L

The Principles and Specification Tracks

1

Introduction

1.1 Concurrent Computation
1.2 Modeling Computation
1.3 Specification

1.4 Systems and Languages

The One-Bit Clock

2.1 The Clock’s Behaviors

2.2 Describing the Behaviors

2.3 Writing the Specification

2.4 The Pretty-Printed Version of Your Spec

2.5 Checking the Specification

2.6 Computing the Behaviors from the Specification
2.7 Other Ways of Writing the Behavior Specification
2.8 Specifying the Clock in PlusCal

The Die Hard Problem

3.1 Representing the Problem in TLAT
3.2 Applying TLC

3.3 Expressing the Problem in PlusCal

Euclid’s Algorithm

4.1 The Greatest Common Divisor
4.1.1 Divisors
4.1.2 CHOOSE and the Maximum of a Set
4.1.3 The GCD Operator

4.2 Comments

4.3 The Algorithm

4.4 The TLA™ Translation

4.5 Checking Safety

4.6 Checking Liveness

4.7 The Translation Revisited

4.8 The Grain of Atomicity

4.9 Why Euclid’s Algorithm Is Correct
4.9.1 Proving Invariance
4.9.2 Verifying GCD1-GCD3
4.9.3 Proving Termination

4.10 Euclid’s Algorithm for Sets

L

5

6

The Generalized Die Hard Problem
5.1 The PlusCal Representation

5.2 Checking the Algorithm

5.3 The TLAT Translation

Alternation

6.1 The Problem

6.2 The One-Bit Clock Revisited

6.3 Specifying Alternation: Safety

6.4 Specifying Alternation: Liveness

6.5 The Two-Phase Handshake Protocol

6.6 Refinement

6.7 Refinement and Stuttering
6.7.1 Adding Steps
6.7.2 Temporal Logic and Stuttering
6.7.3 A Finer-Grained Algorithm

6.8 Temporal Logic and Refinement

6.9 Alternation Revisited

6.10 Round-Robin Synchronization
6.10.1 The One-Bit Clock Revisited Again
6.10.2 An N-Valued Clock
6.10.3 An Implementation of the N-Valued Clock
6.10.4 Round-Robin Synchronization

-~

L

1 Introduction

1.1 Concurrent Computation

Concurrent means occurring at the same time. Concurrency is the noun form of
this adjective; it means the existence of multiple things happening at the same
time.

Concurrent computation means computation in which different operations
can occur concurrently. These days, most computation is performed in response
to real-world actions—perhaps when a user moves a mouse or clicks on a mouse
button. Concurrency in the real world means that concurrent computation
cannot be avoided. Your computer cannot prevent you from clicking on the
mouse button while you are moving the mouse.

Parallel computation is a special kind of concurrent computation in which
different parts of a single task are performed concurrently to speed up execution
of the task. In principle, parallelism is avoidable because we can perform the
separate parts one at a time. It may not be avoidable in practice because without
it, executing the task may take too long. However, parallelism is an inherently
simpler form of concurrency because we, rather than the external world, control
when things happen.

1.2 Modeling Computation

Concurrent computation is computation in which different operations can occur
concurrently, but what is computation? A simple answer is: computation is
what a computer does. This answer is unsatisfactory for several reasons:

e It’s hard to define what a computer is. Is a cell phone a computer? What
about an MP3 player?

e These days, computations are often performed by networks of separate
computers.

e Computations can be performed by non-physical things—in particular, by
programs and algorithms.

A better definition is that computation is what a digital system does, where
computers, MP3 players, computer networks, programs, and algorithms are all
digital systems. What distinguishes a digital system is that its computation
consists of a collection of discrete events.

A pocket calculator is a digital system because its computation consists of
discrete events like the pressing of a button and the writing of a number on its
display. But are these really discrete events? Changing the number shown on
the display requires a few milliseconds, during which time the display changes

-~

L

continuously from showing its old value to showing its new one. The user of the
calculator thinks of it as a single event. The designer of the display probably
doesn’t. We consider something to be a digital system if we think of its compu-
tation as consisting of discrete events. However, instead of saying that we are
considering the calculator to be a digital system, we simply say that it #s one.
Moreover, since this hyperbook is about digital systems, I will almost always
omit the “digital” and simply write system to mean digital system.

What exactly are the discrete events of the pocket calculator system? Is
entering the number 3 on the keypad a single event? Or are depressing the 3
and releasing it two separate events? A user of the calculator probably considers
entering 3 to be a single event; to the keypad’s designer, they are separate events.

This hyperbook is not about physical systems like calculators. It is about
abstract systems, which are abstractions of digital systems obtained by consid-
ering their computations to consist of certain discrete events. The principles we
study are principles of abstract systems.

How do we decide what abstraction of a physical system to use? Should
entering the number 3 be one event or two? The answer depends on the purpose
of the abstraction. The abstraction in which entering a number is a single event
is simpler. However, it cannot describe the physical possibility of depressing
the 3 and then depressing the 4 before releasing the 3. The keypad engineer
cares about this possibility, so the abstraction does not serve her purpose and
she needs separate depress and release events. The user trying to understand
how to use the calculator probably doesn’t care what happens if two keys are
depressed at the same time, so he will prefer an instruction manual that adopts
the simpler abstraction.

This kind of abstraction is common to all sciences. Astronomers studying
planetary motion often use an abstraction in which a planet is represented as
a point mass. However, that abstraction is not satisfactory if tidal effects are
important.

Having fewer separate events makes an abstraction simpler; having more
events allows it to more accurately represent the actual system. We want to use
the simplest abstraction that is accurate enough. Finding the right abstraction
is an art, but we will see that there are principles that can guide us.

Having chosen an abstraction of a system, we need to decide how to represent
that abstraction. A representation of an abstraction of a system is called a model
of the system. There are several ways of modeling systems. Some take events
to be primitive objects. Others take states to be primitive, where a state is
an assignment of values to variables, with an event defined to be a transition
from one state to another. Still others take both states and event names as
primitives, with an event being a state transition labeled by an event name.
There is also one way of modeling systems in which the primitive objects are
sets of events. These different kinds of models can be used to express different
classes of properties, and we will use more than one of them. However, the one

-~

L

we take as our standard model, and the one we use most often, is:

The Standard Model An abstract system is described as a col-
lection of behaviors, each representing a possible execution of the
system, where a behavior is a sequence of states and a state is an
assignment of values to variables.

In this model, an event, also called a step, is the transition from one state to the
next in a behavior. I find the standard model to be the simplest one that scales
well to descriptions of complex systems.

