Recall that the value read by Mem@Rd must be the most recent one written
to that address—a value that may still be in mem@. That value is the one in
vmem. The function vmem is defined in terms of the recursively defined func-
tion f, where f[i] is the value wmem will have after the first ¢ operations in
mem() have been performed. Note that mem@]i][2] is the second component
(the request) of memQ[i], the i*" element in the sequence mem(Q.

The next two actions, Mem@QWr and Mem@Rd, represent the processing of
the request at the head of the mem(@Q queue—Mem@QWr for a write request,
and Mem@Rd for a read request. These actions also use a LET to make local
definitions. Here, the definitions of p and r could be moved before the definition
of Mem@Wr. In fact, we could save space by replacing the two local definitions of
7 with one global (within the module) definition. However, making the definition
of r global in this way would be somewhat distracting, since r is used only in the
definitions of Mem@Wr and Mem@QRd. It might be better instead to combine
these two actions into one. Whether you put a definition into a LET or make it
more global should depend on what makes the specification easier to read.

The Ewvict(p, a) action represents the operation of removing address a from
processor p’s cache. As explained above, we allow an address to be evicted at
any time—unless the address was just written to satisfy a pending read request,

5.7. INVARIANCE

61

which is the case iff ctl[p] = “waiting” and buf[p].adr = a. Note the use of the
“double subscript” in the EXCEPT expression of the action’s second conjunct.
This conjunct “assigns NoVal to cache[p][a]”. If address a is not in p’s cache,
then cache[p]la] already equals NoVal and an Ewvict(p, a) step is a stuttering
step.

The definitions of the next-state action Next and of the complete specifica-
tion Spec are straightforward. The module closes with two theorems that are
discussed next.

5.7 Invariance

Module WriteThroughCache contains the theorem
THEOREM Spec = O(TypeInvariant A Coherence)

which asserts that Typelnvariant A Coherence is an invariant of Spec. A state
predicate P A @ is always true iff both P and @ are always true, so O(P A Q)
is equivalent to OP A O@. This implies that the theorem above is equivalent to
the two theorems

THEOREM Spec = O Typelnvariant
THEOREM Spec = OCoherence

The first theorem is the usual type-invariance assertion. The second, which
asserts that Coherence is an invariant of Spec, expresses an important property
of the algorithm.

Although Typelnvariant and Coherence are both invariants of the temporal
formula Spec, they differ in a fundamental way. If s is any state satisfying
Typelnvariant, then any state ¢ such that s — ¢ is a Next step also satisfies
Typelnvariant. This property is expressed by

THEOREM Typelnvariant A Next = Typelnvariant’

(Recall that Typelnvariant’ is the formula obtained by priming all the variables
in formula Typelnvariant.) In general, when P A N = P’ holds, we say that
predicate P is an invariant of action N. Predicate Typelnvariant is an invariant
of Spec because it is an invariant of Next and it is implied by the initial predicate
Inat.

Predicate Coherence is not an invariant of the next-state action Next. For
example, suppose s is a state in which

e cache[pl]la] =1
e cache[q][b] = NoVal, for all (g, b) different from (pl, a)
o wmem|a] =2

e mem() contains the single element (p2, [op — “Rd”, adr — a])

An invariant of

a specification

S that is also

an invariant of

its next-state ac-
tion is sometimes
called an inductive
invariant of S.

62 CHAPTER 5. A CACHING MEMORY

for two different processors pl and p2 and some address a. Such a state s (an
assignment of values to variables) exists, assuming that there are at least two
processors and at least one address. Then Coherence is true in state s. Let ¢
be the state obtained from s by taking a Mem@Rd step. In state ¢, we have
cache[p2][a] = 2 and cache[pl][a] = 1, so Coherence is false. Hence Coherence
is not an invariant of the next-state action.

Coherence is an invariant of formula Spec because states like s cannot occur
in a behavior satisfying Spec. Proving its invariance is not so easy. We must
find a predicate Inv that is an invariant of Next such that Inv implies Coherence
and is implied by the initial predicate Init.

Important properties of a specification can often be expressed as invariants.
Proving that a state predicate P is an invariant of a specification means proving
a formula of the form

Init A O[Next], = OP
This is done by finding an appropriate state predicate Inv and proving
Init = Inv, Inv A [Next],, = Inv', Inv =P

Since our subject is specification, not proof, I won’t discuss how to find Inwv.

5.8 Proving Implementation

Module Write ThroughCache ends with the theorem
THEOREM Spec = LM ! Spec

where LM !Spec is formula Spec of module Memory. This theorem asserts that
every behavior satisfying specification Spec of the write-through cache also sat-
isfies LM !Spec, the specification of a linearizable memory. In other words, it
asserts that the write-through cache implements a linearizable memory. In TLA,
implementation is implication. A system described by a formula Sys implements
a specification Spec iff Sys implies Spec—that is, iff Sys = Spec is a theorem.
TLA makes no distinction between system descriptions and specifications; they
are both just formulas.

By definition of formula Spec of the Memory module (page 53), we can restate
the theorem as

THEOREM Spec = Imem, ctl, buf : LM Inner(mem, ctl, buf)! ISpec

where LM ! Inner(mem, ctl, buf)!ISpec is formula ISpec of the InternalMemory
module. The rules of logic tell us that to prove such a theorem, we must find
“witnesses” for the quantified variables mem, ctl, and buf. These witnesses are

5.8. PROVING IMPLEMENTATION

63

state functions (ordinary expressions with no primes), which I'll call omem, octl,
and obuf, that satisfy

(5.2) Spec = LM!Inner(omem, octl, obuf)!ISpec

Formula LM !Inner(omem, octl, obuf)!ISpec is formula ISpec with the substi-
tutions

mem <— omem, ctl < octl, buf < obuf

The tuple { omem, octl, obuf) of witness functions is called a refinement mapping,
and we describe (5.2) as the assertion that Spec implements formula ISpec under
this refinement mapping. Intuitively, this means Spec implies that the value of
the tuple (memlInt, omem, octl, obuf) of state functions changes the way ISpec
asserts that the tuple (memlInt, mem, ctl, buf) of variables should change.

I will now briefly describe how we prove (5.2); for details, see the technical
papers about TLA, available through the TLA Web page. Let me first introduce
a bit of non-TLA T notation. For any formula F' of module InternalMemory, let
F equal LM ! Inner(omem, octl, obuf)!F, which is formula F with omem, octl,
and obuf substituted for mem, ctl, and buf. In particular, mem, ctl, and buf
equal omem, octl, and obuf, respectively.

With this notation, we can write (5.2) as Spec = ISpec. Replacing Spec and
ISpec by their definitions, this formula becomes

(53) Init AN O [Next]<memlnt, wmem, buf, ctl, cache, memQ)
= [Init A O[INext|

(memlInt, mem, ctl, buf)

Formula (5.3) is then proved by finding an invariant Inv of Spec such that

A Init = IInit

A Inv A Next = V INext
V UNCHANGED (memlInt, mem, ctl, buf)

The second conjunct is called step simulation. It asserts that a Next step start-
ing in a state satisfying the invariant Inv is either an INext step—a step that
changes the 4-tuple (memlInt, omem, octl, obuf) the way an INext step changes
{(memlInt, mem, ctl, buf)—or else it leaves that 4-tuple unchanged. For our
memory specifications, the state functions omem, octl, and obuf are defined by

omem é vmem
octl = [p € Proc — 1F ctl[p] = “waiting” THEN “busy” ELSE ctl[p]|
obuf = buf

The mathematics of an implementation proof is simple, so the proof is
straightforward—in theory. For specifications of real systems, such proofs can be
quite difficult. Going from theory to practice requires turning the mathematics

memlInt equals

memlnt, since
memlInt is a vari-
able distinct from
mem, ctl, and
buf.

64 CHAPTER 5. A CACHING MEMORY

of proofs into an engineering discipline. This is a subject that deserves a book
to itself, and I won’t try to discuss it here.

You will probably never prove that one specification implements another.
However, you should understand refinement mappings and step simulation. You
will then be able to use TLC to check that one specification implements another;
Chapter 14 explains how.

Chapter 6

Some More Math

The mathematics we use to write specifications is built on a small, simple collec-
tion of concepts. You’ve already seen most of what’s needed to describe almost
any kind of mathematics. All you lack is a handful of operators on sets that are
described below in Section 6.1. After learning about them, you will be able to
define all the data structures and operations that occur in specifications.

While our mathematics is simple, its foundations are nonobvious—for exam-
ple, the meanings of recursive function definitions and the CHOOSE operator are
subtle. This section discusses some of those foundations. Understanding them
will help you use TLA™T more effectively.

6.1 Sets

The simple operations on sets described in Section 1.2 are all you need to write
most system specifications. However, you may occasionally have to use more
sophisticated operators—especially if you need to define data structures beyond
tuples, records, and simple functions.

Two powerful operators of set theory are the unary operators UNION and
SUBSET, defined as follows:

UNION § The union of the elements of S. In other words, a value e is an
element of UNION § iff it is an element of an element of S. For
example:

uNIoN {{1,2},{2,3},{3,4}} = {1,2,3,4}

SUBSET S The set of all subsets of S. In other words, T € SUBSET S iff
T C §. For example:

suBseT {1,2} = {{}, {1}, {2},{1.2}}

Mathematicians

write UNION S as

Us.

Mathematicians

call SUBSETS the

power set of S

and write it P(.5)

or 254

65

66 CHAPTER 6. SOME MORE MATH

Mathematicians often describe a set as “the set of all ... such that ...”. TLAT
has two constructs that formalize such a description:

{z € S : p} The subset of S consisting of all elements z satisfying property
p. For example, the set of odd natural numbers can be written
{n € Nat : n % 2 = 1}. The identifier z is bound in p; it may The modulus

not occur in S. operator % is
described in

{e:z € S} The set of elements of the form e, for all z in the set S. For Section 2.5 on
example, {2# n + 1:n € Nat} is the set of all odd natural num- P8¢ 2L
bers. The identifier z is bound in e; it may not occur in S.

The construct {e:z € S} has the same generalizations as 3z € S: F. For ex-
ample, {e:xz € S, y € T} is the set of all elements of the form e, for z in S and
y in T. In the construct {x € S: P}, we can let z be a tuple. For example,
{({y,z) € S: P} is the set of all pairs (y,z) in the set S that satisfy P. The
grammar of TLAT in Chapter 15 specifies precisely what set expressions you can
write.

All the set operators we’ve seen so far are built-in operators of TLA™. There
is also a standard module FiniteSets that defines two operators:

Cardinality(S) The number of elements in set S, if S is a finite set.
IsFiniteSet(S) True iff S is a finite set.

The FiniteSets module appears on 341. The definition of Cardinality is discussed
below on page 70.

Careless reasoning about sets can lead to problems. The classic example of
this is Russell’s paradox:

Let R be the set of all sets S such that S ¢ S. The definition of R
implies that R € R is true iff R ¢ R is true.

The formula R ¢ R is the negation of R € R, and a formula and its negation
can neither both be true nor both be false. The source of the paradox is that R
isn’t a set. There’s no way to write it in TLA™. Intuitively, R is too big to be
a set. A collection C is too big to be a set if it is as big as the collection of all
sets—meaning that we can assign to every set a different element of C. That is,
C is too big to be a set if we can define an operator SMap such that

e SMap(9S) is in C, for any set S.
o If S and T are two different sets, then SMap(S) # SMap(T).

For example, the collection of all sequences of length 2 is too big to be a set; we
can define the operator SMap by
A

SMap(S) = (1,5)

This operator assigns to every set S a different sequence of length 2.

6.2. SILLY EXPRESSIONS

67

6.2 Silly Expressions

Most modern programming languages introduce some form of type checking
to prevent you from writing silly expressions like 3/“abc”. TLA™ is based on
the usual formalization of mathematics by mathematicians, which doesn’t have
types. In an untyped formalism, every syntactically well-formed expression has
a meaning—even a silly expression like 3/“abc”. Mathematically, the expression
3/“abc” is no sillier than the expression 3/0, and mathematicians implicitly write
that silly expression all the time. For example, consider the true formula

Vi € Real : (z #£0) = (zx(3/z) =3)

where Real is the set of all real numbers. This asserts that (z # 0) = (z%(3/z) =
3) is true for all real numbers z. Substituting 0 for z yields the true formula
(0 #£0) = (0%(3/0) = 3) that contains the silly expression 3/0. It’s true because
0 # 0 equals FALSE, and FALSE = P is true for any formula P.

A correct formula can contain silly expressions. For example, 3/0 = 3/0 is a
correct formula because any value equals itself. However, the truth of a correct
formula cannot depend on the meaning of a silly expression. If an expression is
silly, then its meaning is probably unspecified. The definitions of / and * (which
are in the standard module Reals) don’t specify the value of 0 (3/0), so there’s
no way of knowing whether that value equals 3.

No sensible syntactic rules can prevent you from writing 3/0 without also
preventing you from writing perfectly reasonable expressions. The typing rules
of programming languages introduce complexity and limitations on what you can
write that don’t exist in ordinary mathematics. In a well-designed programming
language, the costs of types are balanced by benefits: types allow a compiler to
produce more efficient code, and type checking catches errors. For programming
languages, the benefits seem to outweigh the costs. For writing specifications, I
have found that the costs outweigh the benefits.

If you’re used to the constraints of programming languages, it may be a while
before you start taking advantage of the freedom afforded by mathematics. At
first, you won’t think of defining anything like the operator R defined on page 50
of Section 5.2, which couldn’t be written in a typed programming language.

6.3 Recursion Revisited

Section 5.5 introduced recursive function definitions. Let’s now examine what
such definitions mean mathematically. Mathematicians usually define the fac-
torial function fact by writing

fact[n] = IF n=0 THEN 1 ELSE n * fact[n — 1], for all n € Nat

68 CHAPTER 6. SOME MORE MATH

This definition can be justified by proving that it defines a unique function fact
with domain Nat. In other words, fact is the unique value satisfying

(6.1) fact =[n € Nat —1F n =0 THEN 1 ELSE n * fact[n — 1]]

The CHOOSE operator, introduced on pages 47-48 of Section 5.1, allows us to
express “the value z satisfying property p” as CHOOSE z :p. We can therefore
define fact as follows to be the value satisfying (6.1):

(6.2) fact = CHOOSE fact :
fact =[n € Nat — 1F n =0 THEN 1
ELSE n * fact[n — 1]]

(Since the symbol fact is not yet defined in the expression to the right of the
«B oy

=7, we can use it as the bound identifier in the CHOOSE expression.) The
TLA™ definition

fact[n € Nat] = 1F n =0 THEN 1 ELSE n * fact[n — 1]

is simply an abbreviation for (6.2). In general, flz € §] = e is an abbreviation
for

(6.3) f = CHOOSE f : f=[z€ S — ¢
TLAT allows you to write silly definitions. For example, you can write
(6.4) circ[n € Nat] = CHOOSE y : y # circ[n]

This appears to define circ to be a function such that circ[n] # circ[n] for
any natural number n. There obviously is no such function, so circ can’t be
defined to equal it. A recursive function definition doesn’t necessarily define a
function. If there is no f that equals [x € S — e], then (6.3) defines f to be
some unspecified value. Thus, the nonsensical definition (6.4) defines circ to be
some unknown value.

Although TLAT allows the apparent circularity of a recursive function defi-
nition, it does not allow circular definitions in which two or more functions are
defined in terms of one another. Mathematicians occasionally write such mutu-
ally recursive definitions. For example, they might try to define functions f and
g, with domains equal to the set Nat, by writing

f[n € Nat]
g[n € Nat]

IF n =0 THEN 17 ELSE f[n — 1] * g[n] This pair of definitions is
not allowed in TLAT.

e 1>

IF n =0 THEN 42 ELSE f[n — 1]+ g[n — 1]

TLAT does not allow mutually recursive definitions. However, we can define
these functions f and g in TLA™T as follows. We first define a function ms such
that mr[n] is a record whose f and g fields equal f[n] and g[n], respectively:

mr[n € Nat] =
[f = 1IF n=0 THEN 17 ELSE mr[n — 1].f * mr[n].g,
g — 1IF n=0 THEN 42 ELSE mr[n — 1].f + mr[n —1].g]

6.4. FUNCTIONS VERSUS OPERATORS

69

We can then define f and g in terms of mr:

fln € Nat] = mr[n].f

g[n € Nat] = mrlnl.g

This trick can be used to convert any mutually recursive definitions into a sin-
gle recursive definition of a record-valued function whose fields are the desired
functions.

If we want to reason about a function f defined by f[z € 5] £ ¢, we need
to prove that there exists an f that equals [z € S+ e]. The existence of f is
obvious if f does not occur in e. If it does, so this is a recursive definition, then
there is something to prove. Since I'm not discussing proofs, I won’t describe
how to prove it. Intuitively, you have to check that, as in the case of the factorial
function, the definition uniquely determines the value of f[z] for every z in S.

Recursion is a common programming technique because programs must com-
pute values using a small repertoire of simple elementary operations. It’s not
used as often in mathematical definitions, where we needn’t worry about how to
compute the value and can use the powerful operators of logic and set theory.
For example, the operators Head, Tail, and o are defined in Section 5.4 with-
out recursion, even though computer scientists usually define them recursively.
Still, there are some things that are best defined inductively, using a recursive
function definition.

6.4 Functions versus Operators
Consider these definitions, which we’ve seen before:

Tail(s) = [i
fact|n € Nat]

1..(Len(s) —1) — s[i +1]]

IF n =0 THEN 1 ELSE n * fact[n — 1]

> M

They define two very different kinds of objects: fact is a function, and Tail is
an operator. Functions and operators differ in a few basic ways.

Their most obvious difference is that a function like fact by itself is a complete
expression that denotes a value, but an operator like Tail is not. Both fact[n] € S
and fact € S are syntactically correct expressions. But, while Tail(n) € S is
syntactically correct, Tail € S is not. It is gibberish—a meaningless string of
symbols, like z+ > 0.

Unlike an operator, a function must have a domain, which is a set. We cannot
define a function Tail so that Tail[s] is the tail of any nonempty sequence s;
the domain of such a function would have to include all nonempty sequences,
and the collection of all such sequences is too big to be a set. (As explained
on page 66, a collection C is too big to be a set if we can assign to each set a
different member of C. The operator SMap defined by SMap(S) = (S) assigns

70 CHAPTER 6. SOME MORE MATH

to every set a different nonempty sequence.) Hence, we can’t define Tail to be
a function.

Unlike a function, an operator cannot be defined recursively in TLAY. How-
ever, we can usually transform an illegal recursive operator definition into a
nonrecursive one using a recursive function definition. For example, let’s try to
define the Cardinality operator on finite sets. (Recall that the cardinality of a
finite set S is the number of elements in S.) The collection of all finite sets is
too big to be a set. (The operator SMap(S) = {S} assigns to each set a different
set of cardinality 1.) The Cardinality operator has a simple intuitive definition:

e Cardinality({}) = 0.

e If S is a nonempty finite set, then S\ {z} is the set
f all el i
Cardinality(S) = 1+ Cardinality(S \ {z}) of all elements in

S except .
where z is an arbitrary element of S.

Using the CHOOSE operator to describe an arbitrary element of S, we can write
this as the more formal-looking, but still illegal, definition

Cardinality(S) = This is not a legal TLA* definition.
IF S ={} THEN 0
ELSE 1+ Cardinality(S\ {CHOOSE z : z € S})

This definition is illegal because it’s circular—only in a recursive function defi-
nition can the symbol being defined appear to the right of the =9

To turn this into a legal definition, observe that, for a given finite set S, we
can define a function CS such that CS[T] equals the cardinality of T for every
subset T of S. The definition is

CS[T € suBser §] =
IF T ={} THEN 0
ELSE 14 CS[T\{CHOOSE z : z € T}|

Since S is a subset of itself, this defines CS[S] to equal Cardinality(S), if S is a
finite set. (We don’t know or care what CS[S] equals if S is not finite.) So, we
can define the Cardinality operator by

Cardinality(S) =
LET CS[T € SUBSET §] =
IF T ={} THEN 0
ELSE 1+ CS[T\{CHOOSE z : z € T}]
IN CS[S]

Operators also differ from functions in that an operator can take an operator
as an argument. For example, we can define an operator IsPartialOrder so that

6.4. FUNCTIONS VERSUS OPERATORS

71

IsPartialOrder(R, S) equals true iff the operator R defines an irreflexive partial
order on S. The definition is

A

IsPartialOrder(R(-, -), §) =
AVz,y,z€ S : R(z,y) AN R(y, z) = R(z, 2)
AVzeS : -R(z,z)

We could also use an infix-operator symbol like < instead of R as the parameter
of the definition, writing

IsPartialOrder(_<_, §) =
AVz,y,z€8 : (<y)AN(y<2)= (< 2)
AVzeS :—(r=<zx)

The first argument of IsPartialOrder is an operator that takes two arguments;
its second argument is an expression. Since > is an operator that takes two
arguments, the expression IsPartialOrder(>, Nat) is syntactically correct. In
fact, it equals TRUE, if > is defined to be the usual operator on numbers. The
expression IsPartialOrder(+, 3) is also syntactically correct, but it’s silly and we
have no idea whether or not it equals TRUE.

There is one difference between functions and operators that is subtle and not
very important, but I will mention it anyway for completeness. The definition
of Tail defines Tail(s) for all values of s. For example, it defines Tail(1/2) to
equal

6.5) [iel.. (Len(1/2) — 1) — (1/2)[i + 1]]

We have no idea what this expression means, because we don’t know what
Len(1/2) or (1/2)[i + 1] mean. But, whatever (6.5) means, it equals Tail(1/2).
The definition of fact defines fact[n] only for n € Nat. It tells us nothing about
the value of fact[1/2]. The expression fact[1/2] is syntactically well-formed, so
it too denotes some value. However, the definition of fact tells us nothing about
what that value is.

The last difference between operators and functions has nothing to do with
mathematics and is an idiosyncrasy of TLA™: the language doesn’t permit us
to define infix functions. Mathematicians often define / to be a function of two
arguments, but we can’t do that in TLAT. If we want to define /, we have no
choice but to make it an operator.

One can write equally nonsensical things using functions or operators. How-
ever, whether you use functions or operators may determine whether the non-
sense you write is nonsyntactic gibberish or syntactically correct but semanti-
cally silly. The string of symbols 2(“a”) is not a syntactically correct formula
because 2 is not an operator. However, 2[“a”], which can also be written 2.a, is
a syntactically correct expression. It’s nonsensical because 2 isn’t a function,! so

IMore precisely, we don’t know whether or not 2 is a function.

