L

A Proof of Deadlock Freedom

The proof uses the following additional definitions:

InNCS(i) = peli] = “ncs”

Fuairness = Vi € Procs : WF yaps((pcfi] # “ncs”) A p(i))
SomeTrying = 3i € Procs : Trying(i)

NoneInCS = Vi € Procs : ~InCS(i)

Theorem Spec = DeadlockFree
1. Spec = OLInv

PRrROOF: This is a standard invariance proof, which is omitted.

2. SUFFICES ASSUME: OLInv A O[Next|yors A Fairness A ONonelnCS
ProveE: SomeTrying ~» FALSE

ProOOF: By 1 and the definition of Spec, since DeadlockFree equals
SomeTrying ~ - NonelnCS, which we prove by assuming SomeTrying and
ONonelnCS and obtaining a contradiction.

3. Trying(i) = OTrying(i) and = Trying(i) ~ OInNCS (i) vV O Trying (i), for all
1 € Proc.

PRrOOF: Fairness implies —Trying(i) ~ InNCS(i), the program implies “The program” is an
InNCS (i) ~ Trying(i) V OInNCS(i), and the program and the assumption abbreviation for the

ONoneInCS imply Trying(i) = OTrying (7). assumptions OLInv and
O[Next]vars-

4. SomeTrying ~ A OSomeTrying
A Yi € Procs : OTrying(i) V OInNCS(1)
DEFINE: T(i) = Trying(i)
ST =
4.1. ST~»0OST
PRroOF: By step 3.
42. ST = (QSTAT(i)) v (OSTA-T(i))
PRrROOF: Obvious.
4.3. OSTA T(i) ~ OSTAOT(7)
PROOF: By step 3.
4.4. OSTA-T(i) ~ OSTA(OInNCS(i) vOT(1))
PRrOOF: By step 3.
4.5. Q.E.D.
PRrROOF: Steps 4.1-4.4 and leads-to induction with the following proof

SomeTrying



L

graph imply ST ~» OST A (OT (4
(OST) A T(2)

~ (OST) A —T()

~—

v OInNCS(1)) for each i € Proc.
(

0ST) AOT(7) N

ST — OST (OS8T) A (OT (i) VOInNCS(i))

PN

(OST) A OInNCS(5)

The result follows from this, since Vi € Proc: ST ~» OP(i) implies
ST ~» Yi € Proc:0P(i) for any P(i) because Proc is a finite set.

DEFINE: Never(i) = OTrying(i) A O-z[i]
Always(i) = OTrying(i) A Oxz[i]
Blinking(i) = OTrying(i) A OCz[i] A DO—z[i]

5. OSomeTrying ~ A OSomeTrying
A Vi € Procs :
OInNCS (i) V Never(i) V Always(i) V Blinking (1)

PRrROOF: By step 4 and the tautology:
TRUE ~» OF vVO-FV (OOF AOOF)

which asserts that either F' is eventually forever true or forever false, or else
it is infinitely often true and infinitely often false.

6. SUFFICES ASSUME: A OSomeTrying
A Yi € Procs :
OInNCS(i) V Never(i) V Always(i) V Blinking (i)
PROVE: FALSE

PRroOOF: By step 5, this provides the desired contradiction.

7. Yi € Proc : = Blinking(i)

PROOF: We assume Blinking(j) is true for some j and obtain a contradiction.
Let i be the smallest such j. By OTrying(i) A OO—z[i], process i must
eventually execute e3, find z[other] = TRUE, and reach e5, which by LiInv
implies ¢ > other. Hence Blinking(other) is false (because ¢ is the smallest
J with Blinking(j) true) and z[other] = TRUE implies Never(other) is false.
Therefore, the step 6 assumption implies that Always(other) is true, which
implies Oz [other]. This implies that ¢ must stay forever at e5, making O—z][i]
true. This is a contradiction because Blinking(i) implies OCx[i].

8. = (3i € Procs : OTrying(i) A Oz[i])

PROOF: Let S be the set of processes ¢ such that OTrying(i) A Oz[i] holds.
We assume S is nonempty and obtain a contradiction. Let i be the smallest
element in S. By OTrying(:) A Ox[i], process i must eventually reach e6 and



-~

L

remain there forever, with other > i, so other is not in S. By step 7 and the
step 6 assumption, this implies O-z[other], so ¢ must eventually execute e6
and reach e2, which is a contradiction.

. = (31 € Procs : OTrying(i) A O-z[i])

PRrOOF: We assume that there is an ¢ such that OTrying(i) A O-z[i] holds
and obtain a contradiction. The assumption implies that ¢ eventually reaches
and remains forever at e5. However, steps 7 and 8 and the step 6 assumption
imply that O-z[j] holds for all processes j, so fairness implies that process 4
cannot remain forever at e5, which is the required contradiction.

10. Q.E.D.

PROOF: Steps 7-9 and the second conjunct of the step 6 assumption im-
ply Vi € Procs : OInNCS(i), which is a contradiction because the step 6
assumption also implies OSomeTrying.