‘We model abstractions of systems. By a system model or a model of a system,
I mean a model of an abstraction of a (digital) system.

1.3 Specification

A specification is a description of a system model. A formal specification is
one that is written in a precisely defined language. 1 will use the term system
specification (or specification of a system) to mean a specification of a system
model.

A system specification is a specification of a model of an abstraction of a
system. It is quite removed from an actual system. Why should we write such
a specification?

A specification is like a blueprint. A blueprint is far removed from a building.
It is a sheet of paper with writing on it, while a building is made of steel and
concrete. There is no need to explain why we draw blueprints of buildings.
However, it’s worth pointing out that a blueprint is useful in large part because
it is so far removed from the building it is describing. If you want to know how
many square feet of office space the building has, it is easier to use a blueprint
than to measure the building. It is very much easier if the blueprint was drawn
with a computer program that can automatically calculate such things.

No one constructs a large building without first drawing blueprints of it. We
should not build a complex system without first specifying it. People will give
many reasons why writing a specification of a system is a waste of time:

e You can’t automatically generate code or circuit diagrams from the spec-
ification.

e You (usually) can’t verify that the code or circuit diagrams correctly im-
plement the specification.

e While building the system, you can discover problems that require chang-
ing what you want the system to do. This leads to the specification not
describing the actual system.

You can find the answers to such arguments by translating them into the corre-
sponding ones for not drawing blueprints.

-~

L

Blueprints are most useful when drawn before the building is constructed, so
they can guide its construction. However, they are sometimes drawn afterwards—
for example, before remodeling an old building whose blueprints have been lost.
System specifications are also most useful before the system is built. However,
they are also written afterwards to understand what the system does—perhaps
to look for errors or because the system needs to be modified.

A formal specification is like a detailed blueprint; an informal specification
is like a rough design sketch. A sketch may suffice for a small construction
project such as adding a skylight or a door to a house; an informal specification
may suffice for a simple system model. The main advantage of writing a formal
specification is that you can apply tools to check it for errors. This hyperbook
teaches you how to write formal specifications and how to check them. Learning
to write formal specifications will help you to write informal ones.

1.4 Systems and Languages

A formal specification must be written in a precisely defined language. What
language or languages should we use?

A common belief is that a system specification is most useful if written in
a language that resembles the one in which the system is to be implemented.
If we’re specifying a program, the specification language should look like a pro-
gramming language. By this reasoning, if we construct a building out of bricks,
the blueprints should be made of brick.

A specification language is for describing models of abstractions of digital
systems. Most scientists and engineers have settled on a common informal lan-
guage for describing models of abstractions of non-digital systems: the language
of mathematics. Mathematics is the simplest and most expressive language I
know for describing digital systems as well.

Although mathematics is simple, the education of programmers and com-
puter scientists (at least in the United States) has made them afraid of it. For-
tunately, the math that we need for writing specifications is quite elementary. I
learned most of it in high school; you should have learned most of it by the end
of your first or second year of university. What you need to understand are the
elementary concepts of sets, functions, and simple logic. You should not only
understand them, but they should be as natural to you as simple arithmetic. If
you are not already comfortable with these concepts, I hope that you will be
after reading and writing specifications.

Although mathematics is simple, we are fallible. It’s easy to make a mistake
when writing mathematical formulas. It is almost as hard to get a formula right
the first time as it is to write a program that works the first time you run it. For
them to be checked with tools, our mathematical specifications must be formal
ones. There is no commonly accepted formal language for writing mathematics,
so I had to design my own specification language: TLA™.

-~

L

The TLAT language has some notations and concepts that are not ordinary
math, but you needn’t worry about them now. You’ll quickly get used to the
notations, and the new concepts are either “hidden beneath the covers”, or else
they are used mainly for advanced applications.

Although mathematics is simple and elegant, it has two disadvantages:

e For many algorithms, informal specifications written in pseudo-code are
simpler than ones written in mathematics.

e Most people are not used to reading mathematical specifications of sys-
tems; they would prefer specifications that look more like programs.

PlusCal is a language for writing formal specifications of algorithms. It resembles
a very simple programming language, except that any TLA™ expression can be
used as an expression in a PlusCal algorithm. This makes PlusCal infinitely more
expressive than any programming language. An algorithm written in PlusCal is
translated (compiled) into a TLA™T specification that can be checked with the
TLAT tools.

PlusCal is more convenient than TLA™ for describing the flow of control in
an algorithm. This generally makes it better for specifying sequential algorithms
and shared-memory multiprocess algorithms. Control flow within a process is
usually not important in specifications of distributed algorithms, and the greater
expressiveness of TLAT makes it better for these algorithms. However, TLAT is
usually not much better, and the PlusCal version may be preferable for people
less comfortable with mathematics. Most of the algorithms in this hyperbook
are written in PlusCal.

Reasoning means mathematics, so if you want to prove something about a
model of a system, you should use a TLAT specification. PlusCal was designed so
the TLA™ translation of an algorithm is straightforward and easy to understand.
Reasoning about the translation is quite practical.

-~

L

2 The One-Bit Clock

Our first example is a clock. We consider the simplest possible clock: one that
alternately shows the “times” 0 and 1. Such a clock controls the computer on
which you are reading this, with its times being displayed as the voltage on a
wire. A real clock should tick at an approximately constant rate. There is a
lot to explain before we can specify that requirement, so we are going to ignore
it. This leaves a very simple computing device that just alternates between two
states: the state in which the clock displays 0 and the state in which it displays 1.

This may seem a strange example to choose because it has no concurrency.
The clock does only one thing at a time. A system can do any number of things
at a time. One is a simple special case of any number, and it’s a good place
to begin. Learning to specify sequential systems in TLA™T teaches most of what
you need to know to specify concurrent systems.

2.1 The Clock’s Behaviors

We use the standard model to represent the clock. This means that a possible
execution of the clock is represented by a behavior, which is a sequence of states,
and a state is an assignment of values to variables. We model the clock with a
single variable b that represents the clock “face”, where the assignment of 0 to
b represents the clock displaying 0, and the assignment of 1 to b represents its
displaying 1. We describe the state that assigns the value 0 to b by the formula
b = 0, and similarly for b = 1.

If we start the clock displaying 0, then we can pictorially represent its be-
havior as:

b=0 — b=1 — b=0 — b=1 —

[43 b2

where means that the clock goes on forever the same way. Real clocks
eventually stop; the best we can expect is that they keep running for long enough.
However, it’s more convenient to consider an ideal clock that never stops, rather
than having to decide for how long we should require it to run. So, we describe
a clock that runs forever.