If you don’t know
what an irreflex-
ive partial order
is, read this
definition of
IsPartialOrder

to find out.

72 CHAPTER 6. SOME MORE MATH

we don’t know what 2[“a”] means. Similarly, Tail(s,t) is syntactically incorrect
because Tuail is an operator that takes a single argument. However, as explained
in Section 16.1.7 on page 301, fact[m, n| is syntactic sugar for fact[{m,n)], so
it is a syntactically correct, semantically silly formula. Whether an error is
syntactic or semantic determines what kind of tool can catch it. In particular,
the parser described in Chapter 12 catches syntactic errors, but not semantic
silliness. The TLC model checker, described in Chapter 14, will report an error
if it tries to evaluate a semantically silly expression.

The distinction between functions and operators seems to confuse some peo-
ple. One reason is that, although this distinction exists in ordinary math, it
usually goes unnoticed by mathematicians. If you ask a mathematician whether
SUBSET is a function, she’s likely to say yes. But if you point out to her that
SUBSET can’t be a function because its domain can’t be a set, she will probably
realize for the first time that mathematicians use operators like SUBSET and €
without noticing that they form a class of objects different from functions. Lo-
gicians will observe that the distinction between operators and values, including
functions, arises because TLA™ is a first-order logic rather than a higher-order
logic.

When defining an object V, you may have to decide whether to make V
an operator that takes an argument or a function. The differences between
operators and functions will often determine the decision. For example, if a
variable may have V as its value, then V must be a function. Thus, in the
memory specification of Section 5.3, we had to represent the state of the memory
by a function rather than an operator, since the variable mem couldn’t equal
an operator. If these differences don’t determine whether to use an operator or
a function, then the choice is a matter of taste. I usually prefer operators.

6.5 Using Functions

Consider the following two formulas:

(6.6) f'=1[i€ Natri+1]

(6.7) Vi€ Nat : f'[i]=14i+1

Both formulas imply that f'[i] = i + 1 for every natural number ¢, but they
are not equivalent. Formula (6.6) uniquely determines f’, asserting that it’s a

function with domain Nat. Formula (6.7) is satisfied by lots of different values
of f'. For example, it is satisfied if f’ is the function

[i € Real — 1F i € Nat THEN i+ 1 ELSE i?]

In fact, from (6.7), we can’t even deduce that f’ is a function. Formula (6.6)
implies formula (6.7), but not vice-versa.

6.6. CHOOSE

73

When writing specifications, we almost always want to specify the new value
of a variable f rather than the new values of f[i] for all ¢ in some set. We
therefore usually write (6.6) rather than (6.7).

6.6 Choose

The CHOOSE operator was introduced in the memory interface of Section 5.1 in
the simple idiom CHOOSE v:wv ¢ S, which is an expression whose value is not
an element of S. In Section 6.3 above, we saw that it is a powerful tool that can
be used in rather subtle ways.

The most common use for the CHOOSE operator is to “name” a uniquely
specified value. For example, a/b is the unique real number that satisfies the
formula a = b * (a/b), if a and b are real numbers and b # 0. So, the standard
module Reals defines division on the set Real of real numbers by

a/b = CHOOSE ¢ € Real : a=bxc

(The expression CHOOSE z € S:p means CHOOSE z:(z € S)Ap.) If a is a
nonzero real number, then there is no real number ¢ such that a = 0 % c.
Therefore, a/0 has an unspecified value. We don’t know what a real number
times a string equals, so we cannot say whether or not there is a real number ¢
such that a equals “xyz” * ¢. Hence, we don’t know what the value of a/“xyz”
is.

People who do a lot of programming and not much mathematics often think
that CHOOSE must be a nondeterministic operator. In mathematics, there is
no such thing as a nondeterministic operator or a nondeterministic function. If
some expression equals 42 today, then it will equal 42 tomorrow, and it will still
equal 42 a million years from tomorrow. The specification

(z = CHOOSE n : n € Nat) A Oz’ = CHOOSE n : n € Nat],

allows only a single behavior—one in which z always equals CHOOSE n : n € Nat,
which is some particular, unspecified natural number. It is very different from
the specification

(z € Nat) A O[z’ € Nat],

that allows all behaviors in which z is always a natural number—possibly a
different number in each state. This specification is highly nondeterministic,
allowing lots of different behaviors.

The CHOOSE op-
erator is known
to logicians as
Hilbert’s e.

74

CHAPTER 6. SOME MORE MATH

Chapter 7

Writing a Specification:
Some Advice

You have now learned all you need to know about TLA™T to write your own
specifications. Here are a few additional hints to help you get started.

7.1 Why Specify

Writing a specification requires effort; the benefit it provides must justify that
effort. The purpose of writing a specification is to help avoid errors. Here are
some ways it can do that.

e Writing a TLA™T specification can help the design process. Having to de-
scribe a design precisely often reveals problems—subtle interactions and
“corner cases” that are easily overlooked. These problems are easier to cor-
rect when discovered in the design phase rather than after implementation
has begun.

e A TLAT specification can provide a clear, concise way of communicating
a design. It helps ensure that the designers agree on what they have
designed, and it provides a valuable guide to the engineers who implement
and test the system. It may also help users understand the system.

e A TLAT specification is a formal description to which tools can be applied
to help find errors in the design and to help in testing the system. The
most useful tool written so far for this purpose is the TLC model checker,
described in Chapter 14.

75

76 CHAPTER 7. WRITING A SPECIFICATION: SOME ADVICE

Whether the benefit justifies the effort of writing the specification depends on
the nature of the project. Specification is not an end in itself; it is just a tool
that an engineer should be able to use when appropriate.

7.2 What to Specify

Although we talk about specifying a system, that’s not what we do. A specifi-
cation is a mathematical model of a particular view of some part of a system.
When writing a specification, the first thing you must choose is exactly what
part of the system you want to model. Sometimes the choice is obvious; often it
isn’t. The cache-coherence protocol of a real multiprocessor computer may be
intimately connected with how the processors execute instructions. Finding an
abstraction that describes the coherence protocol while suppressing the details
of instruction execution may be difficult. It may require defining an interface
between the processor and the memory that doesn’t exist in the actual system
design.

The primary purpose of a specification is to help avoid errors. You should
specify those parts of the system for which a specification is most likely to reveal
errors. TLA™T is particularly effective at revealing concurrency errors—ones that
arise through the interaction of asynchronous components. So, when writing a
TLA specification, you will probably concentrate your efforts on the parts of the
system that are most likely to have such errors. If that’s not where you should
be concentrating your efforts, then you probably shouldn’t be using TLAT.

7.3 The Grain of Atomicity

After choosing what part of the system to specify, you must choose the specifica-
tion’s level of abstraction. The most important aspect of the level of abstraction
is the grain of atomicity, the choice of what system changes are represented as
a single step of a behavior. Sending a message in an actual system involves
multiple suboperations, but we usually represent it as a single step. On the
other hand, the sending of a message and its receipt are usually represented as
separate steps when specifying a distributed system.

The same sequence of system operations is represented by a shorter sequence
of steps in a coarser-grained representation than in a finer-grained one. This
almost always makes the coarser-grained specification simpler than the finer-
grained one. However, the finer-grained specification more accurately describes
the behavior of the actual system. A coarser-grained specification may fail to
reveal important details of the system.

There is no simple rule for deciding on the grain of atomicity. However,
there is one way of thinking about granularity that can help. To describe it, we

7.3. THE GRAIN OF ATOMICITY

77

need the TLAY action-composition operator “”. If A and B are actions, then
the action A-B is executed by executing first A then B as a single step. More
precisely, A - B is the action defined by letting s — ¢ be an A - B step iff there
exists a state u such that s — u is an A step and u — ¢ is a B step.

When determining the grain of atomicity, we must decide whether to repre-
sent the execution of an operation as a single step or as a sequence of steps, each
corresponding to the execution of a suboperation. Let’s consider the simple case
of an operation consisting of two suboperations that are executed sequentially,
where those suboperations are described by the two actions R and L. (Execut-
ing R enables L and disables R.) When the operation’s execution is represented
by two steps, each of those steps is an R step or an L step. The operation is
then described with the action RV L. When its execution is represented by
a single step, the operation is described with the action R-L.! Let S2 be the
finer-grained specification in which the operation is executed in two steps, and
let S1 be the coarser-grained specification in which it is executed as a single R- L
step. To choose the grain of atomicity, we must choose whether to take S1 or S2
as the specification. Let’s examine the relation between the two specifications.

We can transform any behavior o satisfying S1 into a behavior ¢ satisfying

S2 by replacing each step s B4y with the pair of steps s Bk t, for some
state u. If we regard o as being equivalent to &, then we can regard S1 as being
a strengthened version of S2—one that allows fewer behaviors. Specification S1
requires that each R step be followed immediately by an L step, while S2 allows
behaviors in which other steps come between the R and L steps. To choose
the appropriate grain of atomicity, we must decide whether those additional
behaviors allowed by 52 are important.

The additional behaviors allowed by S2 are not important if the actual sys-
tem executions they describe are also described by behaviors allowed by S1. So,
we can ask whether each behavior 7 satisfying S2 has a corresponding behavior
T satisfying S1 that is, in some sense, equivalent to 7. One way to construct 7
from 7 is to transform a sequence of steps

R A A A, L
(71) s—up = ug = U3 ... Up —> Upy1 =t

into the sequence

A Ag R L Apa Ay
(7.2) s = V1 ... Vp_o —> Vg—1 —> Vg —> Vg1 —> Ukt --- Upy1 —> 1

where the A; are other system actions that can be executed between the R and
L steps. Both sequences start in state s and end in state ¢, but the intermediate
states may be different.

IWe actually describe the operation with an ordinary action, like the ones we’ve been
writing, that is equivalent to R-L. The operator “” rarely appears in an actual specification.
If you’re ever tempted to use it, look for a better way to write the specification; you can
probably find one.

78 CHAPTER 7. WRITING A SPECIFICATION: SOME ADVICE

When is such a transformation possible? An answer can be given in terms of
commutativity relations. We say that actions A and B commute if performing
them in either order produces the same result. Formally, A and B commute iff
A - B is equivalent to B - A. A simple sufficient condition for commutativity is
that two actions commute if (i) each one leaves unchanged any variable whose
value may be changed by the other, and (ii) neither enables or disables the other.
It’s not hard to see that we can transform (7.1) to (7.2) in the following two
cases:

e R commutes with each A;. (In this case, k = n.)
e [commutes with each A;. (In this case, k = 0.)

In general, if an operation consists of a sequence of m subactions, we must decide
whether to choose the finer-grained representation OV O V...V O,, or the
coarser-grained one Q1 - Og--- O,,. The generalization of the transformation
from (7.1) to (7.2) is one that transforms an arbitrary behavior satisfying the
finer-grained specification into one in which the sequence of Oy, Os, ..., O,
steps come one right after the other. Such a transformation is possible if all but
one of the actions O; commute with every other system action. Commutativity

can be replaced by weaker conditions, but it is the most common case.
o Om
By commuting actions and replacing a sequence s B steps by

a single Oq - -- O, step, you may be able to transform any behavior of a finer-
grained specification into a corresponding behavior of a coarser-grained one.
But that doesn’t mean that the coarser-grained specification is just as good as
the finer-grained one. The sequences (7.1) and (7.2) are not the same, and a
sequence of O; steps is not the same as a single O; - -- O, step. Whether you
can consider the transformed behavior to be equivalent to the original one, and
use the coarser-grained specification, depends on the particular system you are
specifying and on the purpose of the specification. Understanding the relation
between finer- and coarser-grained specifications can help you choose between
them; it won’t make the choice for you.

7.4 The Data Structures

Another aspect of a specification’s level of abstraction is the accuracy with which
it describes the system’s data structures. For example, should the specification
of a program interface describe the actual layout of a procedure’s arguments in
memory, or should the arguments be represented more abstractly?

To answer such a question, you must remember that the purpose of the spec-
ification is to help catch errors. A precise description of the layout of procedure
arguments will help prevent errors caused by misunderstandings about that lay-
out, but at the cost of complicating the program interface’s specification. The

7.5. WRITING THE SPECIFICATION

79

cost is justified only if such errors are likely to be a real problem and the TLA™
specification provides the best way to avoid them.

If the purpose of the specification is to catch errors caused by the asyn-
chronous interaction of concurrently executing components, then detailed de-
scriptions of data structures will be a needless complication. So, you will proba-
bly want to use high-level, abstract descriptions of the system’s data structures
in the specification. For example, to specify a program interface, you might
introduce constant parameters to represent the actions of calling and return-
ing from a procedure—parameters analogous to Send and Reply of the memory
interface described in Section 5.1 (page 45).

7.5 Writing the Specification

Once you’ve chosen the part of the system to specify and the level of abstraction,
you're ready to start writing the TLA™ specification. We’ve already seen how
this is done; let’s review the steps.

First, pick the variables and define the type invariant and initial predicate.
In the course of doing this, you will determine the constant parameters and
assumptions about them that you need. You may also have to define some
additional constants.

Next, write the next-state action, which forms the bulk of the specification.
Sketching a few sample behaviors may help you get started. You must first decide
how to decompose the next-state action as the disjunction of actions describing
the different kinds of system operations. You then define those actions. The
goal is to make the action definitions as compact and easy to read as possible,
which requires carefully structuring them. One way to reduce the size of a
specification is to define state predicates and state functions that are used in
several different action definitions. When writing the action definitions, you will
determine which of the standard modules you need and will add the appropriate
EXTENDS statement. You may also have to define some constant operators for
the data structures that you are using.

You must now write the temporal part of the specification. If you want
to specify liveness properties, you have to choose the fairness conditions, as
described below in Chapter 8. You then combine the initial predicate, next-
state action, and any fairness conditions you’ve chosen into the definition of a
single temporal formula that is the specification.

Finally, you can assert theorems about the specification. If nothing else, you
probably want to add a type-correctness theorem.

80 CHAPTER 7. WRITING A SPECIFICATION: SOME ADVICE

7.6 Some Further Hints

Here are a few miscellaneous suggestions that may help you write better speci-
fications.

Don’t be too clever.

Cleverness can make a specification hard to read—and even wrong. The formula
g = (h') o ¢’ may look like a nice, short way of writing

(7.3) (W' = Head(q)) A (¢’ = Tail(q))

But not only is ¢ = (h’) o ¢’ harder to understand than (7.3), it’s also wrong,.
We don’t know what a o b equals if ¢ and b are not both sequences, so we don’t
know whether 4’ = Head(q) and ¢’ = Tuil(q) are the only values of b’/ and ¢’
that satisfy ¢ = (h’) o ¢’. There could be other values of A’ and ¢’, which are
not sequences, that satisfy the formula.

In general, the best way to specify the new value of a variable v is with a
conjunct of the form v = exp or v’ € exp, where exp is a state function—an
expression with no primes.

A type invariant is not an assumption.

Type invariance is a property of a specification, not an assumption. When
writing a specification, we usually define a type invariant. But that’s just a
definition; a definition is not an assumption. Suppose you define a type invariant
that asserts that a variable n is of type Nat. You may be tempted then to think
that a conjunct n’ > 7 in an action asserts that n’ is a natural number greater
than 7. It doesn’t. The formula n’ > 7 asserts only that n’ > 7. It is satisfied
if n/ = /96 as well as if n’ = 8. Since we don’t know whether or not “abc” > 7
is true, it might be satisfied even if n’ = “abc”. The meaning of the formula is
not changed just because you've defined a type invariant that asserts n € Nat.

In general, you may want to describe the new value of a variable x by assert-
ing some property of z’. However, the next-state action should imply that z’ is
an element of some suitable set. For example, a specification might define?

Actionl = (n' >7) A ...
Action2 = (n' <6) A ...
Nest = (n' € Nat) A (Actionl V Action2)

2An alternative approach is to define Next to equal Actionl V Action2 and to let the
specification be Init A O[Nezt]... A O(n € Nat). But it’s usually better to stick to the simple
form Init A O[Next]... for specifications.

7.6. SOME FURTHER HINTS

81

Don’t be too abstract.

Suppose a user interacts with the system by typing on a keyboard. We could
describe the interaction abstractly with a variable typ and an operator parameter
KeyStroke, where the action KeyStroke(“a”, typ, typ’) represents the user typing
an “a”. This is the approach we took in describing the communication between
the processors and the memory in the MemorylInterface module on page 48.

A more concrete description would be to let kbd represent the state of the
keyboard, perhaps letting kbd = {} mean that no key is depressed, and kbd =
{“a”} mean that the a key is depressed. The typing of an a is represented by
two steps, a [kbd = {}] — [kbd = {“a”}] step represents the pressing of the a
key, and a [kbd = {“a”}] — [kbd = {}] step represents its release. This is the
approach we took in the asynchronous interface specifications of Chapter 3.

The abstract interface is simpler; typing an a is represented by a single
KeyStroke(“a”, typ, typ’) step instead of a pair of steps. However, using the
concrete representation leads us naturally to ask: what if the user presses the a
key and, before releasing it, presses the b key? That’s easy to describe with the
concrete representation. The state with both keys depressed is kbd = {“a”, “b”}.
Pressing and releasing a key are represented simply by the two actions

Press(k) = kbd' = kbd U {k} Release(k) = kbd' = kbd \ {k}
The possibility of having two keys depressed cannot be expressed with the sim-
ple abstract interface. To express it abstractly, we would have to replace the
parameter KeyStroke with two parameters PressKey and ReleaseKey, and we
would have to express explicitly the property that a key can’t be released until
it has been depressed, and vice-versa. The more concrete representation is then
simpler.

We might decide that we don’t want to consider the possibility of two keys
being depressed, and that we prefer the abstract representation. But that should
be a conscious decision. Our abstraction should not blind us to what can happen
in the actual system. When in doubt, it’s safer to use a concrete representation
that more accurately describes the real system. That way, you are less likely to
overlook real problems.

Don’t assume values that look different are unequal.

The rules of TLA™ do not imply that 1 # “a”. If the system can send a message
that is either a string or a number, represent the message as a record with a
type and value field—for example,

[type — “String”, value — “a”] or [type — “Nat”, value — 1]

We know that these two values are different because they have different type
fields.

82 CHAPTER 7. WRITING A SPECIFICATION: SOME ADVICE

Move quantification to the outside.

Specifications are usually easier to read if 3 is moved outside disjunctions and
V is moved outside conjunctions. For example, instead of

Up £ Je € Elevator : ...
Down = 3Je € Elevator : ...
Move = Up V Down

it’s usually better to write

Up(e)
Down(e)
Movwe

e e e

Je € Elevator : Up(e) V Down(e)

Prime only what you mean to prime.

When writing an action, be careful where you put your primes. The expression
fle]’ equals f'[e']; it equals f'[e] only if ¢/ = e, which need not be true if the
expression e contains variables. Be especially careful when priming an operator
whose definition contains a variable. For example, suppose z is a variable and
op is defined by
op(a) = z+a

Then op(y)’ equals (z+y)’, which equals 2’+y’, while op(y’) equals z+y’. There
is no way to use op and ’ to write the expression z’ +y. (Writing op’(y) doesn’t
work because it’s illegal—you can prime only an expression, not an operator.)

Write comments as comments.

Don’t put comments into the specification itself. I have seen people write things
like the following action definition:

A2 VAzZ>0
AL
VAx<O0
A FALSE

The second disjunct is meant to indicate that the writer intended A not to be
enabled when x < 0. But that disjunct is completely redundant, since F' AFALSE
equals FALSE, and F' VFALSE equals F', for any formula F'. So the second disjunct
of the definition serves only as a form of comment. It’s better to write

A = A x>0 Ais not enabled if 2 < 0
VAR

7.7. WHEN AND HOW TO SPECIFY

83

7.7 When and How to Specify

Specifications are often written later than they should be. Engineers are usually
under severe time constraints, and they may feel that writing a specification will
slow them down. Only after a design has become so complex that they need help
understanding it do most engineers think about writing a precise specification.

Writing a specification helps you think clearly. Thinking clearly is hard; we
can use all the help we can get. Making specification part of the design process
can improve the design.

I have described how to write a specification assuming that the system de-
sign already exists. But it’s better to write the specification as the system is
being designed. The specification will start out being incomplete and probably
incorrect. For example, an initial specification of the write-through cache of
Section 5.6 (page 54) might include the definition

. N
RdMiss (p) = Enqueue a request to write value from memory to p’s cache.

Some enabling condition must be conjoined here.

A mem@Q' = Append(mem@, buf[p]) Append request to memQ.

A ctl’ = [ctl EXCEPT ![p] = “?”] Set ctl[p] to value to be determined later.

A UNCHANGED (memlInt, wmem, buf, cache)

Some system functionality will at first be omitted; it can be included later by
adding new disjuncts to the next-state action. Tools can be applied to these
preliminary specifications to help find design errors.

84

CHAPTER 7. WRITING A SPECIFICATION: SOME ADVICE

Part 11

More Advanced Topics

85

Chapter 8

Liveness and Fairness

The specifications we have written so far say what a system must not do. The
clock must not advance from 11 to 9; the receiver must not receive a message
if the FIFO is empty. They don’t require that the system ever actually do
anything. The clock need never tick; the sender need never send any messages.
Our specifications have described what are called safety properties. If a safety
property is violated, it is violated at some particular point in the behavior—by
a step that advances the clock from 11 to 9, or that reads the wrong value from
memory. Therefore, we can talk about a safety property being satisfied by a
finite behavior, which means that it has not been violated by any step so far.

We now learn how to specify that something does happen—that the clock
keeps ticking, or that a value is eventually read from memory. We specify liveness
properties—ones that cannot be violated at any particular instant. Only by
examining an entire infinite behavior can we tell that the clock has stopped
ticking, or that a message is never sent.

We express liveness properties as temporal formulas. This means that, to
add liveness conditions to your specifications, you have to understand temporal
logic—the logic of temporal formulas. The chapter begins, in Section 8.1, with
a more rigorous look at what a temporal formula means. To understand a logic,
you have to understand what its true formulas are. Section 8.2 is about temporal
tautologies, the true formulas of temporal logic. Sections 8.4-8.7 describe how
to use temporal formulas to specify liveness properties. Section 8.8 completes
our study of temporal logic by examining the temporal quantifier 3. Finally,
Section 8.9 reviews what we’ve done and explains why the undisciplined use of
temporal logic is dangerous.

This chapter is the only one that contains proofs. It would be nice if you
learned to write similar proofs yourself, but it doesn’t matter if you don’t.
The proofs are here because studying them can help you develop the intuitive
understanding of temporal formulas that you need to write specifications—

87

88 CHAPTER 8. LIVENESS AND FAIRNESS

an understanding that makes the truth of a simple temporal tautology like
OO0OF = OF as obvious as the truth of a simple theorem about numbers like
Vn & Nat:2*xn > n.

Many readers will find that this chapter taxes their mathematical ability.
Don’t worry if you have trouble understanding it. Treat this chapter as an
exercise to stretch your mind and prepare you to add liveness properties to your
specifications. And remember that liveness properties are likely to be the least
important part of your specification. You will probably not lose much if you
simply omit them.

8.1 Temporal Formulas

Recall that a state assigns a value to every variable, and a behavior is an infinite
sequence of states. A temporal formula is true or false of a behavior. Formally,
a temporal formula F assigns a Boolean value, which we write o = F, to a
behavior 0. We say that F' is true of o, or that o satisfies F, iff o | F equals
TRUE. To define the meaning of a temporal formula F', we have to explain how
to determine the value of o = F for any behavior o. For now, we consider only
temporal formulas that don’t contain the temporal existential quantifier 3.

It’s easy to define the meaning of a Boolean combination of temporal formulas
in terms of the meanings of those formulas. The formula F A G is true of a
behavior o iff both F' and G are true of o, and —F is true of ¢ iff F' is not true
of 0. These definitions are written more formally as

cE(FAG) 2 GEFPAGEG — okF-F 2 ~(0kF)

These are the definitions of the meaning of A and of — as operators on temporal
formulas. The meanings of the other Boolean operators are similarly defined.
We can also define in this way the ordinary predicate-logic quantifiers V and 3
as operators on temporal formulas—for example:

c=@r:F) £ 3r: (cEF)

Ordinary quantification over constant sets is defined the same way. For example,
if S is an ordinary constant expression—that is, one containing no variables—
then
cE(WreS:F) = VreS:(cF)
Quantifiers are discussed further in Section 8.8 below.
All the unquantified temporal formulas that we’ve seen have been Boolean
combinations of three simple kinds of formulas, which have the following mean-

ings: State function
.)) L and state predi-
e A state predicate, viewed as a temporal formula, is true of a behavior iff cate are defined

it is true in the first state of the behavior. on page 25.

8.1. TEMPORAL FORMULAS

e A formula OP, where P is a state predicate, is true of a behavior iff P is
true in every state of the behavior.

e A formula O[N], where N is an action and v is a state function, is true of
a behavior iff every successive pair of steps in the behavior is a [N], step.

Since a state predicate is an action that contains no primed variables, we can
both combine and generalize these three kinds of temporal formulas into the two
kinds of formulas A and OA, where A is an action. I'll first explain the meanings
of these two kinds of formulas, and then define the operator O in general. To
do this, I will use the notation that o; is the (i + 1)t state of the behavior o,
for any natural number 4, so o is the behavior o9 — 01 — 09 — -+ -.

We interpret an arbitrary action A as a temporal formula by defining o = A
to be true iff the first two states of o are an A step. That is, we define o = A to
be true iff oy — o1 is an A step. In the special case when A is a state predicate,
oo — o1 is an A step iff A is true in state op, so this definition of ¢ = A
generalizes our interpretation of a state predicate as a temporal formula.

We have already seen that O[N], is true of a behavior iff each step is a [N],
step. This leads us to define o = OA to be true iff 0,, — 0,41 is an A step, for
all natural numbers n.

We now generalize from the definition of o = OA for an action A to the
definition of ¢ = OF for an arbitrary temporal formula F. We defined o = 0A
to be true iff o,, — 0,41 is an A step for all n. This is true iff A, interpreted as
a temporal formula, is true of a behavior whose first step is o, — 0,41, for all
n. Let’s define o™ to be the suffix of ¢ obtained by deleting its first n states:

+n A
o = Op 7 0pn4t1 7 0pt2 —> "

Then o, — 041 is the first step of 01", so 0 = 04 is true iff 67" = A is true
for all n. In other words

cFEOA = VneNat: ot A
The obvious generalization is

c=0F = VYneNat:o™mEF

for any temporal formula F. In other words, o satisfies OF iff every suffix o*"
of o satisfies F. This defines the meaning of the temporal operator O.

We have now defined the meaning of any temporal formula built from ac-
tions (including state predicates), Boolean operators, and the O operator. For
example:

cEO(z=1)=0(y >0)

)
= VYn&Nat:ot? E((z=1)=0(y>0)) By the meaning of O.
= Vn € Nat : (0.+n E(z=1)= (O’+n E O(y > 0)) By the meaning of =
= Vn € Nat : ((z=1)= By the meaning of O.

ot E
m

90 CHAPTER 8. LIVENESS AND FAIRNESS

Thus, 0 = O((z = 1) = O(y > 0)) is true iff, for all n € Nat, if x = 1 is true in
state o, then y > 0 is true in all states 0,4, with m > 0.

To understand temporal formulas intuitively, think of o, as the state of
the universe at time instant n during the behavior o.! For any state pred-
icate P, the expression o*t" = P asserts that P is true at time n. Thus,
O((z =1) = 0O(y > 0)) asserts that, any time z = 1 is true, y > 0 is true from
then on. For an arbitrary temporal formula F, we also interpret o™ = F as
the assertion that F' is true at time instant n. The formula OF then asserts
that F is true at all times. We can therefore read O as always or henceforth or
from then on.

We saw in Section 2.2 that a specification should allow stuttering steps—ones
that leave unchanged all the variables appearing in the formula. A stuttering
step represents a change only to some part of the system not described by the
formula; adding it to the behavior should not affect the truth of the formula.
We say that a formula F is invariant under stuttering? iff adding or deleting a
stuttering step to a behavior ¢ does not affect whether o satisfies F. A sensible
formula should be invariant under stuttering. There’s no point writing formulas
that aren’t sensible, so TLA allows you to write only temporal formulas that are
invariant under stuttering.

A state predicate (viewed as a temporal formula) is invariant under stutter-
ing, since its truth depends only on the first state of a behavior, and adding a
stuttering step doesn’t change the first state. An arbitrary action is not invari-
ant under stuttering. For example, the action [z/ = z + 1], is satisfied by a
behavior ¢ in which z is left unchanged in the first step and incremented by 2
in the second step; it isn’t satisfied by the behavior obtained by removing the
initial stuttering step from o. However, the formula Oz’ = z + 1], is invariant
under stuttering, since it is satisfied by a behavior iff every step that changes z
is an ' = z + 1 step—a condition not affected by adding or deleting stuttering
steps.

In general, the formula O[A], is invariant under stuttering, for any action
A and state function v. However, OA is not invariant under stuttering for an
arbitrary action A. For example, O(2’ = 2 + 1) can be made false by adding a
step that does not change z. So, even though we have assigned a meaning to
O(z’ =z + 1), it isn’t a legal TLA formula.

Invariance under stuttering is preserved by O and by the Boolean operators—
that is, if F' and G are invariant under stuttering, then so are OF, =F, F A G,
Vz e S:F, ete. So, state predicates, formulas of the form O[N], and all for-
mulas obtainable from them by applying O and Boolean operators are invariant
under stuttering.

Tt is because we think of o, as the state at time n, and because we usually measure time
starting from 0, that I number the states of a behavior starting with 0 rather than 1.

2This is a completely new sense of the word invariant; it has nothing to do with the concept
of invariance discussed already.

8.1. TEMPORAL FORMULAS

91

We now examine five especially important classes of formulas that are con-
structed from arbitrary temporal formulas F' and G. We introduce new opera-
tors for expressing the first three.

OF is defined to equal =O—F'. It asserts that F' is not always false, which means
that F is true at some time:

ocECOF
=0 ': -0O0-F By definition of ©.
= - (o E O-F) By the meaning of —.

- (Vn € Nat : otn = —F) By the meaning of O.
= - (Vn € Nat : ﬁ(0+n = F)) By the meaning of —.
= In € Nat : o™ ’: F Because =V — is equivalent to 3.

We usually read < as eventually, taking eventually to include now.

F ~ @G is defined to equal O(F = < G). The same kind of calculation we just
did for o = ©F shows

ok (F G) =
Vn € Nat : (67" = F)= (3m € Nat : (ct(*t™) = @))

The formula F ~» G asserts that whenever F is true, G is eventually
true—that is, G is true then or at some later time. We read ~» as leads to.

O(A), is defined to equal =O[—A],, where A is an action and v a state function.
Tt asserts that not every step is a (mA) V (v' = v) step, so some step is a
=((=A4) vV (v = v)) step. Since (P V Q) is equivalent to (=P) A (=Q),
for any P and @, action —~((—=A) V (v' = v)) is equivalent to A A (v' # v).
Hence, O(A), asserts that some step is an A A (v” # v) step—that is, an
A step that changes v. We define the action (A), by

(A)y 2 AN #0)
so O(A), asserts that eventually an (A), step occurs. We think of G(A),
as the formula obtained by applying the operator < to (A),, although
technically it’s not because (A4), isn’t a temporal formula.

OCF asserts that at all times, F' is true then or at some later time. For time 0,
this implies that F' is true at some time ny > 0. For time ng+ 1, it implies
that F' is true at some time ny > ng + 1. For time nq + 1, it implies that
F is true at some time ny > n; + 1. Continuing the process, we see that
F is true at an infinite sequence of time instants ng, n1, ns,.... So, OCF
implies that F is true at infinitely many instants. Conversely, if F' is true
at infinitely many instants, then, at every instant, F' must be true at some
later instant, so OCF is true. Therefore, OCF asserts that F is infinitely
often true. In particular, OC(A), asserts that infinitely many (A), steps
occur.

I pronounce (A),
as angle A sub v.

92 CHAPTER 8. LIVENESS AND FAIRNESS

OOF asserts that eventually (at some time), F becomes true and remains true
thereafter. In other words, COF asserts that F' is eventually always true.
In particular, GO[N], asserts that, eventually, every step is a [N], step.

The operators O and <& have higher precedence (bind more tightly) than the
Boolean operators, so OF VOG means (OF)V (OG). The operator ~ has
lower precedence than A and V.

8.2 Temporal Tautologies

A temporal theorem is a temporal formula that is satisfied by all behaviors.
In other words, F' is a theorem iff o = F' equals TRUE for all behaviors o. For
example, the HourClock module asserts that HC = OHC(C'ini is a theorem, where
HC and HC(C'ini are the formulas defined in the module. This theorem expresses
a property of the hour clock.

The formula OHCini = HCini is also a theorem. However, it tells us nothing
about the hour clock because it’s true regardless of how HCini is defined. For
example, substituting « > 7 for HCini yields the theorem O(z > 7) = (z > 7).
A formula like OHCini = HCini that is true when any formulas are substituted
for its identifiers is called a tautology. To distinguish them from the tautologies
of ordinary logic, tautologies containing temporal operators are sometimes called
temporal tautologies.

Let’s prove that OHCini = HCini is a temporal tautology. To avoid con-
fusing the arbitrary identifier HCini in this tautology with the formula HCing
defined in the HourClock module, let’s replace it by F, so the tautology becomes
OF = F. There are axioms and inference rules for temporal logic from which we
can prove any temporal tautology that, like OF = F, contains no quantifiers.
However, it’s often easier and more instructive to prove them directly from the
meanings of the operators. We prove that OF = F is a tautology by proving
that o = (OF = F) equals TRUE, for any behavior o and any formula F. The
proof is simple:

O')Z(DF=>F) E(U':DF)#(U'ZF) By the meaning of =.
(VnENat : O’+"':F):>(U)=F) By definition of O.
(Vn € Nat : otn EF)= (O’+0 E F') By definition of at©.
= TRUE By predicate logic.

The temporal tautology OF = F asserts the obvious fact that, if F is true at
all times, then it’s true at time 0. Such a simple tautology should be obvious
once you become accustomed to thinking in terms of temporal formulas. Here
are three more simple tautologies, along with their English translations.

—-0OF = O=F
F is not always true iff it is eventually false.

8.2. TEMPORAL TAUTOLOGIES

93

O(FAG)=(0OF) A (OG)
F and G are both always true iff F' is always true and G is always true.
Another way of saying this is that O distributes over A.

O(FVG)=(OF)V (©G)
F or G is eventually true iff F' is eventually true or G is eventually true.
Another way of saying this is that < distributes over V.

At the heart of the proof of each of these tautologies is a tautology of predicate
logic. For example, the proof that O distributes over A relies on the fact that ¥
distributes over A:

o= (O(FAG)=(0OF)A(BG))

= (cEOWFAG)) = (o = (OF)A(OG)) By the meaning of =.
= (o): O(FAG)) = (e EOF)A (0 EOG) By the meaning of A.
= (Vn € Nat : o™): (F A G)) = By definition of O.

(VneNat : o™ EF) A (VneENat : o™ =G

= TRUE By the predicate-logic tautology (Vz € S:PAQ) = (Vz € S:P)A(Vz € S5: Q).

The operator O doesn’t distribute over V, nor does < distribute over A. For
example, O((n > 0) V (n < 0)) is not equivalent to (O(n > 0) V O(n < 0));
the first formula is true for any behavior in which n is always a number, but
the second is false for a behavior in which n assumes both positive and negative
values. However, the following two formulas are tautologies:

(OF)V (OG) = O(F V G) O(F AG) = (OF) A (OG)

Either of these tautologies can be derived from the other by substituting —F' for
F and -G for G. Making this substitution in the second tautology yields

TRUE = <O((-F) A (=G)) = (O-F) A (O G) By substitution in the second tautology.
= O=(FVG)= (O-F)A(O-G) Because (-P A—=Q) = (P V Q).
= -0O(FVG)= (-0OF)A(-0OG) Because O—H = -0H.
= -0O(FV G)=~((0F)Vv(0QG)) Because (-P A—=Q) = (P V Q).
= (OF)Vv(0OG)=0(FVG) Because (=P = —Q) = (Q = P).

This pair of tautologies illustrates a general law: from any temporal tautology,
we obtain a dual tautology by making the replacements

O« < O+ 0O A<+ V VA

and reversing the direction of all implications. (Any = or - is left unchanged.)
As in the example above, the dual tautology can be proved from the original by
replacing each identifier with its negation and applying the (dual) tautologies
O=F = -0F and -OF = O-F along with propositional-logic reasoning.

94 CHAPTER 8. LIVENESS AND FAIRNESS

Another important pair of dual tautologies assert that OO distributes over
V and <O distributes over A:

(8.1) OO(FVG) = (OCF)V (OCG) CO(F A G) = (©OF) A (©OG)

The first asserts that F' or G is true infinitely often iff F' is true infinitely often
or G is true infinitely often. Its truth should be fairly obvious, but let’s prove it.
To reason about O, it helps to introduce the symbol 3., which means there
exist infinitely many. In particular, 3o¢ € Nat: P(i) means that P(i) is true
for infinitely many natural numbers 7. On page 91, we showed that OO F asserts
that F' is true infinitely often. Using J.,, we can express this as

(82) (0 EOOF) = (3i€ Nat : o' = F)

The same reasoning proves the following more general result, where P is any
operator:

(8.3) (Vn € Nat : 3m € Nat : P(n+m)) = Tt € Nat : P(i)

Here is another useful tautology involving 3., where P and @ are arbitrary
operators and S is an arbitrary set:

(84) (Fi€ S : PG)V Q) = Buai €S : P(i))V (3i €8 : Qi)

Using these results, it’s now easy to prove that O distributes over V:

o =EOO(FVG)
= Ji€Nat : o7 = (FVG) By (8.2).
= (i€ Nat : 0" = F) V (3i € Nat : 07" = G) By (84).
= (o EOCF) V (0 EOCG) By (8.2).

From this, we deduce the dual tautology, that <O distributes over A.

In any TLA tautology, replacing a temporal formula by an action yields a
tautology—a formula that is true for all behaviors—even if that formula isn’t a
legal TLA formula. (Remember that we have defined the meaning of nonTLA
formulas like O(z’ = z +1).) We can apply the rules of logic to transform those
nonTLA tautologies into TLA tautologies. Among these rules are the following
dual equivalences, which are easy to check:

[ANBl, = [AlLA[Bl, (AVB), = (4),V(B),

(The second asserts that an A V B step that changes v is either an A step that
changes v or a B step that changes v.)

As an example of substituting actions for temporal formulas in TLA tautolo-
gies, let’s substitute (A), and (B), for F and G in the first tautology of (8.1)
to get

(8.,5) OO((A)y V(B),) = (OOC(A4),) vV (OO(B),)

8.3. TEMPORAL PROOF RULES

95

This isn’t a TLA tautology, because OOC((A), V (B),) isn’t a TLA formula.
However, a general rule of logic tells us that replacing a subformula by an equiv-
alent one yields an equivalent formula. Substituting (A V B), for (4), V (B),
in (8.5) gives us the following TLA tautology:

OG(AV B, = (OO(A),) V (OO(B),)

8.3 Temporal Proof Rules

A proof rule is a rule for deducing true formulas from other true formulas. For
example, the Modus Ponens Rule of propositional logic tells us that, for any
formulas F' and G, if we have proved F and F = G, then we can deduce
G. Since the laws of propositional logic hold for temporal logic as well, we
can apply the Modus Ponens Rule when reasoning about temporal formulas.
Temporal logic also has some proof rules of its own. One is

Generalization Rule From F we can infer OF, for any temporal for-
mula F.

This rule asserts that, if F' is true for all behaviors, then so is OF. To prove it,
we must show that, if ¢ = F is true for every behavior o, then 7 = OF is true
for every behavior 7. The proof is easy:

TEOF = VneNat : 77" = F By definition of O.

= TRUE By predicate logic.
Another temporal proof rule is

Implies Generalization Rule From F = G we can infer OF = OG,
for any temporal formulas F' and G.

The Generalization Rule can be derived from the Implies Generalization Rule
and the tautology TRUE = OTRUE by substituting TRUE for F' and F for G.
The difference between a temporal proof rule and a temporal tautology can be
confusing. In propositional logic, every proof rule has a corresponding tautology.
The Modus Ponens Rule, which asserts that we can deduce G by proving F' and
F = @G, implies the tautology FA(F = G) = G. But in temporal logic, a proof
rule need not imply a tautology. The Generalization Rule, which states that we
can deduce OF by proving F', does not imply that F' = OF is a tautology. The
rule means that, if o = F is true for all o, then ¢ = OF is true for all o. That’s
different from the (false) assertion that F = OF is a tautology, which would
mean that o |= (F = OF) is true for all 0. For example, o = (F = OF) equals
FALSE if F' is a state predicate that is true in the first state of o and is false
in some other state of o. Forgetting the distinction between a proof rule and a
tautology is a common source of mistakes when using temporal logic.

Vn € Nat : TRUE By the assumption that o |= F equals TRUE, for all o.

96 CHAPTER 8. LIVENESS AND FAIRNESS

8.4 Weak Fairness

It’s easy to specify liveness properties with the temporal operators O and <. For
example, consider the hour-clock specification of module HourClock in Figure 2.1
on page 20. We can require that the clock never stops by asserting that there
must be infinitely many HCnat steps. The obvious way to write this assertion is
OO HCnat, but that’s not a legal TLA formula because HCnzt is an action, not
a temporal formula. However, an HCnzt step advances the value hr of the clock,
so it changes hr. Therefore, an HCnxt step is also an HCnxt step that changes
hr—that is, it’s an (HCnat)5, step. We can thus write the liveness property that
the clock never stops as OC(HCnat)p,. So, we can take HC' A OO HCnaxt) p,
to be the specification of a clock that never stops.

Before continuing, I must make a confession and then lead you on a brief
digression about subscripts. Let me first confess that the argument I just gave,
that we can write OO HCnat), in place of OO HCnat, was sloppy (a polite term
for wrong). Not every HCnat step changes hr. Consider a state in which hr
has some value that is not a number—perhaps a value co. An HCnaxt step that
starts in such a state sets the new value of hr to oo + 1. We don’t know what
o0 + 1 equals; it might or might not equal co. If it does, then the HCnzxt step
leaves hr unchanged, so it is not an { HCnzxt)p, step. Fortunately, states in which
the value of hr is not a number are irrelevant. Because we are conjoining the
liveness condition to the safety specification HC, we care only about behaviors
that satisfy HC'. In all such behaviors, hr is always a number, and every HCnaxt
step is an (HCnat)p, step. Therefore, HC' A OO (HCnat)y, is equivalent to the
nonTLA formula HC A OO HCnat.?

When writing liveness properties, the syntax of TLA often forces us to write
(A), instead of A, for some action A. As in the case of HCnat, the safety
specification usually implies that any A step changes some variable. To avoid
having to think about which variables A actually changes, we generally take the
subscript v to be the tuple of all variables, which is changed iff any variable
changes. But what if A does allow stuttering steps? It’s silly to assert that a
stuttering step eventually occurs, since such an assertion is not invariant under
stuttering. So, if A does allow stuttering steps, we want to require not that an
A step eventually occurs, but that a nonstuttering A step occurs—that is, an
(A), step, where v is the tuple of all the specification’s variables. The syntax
of TLA forces us to say what we should mean.

When discussing formulas, I will usually ignore the angle brackets and sub-
scripts. For example, I might describe OO (HCnat)y, as the assertion that there
are infinitely many HCnaxt steps, rather than infinitely many (Hnat)y,., which is
what it really asserts. This finishes the digression; we now return to specifying
liveness conditions.

3Even though HC' A OOHCnat is not a TLA formula, its meaning has been defined, so we
can determine whether it is equivalent to a TLA formula.

8.4. WEAK FAIRNESS

97

Let’s modify specification Spec of module Channel (Figure 3.2 on page 30)
to require that every value sent is eventually received. We do this by conjoining
a liveness condition to Spec. The analog of the liveness condition for the clock is
OO(Rev) chan, which asserts that there are infinitely many Rcv steps. However,
only a value that has been sent can be received, so this condition would also
require that infinitely many values be sent—a requirement we don’t want to
make. We want to permit behaviors in which no value is ever sent, so no value is
ever received. We require only that any value that is sent is eventually received.