We could also let the clock start displaying 1, in which case its behavior is

b=1 —- b=0 —- b=1 = b=0 —
These two are the only possible behaviors of the one-bit clock.
Remember that, although I have been calling them behaviors of the clock, what I

have really described are the behaviors in the standard model of an abstraction
of a real clock. The display of a clock moves continuously from one value to

-~

L

the next. In a digital clock, the transition may be too fast for us to see the
intermediate values; but they are there. We are specifying an abstraction of the
clock in which these continuous changes are represented by discrete steps (state
changes).

2.2 Describing the Behaviors

To describe a computing device, we must describe all its possible behaviors. T
was able to list all the possible behaviors of the one-bit clock, but that isn’t
feasible for any but the simplest computing devices. Even displaying a single
behavior of a complex device would be hard, and most computing devices have
too many behaviors to list—often, infinitely many behaviors.

If we look beyond their syntax, we find that practical languages for describing
computing devices specify two things:

e The possible initial states.

e The possible steps. (Remember that a step is a transition from one state
to the next.)

For example, here’s how the one-bit clock might be described in a (nonexistent)
programming language.

variable b: 0, 1;
while (true) { if (b=0) b := 1 else b := 0; }

The first line says that the possible initial states are b = 0 and b = 1. The
second line says that if b equals 0, then in the next state it equals 1; and if it
equals 1, then in the next state it equals 0.

Instead of inventing a whole new language for describing initial states and
possible next states, we will do it with mathematics. We do this using the
Boolean operators A and V. If you are not as familiar with these operators of
simple logic as you are with the operators + and — of arithmetic, you should
detour to a discussion of logic.5.

Describing the initial states is simple; we just assert that the initial value of
b is 0 or 1. This assertion is expressed by the formula:

(b=0) V (b=1)

We call this formula the initial predicate.

To describe the possible steps, we have to write a mathematical formula
relating the values of b in two states: the first state of the step and its next
state. We do this by letting b mean the value of b in the first state, and b’
mean its value in the next state. There are two possible steps: one with b =0
and b’ = 1, and the other with b = 1 and ' = 0. Thus, all possible steps are
described by this formula:

((b=0) A ('=1)) vV ((b=1) A (b'=0))

-~

L

10

Even this tiny formula is a little hard to read because of all the parentheses. For
larger formulas with conjunctions and disjunctions, it can get almost impossible
to keep track of the parentheses. TLAT allows us to write conjunctions and
disjunctions as lists of formulas bulleted by A or V. We can therefore also write
this formula as

V(b=0) A (b =1) or VADL=0

V(b=1) A (b'=0) ANb =1
VAb=1
ANV =0

However it is written, we usually call this formula the nezt-state action or some-
times the nezxt-state relation.

2.3 Writing the Specification

Let’s now turn the initial predicate and next-state action into a TLA™T specifica-
tion. Open a new spec in the TLAT Toolbox. Name the specification and its root
module OneBitClock. This creates a new module file named OneBitClock.tla
and opens an editor on it.

The newly created module looks something like this in the editor:

——————————————————— MODULE OneBitClock -—-————————-——-—-—-———-

* Modification History
* Created Mon Dec 13 09:57:04 PST 2010 by jones

The first line is the module opening; the last line is the module closing. All text
before the opening and after the closing is not part of the module and is ignored.
Each sequence of - characters in the opening and the sequence of = characters
in the closing can be of any length greater than 3. The opening and closing are
printed as follows:

[MODULE OneBitClock

L

We now assign names to our initial predicate and next-state action. I have
traditionally called them Init and Next. However, we will be defining some
alternative initial predicates and next-state relations, so let’s call these Initl
and Neztl. These formulas are defined as follows.

Initl = (b=0)V(b=1)

Nextl VAb=0

We can also write the initial
predicate as

Vb=0
vb=1
‘Warning.

ASCII version

http://research.microsoft.com/en-us/um/people/lamport/tla/toolbox.html

-~

L

11

AY =1
VAb=1
Ab =0

These two TLA™T statements define Initl and Nextl to be the two formulas.
Thus, anywhere in the spec following the definition of Initl, typing Initl is
completely equivalent to typing ((b =0)V (b =1)). The symbol = (typed
==) is read is defined to equal.

Now save the module, which should cause the Toolbox to parse the module.
(If it doesn’t, go to the TLA+ Parser Preferences menu.) The parser will report
six errors, all complaining that b is an unknown operator. Clicking on each error
message in the Parsing Errors view highlights the location of the error—in this
case, the location of the particular occurrence of b that it is complaining about.

Every symbol that appears in the module must either be a primitive TLA™ op-
erator or else defined or declared before its first use. We must declare b to be a
variable, which we do by inserting the following declaration at the beginning of
the module, before the definitions of Initl.

VARIABLE b VARIABLE b

Saving will make the errors go away.

When talking about the specification of the one-bit clock, we can mean one of
two things:

e The complete module.
e The initial predicate and next-state relation.

It is usually clear from the context which is meant. To avoid confusion, we can
talk about the module rather than the specification when we mean the first. We
use the term behavior specification to mean the second.

2.4 The Pretty-Printed Version of Your Spec

In addition to the AscCII version of the module that you edit, the Toolbox can
display a “pretty-printed” version. This requires the pdflatex program to be
installed on your computer. Information on doing that and on configuring the
Toolbox’s pretty-printing options can be found in the relevant Toolbox help
page.

To produce a pretty-printed version of the module, click on the File menu
and choose Produce PDF Version. The pretty-printed version will be displayed in
a separate window within the Toolbox, with TLA™ expressions shown approx-
imately the way they are printed in this hyperbook. You can switch between
the ASCII and pretty-printed versions by clicking either the TLA Module or PDF

Remember that you can
click on the link to the Ascit
version and copy the text.

The I | o in

the lower-right corner tells
you that the spec has no
parsing errors.

How to find help pages in
the Toolbox.”

Does it do something else?

http://tla.msr-inria.inria.fr/tlatoolbox/doc/spec/pretty-printing.html
http://tla.msr-inria.inria.fr/tlatoolbox/doc/spec/pretty-printing.html
http://tla.msr-inria.inria.fr/tlatoolbox/doc/spec/pretty-printing.html
http://tla.msr-inria.inria.fr/tlatoolbox/doc/spec/pretty-printing.html

-~

L

12

Viewer tab in the top-left corner of the module’s window. Editing the ASCII
version does not automatically change the pretty-printed version. You need to
run the File / Produce PDF Version command again to update it.