To assure that all values that should be received are eventually received, it
suffices to require only that the next value to be received eventually is received.
(When that value has been received, the one after it becomes the next value to
be received, so it must eventually be received, and so on.) More precisely, we
need only require it always to be the case that, if there is a value to be received,
then the next value to be received eventually is received. The next value is
received by a Rcv step, so the requirement is*

O(There is an unreceived value = <(Rev)chan)

There is an unreceived value iff action Rcwv is enabled, meaning that it is possible
to take a Rcv step. TLA™ defines ENABLED A to be the predicate that is true
iff action A is enabled. The liveness condition can then be written

(8.6) DO(ENABLED {Rcv) chan = O(Rcv)chan)

In the ENABLED formula, it doesn’t matter if we write Rcv or (Rcv) chan. We
add the angle brackets so the two actions appearing in the formula are the same.

In any behavior satisfying the safety specification HC, it’s always possible
to take an HCnxt step that changes hr. Action { HCnat)p, is therefore al-
ways enabled, so ENABLED { HCnxt) p, is true throughout such a behavior. Since
TRUE = O(HCnat)y, is equivalent to O(HCnat)y, we can replace the liveness
condition OC(HCnat), for the hour clock with

O(ENABLED (HCnat)y, = O(HCnat) py)
This suggests the following general liveness condition for an action A:
O(ENABLED (A), = O(A4),)

This condition asserts that, if A ever becomes enabled, then an A step will
eventually occur—even if A remains enabled for only a fraction of a nanosecond
and is never again enabled. The obvious practical difficulty of implementing
such a condition suggests that it’s too strong. So, we replace it with the weaker
formula WF, (A), defined to equal

(8.7) DO(DENABLED (A), = O(A),)

40(F = ©G) equals F ~» G, so we could write this formula more compactly with ~».
However, it’s more convenient to keep it in the form O(F = ¢ G)

98 CHAPTER 8. LIVENESS AND FAIRNESS

This formula asserts that, if A ever becomes forever enabled, then an A step must
eventually occur. WF stands for Weak Fairness, and the condition WF,, (A4) is
called weak fairness on A. We’ll soon see that our liveness conditions for the
clock and the channel can be written as WF formulas. But first, let’s examine
(8.7) and the following two formulas, which turn out to be equivalent to it:

(8.8) OO(—ENABLED (A4),) VvV OO(A),
(8.9) OO(ENABLED (A),) = OO(A),

These three formulas can be expressed in English as

(8.7) It’s always the case that, if A is enabled forever, then an A step eventually
occurs.

(8.8) A is infinitely often disabled, or infinitely many A steps occur.
(8.9) If A is eventually enabled forever, then infinitely many A steps occur.

The equivalence of these three formulas isn’t obvious. Trying to deduce their
equivalence from the English expressions often leads to confusion. The best way
to avoid confusion is to use mathematics. We show that the three formulas are
equivalent by proving that (8.7) is equivalent to (8.8) and that (8.8) is equivalent
to (8.9). Instead of proving that they are equivalent for an individual behavior,
we can use tautologies that we’ve already seen to prove their equivalence directly.
Here’s a proof that (8.7) is equivalent to (8.8). Studying it will help you learn
to write liveness conditions.

O(OENABLED (A4), = ¢(A4),)

= O(-OENABLED (A), V<O(A),) Because (F = G) = (-FV Q).
O(O-ENABLED (A4), V<(A),) Because -OF = O-F.
OO(—ENABLED (A), V (4),) Because OF V OG = O(F V Q).
= OO(-ENABLED (A4),) VOO(A), Because OO(F V G) = OOF v OOG.

The equivalence of (8.8) and (8.9) is proved as follows:

OO(—ENABLED (A4),) vV OO(A4),
= —OO(ENABLED (A4),) V OO(A4), Because 0O-F = 0-0OF = =0OF.
= OO(ENABLED (A),) = OOC(A), Because (F = G)=(-FV G).

We now show that the liveness conditions for the hour clock and the channel
can be written as weak fairness conditions.

First, consider the hour clock. In any behavior satisfying HC', an { HCnat),
step is always enabled, so CO(ENABLED (HCnzt)p,) equals TRUE. Therefore,
HC implies that WF},.(HCnat), which equals (8.9), is equivalent to formula
OO(HCnat)y, our liveness condition for the hour clock.

8.4. WEAK FAIRNESS

99

Now, consider the channel. T claim that the liveness condition (8.6) can be
replaced by WF 54, (Rcv). More precisely, Spec implies that these two formulas
are equivalent, so conjoining either of them to Spec yields equivalent specifica-
tions. The proof rests on the observation that, in any behavior satisfying Spec,
once Rcv becomes enabled (because a value has been sent), it can be disabled
only by a Rev step (which receives the value). In other words, it’s always the
case that if Rcv is enabled, then it is enabled forever or a Rcv step eventually
occurs. Stated formally, this observation asserts that Spec implies

(8.10) O (ENABLED { Rcv) chan = O(ENABLED (Rcv) chan) V C{RCV) chan)

We show that we can take WF .44, (Rcv) as our liveness condition by showing
that (8.10) implies the equivalence of (8.6) and WF .pq, (Rcv).

The proof is by purely temporal reasoning; we need no other facts about the
channel specification. Both for compactness and to emphasize the generality
of our reasoning, let’s replace ENABLED (Rcv)chan by E and (Rcv)cpan by A.
Using version (8.7) of the definition of WF, we must prove

(8.11) O(F = 0OFV<CA) = (O = <CA) = O(0F = OA))

So far, all our proofs have been by calculation. That is, we have proved that
two formulas are equivalent, or that a formula is equivalent to TRUE, by proving
a chain of equivalences. That’s a good way to prove simple things, but it’s
usually better to tackle a complicated formula like (8.11) by splitting its proof
into pieces. We have to prove that one formula implies the equivalence of two
others. The equivalence of two formulas can be proved by showing that each
implies the other. More generally, to prove that P implies @ = R, we prove that
P A @ implies R and that P A R implies . So, we prove (8.11) by proving the
two formulas

(8.12) O(E = OEVOA) A OF = CA) = O(0OF = OA)
(8.13) O(F = 0OFEVCA) A O(OE = CA) = O(E = OA)

Both (8.12) and (8.13) have the form OF A OG = OH. We first show that,
for any formulas F, G, and H, we can deduce OF A OG = OH by proving
FAG= H. We do this by assuming FF A G = H and proving OF AOG = OH
as follows:
1. O(FANG)=0OH
PROOF: By the assumption F'A G = H and the Implies Generalization Rule
(page 95), substituting F' A G for F' and H for G in the rule.
2. OF ANOG = UOH
PROOF: By step 1 and the tautology O(F A G) = OF AOG.

100 CHAPTER 8. LIVENESS AND FAIRNESS

This shows that we can deduce OF A OG = OH by proving F A G = H,
for any F', G, and H. We can therefore prove (8.12) and (8.13) by proving

(8.14) (E=0EVOA) A (E=CA) = (OF = OA)
(8.15) (FE=0EVOA) A (OFE = CA) = (E= CA)

The proof of (8.14) is easy. In fact, we don’t even need the first conjunct; we
can prove (E = OA) = (OF = ©A) as follows:

(E = <A)
= (\:‘E = E) A (E = <>A) Because OF = FE is a temporal tautology.
= (OF = ©A) By the tautology (P = Q) A (Q = R) = (P = R).

The proof of (8.15) uses only propositional logic. We deduce (8.15) by substi-
tuting £ for P, OF for @, and ©A for R in the following propositional-logic
tautology:

(P=QVR)AN(Q=R) = (P=R)

A little thought should make the validity of this tautology seem obvious. If not,
you can check it by constructing a truth table.

These proofs of (8.14) and (8.15) complete the proof that we can take
WF .han (Rev) instead of (8.7) as our liveness condition for the channel.

8.5 The Memory Specification

8.5.1 The Liveness Requirement

Let’s now strengthen the specification of the linearizable memory of Section 5.3
with the liveness requirement that every request must receive a response. (We
don’t require that a request ever be issued.) The liveness requirement is con-
joined to the internal memory specification, formula ISpec of the InternalMemory
module (Figure 5.2 on pages 52-53).

We want to express the liveness requirement in terms of weak fairness. To
do this, we must understand when actions are enabled. The action Rsp(p) is
enabled only if the action

(8.16) Reply(p, buf[p], memlInt, memlInt")

is enabled. Recall that the operator Reply is a constant parameter, declared in
the Memorylnterface module (Figure 5.1 on page 48). Without knowing more
about this operator, we can’t say when action (8.16) is enabled.

Let’s assume that Reply actions are always enabled. That is, for any pro-
cessor p and reply r, and any old value miOld of memlInt, there is a new value

8.5. THE MEMORY SPECIFICATION 101

miNew of memlInt such that Reply(p,r, miOld, miNew) is true. For simplicity,
we just assume that this is true for all p and r, and add the following assumption
to the MemorylInterface module:

ASSUME V p, 7, miOld : 3miNew : Reply(p, r, miOld, miNew)

We should also make a similar assumption for Send, but we don’t need it here.
We will subscript our weak fairness formulas with the tuple of all variables,
so let’s give that tuple a name:

vars = (memlInt, mem, ctl, buf)

When processor p issues a request, it enables the Do(p) action, which remains
enabled until a Do(p) step occurs. The weak fairness condition WF 4,5 (Do(p))
implies that this Do(p) step must eventually occur. A Do(p) step enables the
Rsp(p) action, which remains enabled until a Rsp(p) step occurs. The weak
fairness condition WF 4 (Rsp(p)) implies that this Rsp(p) step, which produces
the desired response, must eventually occur. Hence, the requirement

(8.17) WF yars(Do(p)) A WF s (Rsp(p))

assures that every request issued by processor p must eventually receive a reply.
We want this condition to hold for every processor p, so we can take, as the
liveness condition for the memory specification, the formula

(8.18) Liveness = Y p € Proc : WF yaps(Do(p)) A WF yars(Rsp(p))

The internal memory specification is then ISpec A Liveness.

8.5.2 Another Way to Write It

I find a single fairness condition simpler than the conjunction of fairness condi-
tions. Seeing the conjunction of the two weak fairness formulas in the definition
of Liveness leads me to ask if it can be replaced by a single weak fairness con-
dition on Do(p) V Rsp(p). Such a replacement isn’t always possible; in general,
the formulas WF,(A) AWF,(B) and WF,(AV B) are not equivalent. However,
in this case, we can replace the two fairness conditions with one. If we define

(8.19) Liveness2 £ Vp € Proc : WF yars (Do(p) V Rsp(p))

then ISpec A Liveness?2 is equivalent to ISpec A Liveness. As we will see, this
equivalence holds because any behavior satisfying ISpec satisfies the following
two properties:

DR1. Whenever Do(p) is enabled, Rsp(p) can never become enabled unless
a Do(p) step eventually occurs.

102 CHAPTER 8. LIVENESS AND FAIRNESS

DR2. Whenever Rsp(p) is enabled, Do(p) can never become enabled unless
a Rsp(p) step eventually occurs.

These properties are satisfied because a request to p is issued by a Regq(p) step,
executed by a Do(p) step, and responded to by a Rsp(p) step; and then, the
next request to p can be issued by a Req(p) step. Each of these steps becomes
possible (the action enabled) only after the preceding one occurs.

Let’s now show that DR1 and DR2 imply that the conjunction of weak
fairness of Do(p) and of Rsp(p) is equivalent to weak fairness of Do(p)V Rsp(p).
For compactness, and to emphasize the generality of what we’re doing, let’s
replace Do(p), Rsp(p), and vars by A, B, and v, respectively.

First, we must restate DR1 and DR2 as temporal formulas. The basic form
of DR1 and DR2 is

Whenever F is true, G can never be true unless H is eventually true.

This is expressed in temporal logic as O(F = O-G V OH). (The assertion “P
unless @7 just means PV @.) Adding suitable subscripts, we can therefore write
DR1 and DR2 in temporal logic as

DR1
DR2

O (ENABLED (A), = O—-ENABLED (B), V O(A),)

> 1w

O (ENABLED (B), = O—ENABLED (A), V O(B),)
Our goal is to prove
(8.20) DR1 A DR2 = (WF,(A) AWF,(B) = WF,(AV B))

This is complicated, so we split the proof into pieces. As in the proof of (8.11)
in Section 8.4 above, we prove an equivalence by proving two implications. To
prove (8.20), we prove the two theorems

DRI A DR2 A WF,(A) A WF,(B) = WF,(4V B)
DRI A DR2 A WF,(AV B) = WF,(A) AWF,(B)

We prove them by showing that they are true for an arbitrary behavior ¢. In
other words, we prove

(8.21) (0 k= DRI A DR2 A WF,(A) A WF,(B)) = (0= WF,(AV B))
(8.22) (0 = DR1 A DR2 A WF(AV B)) = (0 = WF,(4) A WF,(B))

These formulas seem daunting. Whenever you have trouble proving something,
try a proof by contradiction; it gives you an extra hypothesis for free—namely,
the negation of what you’re trying to prove. Proofs by contradiction are espe-
cially useful in temporal logic. To prove (8.21) and (8.22) by contradiction, we
need to compute —(c | WF, (C)) for an action C. From the definition (8.7) of
WE, we easily get

(8.23) (¢ = WF,(C)) =
Vn € Nat : (6™ = OENABLED (C),) = (6" = O(C),)

8.5. THE MEMORY SPECIFICATION 103

This and the tautology
-(VzeS:P=Q) = (Fzel: PA-Q)
of predicate logic yields

(8.24) =(c EWF,(C)) =
dn € Nat : (o™ = OENABLED (C),) A =(c™" | O(C)y)
We also need two further results, both of which are derived from the tautology

(AVB), = (A),V(B),. Combining this tautology with the temporal tautology
O(FV G)=OF Vv OQ yields

(8.25) O(AV B), = O(A), VO(B),

Combining the tautology with the observation that an action C'V D is enabled
iff action C' or action D is enabled yields

(8.26) ENABLED (A V B), = ENABLED (A), V ENABLED (B),

We can now prove (8.21) and (8.22). To prove (8.21), we assume that o satisfies
DR1, DR2, WF,(A), and WF,(B), but it does not satisfy WF, (A Vv B), and
we obtain a contradiction. By (8.24), the assumption that o does not satisfy
WF,(AV B) means that there exists some number n such that

(8.27) o™ = OENABLED (A V B),
(8.28) =(c™" = O(AV B),)

We obtain a contradiction from (8.27) and (8.28) as follows:
L (0™ O(4)y) A =(ot" = O(B)y)
PRrOOF: By (8.28) and (8.25), using the tautology —(PV Q) = (=P A =Q).
2. (a) (67" = ENABLED (A),) = (01" = O-ENABLED (B),)
(b) (6" = ENABLED (B),) = (c™" = O - ENABLED (4),)
PROOF: By definition of DRI, the assumption ¢ = DRI implies
(o*™ = ENABLED (4),) =
(0™ = O=ENABLED (B),) V (o™ = O(A4),)
and part (a) then follows from 1. The proof of (b) is similar.
3. (a) (6" |= ENABLED (4),) = (¢ = OENABLED (4),)
(b) (6™ = ENABLED (B),) = (o™ = OENABLED (B),)
PROOF: Part (a) follows from 2(a), (8.27), (8.26), and the temporal tautology
O(FV G) A O-G = OF
The proof of part (b) is similar.

104 CHAPTER 8. LIVENESS AND FAIRNESS

(a) (6™ = ENABLED (4),) = (o7 | O(4),)

(b) (67" = ENABLED (B),) = (¢7" | O(B),)

PRrOOF: The assumption o = WF,(A) and (8.23) imply
(0" = OENABLED (4),) = (ot = O(A4),)

Part (a) follows from this and 3(a). The proof of part (b) is similar.

(0™ | O(A)y) V (o7 = O(B))

PROOF: Since OF implies F, for any F, (8.27) and (8.26) imply
(67" = ENABLED (4),) V (¢ = ENABLED (B),)

Step 5 then follows by propositional logic from step 4.

Steps 1 and 5 provide the required contradiction.

We can prove (8.22) by assuming that o satisfies DR, DR2, and WF, (AVB),

and then proving that it satisfies WF,(A) and WF,(B). We prove only that it
satisfies WF, (A); the proof for WF,,(B) is similar. The proof is by contradiction;
we assume that o does not satisfy WF, (4) and obtain a contradiction. By (8.24),
the assumption that o does not satisfy WF, (A4) means that there exists some
number n such that

(8.29) o™ |= OENABLED (A),
(8.30) = (o™ = O(A)y)

We obtain the contradiction as follows:

1.

ot = <O(AV B),
PRrROOF: From (8.29) and (8.26) we deduce o™ |= OENABLED (A V B),. By
the assumption o = WF,(AV B) and (8.23), this implies o™ = O(AV B),.

. ot = O - ENABLED (B),

PROOF: From (8.29) we deduce 0™ |= ENABLED (A),, which by the assump-
tion ¢ = DRI and the definition of DRI implies

(07" = O—-ENABLED (B),) V (o™ = O(A),)
The assumption (8.30) then implies c™" |= 0 < ENABLED (B),,.
= (0" = O(B)y)
PRrROOF: The definition of ENABLED implies "ENABLED (B), = - (B),. (A
(B), step can occur only when it is enabled.) From this, simple temporal
reasoning implies

(o0*t" = O-ENABLED (B),) = = (6™ = O(B),)
(A formal proof uses the Implies Generalization Rule and the tautology
O-F = -OF.) We then deduce — (67" = &(B),) from 2.
(0" = O(AV B)y)
Proor: By (8.30), 3, and (8.25), using the tautology =P A —Q = —~(P V Q).

8.5. THE MEMORY SPECIFICATION

105

Steps 1 and 4 provide the necessary contradiction. This completes our proof of
(8.22), which completes our proof of (8.20).

8.5.3 A Generalization

Formula (8.20) provides a rule for replacing the conjunction of weak fairness
requirements on two actions with weak fairness of their disjunction. We now
generalize it from two actions A and B to n actions Ai, ..., A,. The general-
ization of DRI and DR2 is

DR(i,j) = O(ENABLED (A;), = O—ENABLED (4;), V O(A4;),)

If we substitute Ay for A and A for B, then DRI becomes DR(1,2) and DR2
becomes DR(2,1). The generalization of (8.20) is

(8.31) (Vi,jel..n: (i#j)= DR(i,j)) =
(WE, (A1) A ... AWF,(4,) = WF, (A1 V...V A,))
To decide if you can replace the conjunction of weak fairness conditions by a
single one in a specification, you will probably find it easier to use the following
informal statement of (8.31):
WF Conjunction Rule If A4, ..., A, are actions such that, for any
distinct 4 and j, whenever (A4;), is enabled, (4;), cannot become en-

abled unless an (A;), step occurs, then WF, (A1) A... AWF,(A,) is
equivalent to WF, (41 V...V A,).

Perhaps the best way to think of this rule is as an assertion about an arbitrary
individual behavior . Its hypothesis is then that o = DR(i,j) holds for all
distinct ¢ and j; its conclusion is

o= (WE, (A1) AN...AWF,(4,) = WF, (41 V...V 4,))

To replace WF, (A1) A ... AWF,(A4,) by WF,(A; V...V A,,) in a specification,
you have to check that any behavior satisfying the safety part of the specification
also satisfies DR(i,7), for all distinct ¢ and j.

Conjunction and disjunction are special cases of quantification:

FiVv...VF, =3diel..n: F;
We can therefore easily restate the WF Conjunction Rule as a condition on when

VieS:WF,(A4;) and WF,(3i € S: A;) are equivalent, for a finite set S. The
resulting rule is actually valid for any set S:

WF Quantifier Rule If, for all i € S, the A; are actions such that,
for any distinct ¢ and j in S, whenever (A4;), is enabled, (A4,), cannot
become enabled unless an (A4;), step occurs, then Vi € S: WF,(4;) is
equivalent to WF, (i € S: A;).

106 CHAPTER 8. LIVENESS AND FAIRNESS

8.6 Strong Fairness

We define SF,(A), strong fairness of action A, to be either of the following two
equivalent formulas:

(8.32) ©CO(—ENABLED (A),) V OO(A4),

(8.33) OOENABLED (4), = OC(4),

Intuitively, these two formulas assert

(8.32) A is eventually disabled forever, or infinitely many A steps occur.
(8.33) If A is infinitely often enabled, then infinitely many A steps occur.

The proof that (8.32) and (8.33) are equivalent is similar to the proof on page 98
that the two formulations (8.8) and (8.9) of WF, (A4) are equivalent.

Definition (8.32) of SF,(A) is obtained from definition (8.8) of WF, (A) by
replacing OO (-~ ENABLED (A4),,) with OO(—=ENABLED (4),). Since OOF (even-
tually always F') is stronger than (implies) OCF (infinitely often F') for any
formula F', strong fairness is stronger than weak fairness. We can express weak
and strong fairness as follows:

e Weak fairness of A asserts that an A step must eventually occur if A is
continuously enabled.

e Strong fairness of A asserts that an A step must eventually occur if A is
continually enabled.

Continuously means without interruption. Continually means repeatedly, pos-
sibly with interruptions.

Strong fairness need not be strictly stronger than weak fairness. Weak and
strong fairness of an action A are equivalent iff A infinitely often disabled implies
that either A eventually becomes forever disabled, or else infinitely many A steps
occur. This is expressed formally by the tautology

(WF,(A) = SF,(4)) =
(OO(=ENABLED (A),) = OO(-ENABLED (4),) V OOC(A),)

In the channel example, weak and strong fairness of Rcv are equivalent because
Spec implies that, once enabled, Rcv can be disabled only by a Rcv step. Hence,
if Rcv is disabled infinitely often, then it either eventually remains disabled
forever, or else it is disabled infinitely often by Rcv steps.

The analogs of the WF Conjunction and WF Quantifier Rules (page 105)
hold for strong fairness—for example:

SF Conjunction Rule If A, ..., A, are actions such that, for any
distinct ¢ and j, whenever action A; is enabled, action A; cannot be-
come enabled until an A; step occurs, then SF,(A1) A... ASF,(A4,) is
equivalent to SF,(4; V...V A,).

8.7. THE WRITE-THROUGH CACHE

107

Strong fairness can be more difficult to implement than weak fairness, and it
is a less common requirement. A strong fairness condition should be used in a
specification only if it is needed. When strong and weak fairness are equivalent,
the fairness property should be written as weak fairness.

Liveness properties can be subtle. Expressing them with ad hoc temporal
formulas can lead to errors. We will specify liveness as the conjunction of weak
and/or strong fairness properties whenever possible—and it almost always is
possible. Having a uniform way of expressing liveness makes specifications easier
to understand. Section 8.9.2 below discusses an even more compelling reason
for using fairness to specify liveness.

8.7 The Write-Through Cache

Let’s now add liveness to the write-through cache, specified in Figure 5.5 on
pages 57-59. We want our specification to guarantee that every request even-
tually receives a response, without requiring that any requests are issued. This
requires fairness on all the actions that make up the next-state action Next
except for the following:

e A Req(p) action, which issues a request.
e An Evict(p, a) action, which evicts an address from the cache.

o A Mem@Wr action, if mem@ contains only write requests and is not full
(has fewer than)Len elements). Since a response to a write request can be
issued before the value is written to memory, failing to execute a Mem@Q Wr
action can prevent a response only if it prevents the dequeuing of a read
operation in mem@ or the enqueuing of an operation (because mem(@ is
full).

For simplicity, let’s require fairness for the Mem@Wr action too; we’ll weaken
this requirement later. Our liveness condition then has to assert fairness of the
actions

MemQWr MemQRd Rsp(p) RdMiss(p) DoRd(p) DoWr(p)

for all p in Proc. We now must decide whether to assert weak or strong fairness
for these actions. Weak and strong fairness are equivalent for an action that,
once enabled, remains enabled until it is executed. This is the case for all of
these actions except DoRd(p), RdMiss(p), and DoWr(p).

The DoRd(p) action can be disabled by an Ewict step that evicts the re-
quested data from the cache. In this case, fairness of other actions should imply
that the data will eventually be returned to the cache, re-enabling DoRd(p).

108 CHAPTER 8. LIVENESS AND FAIRNESS

The data cannot be evicted again until the DoRd(p) action is executed, and
weak fairness then suffices to ensure that the necessary DoRd(p) step eventually
occurs.

The RdMiss(p) and DoWr(p) actions append a request to the mem@ queue.
They are disabled if that queue is full. A RdMiss(p) or DoWr(p) could be
enabled and then become disabled because a RdMiss(q) or DoWr(q), for a
different processor ¢, appends a request to mem@. We therefore need strong
fairness for the RdMiss(p) and DoWr(p) actions. So, the fairness conditions we
need are

Weak Fairness for Rsp(p), DoRd(p), MemQWr, and MemQRd
Strong Fairness for RdMiss(p) and DoWr(p).
As before, let’s define vars to be the tuple of all variables.

vars = (memlInt, wmem, buf, ctl, cache, memQ)
We could just write the liveness condition as

(8.34) ANVp € Proc : N WF yqr5(Rsp(p)) N WF o5 (DoRd(p))
A SF yars (RdMiss(p)) A SFyars(DoWr(p))
N WFvars(MemQWT) A WFvaTS(MemQRd)

However, I prefer replacing the conjunction of fairness conditions by a single
fairness condition on a disjunction, as we did in Section 8.5 for the memory
specification. The WF and SF Conjunction Rules (pages 105 and 106) imply
that the liveness condition (8.34) can be rewritten as

(8.35) AVp € Proc : AN WF 45 (Rsp(p) V DoRd(p))
A SF yors (RAMiss(p) V DoWr(p))
A WF o (MemQWr V MemQRd)

We can now try to simplify (8.35) by moving the quantifier inside the WF and SF
formulas. First, because V distributes over A, we can rewrite the first conjunct
of (8.35) as

(8.36) AVp € Proc : WF 45 (Rsp(p) V DoRd(p))
AV p € Proc : SF yqrs(RdMiss(p) V DoWr(p))

We can now try to apply the WF Quantifier Rule (page 105) to the first con-
junct of (8.36) and the corresponding SF Quantifier Rule to its second conjunct.
However, the WF quantifier rule doesn’t apply to the first conjunct. It’s possible
for both Rsp(p) V DoRd(p) and Rsp(q) V DoRd(q) to be enabled at the same
time, for two different processors p and ¢. The formula

8.8. QUANTIFICATION

109

(8.37) WF yurs(Ip € Proc : Rsp(p) V DoRd(p))

is satisfied by any behavior in which infinitely many Rsp(p) and DoRd(p) ac-
tions occur for some processor p. In such a behavior, Rsp(q) could be en-
abled for some other processor ¢ without an Rsp(q) step ever occurring, making
WF yors(Rsp(q) V DoRd(q)) false, which implies that the first conjunct of (8.36)
is false. Hence, (8.37) is not equivalent to the first conjunct of (8.36). Similarly,
the analogous rule for strong fairness cannot be applied to the second conjunct
of (8.36). Formula (8.35) is as simple as we can make it.

Let’s return to the observation that we don’t have to execute MemQWr if
the mem(@) queue contains only write requests and is not full. In other words,
we have to execute Mem@Wr only if mem(@ is full or contains a read request.
Let’s define

QCond = V Len(mem@Q) = QLen
v 3iel.. Len(mem@) : memQ[i][2].0p = “Rd”

so we need eventually execute a Mem@Wr action only when it’s enabled and
QCond is true, which is the case iff the action QCond A Mem@QWr is enabled.
In this case, a MemQWr step is a QCond N Mem@QWr step. Hence, it suffices
to require weak fairness of the action QCond A Mem@Wr. We can therefore
replace the second conjunct of (8.35) with

WF yors ((QCond A MemQWr) V MemQRd)

We would do this if we wanted the specification to describe the weakest liveness
condition that implements the memory specification’s liveness condition. How-
ever, if the specification were a description of an actual device, then that device
would probably implement weak fairness on all Mem@QWr actions, so we would
take (8.35) as the liveness condition.

8.8 Quantification

Section 8.1 describes the meaning of ordinary quantification of temporal formu-
las. For example, the meaning of the formula V r: F, for any temporal formula
F, is defined by

cE(Nr:F) = Vr:(cEF)

where ¢ is any behavior.

The symbol r in 3r: F is usually called a bound variable. But we’ve been
using the term variable to mean something else—something that’s declared by a
VARIABLE statement in a module. The bound “variable” r is actually a constant

110 CHAPTER 8. LIVENESS AND FAIRNESS

in these formulas—a value that is the same in every state of the behavior.®> For
example, the formula 37 :0(z = r) asserts that z has the same value in every
state of a behavior.

Bounded quantification over a constant set S is defined by

c=(VreS:F)= (VreS:okEF)
c=@3reS:F)= 3reS:okEF)

The symbol r is declared to be a constant in formula F. The expression S lies
outside the scope of the declaration of r, so the symbol 7 cannot occur in §. It’s
easy to define the meanings of these formulas even if S is not a constant—for
example, by letting 37 € S: F equal 37: (r € S) A F. However, for nonconstant
S, it’s better to write Ir: (r € S) A F explicitly.

It’s also easy to define the meaning of CHOOSE as a temporal operator. We
can just let o = (CHOOSE r: F) be an arbitrary constant value r such that
o | F equals TRUE, if such an r exists. However, a temporal CHOOSE operator
is not needed for writing specifications, so CHOOSE r: F' is not a legal TLA™
formula if F' is a temporal formula.

We now come to the temporal existential quantifier 3. In the formuladz: F,
the symbol z is declared to be a variable in F'. Unlike 3 : F', which asserts the
existence of a single value r, the formula 3z : F asserts the existence of a value
for z in each state of a behavior. For example, if y is a variable, then the
formula 3z : O(z € y) asserts that y always has some element z, so y is always
a nonempty set. However, the element z could be different in different states,
so the values of y in different states could be disjoint.

We have been using 3 as a hiding operator, thinking of 3z : F as F with
variable z hidden. The precise definition of 3 is a bit tricky because, as dis-
cussed in Section 8.1, the formula 3z : F should be invariant under stuttering.
Intuitively, Az : F is satisfied by a behavior o iff F is satisfied by a behavior T
that is obtained from o by adding and/or deleting stuttering steps and chang-
ing the value of z. A precise definition appears in Section 16.2.4 (page 314).
However, for writing specifications, you can simply think of Az : F as F with z
hidden.

TLA also has a temporal universal quantifier V, defined by

Vz:F = -3z : -F

This operator is hardly ever used. TLAT does not allow bounded versions of the
operators 3 and V.

5Logicians use the term flezible variable for a TLA variable, and the term rigid variable
for a symbol like r that represents a constant.

8.9. TEMPORAL LOGIC EXAMINED

111

8.9 Temporal Logic Examined

8.9.1 A Review

Let’s look at the shapes of the specifications that we’ve written so far. We
started with the simple form

(8.38) Init A O[Next]yqars

where Init is the initial predicate, Next the next-state action, and vars the tuple
of all variables. This kind of specification is, in principle, quite straightforward.
We then introduced hiding, using 3 to bind variables that should not appear in
the specification. Those bound variables, also called hidden or internal variables,
serve only to help describe how the values of the free variables (also called visible
variables) change.

Hiding variables is easy enough, and it is mathematically elegant and philo-
sophically satisfying. However, in practice, it doesn’t make much difference to
a specification. A comment can also tell a reader that a variable should be re-
garded as internal. Explicit hiding allows implementation to mean implication.
A lower-level specification that describes an implementation can be expected to
imply a higher-level specification only if the higher-level specification’s internal
variables, whose values don’t really matter, are explicitly hidden. Otherwise,
implementation means implementation under a refinement mapping. (See Sec-
tion 5.8.) However, as explained in Section 10.8 below, implementation often
involves a refinement of the visible variables as well.

To express liveness, the specification (8.38) is strengthened to the form

(8.39) Init A O[Next]yars N Liveness

where Liveness is the conjunction of formulas of the form WF,,s(A) and/or
SF yars(A), for actions A. (I'm considering universal quantification to be a form
of conjunction.)

8.9.2 Machine Closure

In the specifications of the form (8.39) we’ve written so far, the actions A whose
fairness properties appear in formula Liveness have one thing in common: they
are all subactions of the next-state action Next. An action A is a subaction of
Next iff every A step is a Next step. Equivalently, A is a subaction of Next iff A
implies Next.5 In almost all specifications of the form (8.39), formula Liveness

SWe can also use the following weaker definition of subaction: A is a subaction of for-
mula (8.38) iff, for every state s of every behavior satisfying (8.38), if A is enabled in state s
then Nexzt A A is also enabled in s.

112 CHAPTER 8. LIVENESS AND FAIRNESS

should be the conjunction of weak and/or strong fairness formulas for subactions
of Next. I'll now explain why.

When we look at the specification (8.39), we expect Init to constrain the
initial state, Next to constrain what steps may occur, and Liveness to describe
only what must eventually happen. However, consider the following formula:

(840) (z=0) A D[z’ =z + 1], A WF,((z >99) A (z' =2 —1))

The first two conjuncts of (8.40) assert that z is initially 0 and that any step
either increments = by 1 or leaves it unchanged. Hence, they imply that if z
ever exceeds 99, then it forever remains greater than 99. The weak fairness
property asserts that, if this happens, then x must eventually be decremented
by 1—contradicting the second conjunct. Hence, (8.40) implies that can never
exceed 99, so it is equivalent to

(z=0) ADO[(z <9 A (z' =2+ 1),

Conjoining the weak fairness property to the first two conjuncts of (8.40) forbids
an 2’ = z + 1 step when z = 99.

A specification of the form (8.39) is called machine closed iff the conjunct
Liveness constrains neither the initial state nor what steps may occur. A more
general way to express this is as follows. Let a finite behavior be a finite sequence
of states.” We say that a finite behavior o satisfies a safety property S iff the
behavior obtained by adding infinitely many stuttering steps to the end of o
satisfies S. If S is a safety property, then we define the pair of formulas S, L
to be machine closed iff every finite behavior that satisfies S can be extended
to an infinite behavior that satisfies S A L. We call (8.39) machine closed if the
pair of formulas Init A O[Newxt]qrs, Liveness is machine closed.

We seldom want to write a specification that isn’t machine closed. If we
do write one, it’s usually by mistake. Specification (8.39) is guaranteed to be
machine closed if Liveness is the conjunction of weak and/or strong fairness
properties for subactions of Nexzt.® This condition doesn’t hold for specification
(8.40), which is not machine closed, because (z > 99) A (¢’ =z — 1) is not a
subaction of z’ = z + 1.

Liveness requirements are philosophically satisfying. A specification of the
form (8.38), which specifies only a safety property, allows behaviors in which
the system does nothing. Therefore, the specification is satisfied by a system
that does nothing. Expressing liveness requirements with fairness properties is
less satisfying. These properties are subtle and it’s easy to get them wrong.

7A finite behavior therefore isn’t a behavior, which is an infinite sequence of states. Math-
ematicians often abuse language in this way.

8More precisely, this is the case for a finite or countably infinite conjunction of properties
of the form WF,(A) and/or SF,(A), where each (A), is a subaction of Nezt. This result also
holds for the weaker definition of subaction in the footnote on the preceding page.

8.9. TEMPORAL LOGIC EXAMINED

113

It requires some thought to determine that the liveness condition for the write-
through cache, formula (8.35) on page 108, does imply that every request receives
a reply.

It’s tempting to express liveness properties more directly, without using fair-
ness properties. For example, it’s easy to write a temporal formula asserting for
the write-through cache that every request receives a response. When processor
p issues a request, it sets ctl[p] to “rdy”. We just have to assert that, for every
processor p, whenever a state in which ctl[p] = “rdy” is true occurs, there will
eventually be a Rsp(p) step:

(8.41) Vp € Proc : O((ctl[p] = “rdy”) = O(Rsp(p))vars)

While such formulas are appealing, they are dangerous. It’s very easy to make
a mistake and write a specification that isn’t machine closed.

Except in unusual circumstances, you should express liveness with fairness
properties for subactions of the next-state action. These are the most straight-
forward specifications, and hence the easiest to write and to understand. Most
system specifications, even if very detailed and complicated, can be written in
this straightforward manner. The exceptions are usually in the realm of subtle,
high-level specifications that attempt to be very general. An example of such a
specification appears in Section 11.2.

8.9.3 Machine Closure and Possibility

Machine closure can be thought of as a possibility condition. For example,
machine closure of the pair S, OO(A), asserts that for every finite behavior o
satisfying S, it is possible to extend o to an infinite behavior satisfying S in which
infinitely many (A), actions occur. If we regard S as a system specification, so
a behavior that satisfies S represents a possible execution of the system, then we
can restate machine closure of §, OO(A), as follows: in any system execution,
it is always possible for infinitely many (A), actions to occur.

TLA specifications express safety and liveness properties, not possibility
properties. A safety property asserts that something is impossible—for exam-
ple, the system cannot take a step that doesn’t satisfy the next-state action. A
liveness property asserts that something must eventually happen. System re-
quirements are sometimes stated informally in terms of what is possible. Most
of the time, when examined rigorously, these requirements can be expressed with
liveness and/or safety properties. (The most notable exceptions are statistical
properties, such as assertions about the probability that something happens.)
We are never interested in specifying that something might happen. It’s never
useful to know that the system might produce the right answer. We never have
to specify that the user might type an “a”; we must specify what happens if he
does.

114 CHAPTER 8. LIVENESS AND FAIRNESS

Machine closure is a property of a pair of formulas, not of a system. Although
a possibility property is never a useful assertion about a system, it can be a useful
assertion about a specification. A specification S of a system with keyboard
input should always allow the user to type an “a”. So, every finite behavior
satisfying S should be extendable to an infinite behavior satisfying S in which
infinitely many “a”s are typed. If the action (A), represents the typing of an
“a” then saying that the user should always be able to type infinitely many “a”s
is equlvalent to saying that the pair S, OCG(A), should be machine closed. If S ,
OO(A), isn’t machine closed, then it could become impossible for the user ever
to type an “a”. Unless the system is allowed to lock the keyboard, this would
mean that there was something wrong with the specification.

This kind of possibility property can be proved. For example, to prove that
it’s always possible for the user to type infinitely many “a”’s, we show that
conjoining suitable fairness conditions on the input actions implies that the
user must type infinitely many “a”s. However, proofs of this kind of simple
property don’t seem to be worth the effort. When writing a specification, you
should make sure that possibilities allowed by the real system are allowed by the
specification. Once you are aware of what should be possible, you will usually
have little trouble ensuring that the specification makes it possible. You should
also make sure that what the system must do is implied by the specification’s

fairness conditions. This can be more difficult.

8.9.4 Refinement Mappings and Fairness

Section 5.8 (page 62) describes how to prove that the write-through memory
implements the memory specification. We have to prove Spec = ISpec, where
Spec is the specification of the write-through memory, ISpec is the internal spec-
ification of the memory (with the internal variables made visible), and, for any
formula F, we let F' mean F with expressions omem, octl, and obuf substituted
for the variables mem, ctl, and buf. We could rewrite this implication as (5.3)
because substitution (overbarring) distributes over operators like A and O, so
we had

IInit A D[INemt](memInt mem, ctl, buf)

= Ilnit A O]Next] memlInt, mem, ctl, buf) Because ~ distributes over A.

[

= IInit A O[INext
[
[

TmemInt, mem, ot baf) Because ~ distributes over O[- -] ...

(memlInt, mem, ctl, buf)

= Ilnit AN O INeJ:t] Because ~ distributes over (...).
] Because memlInt = memlint.

= IInit A\ O[INext

(mem[nt mem, ctl, buf)

Adding liveness to the specifications adds conjuncts to the formulas Spec and
ISpec. Suppose we take formula Liveness2, defined in (8.19) on page 101, as

8.9. TEMPORAL LOGIC EXAMINED 115

the liveness property of ISpec. Then ISpec has the additional term Liveness2,
which can be simplified as follows:

Liveness2

= Vp € Proc : WF,4s(Do(p) V Rsp(p)) By definition of Liveness2.

= Vp € Proc : WFUMS(DO([)) V Rsp(p)) Because ~ distributes over V.

But we cannot automatically move the ~ inside the WF because substitution
does not, in general, distribute over ENABLED, and hence it does not distribute
over WF or SF. For the specifications and refinement mappings that occur in

practice, including this one, simply replacing each WF,(A) by WF4(A) and
each SF,(4) by SF#(A) does give the right result. However, you don’t have to
depend on this. You can instead expand the definitions of WF and SF to get,

for example:

WF,(4) = OC—ENABLED (4), V OO(A), By definition of WF.

= OO-ENABLED (A), V OO(A)y By distributivity of ~.
You can compute the ENABLED predicates “by hand” and then perform the
substitution. When computing ENABLED predicates, it suffices to consider only
states satisfying the safety part of the specification, which usually means that

ENABLED (A4), equals ENABLED A. You can then compute ENABLED predicates
using the following rules:

1. ENABLED (A V B) = (ENABLED A) V (ENABLED B), for any actions A
and B.

2. ENABLED (P A A) = P A (ENABLED A), for any state predicate P and
action A.

3. ENABLED (A A B) = (ENABLED A) A (ENABLED B), if A and B are actions
such that the same variable does not appear primed in both A and B.

4. ENABLED (2’ = exp) = TRUE and ENABLED (z’ € exp) = (exp # {}), for
any variable z and state function exp.

For example:

ENABLED (Do(p) V Rsp(p))

(ctl[p] = “rdy”) V (ctl[p] = “done”) By rules 1-4.
= (octl[p] = “rdy”) V (octl[p] = “done”) By the meaning of ~.

116 CHAPTER 8. LIVENESS AND FAIRNESS

8.9.5 The Unimportance of Liveness

While philosophically important, in practice the liveness property of (8.39) is
not as important as the safety part, Init A O[Next]yqrs. The ultimate purpose
of writing a specification is to avoid errors. Experience shows that most of the
benefit from writing and using a specification comes from the safety part. On
the other hand, the liveness property is usually easy enough to write. It typically
constitutes less than five percent of a specification. So, you might as well write
the liveness part. However, when looking for errors, most of your effort should
be devoted to examining the safety part.

8.9.6 Temporal Logic Considered Confusing

The most general type of specification I've discussed so far has the form
(8.42) Awvy,..., vy, : Init A O[Next]yars A Liveness

where Liveness is the conjunction of fairness properties of subactions of Next.
This is a very restricted class of temporal-logic formulas. Temporal logic is quite
expressive, and one can combine its operators in all sorts of ways to express a
wide variety of properties. This suggests the following approach to writing a
specification: express each property that the system must satisfy with a temporal
formula, and then conjoin all these formulas. For example, formula (8.41) above
expresses the property of the write-through cache that every request eventually
receives a response.

This approach is philosophically appealing. It has just one problem: it’s
practical for only the very simplest of specifications—and even for them, it sel-
dom works well. The unbridled use of temporal logic produces formulas that are
hard to understand. Conjoining several of these formulas produces a specifica-
tion that is impossible to understand.

The basic form of a TLA specification is (8.42). Most specifications should
have this form. We can also use this kind of specification as a building block.
Chapters 9 and 10 describe situations in which we write a specification as a
conjunction of such formulas. Section 10.7 introduces an additional temporal
operator > and explains why we might want to write a specification F > G,
where F' and G have the form (8.42). But such specifications are of limited
practical use. Most engineers need only know how to write specifications of the
form (8.42). Indeed, they can get along quite well with specifications of the form
(8.38) that express only safety properties and don’t hide any variables.

Chapter 9

Real Time

With a liveness property, we can specify that a system must eventually respond
to a request. We cannot specify that it must respond within the next 100 years.
To specify timely response, we must use a real-time property.

A system that does not respond within our lifetime isn’t very useful, so
we might expect real-time specifications to be common. They aren’t. Formal
specifications are most often used to describe what a system does rather than
how long it takes to do it. However, you may someday want to specify real-time
properties of a system. This chapter tells you how.

9.1 The Hour Clock Revisited

Let’s return to our specification of the simple hour clock in Chapter 2, which
asserts that the variable hr cycles through the values 1 through 12. We now add
the requirement that the clock keep correct time. For centuries, scientists have
represented the real-time behavior of a system by introducing a variable, tradi-
tionally ¢, whose value is a real number that represents time. A state in which
t = —17.51 represents a state of the system at time —17.51, perhaps measured
in seconds elapsed since 00:00 UT on 1 January 2000. In TLA* specifications, I
prefer to use the variable now rather than ¢. For linguistic convenience, I will
usually assume that the unit of time is the second, though we could just as well
choose any other unit.