The pretty-printed version is produced in a file OneBitClock.pdf that the
Toolbox puts in the same directory as the module file OneBitClock.tla. You
can print that file to get a paper version.

2.5 Checking the Specification

Let’s now get the TLC model checker to check this specification. Create a new
model. This opens a model editor on the model. That editor has three pages;
the model is opened to the Model Overview page.

Enter Initl and Nextl in the appropriate fields as the initial predicate and
next-state relation, and run TLC. TLC runs for a couple of seconds and stops,
reporting no errors. This means that the specification is sensible. More precisely,
it means that our specification completely determines a collection of behaviors.

Let’s change the specification so it doesn’t determine a collection of behaviors.
Go to the module editor (by clicking on its tab) and modify the definition of
Nextl by replacing /\ b’ = 0 with /\ b’ = "xyz". The second disjunct allows
a step starting with b = 0 to set b (change its value) to the string® “xyz”. Save
the module, return to the model editor, and run TLC again. This time it reports
the error:

Attempted to check equality of string "xyz" with non-string: O

The TLC Errors window also shows:

Name I Value]
= & <Initial predicate > State (num = 1)

B b 1
[E & <Actionline 8, col 13 toline 9, col 25 State (num = 2)

B b “xyz"

This describes the following error trace:
b=1 — b= “xyz”

The trace is the beginning of a behavior that TLC was constructing when it
encountered an error. The light-red background for the value “xyz” of b indicates
that it is different from the value of b in the previous state. Double click on this
line of the error trace:

| 5 & <Action ine 8, col 13 to line 9, col 25 State (num = 2)

This raises the module editor, showing in part:

You can resize the fields of
the TLC Errors view.

-~

L

13

6 Nextl == \/ /\ b =20
7 /\ b' =1

The highlighted portion is the disjunct of the next-state action Neztl that per-
mits the step b=1 — b= “xyz” .

To calculate the possible next states from the state with b = “xyz”, TLC had
to compute the value of the formula “xyz” = 0. (The rest of the error message
tells you that it was computing that formula in order to evaluate the subformula
b = 0 of the definition of Nexztl.) TLC couldn’t do that because the semantics
of TLAT do not determine whether or not a string is equal to a number. It
could therefore not determine if the formula “xyz” = 0 equals TRUE or FALSE,
so it reported an error.

Restore the original definition of Nextl by replacing “xyz” with 0 and save
the module. Go back to the model editor and run TLC again. It should once
again find no error.

In the Statistics section of the Model Checking Results page, the State space
progress table tells you that TLC found 2 distinct states. The diameter of 1
means that 1 is the largest number of steps (transitions from one state to the
next) that an execution of the one-bit clock can take before it repeats a state.

The one-bit clock is so simple there isn’t much to check. But there is one
property that we can and should check of just about any spec: that it is “type
correct”. Type correctness of a TLAT specification means that in every state
of every behavior allowed by the spec, the value of each variable is in the set of
values that we expect it to have. For the one-bit clock, we expect the value of
b always to be either 0 or 1. This means that we expect the formula b € {0,1}
to be true in every state of every behavior of b. If you are the least bit unsure
of what this formula means, detour to an introduction to sets™.

A formula that is true in all states of all behaviors allowed by a spec is called
an invariant of the spec. Go to the Invariants subsection of the What to Check
section of the model editor’s Model Overview page. Open that subsection (by
clicking on the +), click on Add, and enter the following formula:

be{0,1} b \in {0, 1}

(Note that € is typed \in.) Click on Finish, and then run TLC again on the
model. TLC should find no errors, indicating that this formula is an invariant
of the spec.

Because TLAT has no types, it has no type declarations. As this spec shows,
there is no need for type declarations. We don’t need to declare that b is of
type {0,1} because that’s implied by the specification. However, the reader
of the spec doesn’t discover that until after she has read the definitions of the
initial predicate and next-state action. In most real specifications, it’s hard to

Why shouldn't “xyz” be
unequal to 07

Use the tabs at the top of
the model editor view to
select the page.

-~

L

14

understand those definitions without knowing what the set of possible values
of each variable is. It’s a good idea to give the reader that information by
defining the type-correctness invariant in the spec, right after the declaration of
the variables. So, let’s add the following definition to our spec, right after the
declaration of b.

TypeOK = b € {0, 1} TypeOK == b \in {0,1}

Save the spec and let’s tidy up the model by using Type OK rather than b € {0, 1}
as the invariant. Go to the model editor’s Model Overview page, select the in-
variant you just entered by clicking on it and hit Edit (or simply double-click on
the invariant), and replace the formula by TypeOK. Click on Finish and run TLC
to check that you haven’t made a mistake.

2.6 Computing the Behaviors from the Specification

TLC checked that TypeOK is an invariant of the specification of the one-bit
clock, meaning that it is true in all states of all behaviors satisfying the specifi-
cation. TLC did this by computing all possible behaviors that satisfy the initial
predicate Initl and the next-state action Nextl. To understand how it does this,
let’s see how we can do it.

We begin by computing one possible behavior. A behavior is a sequence
of states. To satisfy the spec, the behavior’s first state must satisfy the initial
predicate Initl. A state is an assignment of values to all the spec’s variables,
and this spec has only the single variable b. So to determine a possible initial
state, we must find an assignment of values to the variable b that satisfy Initl.
Since Initl is defined to equal

(b=0)V(b=1)

there are obviously two such assignments: letting b equal 0 or letting it equal 1.
To construct one possible behavior satisfying the spec, let’s arbitrarily choose
the starting state in which b equals 1. As before, we write that state as the
formula b = 1.

We next find a possible second state of the behavior. For a behavior to satisfy
the spec, every pair of successive states must satisfy the next-state action Next1,
where the values of the unprimed variables are the values assigned to them by
the first state of the pair and the values of the primed variables are the values
assigned to them by the second state of the pair. The first state of our behavior
is b = 1. To obtain the second state, we need to find a value for b’ that satisfies
Nextl when b has the value 1. We then let b equal that value in the second
state. To find this value, we substitute 1 for b in Next1l and simplify the formula.

L

15

Recall that Neztl is defined to equal

VAb=0
Ab =1
VAb=1
AbD =0

We substitute 1 for b and simplify as follows.