Unlike sciences such as physics and chemistry, computer science studies sys-
tems whose behavior can be described by a sequence of discrete states, rather
than by states that vary continuously with time. We consider the hour clock’s
display to change directly from reading 12 to reading 1, and ignore the con-
tinuum of intermediate states that occur in the physical display. This means
that we pretend that the change is instantaneous (happens in 0 seconds). So, a

Remember that a
state is an assign-
ment of values to

all variables.

117

118 CHAPTER 9. REAL TIME

real-time specification of the clock might allow the step

hr = 12 hr =1

[now = \/2.47} - {now = \/2.47}
The value of now advances between changes to hr. If we wanted to specify how
long it takes the display to change from 12 to 1, we would have to introduce
an intermediate state that represents a changing display—perhaps by letting hr
assume some intermediate value such as 12.5, or by adding a Boolean-valued
variable chg whose value indicates whether the display is changing. We won’t
do this, but will be content to specify an hour clock in which we consider the
display to change instantaneously.

The value of now changes between changes to hr. Just as we represent a
continuously varying clock display by a variable whose value changes in discrete
steps, we let the value of now change in discrete steps. A behavior in which now
increases in femtosecond increments would be an accurate enough description of
continuously changing time for our specification of the hour clock. In fact, there’s
no need to choose any particular granularity of time; we can let now advance
by arbitrary amounts between clock ticks. (Since the value of hr is unchanged
by steps that change now, the requirement that the clock keep correct time will
rule out behaviors in which now changes by too much in a single step.)

What real-time condition should our hour clock satisfy? We might require
that it always display the time correctly to within p seconds, for some real
number p. However, this is not typical of the real-time requirements that arise
in actual systems. Instead, we require that the clock tick approximately once
per hour. More precisely, we require that the interval between ticks be one hour
plus or minus p seconds, for some positive number p. Of course, this requirement
allows the time displayed by the clock eventually to drift away from the actual
time. But that’s what real clocks do if they are not reset.

We could start our specification of the real-time clock from scratch. How-
ever, we still want the hour clock to satisfy the specification HC' of module
HourClock (Figure 2.1 on page 20). We just want to add an additional real-time
requirement. So, we will write the specification as the conjunction of HC and a
formula requiring that the clock tick every hour, plus or minus p seconds. This
requirement is the conjunction of two separate conditions: that the clock tick at
most once every 3600 — p seconds, and at least once every 3600 + p seconds.

To specify these requirements, we introduce a variable that records how much
time has elapsed since the last clock tick. Let’s call it ¢ for timer. The value of
t is set to 0 by a step that represents a clock tick—mnamely, by an HCnaxt step.
Any step that represents the passing of s seconds should advance ¢ by s. A step
represents the passing of time iff it changes now, and such a step represents the
passage of now’ — now seconds. So, the change to the timer ¢ is described by
the action

TNext = t' =1F HCnat THEN 0 ELSE ¢+ (now’ — now)

9.1. THE HOUR CLOCK REVISITED

119

We let t initially equal 0, so we consider the initial state to be one in which
the clock has just ticked. The specification of how ¢ changes is then a formula
asserting that ¢ initially equals 0, and that every step is a TNext step or else
leaves unchanged all relevant variables—mnamely, ¢, Ar, and now. This formula
is

Timer = (t=0) A O[TNext] (¢, hr, now)

The requirement that the clock tick at least once every 3600 + p seconds means
that it’s always the case that at most 3600 4+ p seconds have elapsed since the
last HCnzt step. Since t always equals the elapsed time since the last HCnaxt
step, this requirement is expressed by the formula

MazTime = O(t < 3600 + p)

(Since we can’t measure time with perfect accuracy, it doesn’t matter whether
we use < or < in this formula. When we generalize from this example, it is a
bit more convenient to use <.)

The requirement that the clock tick at most once every 3600 — p seconds
means that, whenever an HCnzxt step occurs, at least 3600 — p seconds have
elapsed since the previous HCnzt step. This suggests the condition

(9.1) O(HCnzt = (t > 3600 — p))

However, (9.1) isn’t a legal TLA formula because HCnat = ... is an action
(a formula containing primes), and a TLA formula asserting that an action is
always true must have the form O[A],. We don’t care about steps that leave hr
unchanged, so we can replace (9.1) by the TLA formula

MinTime £ O[HCnat = (t > 3600 — p)]pr

The desired real-time constraint on the clock is expressed by the conjunction of
these three formulas:

HCTime = Timer A MaxTime A MinTime

Formula HCTime contains the variable ¢, and the specification of the real-time
clock should describe only the changes to hr (the clock display) and now (the
time). So, we have to hide ¢. Hiding is expressed in TLA™T by the temporal exis-
tential quantifier 3, introduced in Section 4.3 (page 41). However, as explained
in that section, we can’t simply write 3¢: HCTime. We must define HCTime
in a module that declares ¢, and then use a parametrized instantiation of that
module. This is done in Figure 9.1 on page 121. Instead of defining HCTime
in a completely separate module, I have defined it in a submodule named Inner
of the module RealTimeHourClock containing the specification of the real-time
hour clock. Note that all the symbols declared and defined in the main module

In the general-
ization, > will be
more convenient
than >.

120 CHAPTER 9. REAL TIME

up to that point can be used in the submodule. Submodule Inner is instantiated
in the main module with the statement

I(t) = INSTANCE Inner

The t in HCTime can then be hidden by writing 3¢ : I(¢t)! HCTime.

The formula HC A (3t :I(t)! HCTime) describes the possible changes to the
value of hr, and relates those changes to the value of now. But it says very little
about how the value of now can change. For example, it allows the following

behavior:
hr =11 hr =11 hr =11 hr = 11 oo
now = 23.5 now = 23.4 now = 23.5 now = 23.4

Because time can’t go backwards, such a behavior doesn’t represent a physical
possibility. Everyone knows that time only increases, so there’s no need to forbid
this behavior if the only purpose of our specification is to describe the hour clock.
However, a specification should also allow us to reason about a system. If the
clock ticks approximately once per hour, then it can’t stop. However, as the
behavior above shows, the formula HC A (3t:1(¢)! HCTime) by itself allows
the clock to stop. To infer that it can’t, we also need to state how now changes.

We define a formula RTnow that specifies the possible changes to now. This
formula does not specify the granularity of the changes to now; it allows a step to
advance now by a microsecond or by a century. However, we have decided that
a step that changes hr should leave now unchanged, which implies that a step
that changes now should leave hr unchanged. Therefore, steps that change now
are described by the following action, where Real is the set of all real numbers:

NowNext = A now' € {’f’ € Real : r > now} now’ can equal any real number > now.
A UNCHANGED hr

Formula RTnow should also allow steps that leave now unchanged. The initial
value of now is an arbitrary real number (we can start the system at any time),
so the safety part of RTnow is

(now € Real) N O[NowNext],ouw

The liveness condition we want is that now should increase without bound.
Simple weak fairness of the NowNext action isn’t good enough, because it allows Weak fairness is

“Zeno” behaviors such as discglssed in Chap-
ter 8.

[now =.9] = [now =.99] — [now =.999] — [now =.9999] — ---

in which the value of now remains bounded. Weak fairness of the action
NowNezt A (now’ > r) implies that eventually a NowNext step will occur in
which the new value of now is greater than r. (This action is always enabled, so
weak fairness implies that infinitely many such actions must occur.) Asserting

9.1. THE HOUR CLOCK REVISITED 121

MODULE RealTimeHourClock

EXTENDS Reals, HourClock

VARIABLE now The current time, measured in seconds.
CONSTANT Rho A positive real number.

ASSUME (Rho € Real) A (Rho > 0)

[MODULE Inner |

VARIABLE t

TNext = t =1 HCnzt THEN 0 ELSE t+ (now’' — now)

Timer = (t =0) A O[TNext] (¢, hr, now) t is the elapsed time since the last HCnat step.
MazTime = O(t < 3600 + Rho) t is always at most 3600 + Rho.

MinTime = O[HCnat = t > 3600 — Rho]n, An HCnat step can occur only if ¢ > 3600 — Rho.
HCTime = Timer A MazTime A MinTime

L

I(t) = INSTANCE Inner

NowNezt = A now’ € {r € Real : v > now} A NowNexzt step can advance now by any amount
A UNCHANGED hr while leaving hr unchanged.
RTnow = A now € Real RTnow specifies how time may change.
A O[NowNext]now
AV 71 € Real : WF, 4, (NowNext A (now’ > 1))

A

RTHC = HC A RTnow A (3t:1(t)!HCTime) The complete specification.

Figure 9.1: The real-time specification of an hour clock that ticks every hour, plus or minus Rho
seconds.

this for all real numbers r implies that now grows without bound, so we take as
the fairness condition?

Vr € Real : WF 00 (NowNext A (now’ > 1))

The complete specification RTHC of the real-time hour clock, with the definition
of formula RTnow, is in the RealTimeHourClock module of Figure 9.1 on this
page. That module extends the standard Reals module, which defines the set
Real of real numbers.

LAn equivalent condition is V7 € Real : O(now > r), but I like to express fairness with
WF and SF formulas.

122 CHAPTER 9. REAL TIME

9.2 Real-Time Specifications in General

In Section 8.4 (page 96), we saw that the appropriate generalization of the live-
ness requirement that the hour clock tick infinitely often is weak fairness of the
clock-tick action. There is a similar generalization for real-time specifications.
Weak fairness of an action A asserts that if A is continuously enabled, then an
A step must eventually occur. The real-time analog is that if A is continuously
enabled for € seconds, then an A step must occur. Since an HCnzt action is
always enabled, the requirement that the clock tick at least once every 3600 + p
seconds can be expressed in this way by letting A be HCnzt and € be 3600 + p.

The requirement that an HCnaxt action occur at most once every 3600 — p
seconds can be similarly generalized to the condition that an action A must be
continuously enabled for at least ¢ seconds before an A step can occur.

The first condition, the upper bound € on how long A can be enabled without
an A step occurring, is vacuously satisfied if € equals Infinity—a value defined
in the Reals module to be greater than any real number. The second condition,
the lower bound ¢ on how long A must be enabled before an A step can occur, is
vacuously satisfied if § equals 0. So, nothing is lost by combining both of these
conditions into a single formula containing § and e as parameters. I now define
such a formula, which I call a real-time bound condition.

The weak fairness formula WF, (A4) actually asserts weak fairness of the ac-
tion (A4),, which equals A A (v’ # v). The subscript v is needed to rule out stut-
tering steps. Since the truth of a meaningful formula can’t depend on whether or
not there are stuttering steps, it makes no sense to say that an A step did or did
not occur if that step could be a stuttering step. For this reason, the correspond-
ing real-time condition must also be a condition on an action {A),, not on an
arbitrary action A. In most cases of interest, v is the tuple of all variables that
occur in A. I therefore define the real-time bound formula RTBound(A, v, J, €)
to assert that

e An (A), step cannot occur until (A}, has been continuously enabled for
at least § time units since the last (A4), step—or since the beginning of
the behavior.

e (A), can be continuously enabled for at most e time units before an (A),
step occurs.

RTBound(A, v, 6, €) generalizes the formula 3¢ : I(¢)! HCTime of the real-time
hour-clock specification, and it can be defined in the same way, using a submod-

ule. However, the definition can be structured a little more compactly as For the TLAT
specification, I
RTBound(A, v, D, E) = LET Timer(t) = ... have replaced
6 and € by D
and E.

IN 3¢ Timer(t) A ...

9.2. REAL-TIME SPECIFICATIONS IN GENERAL

123

We first define Timer(t) to be a temporal formula asserting that ¢ always equals
the length of time that (A), has been continuously enabled since the last (A),
step. The value of ¢ should be set to 0 by an (A), step or a step that disables
(A),. A step that advances now should increment ¢ by now’ — now iff (4), is
enabled. Changes to t are therefore described by the action

TNext(t) = t' =1 (A), V ~(ENABLED (4),)’
THEN 0
ELSE ¢+ (now’ — now)

We are interested in the meaning of Timer(?) only when v is a tuple whose
components include all the variables that may appear in A. In this case, a
step that leaves v unchanged cannot enable or disable (A),. So, the formula
Timer(t) should allow steps that leave ¢, v, and now unchanged. Letting the
initial value of ¢ be 0, we define

Timer(t) = (t=0) A O[TNext(1)](t, v, now)

Formulas MazTime and MinTime of the real-time hour clock’s specification have
the obvious generalizations:

e MaxTime(t) asserts that ¢ is always less than or equal to E:
MazTime(t) = O(t < E)

e MinTime(t) asserts that an (A}, step can occur only if ¢ > D:

A

MinTime(t) = O[A= (t> D)],

(An equally plausible definition of MinTime(t) is O[(A), = (¢ > D)),
but the two are, in fact, equivalent.)

We then define RTBound(A, v, D, F) to equal
It : Timer(t) A MazTime(t) A MinTime(t)

We must also generalize formula RTnow of the real-time hour clock’s specifica-
tion. That formula describes how now changes, and it asserts that hr remains
unchanged when now changes. The generalization is the formula RTnow(v),
which replaces hr with an arbitrary state function v that will usually be the tu-
ple of all variables, other than now, appearing in the specification. Using these
definitions, the specification RTHC of the real-time hour clock can be written

HC A RTnow(hr) A RTBound(HCnat, hr, 3600 — Rho, 3600 + Rho)

The RealTime module, with its definitions of RTBound and RTnow, appears in
Figure 9.2 on page 125.

Strong fairness strengthens weak fairness by requiring an A step to occur not
just if action A is continuously enabled, but if it is repeatedly enabled. Being

124 CHAPTER 9. REAL TIME

repeatedly enabled includes the possibility that it is also repeatedly disabled. We
can similarly strengthen our real-time bound conditions by defining a stronger
formula SRTBound(A, v, §, €) to assert that

e An (A), step cannot occur until (A4), has been enabled for a total of at
least 0 time units since the last (A), step—or since the beginning of the
behavior.

e (A), can be enabled for a total of at most € time units before an (4),
step occurs.

If € < Infinity, then RTBound(A, v, §, €) implies that an (A}, step must occur
if (A), is continuously enabled for € seconds. Hence, if (A), is ever enabled
forever, infinitely many (A), steps must occur. Thus, RTBound(A, v, d, €)
implies weak fairness of A. More precisely, RTBound(A, v, d, €) and RTnow(v)
together imply WF,(A). However, SRTBound(A, v, d, €) does not similarly
imply strong fairness of A. It allows behaviors in which (A4), is enabled infinitely
often but never executed—for example, A can be enabled for /2 seconds, then
for €/4 seconds, then for €/8 seconds, and so on. For this reason, SRTBound
does not seem to be of much practical use, so I won’t bother defining it formally.

9.3 A Real-Time Caching Memory

Let’s now use the RealTime module to write a real-time versions of the lineariz-
able memory specification of Section 5.3 (page 51) and the write-through cache
specification of Section 5.6 (page 54). We obtain the real-time memory spec-
ification by strengthening the specification in module Memory (Figure 5.3 on
page 53) to require that the memory responds to a processor’s requests within
Rho seconds. The complete memory specification Spec of module Memory was
obtained by hiding the variables mem, ctl, and buf in the internal specifica-
tion ISpec of module InternalMemory. It’s generally easier to add a real-time
constraint to an internal specification, where the constraints can mention the
internal (hidden) variables. So, we first add the timing constraint to ISpec and
then hide the internal variables.

To specify that the system must respond to a processor request within Rho
seconds, we add an upper-bound timing constraint for an action that becomes
enabled when a request is issued, and that becomes disabled (possibly by be-
ing executed) only when the processor responds to the request. In specification
ISpec, responding to a request requires two actions—Do(p) to perform the op-
eration internally, and Rsp(p) to issue the response. Neither of these actions is
the one we want; we have to define a new action for the purpose. There is a
pending request for processor p iff ctl[p] equals “rdy”. So, we assert that the

9.3. A REAL-TIME CACHING MEMORY 125

MODULE RealTime

This module declares the variable now, which represents real time, and defines operators for writing real-time
specifications. Real-time constraints are added to a specification by conjoining it with RTnow(v) and for-
mulas of the form RTBound(A, v, d, €) for actions A, where v is the tuple of all specification variables and

0 <6 < e < Infinity.

EXTENDS Reals

VARIABLE now The value of now is a real number that represents the current time, in unspecified units.

RTBound(A, v, d, €) asserts that an (A), step can occur only after (A), has been continuously enabled for ¢
time units since the last (A), step (or the beginning of the behavior), and it must occur before (A), has been
continuously enabled for more than e time units since the last (A), step (or the beginning of the behavior).

RTBound(A, v, D, E) =
LET TNext(t) St =1F (A), V —(ENABLED (A),)’ Timer(t) asserts that ¢ is the length
THEN 0 of time <A>U has been continuously
ELSE t -+ (now/ o now) fir;a;led without an (A), step occur-

Timer(t) = (t=0) A O[TNext(t)] (¢, v, now)

MaxTime(t) = O(t < E) Asserts that t is always < E.

MinTime(t) = O[A = (¢t > D)], Asserts that an (A), step can occur only if ¢ > D.

IN 3t Timer(t) A MazTime(t) A MinTime(t)

RTnow(v) asserts that now is a real number that is increased without bound, in arbitrary increments, by steps
that leave v unchanged.

RTnow(v) = LET NowNext = A now’ € {r € Real : r > now}
A UNCHANGED v
IN A now € Real
A O[NowNext]now
AN € Real : WF,, 5, (NowNext A (now’ > 1))

Figure 9.2: The RealTime module for writing real-time specifications.

following action cannot be enabled for more than Rho seconds without being
executed:

Respond(p) 2 (ctilp] # “rdy”) A (ctl[p] = “rdy”)

The complete specification is formula RTSpec of module RTMemory in Fig-
ure 9.3 on the next page. To permit variables mem, ctl, and buf to be hid-
den, the RTMemory module contains a submodule Inner that extends module
InternalMemory.

Having added a real-time constraint to the specification of a linearizable
memory, let’s strengthen the specification of the write-through cache so it sat-

126 CHAPTER 9. REAL TIME

MODULE RTMemory

A specification that strengthens the linearizable memory specification of Section 5.3 by requiring that a response
be sent to every processor request within Rho seconds.

EXTENDS Memorylnterface, RealTime
CONSTANT Rho
ASSUME (Rho € Real) A (Rho > 0)

[MODULE Inner

We introduce a submodule so we can hide the variables mem, ctl, and buf.

EXTENDS InternalMemory

Respond (p) = Respond(p) is enabled when a request is received from p; it is
(Ctl[p] 7& “rdy”) A (Cﬂ/[p] — “rdy”) disabled when a Respond(p) step issues the response.

RTISpec = A ISpec We assert an upper-bound delay
AV p € Proc : RTBound(Respond(p), ctl, 0, Rho) of Rho on Respond(p), for all

I A RTnow({memlInt, mem, ctl, buf)) Processors p.

Inner(mem, ctl, buf) = INSTANCE Inner

RTSpec = Amem, ctl, buf : Inner(mem, ctl, buf)! RTISpec

Figure 9.3: A real-time version of the linearizable memory specification.

isfies that constraint. The object is not just to add any real-time constraint
that does the job—that’s easy to do by using the same constraint that we added
to the memory specification. We want to write a specification of a real-time
algorithm—a specification that tells an implementer how to meet the real-time
constraints. This is generally done by placing real-time bounds on the original
actions of the untimed specification, not by adding time bounds on a new ac-
tion, as we did for the memory specification. An upper-bound constraint on the
response time should be achieved by enforcing upper-bound constraints on the
system’s actions.

If we try to achieve a bound on response time by adding real-time bounds to
the write-through cache specification’s actions, we encounter the following prob-
lem. Operations by different processors “compete” with one another to enqueue
operations on the finite queue mem@. For example, when servicing a write re-
quest for processor p, the system must execute a Do Wr(p) action to enqueue the
operation to the tail of mem(@. That action is not enabled if mem(@ is full. The
DoWr(p) action can be continually disabled by the system performing DoWr
or RdMiss actions for other processors. That’s why, to guarantee liveness—that
each request eventually receives a response—in Section 8.7 (page 107) we had
to assert strong fairness of DoWr and RdMiss actions. The only way to ensure

9.3. A REAL-TIME CACHING MEMORY

127

that a DoWr(p) action is executed within some length of time is to use lower-
bound constraints on the actions of other processors to ensure that they cannot
perform DoWr or RdMiss actions too frequently. Although such a specification
is possible, it is not the kind of approach anyone is likely to take in practice.

The usual method of enforcing real-time bounds on accesses to a shared
resource is to schedule the use of the resource by different processors. So, let’s
modify the write-through cache to add a scheduling discipline to actions that
enqueue operations on mem(. We use round-robin scheduling, which is probably
the easiest one to implement. Suppose processors are numbered from 0 through
N — 1. Round-robin scheduling means that an operation for processor p is the
next one to be enqueued after an operation for processor ¢ iff there is not an
operation for any of the processors (¢+1) % N, (¢+2)% N, ..., (p—1) % N
waiting to be put on mem@.

To express this formally, we first let the set Proc of processors equal the
set 0.. (N — 1) of integers. We normally do this by defining Proc to equal
0 .. (N —1). However, we want to reuse the parameters and definitions from the
write-through cache specification, and that’s easiest to do by extending module
Write ThroughCache. Since Proc is a parameter of that module, we can’t define
it. We therefore let N be a new constant parameter and let Proc =0 .. (N —1)
be an assumption.?

To implement round-robin scheduling, we use a variable lastP that equals the
last processor whose operation was enqueued to mem(@). We define the operator
position so that p is the position(p)*™® processor after lastP in the round-robin
order:

position(p) = CHOOSE i€ 1.. N : p= (lastP +i) % N

(Thus, position(lastP) equals N.) An operation for processor p can be the next
to access mem(@ iff there is no operation for a processor ¢ with position(q) <
position(p) ready to access it—that is, iff canGoNext(p) is true, where

canGoNext(p) = Y q € Proc : (position(q) < position(p)) =
— ENABLED (RdMiss(q) V DoWr(q))

We then define RTRdMiss(p) and RTDoWr(p) to be the same as RdMiss(p) and
DoWr(p), respectively, except that they have the additional enabling condition
canGoNext(p), and they set lastP to p. The other subactions of the next-state
action are the same as before, except that they must also leave lastP unchanged.

For simplicity, we assume a single upper bound of Epsilon on the length
of time any of the actions of processor p can remain enabled without being
executed—except for the Evict(p, a) action, which we never require to happen.
In general, suppose Ay, ..., Ay are actions such that (i) no two of them are

2We could also instantiate module WriteThroughCache with 0 .. (N — 1) substituted for
Proc; but that would require declaring the other parameters of Write ThroughCache, including
the ones from the MemorylInterface module.

128 CHAPTER 9. REAL TIME

ever simultaneously enabled, and (ii) once any A; becomes enabled, it must be
executed before another A; can be enabled. In this case, a single RTBound
constraint on Ay V...V Ay is equivalent to separate constraints on all the A;.
We can therefore place a single constraint on the disjunction of all the actions of
processor p, except that we can’t use the same constraint for both DoRd(p) and
RTRdAMiss(p) because an Evict(p, a) step could disable DoRd(p) and enable
RTRdAMiss(p). We therefore use a separate constraint for RTRdMiss(p).

We assume an upper bound of Delta on the time Mem@QWr or Mem@Rd can
be enabled without dequeuing an operation from mem(). The variable mem(@
represents a physical queue between the bus and the main memory, and Delta
must be large enough so an operation inserted into an empty queue will reach
the memory and be dequeued within Delta seconds.

We want the real-time write-through cache to implement the real-time mem-
ory specification. This requires an assumption relating Delta, Epsilon, and Rho
to assure that the memory specification’s timing constraint is satisfied—mnamely,
that the delay between when the memory receives a request from processor p
and when it responds is at most Rho. Determining this assumption requires
computing an upper bound on that delay. Finding the smallest upper bound is
hard; it’s easier to show that

2% (N + 1) = Epsilon + (N + QLen) * Delta

is an upper bound. So we assume that this value is less than or equal to Rho.

The complete specification appears in Figure 9.4 on the following two pages.
The module also asserts as a theorem that the specification RT'Spec of the real-
time write-through cache implements (implies) the real-time memory specifica-
tion, formula RTSpec of module RTMemory.

9.4 Zeno Specifications

I have described the formula RTBound(HCnat, hr, 6, €) as asserting that an
HCnat step must occur within € seconds of the previous HCnaxt step. However,
implicit in this description is a notion of causality that is not present in the
formula. It would be just as accurate to describe the formula as asserting that
now cannot advance by more than e seconds before the next HCnzxt step occurs.
The formula doesn’t tell us whether this condition is met by causing the clock
to tick or by preventing time from advancing. Indeed, the formula is satisfied
by a “Zeno” behavior:?

hr = 11}

hr =11
now = 0

hr =11
now = €/2

hr =11 oo
now = 3e/4

{now = T¢/8

3The Greek philosopher Zeno posed the paradox that an arrow first had to travel half the
distance to its target, then the next quarter of the distance, then the next eighth, and so on;
thus it should not be able to land within a finite length of time.

9.4. ZENQO SPECIFICATIONS 129

MODULE RTWriteThroughCache
EXTENDS WriteThroughCache, RealTime

CONSTANT N We assume that the set Proc of processors
ASSUME (N € Nat) A (Proc =0 .. N —1) cwals0--N—=1

CONSTANTS Delta, Epsilon, Rho Some real-time bounds on actions.

ASSUME A (Delta € Real) A (Delta > 0)
A (Epsilon € Real) A (Epsilon > 0)
A (Rho € Real) A (Rho > 0)
A 2% (N + 1) % Epsilon + (N + QLen) x Delta < Rho

We modify the write-through cache specification to require that operations for different processors are enqueued
on mem(@ in round-robin order.

VARIABLE lastP The last processor to enqueue an operation on memG@.

RTInit = Init A (lastP € Proc) Initially, lastP can equal any processor.

. A
pOSZtZO’rL(p) = p is the position(p)*™™ processor after lastP in the round-robin order.

CHOOSE i €1 .. N : p=(lastP +1i) % N

canGoNi emt(p) 2 True if processor p can be the next to enqueue an operation on mem@.
Vg € Proc : (position(q) < position(p)) = - ENABLED (RdMiss(q) V DoWr(q))

RTRdMiSS(p) 2 A canGoNext(p) Actions RTRdMiss(p) and RTDoWr(p) are the same as RdMiss(p)
A RdMiSS(p) and DoWr(p) except that they are not enabled unless p is the next
A lastP' — J’ processor in the round-robin order ready to enqueue an operation
on mem(@, and they set lastP to p.

RTDoWr(p) = A canGoNext(p)

A DoWr(p)
A lastP' = p
RTNext = v Ip € Proc : RTRdMiss(p) V RTDoWr(p) The next-state action RTNext
VAV 3dp e Proc : V Re V Rs VvV DoRd is the same as Next except with
b a(p) . P(P) (p) RTRdMiss(p) and RTDoWr(p)
V Ja € Adr : Evict(p, a) ;
replaced by RdMiss(p) and
vV MemQWr Vv MemQRd DoWr(p), and with other
A UNCHANGED lastP actions modified to leave lastP
unchanged.

vars = (memlInt, wmem, buf, ctl, cache, mem@, lastP)

Figure 9.4a: A real-time version of the write-through cache (beginning).

130 CHAPTER 9. REAL TIME

RTSpeC = ‘We put an upper-bound de-
. lay of Delta on Mem@QWr and
A RTInit A D[RTNewt]vars MemQ@Rd actions (which dequeue
A RTBound(MemQWr V MemQRd, vars, 0, Delta) operations from mem@), and an

AN p € Proc : N RTBound(RTDoWr(p) V DoRd(p) V Rsp(p), upper-bound delay of Epsilon on
vars, 0, Epsilon) other actions.
A RTBound(RTRdIMiss(p), vars, 0, Epsilon)
A RTnow(vars)

RTM £ INSTANCE RTMemory
THEOREM RTSpec = RTM ! RTSpec

Figure 9.4b: A real-time version of the write-through cache (end).

in which e seconds never pass. We rule out such Zeno behaviors by conjoining
to our specification the formula RTnow(hr)—more precisely by conjoining its
liveness conjunct

Vr € Real : WF 5, (Next A (now’ > 1))

which implies that time advances without bound. Let’s call this formula NZ
(for Non-Zeno).

Zeno behaviors pose no problem; they are trivially forbidden by conjoining
NZ. A problem does exist if a specification allows only Zeno behaviors. For
example, suppose we conjoined to the untimed hour-clock’s specification the
condition RTBound(HCnat, hr, 6, €) for some ¢ and e with § > e. This would
assert that the clock must wait at least J seconds before ticking, but must tick
within a shorter length of time. In other words, the clock could never tick. Only
a Zeno behavior, in which e seconds never elapsed, can satisfy this specification.
Conjoining NZ to this specification yields a formula that allows no behaviors—
that is, a formula equivalent to FALSE.

This example is an extreme case of what is called a Zeno specification. A
Zeno specification is one for which there exists a finite behavior o that satisfies
the safety part but cannot be extended to an infinite behavior that satisfies both
the safety part and NZ.* In other words, the only complete behaviors satisfying
the safety part that extend o are Zeno behaviors. A specification that is not
Zeno is, naturally enough, said to be non-Zeno. By the definition of machine
closure (in Section 8.9.2 on page 111), a specification is non-Zeno iff it is machine
closed. More precisely, it is non-Zeno iff the pair of properties consisting of the
safety part of the specification (the conjunction of the untimed specification, the
real-time bound conditions, and the safety part of the RTnow formula) and NZ
is machine closed.

4Recall that, on page 112, a finite behavior o was defined to satisfy a safety property P iff
adding infinitely many stuttering steps to the end of o produces a behavior that satisfies P.

9.4. ZENQO SPECIFICATIONS

131

A Zeno specification is one in which the requirement that time increases
without bound rules out some finite behaviors that would otherwise be allowed.
Such a specification is likely to be incorrect because the real-time bound condi-
tions are probably constraining the system in unintended ways. In this respect,
Zeno specifications are much like other non-machine-closed specifications.

Section 8.9.2 mentions that the conjunction of fairness conditions on subac-
tions of the next-state relation produces a machine closed specification. There
is an analogous result for RTBound conditions and non-Zeno specifications. A
specification is non-Zeno if it is the conjunction of (i) a formula of the form
Init A O[Next]yers, (i) the formula RTnow(vars), and (iii) a finite number of
formulas of the form RTBound(A;, vars, d;, €;), where for each ¢

e 0<9; <e¢; < Infinity
e A; is a subaction of the next-state action Next.
e No step is both an A; and an A; step, for any A; with j # 1.

In particular, this implies that the specification RTSpec of the real-time write-
through cache in module RT Write ThroughCache is non-Zeno.

This result does not apply to the specification of the real-time memory in
module RTMemory (Figure 9.3 on page 126) because the action Respond(p) is
not a subaction of the next-state action INext of formula ISpec. The specifi-
cation is nonetheless non-Zeno, because any finite behavior o that satisfies the
specification can be extended to one in which time advances without bound. For
example, we can first extend o to respond to all pending requests immediately
(in 0 time), and then extend it to an infinite behavior by adding steps that just
increase now.

It’s easy to construct an example in which conjoining an RTBound formula
for an action that is not a subaction of the next-state action produces a Zeno
specification. For example, consider the formula

(9.2) HC A RTBound(hr' = hr — 1, hr, 0, 3600) A RTnow(hr)

where HC is the specification of the hour clock. The next-state action HCnxt
of HC asserts that hr is either incremented by 1 or changes from 12 to 1. The
RTBound formula asserts that now cannot advance for 3600 or more seconds
without an hr’ = hr — 1 step occurring. Since HC asserts that every step
that changes hr is an HCnat step, the safety part of (9.2) is satisfied only by
behaviors in which now increases by less than 3600 seconds. Since the complete
specification (9.2) contains the conjunct NZ, which asserts that now increases
without bound, it is equivalent to FALSE, and is thus a Zeno specification.
When a specification describes how a system is implemented, the real-time
constraints are likely to be expressed as RTBound formulas for subactions of
the next-state action. These are the kinds of formulas that correspond fairly
directly to an implementation. For example, module RT Write ThroughCache

The definition of a
subaction appears
on page 111.

INext is defined
on page 53

132 CHAPTER 9. REAL TIME

describes an algorithm for implementing a memory, and it has real-time bounds
on subactions of the next-state action. On the other hand, more abstract, higher-
level specifications—ones describing what a system is supposed to do rather than
how to do it—are less likely to have real-time constraints expressed in this way.
Thus, the high-level specification of the real-time memory in module RTMemory
contains an RTBound formula for an action that is not a subaction of the next-
state action.

9.5 Hybrid System Specifications

A system described by a TLAT specification is a physical entity. The specifica-
tion’s variables represent some part of the physical state—the display of a clock,
or the distribution of charge in a piece of silicon that implements a memory cell.
In a real-time specification, the variable now is different from the others because
we are not abstracting away the continuous nature of time. The specification
allows mow to assume any of a continuum of values. The discrete states in a
behavior mean that we are observing the state of the system, and hence the
value of now, at a sequence of discrete instants.

There may be physical quantities other than time whose continuous nature
we want to represent in a specification. For an air traffic control system, we
might want to represent the positions and velocities of the aircraft. For a system
controlling a nuclear reactor, we might want to represent the physical parameters
of the reactor itself. A specification that represents such continuously varying
quantities is called a hybrid system specification.

As an example, consider a system that, among other things, controls a switch
that influences the one-dimensional motion of some object. Suppose the object’s
position p obeys one of the following laws, depending on whether the switch is
off or on:

(9.3) d%p/dt® + cxdp/dt + f[t] = 0
d?®p/dt? + cxdp/dt + f[t] + kxp = 0

where ¢ and k are constants, f is some function, and ¢ represents time. At
any instant, the future position of the object is determined by the object’s
current position and velocity. So, the state of the object is described by two
variables—namely, its position p and its velocity w. These variables are related
by w = dp/dt.

We describe this system with a TLA™ specification in which the variables p
and w are changed only by steps that change now—that is, steps representing
the passage of time. We specify the changes to the discrete system state and any
real-time constraints as before. However, we replace RTnow(v) with a formula
having the following next-state action, where Integrate and D are explained

9.5. HYBRID SYSTEM SPECIFICATIONS

133

below, and v is the tuple of all discrete variables:

A now’ € {r € Real : r > now}

A {p',w") = Integrate(D, now, now’, (p,w))

/A UNCHANGED v The discrete variables change instantaneously.
The second conjunct asserts that p’ and w’ equal the expressions obtained by
solving the appropriate differential equation for the object’s position and veloc-
ity at time now’, assuming that their values at time now are p and w. The
differential equation is specified by D, while Integrate is a general operator for
solving (integrating) an arbitrary differential equation.

To specify the differential equation satisfied by the object, let’s suppose that

switchOn is a Boolean-valued state variable that describes the position of the
switch. We can then rewrite the pair of equations (9.3) as

d*p/dt* + cxdp/dt + f[t] + (1IF switchOn THEN k*p ELSE 0) = 0
We then define the function D so this equation can be written as
D[t, p, dp/dt, d*p/dt*] = 0

Using the TLA™T notation for defining functions of multiple arguments, which is
explained in Section 16.1.7 on page 301, the definition is

D[t, p0, p1, p2 € Real] =
p2 + c*pl + f[t] + (IF switchOn THEN k * p0 ELSE 0)

We obtain the desired specification if the operator Integrate is defined so that
Integrate(D, to, t1, (Zo,...,ZTn—1)) is the value at time ¢; of the n-tuple

(xz, dz/dt, ..., d" "' /dt"")
where z is a solution to the differential equation

Dit, z, dx/dt, ..., d"z/ct"] =0

whose 0% through (n — 1) derivatives at time tq are zg, ..., 2,,_1. The defini-
tion of Integrate appears in the DifferentialEquations module of Section 11.1.3
(page 174).

In general, a hybrid-system specification is similar to a real-time specifica-
tion, except that the formula RTnow(v) is replaced by one that describes the
changes to all variables that represent continuously changing physical quanti-
ties. The Integrate operator will allow you to specify those changes for many
hybrid systems. Some systems will require different operators. For example,
describing the evolution of some physical quantities might require an operator
for describing the solution to a partial differential equation. However, if you can
describe the evolution mathematically, then it can be specified in TLAY.

Hybrid system specifications still seem to be of only academic interest, so I
won’t say any more about them. If you do have occasion to write one, this brief
discussion should indicate how you can do it.

134 CHAPTER 9. REAL TIME

9.6 Remarks on Real Time

Real-time constraints are used most often to place an upper bound on how long
it can take the system to do something. In this capacity, they can be considered
a strong form of liveness, specifying not just that something must eventually
happen, but when it must happen. In very simple specifications, such as the
hour clock and the write-through cache, real-time constraints usually replace
liveness conditions. More complicated specifications can assert both real-time
constraints and liveness properties.

The real-time specifications I have seen have not required very complicated
timing constraints. They have been specifications either of fairly simple algo-
rithms in which timing constraints are crucial to correctness, or of more compli-
cated systems in which real time appears only through the use of simple timeouts
to ensure liveness. I suspect that people don’t build systems with complicated
real-time constraints because it’s too hard to get them right.

I've described how to write a real-time specification by conjoining RTnow
and RTBound formulas to an untimed specification. One can prove that all
real-time specifications can be written in this form. In fact, it suffices to use
RTBound formulas only for subactions of the next-state action. However, this
result is of theoretical interest only because the resulting specification can be
incredibly complicated. The operators RTnow and RTBound solve all the real-
time specification problems that I have encountered; but I haven’t encountered
enough to say with confidence that they’re all you will ever need. Still, I am
quite confident that, whatever real-time properties you have to specify, it will
not be hard to express them in TLAT.

Chapter 10

Composing Specifications

Systems are usually described in terms of their components. In the specifications
we’ve written so far, the components have been represented as separate disjuncts
of the next-state action. For example, the FIFO system pictured on page 35 is
specified in module InnerFIFO on page 38 by representing the three components
with the following disjuncts of the next-state action:

Sender: I msg € Message : SSend(msg)
Buffer: BufRcv V BufSend
Receiver: RRcv

In this chapter, we learn how to specify the components separately and compose
their specifications to form a single system specification. Most of the time,
there’s no point doing this. The two ways of writing the specification differ by
only a few lines—a trivial difference in a specification of hundreds or thousands
of lines. Still, you may encounter a situation in which it’s better to specify a
system as a composition.

First, we must understand what it means to compose specifications. We usu-
ally say that a TLA formula specifies the correct behavior of a system. However,
as explained in Section 2.3 (page 18), a behavior actually represents a possible
history of the entire universe, not just of the system. So, it would be more
accurate to say that a TLA formula specifies a universe in which the system
behaves correctly. Building a system that implements a specification F' means
constructing the universe so it satisfies F. (Fortunately, correctness of the sys-
tem depends on the behavior of only a tiny part of the universe, and that’s the
only part we must build.) Composing two systems whose specifications are F
and G means making the universe satisfy both F' and G, which is the same
as making it satisfy F' A G. Thus, the specification of the composition of two
systems is the conjunction of their specifications.

135

136 CHAPTER 10. COMPOSING SPECIFICATIONS

Writing a specification as the composition of its components therefore means
writing the specification as a conjunction, each conjunct of which can be viewed
as the specification of a component. While the basic idea is simple, the details
are not always obvious. To simplify the exposition, I begin by considering only
safety properties, ignoring liveness and largely ignoring hiding. Liveness and
hiding are discussed in Section 10.6.

10.1 Composing Two Specifications

Let’s return once again to the simple hour clock, with no liveness or real-time
requirement. In Chapter 2, we specified such a clock whose display is represented
by the variable hr. We can write that specification as

(hr €1..12) A O[HCN (hr)]pr
where HCN is defined by

A

HCN(h) 2 b = (h%12)+1

Now let’s write a specification TwoClocks of a system composed of two separate
hour clocks, whose displays are represented by the variables z and y. (The two
clocks are not synchronized and are completely independent of one another.) We
can just define TwoClocks to be the conjunction of the two clock specifications

TwoClocks = A (z€1..12) A O[HCN(z)],
A(yel..12) A O[HCN(y)ly

The following calculation shows how we can rewrite TwoClocks in the usual form
as a “monolithic” specification with a single next-state action:!

Two Clocks
=AN(zel..12)A(yel.. 12)

A O[HCN (z)], A O[HCN (y)],

=AN@el..12)A(yel..12) Because O(F A G) = (OF) A (OG).
A B ([HCN(z)ls A [HCN(y)]y)

ANzel..12) A(yel..12) By definition of [...]; and [...],.
AO(ANHCN(z)V ' ==z
NHON(y) Vy' =y)

IThis calculation is informal because it contains formulas that are not legal TLA—namely,
ones of the form OA where A is an action that doesn’t have the syntactic form [B],. However,
it can be done rigorously.

10.1. COMPOSING TWO SPECIFICATIONS

137

=Azel..12)A(yel..12) Because:

AV A V A1 AB
O (Vv HON(z) A HCN(y) v\ _ [vainz,
V HCN(z) A (y' = y) AVB1| = \VA2AB;
V HCN(y) A (' = z) Vv B2 V A2 A B2
V' =z)A (Y =y))

=AN(zel..12)A(yel.. 12) By definition of [...](4 4)-
O[Vv HCN(z) AN HCN (y)
V HON(z) A (y' = y)
V HCON(y) A (2" =) |(a,y)

Thus, TwoClocks is equivalent to Init A O[TCNut], ,, where the next-state
action TCNzt is

TCnzt = VvV HCN(z) A HCN(y)
V HCN(z) A (y' = y)
V HCN(y) A (z' = z)

This next-state action differs from the ones we are used to writing because of the
disjunct HCN (xz) A HCN(y), which represents the simultaneous advance of the
two displays. In the specifications we have written so far, different components
never act simultaneously.

Up until now, we have been writing what are called interleaving specifica-
tions. In an interleaving specification, each step represents an operation of only
one component. For example, in our FIFO specification, a (nonstuttering) step
represents an action of either the sender, the buffer, or the receiver. For want of a
better term, we describe as noninterleaving a specification that, like TwoClocks,
does permit simultaneous actions by two components.

Suppose we want to write an interleaving specification of the two-clock sys-
tem as the conjunction of two component specifications. One way is to replace
the next-state actions HCN (z) and HCN(y) of the two components by two ac-
tions HCNzx and HCNy so that, when we perform the analogous calculation to
the one above, we get

(/\ (rel..12) A D[HCNZ‘]I) A (x[eleCN)/\/\((y € 1) 12)

z y
From the calculation above, we see that this equivalence holds if the following
three conditions are satisfied: (i) HCNz implies HCN (z), (ii) HCNy implies
HCN (y), and (iii) HCNx A HCNy implies ' = z or y' = y. (Condition (iii)
implies that the disjunct HCNxz A HCNy of the next-state action is subsumed by
one of the disjuncts HCNz A (y' = y) and HCNy A (2’ = z).) The common way

138 CHAPTER 10. COMPOSING SPECIFICATIONS

of satisfying these conditions is to let the next-state action of each clock assert
that the other clock’s display is unchanged. We do this by defining

HCNz = HCN(z)A(y' =y) HCNy = HCN(y) A (z' =)
Another way to write an interleaving specification is simply to disallow si-
multaneous changes to both clock displays. We can do this by taking as our
specification the formula

TwoClocks A O[(z' = z)V (v = y)](x,y)

The second conjunct asserts that any step must leave z or y (or both) unchanged.
Everything we have done for the two-clock system generalizes to any system
comprising two components. The same calculation as above shows that if

(’Ull = Ul) A\ (1)2/ = 1)2) = (v’ = 1}) This asserts that v is unchanged iff both v; and vg are.
then

NI N Iy
(10.1) AL A O[N]y, _ [AO[V NIAN,
’ A Iy A D[NQ]@Q vV N1 A ('UQ/ = Uz)
vV NQ A (Ull = Ul)]v

for any state predicates I; and I, and any actions N1 and No. The left-hand side
of this equivalence represents the composition of two component specifications
if v, is a tuple containing the variables that describe the k" component, for
k =1,2, and v is the tuple of all the variables.

The equivalent formulas in (10.1) represent an interleaving specification if
the first disjunct in the next-state action of the right-hand side is redundant, so
it can be removed. This is the case if N3 A No implies that v; or v, is unchanged.
The usual way to ensure that this condition is satisfied is by defining each Ny so
it implies that the other component’s tuple is left unchanged. Another way to
obtain an interleaving specification is by conjoining the formula O[(v1’ = v1) V
(v2" = v2)]o.