VA1=0 the formula obtained by substituting 1 for b in Next1.
ANV =1
VAl=1
ANV =0
= V AFALSE because (0 =1)=FALSE and (1=1)= TRUE
AN =1
V A TRUE
AV =0
= V FALSE because FALSE A F' = FALSE and TRUEA F = F
Vb =0 for any truth value F
= bv=0 because FALSE V F' = F for any truth value F.

This computation shows that if we substitute 1 for b in Nextl, then the only
value we can then substitute for b’ that makes Next1 true is 0. Hence, the second
state of our behavior can only be b = 0, and our behavior starts with

b=1 — b=0

To find the third state of our behavior, we substitute 0 for b in Nextl and find
a value for b’ that makes Nextl true. It should be clear that the same type
of calculation we just did shows that the only possible value for b’ that makes
Nextl true is 1. (If it’s not clear, go ahead and do the calculation.) The first
three states of our behavior therefore must be

b=1 — b=0 — b=1

We could continue our calculations to find the fourth state of the behavior, but
we don’t have to. We’ve already seen that the only possible state that can follow
b=11is b =0. We can deduce that we must obtain the infinite behavior

b=1 — b=0 — b=1 — b=0 —

To find all possible behaviors, recall that the only other possible starting state
is b = 0. From the calculations we’ve already done, we know that the only state
that can follow b = 0 is b = 1. We therefore see that the only other possible
behavior is

b=0 — b=1 — b=0 — b=1 —

-~

L

16

This example shows how we can compute all possible behaviors allowed by a
specification. We construct as follows a directed graph G, called the state graph,
whose nodes are states:

1. We start by setting G to the set of all possible initial states of behaviors,
which we find by computing all possible assignments of values to variables
that make the initial predicate true.

2. For every state s in G, we compute as follows all possible states ¢ such
that s — t can be a step in a behavior. We substitute the values assigned
to variables by s for the unprimed variables in the next-state action, and
then compute all possible assignments of values to the primed variables
that make the next-state action true.

3. For every state ¢ found in step 2: (i) we add ¢ to G if it is not already in
G, and (ii) we draw an edge from s to t.

4. We repeat steps 2 and 3 until no new states or edges can be added to G.

If and when this process terminates, the nodes of G consist of all the reachable
states of the specifications—that is, all states that occur in some behavior satis-
fying the specification. Every behavior satisfying the specification can be found
by starting in an initial state (found in step 1) and following a (possibly infinite)
path in G.

This procedure is used by TLC to compute all possible behaviors. The State
space progress table in the Statistics section of the Model Checking Results page
gives the following information about the graph G that it is constructing.

Diameter The number of states in the longest path of G in which no state
appears twice.

States Found The total number of (not necessarily distinct) states it examined
in step 1 or as successor states ¢ in step 2.

Distinct States The number of states that form the set of nodes of G.

Queue Size The number of states s in G for which step 2 has not yet been
performed.

Of course, if the specification has an infinite number of reachable states, this
procedure will continue until G becomes so large that TLC runs out of space.
However, this could take many years because TLC keeps G and its queue of
unexamined states on disk when there is not enough room for them in memory.

Although TLC computes the behaviors that satisfy a specification the same
way we do, it’s not nearly as smart as we are. For example, writing 1 = b instead
of b =1 in the initial predicate would make no difference to us. See how TLC

-~

L

17

reacts by making this change to the definition of Initl in module OneBitClock
and running TLC on the model you created. You will find that it produces the
following error report:

In evaluation, the identifier b is either undefined or not an operator.

line 6, col 22 to line 6, col 22 of module OneBitClock.
The error occurred when TLC was evaluating the nested
expressions at the following positions:

0. Line 6, column 22 to line 6, column 22 in OneBitClock

The underlined location indicators are links. (They may not actually be under-
lined in the Toolbox.) Clicking on either of them jumps to and highlights the b
inl=b.

TLC tries to find all possible initial states from the initial predicate in a
very simple-minded way. It examines the predicate in a linear fashion to try to
find all possible assignments of values to the variables. When it encounters an
occurrence of a variable v whose value it has not yet determined, that occurrence
must very obviously determine the value of v. This means that the occurrence
must be in a formula v = e or v € e for some expression e that does not contain
v. For example, when TLC evaluated the initial predicate

(b=0)V (1 =b)

it first saw that it was a disjunction, so it examined the two disjuncts separately.
The first disjunct, b = 0, has the right form to determine the value of b—that
is, it has the form v = e where v is the variable b and e is the expression 0.
However, when examining the disjunct 1 = b, it first encountered the variable
b in an expression that did not have the right form. It therefore reported that
occurrence of b as an error. You can check that TLC has no problem with the
equivalent initial predicate

(b=0) v ((b=1)A1=0b)

because, when it encounters the expression 1 = b, it has already determined the
value of b.

Question 2.1 What happens if you change the initial predicate to
(b=0) v ((b=1)A(2=0))
and run TLC.

These same remarks apply to the way TLC determines the possible assignments
to the primed variables from the next-state action when performing step 2 of
the procedure above. The first time TLC encounters a primed variable v’ whose
value it has not yet determined, that occurrence must be in a formula v’ = e or
v’ € e for some expression e not containing v’.

ANSWER

L

18

2.7 Other Ways of Writing the Behavior Specification

If you are not intimately acquainted with the propositional-logic operators = (im-
plication), = (equivalence), and — (negation), detour here."

The astute reader will have noticed that the two formulas Initl and TypeOK,
which equal (b = 0) vV (b = 1) and b € {0, 1}, respectively, both assert that b
equals either 0 or 1. In other words, these two formulas are equivalent—meaning
that the following formula equals TRUE for any value of b:

((b=0)v(b=1)) = (be{0,1})

The two formulas can be used interchangeably. To test this, return to the
Toolbox and select the Model Overview page of the model editor. Replace Initl
by TypeOK in the Init field and run TLC again. You should find that nothing
has changed.

There are a number of different ways to write the next-state action. This
action should assert that b’ equals 1 if b equals 0, and equals 0 if b equals 1.
Since the value of b is equal to either 0 or 1 in every state of the behavior, an
equivalent way to say this is that b’ equals 1 if b equals 0, else it equals 0. This
is expressed by the formula Next2, that we define as follows.

Next2 = b =1F b =0 THEN 1 ELSE 0 Next2 == b’ = IF b

The meaning of the IF ... THEN ... ELSE construct should be evident.

Unlike Initl and TypeOK , the two formulas Neztl and Nezt2 are not equiv-
alent. However, they are equivalent if b equals 0 or 1. More precisely, the
following formula equals TRUE for all values of b:

TypeOK = (Nextl = Next2)

When used with Initl as the initial predicate, both next-state actions yield
specifications for which each state of each behavior satisfies TypeOK. Hence,
the truth of this formula implies that the two specs are equivalent—meaning that
they have the same set of allowed behaviors. Test this by copying and pasting
the definition of Nezt2 into the module (anywhere after the declaration of b),
saving the module, replacing Nextl by Next2 in the Next field of the model, and
running TLC again.

The method of writing the next-state action that I find most elegant is to
use the modulus operator %", where a % b is the remainder when a is divided
by b. Since 0%2 =0, 1%2 =1, and 2%2 = 0, it’s easy to check that, if b
equals 0 or 1, then Nextl and Next2 are equivalent to the following formula.

Next3 = b =(b+1)%2 Next3 == b’ =

Add this definition to the module and save the module. This will generate a
parsing error, informing you that the operator % is not defined. The usual

= 0 THEN 1 ELSE O

Why is this formula true if b
equals 427

(b +1) %2

-~

L

arithmetic operators, including + and —, are not built-in operators of TLAT.
Instead, they must be imported from one of the standard TLA™T arithmetic
modules, using an EXTENDS statement. You will usually want to import the
Integers module, which you do with the following statement:

EXTENDS Integers EXTENDS Integers

Add this statement to the beginning of the module and save the module. Open
the model editor’s Model Overview page, replace the next-state action Next2
with Nezt3, and run TLC to check this specification.

Mathematics provides many different ways of expressing the same thing. There
are an infinite number of formulas equivalent to any given formula. For example,
here’s a formula that’s equivalent to Next2.

IF b=0 THEN b’ =1
ELSE V' =0

As Nextl and Next2 show, even two next-state actions that are not equivalent
can yield equivalent specifications—that is, specifications describing the same
sets of behaviors.

Where can an EXTENDS go?

Question 2.2 Use the propositional operators = and A to write a next-state ac- ANSWER
tion that yields another equivalent specification of the one-bit clock. How many
other next-state actions can you find that also produce equivalent specifications?
Question 2.3 Can inequivalent initial predicates produce equivalent specifica- ANSWER

tions?

2.8 Specifying the Clock in PlusCal

We now specify the 1-bit clock as a PlusCal algorithm, which means that we
start learning the PlusCal language. If at any point you want to jump ahead,
you can read the PlusCal language manual.

In the Toolbox, open a new spec and name the specification and its root
module PCalOneBitClock. The algorithm is written inside a multi-line comment,
which is begun by (* and ended by *). The easy way to create such a comment
is to put the cursor at the left margin and type control4o control+s. (You can
also right-click and select Start Boxed Comment.) Your file will now look about
like this.

(***

http://research.microsoft.com/en-us/um/people/lamport/tla/c-manual.pdf

-~

L

***)

We need to choose an arbitrary name for the algorithm. Let’s call it Clock. We
start by typing this inside the comment:

--algorithm Clock { --—algorithm Clock {

} }

The -- in the token --algorithm has no significance; it’s just a meaningless
piece of required syntax that you’re otherwise unlikely to put in a comment.

The body of the algorithm appears between the curly braces { }. It begins
by declaring the variable b and specifying its set of possible initial values

variable b € {0,1}; variable b \in {0, 1};
Next comes the executed code, enclosed in curly braces.

{ while (TRUE) {if (b=0)b :=1lelseb :=0 ASCII version of the
1 complete algorithm.
}

You should be able to figure out the meaning of this PlusCal code because it
looks very much like code written in C or a language like Java that uses C’s
syntax. The major difference is that in PlusCal, the equality relation is written Why doesn’t PlusCal use =
= instead of ==, and assignment is written := instead of =. (You can make it for assignment?
look more like C by adding semi-colons after the two assignments.)
Save the module. Now call the translator by selecting the File menu’s Trans-
late PlusCal Algorithm option or by typing control+t. The translator will insert
the algorithm’s TLA™ translation after the end of the comment containing the
algorithm, between the two comment lines:

* BEGIN TRANSLATION and * END TRANSLATION

If the file already contains these two comment lines, the translation will be put
between them, replacing anything that’s already there.

The important parts of the translation are the declaration of the variable b
and the definitions of the initial predicate Init and the next-state action Next.
Those two definitions are the following

Init = be{0,1}

Next 2 1F b=0 THEN b’ =1
ELSE b =0

L

21

except that the translator formats them differently, inserting a comment and
some unnecessary A operators at the beginning of formulas. (A bulleted list of
conjuncts can consist of just one conjunct.)

We have seen above that this definition of Init is equivalent to the definition
of Initl in module OneBitClock. We have seen the definition of Next above
too, where we observed that it is equivalent to the definition of Next2 in the
OneBitClock module.

The translation also produces definitions of the symbols var and Spec. You
should ignore them for now.

As you have probably guessed, if we replace the if /else statement in the
PlusCal code with the statement b := (b + 1) %2, the translation will define
Nezt to be the formula Next3 we defined above. Try it. As before, the Toolbox
will complain that % is undefined. You have to add an EXTENDS Integers
statement to the beginning of the module.

L

22

3 The Die Hard Problem

In the movie Die Hard 3, the heroes must solve the problem of obtaining exactly
4 gallons of water using a 5 gallon jug, a 3 gallon jug, and a water faucet. We
now apply TLA™ and the TLC model checker to solve this problem.

3.1 Representing the Problem in TLA™

The first step in solving the problem is to model the physical system of heroes,
jugs, and faucet mathematically as a discrete system. The only relevant state of
the hero/jug/faucet system is the amount of water in the two jugs. So, we model
the system with two variables, big and small, whose values represent the number
of gallons of water in the two jugs. After choosing the variables, a good way to
figure out how to write a specification is to write down the first few states of a
possible behavior of the system. Initially, the jugs are empty, so big and small
both equal 0. Here’s one possible beginning of a behavior. (Remember that a
state is an assignment of values to the variables, in this case big and small.)

[big =01
| small =0 |
The big jug is filled from the faucet. 1
[big =51
| small =0 |
The small jug is filled from the big one. 4
[big =21
| small =3 |
The small jug is emptied (onto the ground). 4
[big =21
| small =0 |

A little thought reveals that there are three kinds of steps in a behavior:
e Filling a jug.
e Emptying a jug.
e Pouring from one jug to the other. There are two cases:

— This empties the first jug.
— This fills the second jug, possibly leaving water in the first jug.