10.2 Composing Many Specifications

We can generalize (10.1) to the composition of any set C' of components. Be-
cause universal quantification generalizes conjunction, the following rule is a
generalization of (10.1):

Composition Rule For any set C| if

(Vk e C : ’Uk/ = Uk) = (’U/ = 1)) This asserts that v is unchanged iff all the vy are.

10.2. COMPOSING MANY SPECIFICATIONS

139

then

(Vke C: Iy AO[N,,) =

AVEke O : I
A O VikeC: Ny A (V’LEC\{]{?}’U/:UZ)
V3ijeC:(i#5) AN; AN; AFy

for some actions Fj;.

The second disjunct of the next-state action is redundant, and we have an in-
terleaving specification, if each N; implies that v; is unchanged, for all j # .
However, for this to hold, /N; must mention v; for components j other than <.
You might object to this approach—either on philosophical grounds, because
you feel that the specification of one component should not mention the state of
another component, or because mentioning other component’s variables compli-
cates the component’s specification. An alternative approach is simply to assert
interleaving. You can do this by conjoining the following formula, which states
that no step changes both v; and v;, for any 7 and j with 4 # j:

O[3ke C :Vie C\{k} : vi' =v;],

This conjunct can be viewed as a global condition, not attached to any compo-
nent’s specification.

For the left-hand side of the conclusion of the Composition Rule to represent
the composition of separate components, the vi need not be composed of sep-
arate variables. They could contain different “parts” of the same variable that
describe different components. For example, our system might consist of a set
Clock of separate, independent clocks, where clock k’s display is described by
the value of hr[k]. Then v would equal hr[k]. It’s easy to specify such an array
of clocks as a composition. Using the definition of HCN on page 136 above, we
can write the specification as

(10.2) ClockArray = Yk € Clock : (hr[k] € 1..12) A O[HCN (hr[k])]p s

This is a noninterleaving specification, since it allows simultaneous steps by
different clocks.

Suppose we wanted to use the Composition Rule to express ClockArray as
a monolithic specification. What would we substitute for v? Our first thought
is to substitute hr for v. However, the hypothesis of the rule requires that v
must be left unchanged iff Ar[k] is left unchanged, for all k£ € Clock. However,
as explained in Section 6.5 on page 72, specifying the values of hr[k] for all
k € Clock does not specify the value of hr. It doesn’t even imply that hr is a
function. We must substitute for v the function Arfen defined by

(10.3) hrfen = [k € Clock — hr[k]]

140 CHAPTER 10. COMPOSING SPECIFICATIONS

The function Arfcn equals hr iff hr is a function with domain Clock. Formula
ClockArray does not imply that hr is always a function. It specifies the possible
values of hr[k], for all k € Clock, but it doesn’t specify the value of hr. Even if we
changed the initial condition to imply that Ar is initially a function with domain
Clock, formula ClockArray would not imply that hr is always a function. For
example, it would still allow “stuttering” steps that leave each hr[k] unchanged,
but change hr in unknown ways.

‘We might prefer to write a specification in which hr is a function with domain
Clock. One way of doing this is to conjoin to the specification the formula
OlsFenOn(hr, Clock), where IsFenOn(hr, Clock) asserts that hr is an arbitrary
function with domain Clock. The operator IsFenOn is defined by

IsFenOn(f, S) = f=[z e S flz]]
We can view the formula OIsFenOn(hr, Clock) as a global constraint on hr,
while the value of hr[k] for each component k is described by that component’s
specification.

Now, suppose we want to write an interleaving specification of the array of
clocks as the composition of specifications of the individual clocks. In general,
the conjunction in the Composition Rule is an interleaving specification if each
Ny, implies that v; is unchanged, for all i # k. So, we want the next-state action
Ny of clock k to imply that hr[i] is unchanged for every clock ¢ other than k.
The most obvious way to do this is to define N to equal

A hr'lk] = (hrlk] % 12) +1
AY i€ Clock\{k} : hr'[i] = hr[i]
We can express this formula more compactly using the EXCEPT construct. This The EXCEPT con-

construct applies only to functions, so we must choose whether or not to require ?t“SICt is eXPIQained
hr to be a function. If hr is a function, then we can let ;. equal in Section 5.2 on

page 48.
(10.4) hr' = [hr EXCEPT ![k] = (hr[k] % 12) + 1]

As noted above, we can ensure that hr is a function by conjoining the formula
OIsFenOn(hr, Clock) to the specification. Another way is to define the state
function hrfen by (10.3) on the preceding page and let N (k) equal

hrfen” = [hrfen EXCEPT ![k] = (hr[k] % 12) + 1]

A specification is just a mathematical formula; as we’ve seen before, there are
often many equivalent ways of writing a formula. Which one you choose is
usually a matter of taste.

10.3 The FIFO

Let’s now specify the FIFO, described in Chapter 4, as the composition of its
three components—the Sender, the Buffer, and the Receiver. We start with the

10.3. THE FIFO

141

internal specification, in which the variable ¢ occurs—that is, ¢ is not hidden.
First, we decide what part of the state describes each component. The variables
in and out are channels. Recall that the Channel module (page 30) specifies
a channel chan to be a record with wval, rdy, and ack components. The Send
action, which sends a value, modifies the val and rdy components; the Rcv
action, which receives a value, modifies the ack component. So, the components’
states are described by the following state functions:

Sender: (in.val, in.rdy)
Buffer: (in.ack, ¢, out.val, out.rdy)
Receiver: out.ack

Unfortunately, we can’t reuse the definitions from the InnerFIFO module on
page 38 for the following reason. The variable ¢, which is hidden in the final
specification, is part of the Buffer component’s internal state. Therefore, it
should not appear in the specifications of the Sender or Receiver component.
The Sender and Receiver actions defined in the InnerFIFO module all mention ¢,
so we can’t use them. We therefore won’t bother reusing that module. However,
instead of starting completely from scratch, we can make use of the Send and
Rcv actions from the Channel module on page 30 to describe the changes to in
and out.

Let’s write a noninterleaving specification. The next-state actions of the
components are then the same as the corresponding disjuncts of the Next ac-
tion in module InnerFIFO, except that they do not mention the parts of the
states belonging to the other components. These contain Send and Rcv actions,
instantiated from the Channel module, which use the EXCEPT construct. As
noted above, we can apply EXCEPT only to functions—and to records, which are
functions. We therefore add to our specification the conjunct

O(IsChannel(in) A IsChannel(out))

where IsChannel(c) asserts that ¢ is a channel—that is a record with wval,
ack, and rdy fields. Since a record with val, ack, and rdy fields is a func-
tion whose domain is {“val”, “ack”, “rdy”}, we can define IsChannel(c) to equal
IsFenOn(e, {“val”, “ack”, “rdy”}). However, it’s just as easy to define formula
IsChannel(c) directly by

IsChannel(c) = ¢ = lack — c.ack, val — c.val, rdy — c.rdy]

In writing this specification, we face the same problem as in our original FIFO
specification of introducing the variable ¢ and then hiding it. In Chapter 4, we
solved this problem by introducing ¢ in a separate InnerFIFO module, which
is instantiated by the FIFO module that defines the final specification. We
do essentially the same thing here, except that we introduce ¢ in a submodule

Section 5.2 on
page 48 explains
why records are
functions.

142 CHAPTER 10. COMPOSING SPECIFICATIONS

instead of in a completely separate module. All the symbols declared and defined
at the point where the submodule appears can be used within it. The submodule
itself can be instantiated in the containing module anywhere after it appears.
(Submodules are used in the RealTimeHourClock and RTMemory specifications
on pages 121 and 126 of Chapter 9.)

There is one small problem to be solved before we can write a composite
specification of the FIFO—how to specify the initial predicates. It makes sense
for the initial predicate of each component’s specification to specify the initial
values of its part of the state. However the initial condition includes the require-
ments in.ack = in.rdy and out.ack = out.rdy, each of which relates the initial
states of two different components. (These requirements are stated in module
InnerFIFO by the conjuncts InChan!Init and OutChan!Init of the initial pred-
icate Init.) There are three ways of expressing a requirement that relates the
initial states of multiple components:

e Assert it in the initial conditions of all the components. Although sym-
metric, this seems needlessly redundant.

e Arbitrarily assign the requirement to one of the components. This intu-
itively suggests that we are assigning to that component the responsibility
of ensuring that the requirement is met.

e Assert the requirement as a conjunct separate from either of the component
specifications. This intuitively suggests that it is an assumption about
how the components are put together, rather than a requirement of either
component.

When we write an open-system specification, as described in Section 10.7 below,
the intuitive suggestions of the last two approaches can be turned into formal
requirements. I've taken the last approach and added

(in.ack = in.rdy) A (out.ack = out.rdy)

as a separate condition. The complete specification is in module Composite FIFO
of Figure 10.1 on the next page. Formula Spec of this module is a noninterleaving
specification; for example, it allows a single step that is both an InChan!Send
step (the sender sends a value) and an OutChan!Rcv step (the receiver acknowl-
edges a value). Hence, it is not equivalent to the interleaving specification Spec
of the FIFO module on page 41, which does not allow such a step.

10.4 Composition with Shared State

Thus far, we have been considering disjoint-state compositions—ones in which
the components are represented by disjoint parts of the state, and a compo-

10.4. COMPOSITION WITH SHARED STATE 143

: MODULE CompositeFIFO

EXTENDS Naturals, Sequences
CONSTANT Message
VARIABLES n, out

!

I

InChan £ INSTANCE Channel WITH Data + Message, chan + in
A

OutChan INSTANCE Channel WITH Data < Message, chan < out
1

SenderInit = (in.rdy € {0, 1}) A (in.val € Message) The Sender’s
Sender = SenderInit A O[3 msg € Message : InChan!Send(msg)] (in.val, in.rdy) IR,

!

I

: MODULE InnerBuf

VARIABLE ¢q
BufferInit = A in.ack € {0, 1} The Buflor’s internal
specification, with ¢
Ngq= <> visible.
A (out.rdy € {0, 1}) A (out.val € Message)
BufRcv = InChan! Rcv

q' = Append(q, in.val)
UNCHANGED (out.val, out.rdy)

AN
A
A
BufSend = A q# ()
A OutChan!Send(Head(q))
A ¢ = Tail(q)
A UNCHANGED in.ack
InnerBuffer = BufferInit A O[BufRcv V BufSend](in.ack, g, out.val, out.rdy)
L
Buf(q) £ INSTANCE InnerBuf The Buffer’s external specification

_Bujfer = 3¢ : Buf(q)!InnerBuffer with ¢ hidden.

RecewerInit = out.ack € {0, 1} The Receiver’s

_ Receiver = ReceiverInit A O[OutChan! Rev)out. ack cipetiilesEon.

IsChannel(c) = ¢ = [ack — c.ack, val — c.val, rdy — c.rdy]

Spec 2 A O(IsChannel(in) A IsChannel(out)) Asserts that in and out are always records.
A (in.ack = in.rdy) A (out.ack = out.rdy) Relates different components’ initial states.

A Sender N Buffer N Receiver Conjoins the three specifications.

Figure 10.1: A noninterleaving composite specification of the FIFO.

144 CHAPTER 10. COMPOSING SPECIFICATIONS

nent’s next-state action describes changes only to its part of the state.? We now
consider the case when this may not be possible.

10.4.1 Explicit State Changes

We first examine the situation in which some part of the state cannot be parti-
tioned among the different components, but the state change that each compo-
nent performs is completely described by the specification. As an example, let’s
again consider a Sender and a Receiver that communicate with a FIFO buffer.
In the system we studied in Chapter 4, sending or receiving a value required two
steps. For example, the Sender executes a Send step to send a value, and it must
then wait until the buffer executes a Rcv step before it can send another value.
We simplify the system by replacing the Buffer component with a variable buf
whose value is the sequence of values sent by the Sender but not yet received
by the Receiver. This replaces the three-component system pictured on page 35
with this two-component one:

buf

Receiver

Y

Sender

The Sender sends a value by appending it to the end of buf; the Receiver receives
a value by removing it from the head of buf.

In general, the Sender performs some computation to produce the values
that it sends, and the Receiver does some computation on the values that it
receives. The system state consists of buf and two tuples s and 7 of variables
that describe the Sender and Receiver states. In a monolithic specification, the
system’s next-state action is a disjunction Sndr V Rcvr, where Sndr and Rcur
describe steps taken by the Sender and Receiver, respectively. These actions are
defined by

Sndr = Revr 2
VA buf’ = Append(buf, ...) VA buf # ()
A SComm A buf’ = Tail (buf)
A UNCHANGED r A RComm
VvV A SCompute A UNCHANGED s
A UNCHANGED ({buf,) V' A RCompute

A UNCHANGED ({buf,s)

2In an interleaving composition, a component specification may assert that the state of
other components is not changed.

10.4. COMPOSITION WITH SHARED STATE

145

for some actions SComm, SCompute, RComm, and RCompute. For simplicity,
we assume that neither Sndr nor Rcvr allows stuttering actions, so SCompute
changes s and RCompute changes r. We now write the specification as the
composition of separate specifications of the Sender and Receiver.

Splitting the initial predicate is straightforward. The initial conditions on
s belong to the Sender’s initial predicate; those on r belong to the Receiver’s
initial predicate; and the initial condition buf = () can be assigned arbitrarily
to either of them.

Now let’s consider the next-state actions NS and NR of the Sender and
Receiver components. The trick is to define them by

NS = SndrV (oA (s =s)) NR = Reur V (pA(r' =)

where o and p are actions containing only the variable buf. Think of o as
describing possible changes to buf that are not caused by the Sender, and p as
describing possible changes to buf that are not caused by the Receiver. Thus,
NS permits any step that is either a Sndr step or one that leaves s unchanged
and is a change to buf that can’t be “blamed” on the Sender.

Suppose ¢ and p satisfy the following three conditions:

o Vd : (buf’ = Append(buf,d)) = p
A step that appends a value to buf is not caused by the Receiver.

o (buf # () A (buf’ = Tail(buf)) = o
A step that removes a value from the head of buf is not caused by the
Sender.

e (oA p) = (buf’ = buf)
A step that is caused by neither the Sender nor the Receiver cannot change

buf .
Using obvious relations such as®
(buf’ = buf) A (buf # () A (buf’ = Tail(buf)) = FALSE
a computation like the one by which we derived (10.1) shows
O[NST(buf, sy A DINR](pug,ry = O[SndrV Reor]puf, s, r

Thus, NS and NR are suitable next-state actions for the components, if we
choose ¢ and p to satisfy the three conditions above. There is considerable
freedom in that choice. The strongest possible choices of o and p are ones that
describe exactly the changes permitted by the other component:

(buf # ()) A (buf’ = Tail(buf))
3d : buf’ = Append(buf, d)

g

p

e 1>

3These relations are true only if buf is a sequence. A rigorous calculation requires the use
of an invariant to assert that buf actually is a sequence.

146 CHAPTER 10. COMPOSING SPECIFICATIONS

We can weaken these definitions any way we want, so long as we maintain the
condition that o A p implies that buf is unchanged. For example, we can define
o as above and let p equal —o. The choice is a matter of taste.

I’ve been describing an interleaving specification of the Sender/Receiver sys-
tem. Now let’s consider a noninterleaving specification—one that allows steps
in which both the Sender and the Receiver are computing. In other words, we
want the specification to allow SCompute A RCompute steps that leave buf un-
changed. Let SSndr be the action that is the same as Sndr except it doesn’t
mention r, and let RRcvur be defined analogously. We then have

Sndr = SSndr A (r' =) Rcor = RRcur A (s' = s)
A monolithic noninterleaving specification has the next-state action
Sndr vV Rcor V (SSndr A RRevr A (buf’ = buf))

It is the conjunction of component specifications having the next-state actions
NS and NR defined by

NS = SSndr V (o A(s' =s)) NR = RReur V (pA(r' =7))

where o and p are as above.

This two-process situation generalizes to the composition of any set C' of
components that share a variable or tuple of variables w. The interleaving
case generalizes to the following rule, in which N} is the next-state action of
component k, the action uj describes all changes to w that are attributed to
some component other than k, the tuple v, describes the private state of k, and
v is the tuple formed by all the vy:

Shared-State Composition Rule The four conditions
1. VEe C v/ =wv) = (vVV=1)
v is unchanged iff the private state vy of every component is unchanged.

2. VZ,]CGC : Nk/\(l#k)i(’l)l/:’l)l)

The next-state action of any component k leaves the private state v; of all
other components ¢ unchanged.

3.Vi,ke C: Ny A(w A w)A(i £ k)=

A step of any component k that changes w is a u; step, for any other compo-
nent 1.

4. Vke C : u) = (v =w)
A step is caused by no component iff it does not change w.
imply
(Vk eC: I N D[Nk V (,uk A (’Uk/ = ’Uk))]w,’“k))
= (VkeC: L) AD[EFkeEC : NiJiuw o

10.4. COMPOSITION WITH SHARED STATE

147

Assumption 2 asserts that we have an interleaving specification. If we drop that
assumption, then the right-hand side of the conclusion may not be a sensible
specification, since a disjunct N, may allow steps in which a variable of some
other component assumes arbitrary values. However, if each Ny correctly deter-
mines the new values of component k’s private state vy, then the left-hand side
will be a reasonable specification, though possibly a noninterleaving one (and
not necessarily equivalent to the right-hand side).

10.4.2 Composition with Joint Actions

Consider the linearizable memory of Chapter 5. As shown in the picture on
page 45, it is a system consisting of a collection of processors, a memory, and
an interface represented by the variable memlInt. We now take it to be a two-
component system, where the set of processors forms one component, called the
environment, and the memory is the other component. Let’s neglect hiding for
now and consider only the internal specification, with all variables visible. We
want to write the specification in the form

(10.5) (IE A O[NE]yg) A (IM A O[NM],)

where E refers to the environment component (the processors) and M to the
memory component. The tuple vE of variables includes memlInt and the vari-
ables of the environment component; the tuple vM includes memInt and the
variables of the memory component. We must choose the formulas IE, NE,
etc. so that (10.5), with internal variables hidden, is equivalent to the memory
specification Spec of module Memory on page 53.

In the memory specification, communication between the environment and
the memory is described by an action of the form

Send(p, d, memlInt, memlInt') or Reply(p, d, memInt, memlInt')

where Send and Reply are unspecified operators declared in the MemorylInterface
module (page 48). The specification says nothing about the actual value of
memlInt. So, not only do we not know how to split memlInt into two parts that
are each changed by only one of the components, we don’t even know exactly
how memlInt changes.

The trick to writing the specification as a composition is to put the Send
and Reply actions in the next-state actions of both components. We represent
the sending of a value over memlint as a joint action performed by both the
memory and the environment. The next-state actions have the following form:

NM dp € Proc : MRqst(p) V MRsp(p) V MlInternal(p)
NE = 3p e Proc : ERgst(p) V ERsp(p)

148 CHAPTER 10. COMPOSING SPECIFICATIONS

where an MRgst(p)A\ERqst(p) step represents the sending of a request by proces-
sor p (part of the environment) to the memory, an MRsp(p)AERsp(p) step repre-
sents the sending of a reply by the memory to processor p, and an MInternal(p)
step is an internal step of the memory component that performs the request.
(There are no internal steps of the environment.)

The sending of a reply is controlled by the memory, which chooses what
value is sent and when it is sent. The enabling condition and the value sent are
therefore specified by the MRsp(p) action. Let’s take the internal variables of
the memory component to be the same variables mem, ctl, and buf as in the
internal monolithic memory specification of module InternalMemory on pages
52 and 53. We can then let MRsp(p) be the same as the action Rsp(p) defined
in that module. The ERsp(p) action should always be enabled, and it should
allow any legal response to be sent. A legal response is an element of Val or the
special value NoVal, so we can define ERsp(p) to equal?

A Jrsp € Val U{NoVal} : Reply(p, rsp, memlInt, memliInt’)
VAN

where the “...” describes the new values of the environment’s internal variables.

The sending of a request is controlled by the environment, which chooses
what value is sent and when it is sent. Hence, the enabling condition should
be part of the ERgst(p) action. In the monolithic specification of the Internal-
Memory module, that enabling condition was ctl[p] = “rdy”. However, if ctl
is an internal variable of the memory, it can’t also appear in the environment
specification. We therefore have to add a new variable whose value indicates
whether a processor is allowed to send a new request. Let’s use a Boolean
variable rdy, where rdy[p] is true iff processor p can send a request. The value
of rdy[p] is set false when p sends a request and is set true again when the
corresponding response to p is sent. We can therefore define ERgst(p), and
complete the definition of ERsp(p), as follows:

ERqst(p) = A rdy[p]
A dreq € MReq : Send(p, req, memlInt, memlInt’)
A rdy’ = [rdy EXCEPT ![p] = FALSE]

ERsp(p) = A 3rsp € ValU{NoVal} :
Reply(p, rsp, memlInt, memiInt’)
A rdy’ = [rdy EXCEPT ![p] = TRUE]

The memory’s MRgst(p) action is the same as the Req(p) action of the Internal-
Memory module, except without the enabling condition ctl[p] = “rdy”.

4The bound on the 3 isn’t necessary. We can let the processor accept any value, not just
a legal one, by taking Irsp : Reply(p, rsp, memInt, memlInt’) as the first conjunct. However,
it’s generally better to use bounded quantifiers when possible.

10.4. COMPOSITION WITH SHARED STATE

149

Finally, the memory’s internal action MInternal(p) is the same as the Do(p)
action of the InternalMemory module.

The rest of the specification is easy. The tuples vE and vM are (memlInt, rdy)
and (memlInt, mem, ctl, buf), respectively. Defining the initial predicates IE
and IM is straightforward, except for the decision of where to put the initial
condition memlInt € InitMemlInt. We can put it in either IE or IM, in both,
or else in a separate conjunct that belongs to neither component’s specifica-
tion. Let’s put it in IM, which then equals the initial predicate IInit from the
InternalMemory module. The final environment specification is obtained by hid-
ing rdy in its internal specification; the final memory component specification
is obtained by hiding mem, ctl, and buf in its internal specification. The com-
plete specification appears in Figure 10.2 on the next page. I have not bothered
to define IM, MRsp(p), or MInternal(p), since they equal IInit, Rsp(p), and
Do(p) from the InternalMemory module, respectively.

What we’ve just done for the environment-memory system generalizes nat-
urally to joint-action specifications of any two-component