L

We can now write the specification. Let’s open a new specification named
DieHard in the Toolbox. Since the spec will require arithmetic operations, it
begins with:

EXTENDS Integers EXTENDS Integers

We declare the variables and write the initial predicate, which we give the con-
ventional name Init.

VARIABLES big, small VARIABLES, big, small
Init £ A big =0 Init ==,/\ubig =10
A small =0 vuuuuuou/ \usmall =0

Each of the three possible kinds of steps has two possibilities—one for each jug
(each first jug for the third type). This suggests writing the next state action
as the disjunction of six formulas, each allowing one of these six possible kinds
of step. We can therefore define the next-state action, which by convention is
called Next, as follows:

Next = V FillSmall Next, ==_\/_ FillSmall
V FillBig wouuuuuu\/UFillBig
V EmptySmall Luuuuuuu \/UEmptySmall
V EmptyBig uuuuuuuu\/uEmPtyBig
V SmallToBig uuuuouun \/LSmallToBig
V BigToSmall uuuuuuuu\/uBigToSmall
The definitions of the six formulas FillSmall, ..., BigToSmall, which often

called subactions of the next-state action, must precede the definition of Next
in the module. (In TLA™, a symbol must be defined or declared before it can
be used.) Let’s now define them.

Most programmers would expect the definition of FillSmall to be

FillSmall = small =3

This formula is certainly satisfied by a step like

[big =21 [big =2
smallzl - _small3}

However, the formula is also satisfied by this step

[big :2__>—big = V42
| small =1 | | small = 3

because substituting

big < 2, small < 1, big’ + V42, small’ < 3

L

24

in the formula produces the true formula 3 = 3. Since a step that fills the small
jug should leave the contents of the big jug unchanged, the subaction FillSmall
must assert that big’ equals big. With this observation, the definitions of the
first four subactions are obvious:

FillSmall 2 Asmall =3 FillSmall,, ,==_/_small’ =3
/\ ngI = blg L o e [I/\I_lbig’l_l=_|blg
FillBig = Abig' =5

FillBig ,uu==u/\ubig’ =5

r_
A small” = small vuuuuuuuuuouon/ \usmall’ = small

EmptySmall = A small’ =0
A bzg/ — ng Emptysmallu==|_|/\|_|sma11 ’ u=uo

I T T AN T TR T |/\ubig’|_|=ubig

EmptyBig = Abig' =0
A Small/ = Small EmptyBiguuu==u/\ubig)u=u0

Luuuuuuuuuooun/ \usmall’ = small

The definitions of the last two, SmallToBig and BigToSmall, are trickier be-
cause each has two cases. Let’s consider SmallToBig. We can express the two
possibilities as the disjunction of two formulas:

SmallToBig = V A big + small > 5

Abig' =5

A small’ = small — (5 — big) If the water doesn't all fit in
V A big + small <5 the big jug, then 5 — big

A big’ = big + small gallons are poured out of

A small =0 the little jug.

This definition is fine, but it can be expressed more compactly. Observe that
a SmallToBig step sets the value of big to the smaller of big + small and 5.
Let’s define Min so that Min(m,n) is the smaller of m and n, if m and n are
numbers.

Min(m, n) = IF m < n THEN m ELSE 7 Min(m,n) == IF m < n THEN m ELSE n

Since the amount of water removed from the small jug equals the amount added
to the big jug, we can define SmallToBig by:

SmallToBig = A big’ = Min(big + small, 5)
A small’ = small — (big’ — big)

This definition has one drawback. When reading an action formula, we often
want to see how a particular variable’s value changes. This is easiest to do if
the value of the primed variable is expressed as a function of the values of the
unprimed variables. However, this definition expresses the value of small’ in
terms of big’ as well as of big and small. We could fix that by writing the
definition as:

L

25

A

SmallToBig = A big’ = Min(big + small, 5)
A small’ = small — (Min(big + small, 5) — big)

However, it’s better not to repeat the expression Min(big + small,5). 1 find it
more elegant to write the action in terms the amount of water poured from one
jug to the other. I prefer writing the action as follows, using the TLA™ LET / IN
construct™, which allows us to make local definitions within an expression.

SmallToBig 2 SmallToBig ==
LET poured = Min(big + small, 5) — big uULET poured, == Min(big + small, 5), - big
IN Abig’ = big + poured uuINLL/\ubig’ Luu=ubig+ poured
A small’ = small — poured uouoow/ \usmall’ = small - poured

(Note that poured equals Min(small,5— big).) The definition of the BigToSmall
subaction is similar.

BigToSmall = BigToSmall ==
LET poured = Min(big + small, 3) — small uULET poured == Min(big + small, 3) - ,small
IN Abig = big— poured uuINLL/\ubig’ Luu=ubigu—poured
A small’ = small + poured uouuow/ \usmall’ = small + poured

We should also define a type invariant. Clearly, the values of both big and small
should be natural numbers, with big < 5 and small < 3. To express this, we use
the operator .. defined in the Integers module so that i .. is the set of integers
from 7 through j. More precisely, i..j is defined to be the set of all integers k
such that ¢ < k and k¥ < 7 hold, so i..j is the empty set if j < ¢. The definition

of .. is: {z € S: P(z)} is the
RN ' . subset of S consisting of all
i..j = {kent: (i<k)A(k<H)} its elements z satisfying
P(z).B

where Int is defined in the Integers module to be the set of all integers. The
type invariant is then:

TypeOK = Abig €0..5 TypeOK ==_,/\ubig L, \in 0. .5
A Small S 0 oo 3 |_,|_||_||_||_||_,|_||_||_||_|/\|_|Sma11|_|\in|_|o. .3

This definition is best put right after the declaration of the variables big and
small.

3.2 Applying TLC

Let’s now test our spec. Create a new TLC model. Since we used the conven-
tional names for the initial predicate and next-state action, the Toolbox fills in

L

26

the What is the behavior spec? section of the model. Add TypeOK as an invari-
ant in the What to check? section and run TLC on the model. TLC should find
no errors. It will report that the system has 16 distinct reachable states.

The Die Hard problem makes learning to write TLAT specifications a little
more fun. But could a TLA™T specification have helped our heroes—especially
when they had to solve the problem before a bomb exploded? The answer is
yes—at least if they were carrying a computer and were able to write the spec
very quickly. They then could have let TLC solve the problem for them.

Remember that their problem was to put 4 gallons of water in a jug, which
of course had to be the big jug. All they had to do was have TLC check an
invariant asserting that there are not 4 gallons of water in the big jug. Add the
invariant big # 4 to your model and run TLC on it. TLC will report that the
invariant is violated, and the error trace it produces to demonstrate the violation
is a solution to the problem. Moreover, if you select 1 worker thread in the How
to run? section of the Model Overview page, TLC will produce a minimal-length
error trace. The solution it produces is then one with that takes fewest steps
possible—namely, six.

3.3 Expressing the Problem in PlusCal

Although they did solve the problem, the Die Hard heroes did not seem to
be mathematically sophisticated. They would probably have preferred to write
their specification in PlusCal. Let’s now see how they could have done that.

Create a new specification called PDieHard. The algorithm will use arith-
metic operations and the Min operator, so copy the EXTENDS statement and
the definition of Min from the DieHard spec and put them at the beginning of
module PDieHard.

The algorithm is inserted in a comment. It begins with its name, which we
take to be DieHard, and with a variables statement that declares the variables
and their initial values. The algorithm looks like this:

--algorithm DieHard {
variables big = 0, small =0
{ body of the algorithm
}
}

We now write the body of the algorithm. The TLA™ specification defines the
next-state action Next to be the disjunction of six subactions. We first see how
to express each of those subactions as a PlusCal statement.

It’s easy to express the first four subactions, FillSmall, ... , EmptyBig. For
example, FillSmall is expressed by the assignment statement

small :=3

How to type # .U

The PlusCal keywords
variable and variables
are synonyms.

L

27

There’s no need to assert that the value of big is unchanged. PlusCal is like a
very simple programming language in that a statement that does not explicitly
change a variable leaves the value of the variable unchanged. (This makes it
unlike many real programming languages.)

The SmallToBig and BigToSmall subactions each have two cases. It’s easy
to express them with if statements. For example, the SmallToBig subaction
could be described by

if (big + small > 5) { small := small — (5 — big) ;
big :=5 }
else { big := big + small ;
small := 0 }

As we would expect of a programming language, the order of assignment state-
ments matters. If we changed the order of the two assignments in the else
clause, the assignment to big would be performed with small equal to 0, so big
would be unchanged.

Although this if statement correctly describes the SmallToBig subaction, it
isn’t very elegant. It would be nicer to copy the way the subaction is defined in
TLAY and write:

big big + poured
small := small — poured

where poured is defined locally to equal Min(big+ small,5)— big. This is written
in PlusCal as follows using a with statement.

with (poured = Min(big + small, 5) — big)
{ big := big + poured ;
small :== small — poured }

The BigToSmall subaction is described by a similar with statement.

In the TLA™T spec, the next-state action is the disjunction of the six subac-
tions, meaning that a step is either a FillBig step or a FillSmall step or ... or a
BigToSmall step. Such a disjunction is expressed in PlusCal by an either / or
statement. So, we can write this disjunction as follows:

either big :=5
or small :== 3

or with (poured = Min(big + small, 3) — small)
{ big = big — poured ;
small := small + poured }

If the body of the algorithm consisted only of this either /or statement, an
execution of the algorithm would execute the statement once and then halt.

-~

L

28

The TLAT spec describes a system that keeps taking steps forever. To get our
algorithm do the same, we put the either / or in a while (TRUE) loop.

The complete algorithm is here, and the ASCII version is here. Since the
PlusCal version lacks the helpful subaction names, I have added comments to
explain each clause of the either / or statement. (The comments are shaded in
the pretty-printed version.)

-~

L

29

4 Euclid’s Algorithm

FEuclid’s algorithm is a classic algorithm for computing the greatest common
divisor (abbreviated ged) of two positive integers. We consider a simpler and
much less efficient version than the one described by Euclid in his FElements.
However, before writing an algorithm to compute the gcd, we should define
precisely what the ged is.

If you are not familiar with the quantifiers V and 3, detour here.”

4.1 The Greatest Common Divisor

We want to define an operator GCD such that GCD(m,n) equals the ged of
m and n, for numbers m and n. Negative numbers and the number 0 were
unknown to Euclid, so let’s assume that m and n are positive integers. (The
ged of m and n is undefined if either of them equals 0.) Since we might want
to use this operator in some specification other than that of Euclid’s algorithm,
the instinct of any good engineer is to put the definition into a separate module
so it can be re-used. So, let’s create a spec to contain the definition of GCD and
any other related definitions and properties we might need.

In the Toolbox, open a new specification called GCD. (TLAT allows the use
of the same name for both a module and a defined operator.) You can make it
easier to use the module in other specifications by putting it in a separate library
folder. Library folders are explained on the help page for the TLA™ preferences
page.

We’ll need the usual operations on integers, so we import them by beginning
the module with the statement:

EXTENDS Integers EXTENDS Integers

4.1.1 Divisors

We define the operator Divides so that Divides(p, n) equals TRUE if the integer
p divides the integer n, and equals FALSE if it doesn’t. You learned in grade
school that p divides n iff n/p is an integer. The Integers module defines Int to
be the set of all integers. So, an obvious definition of Divides is

Divides(p,n) = n/p € Int Divides(p, n) ==

However, if we use this definition, the Toolbox reports an error because it can’t
find the definition of the operator /.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation

Why we usually don’t re-use
specifications in practice.

n/p \in Int

http://tla.msr-inria.inria.fr/tlatoolbox/doc/gettingstarted/tla-preferences.html
http://tla.msr-inria.inria.fr/tlatoolbox/doc/gettingstarted/preferences.html
http://tla.msr-inria.inria.fr/tlatoolbox/doc/gettingstarted/preferences.html

L

30

(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker can’t evaluate the operator /.
So, we define Divides using the operators defined in the Integers module.

The definition is simple. An integer p divides an integer n iff n equals ¢ * p
for some integer q. We can therefore define Divides by

Divides(p,n) = Jqelnt :n=qxp Divides(p, n) == \E q \in Int : n =q * p

Add this definition and save the module.
Let’s test our definition. Create a new TLC model. In it, use TLC to evaluate
the expression Divides(2, 4). This produces an error message that looks like:

TLC encountered a non-enumerable quantifier bound
Int.
line 4, col 27 to line 4, col 29 of module GCD

Clicking on the location in the message takes you to the Int in the definition.
TLC evaluates an expression of the form 3z € S : exp by computing all the
elements in the set S and evaluating exp for each of those values. It obviously
can’t do this if S is an infinite set like Int.
We don’t have to try all integers ¢ to see if there is one satisfying n = ¢ * p.
Since we're concerned only with positive integers, it’s enough to try all integers
between 1 and n. So, we could define Divides by

Diwides(p,n) = Jgel..n:n=q*p

A principal goal of TLC is that it should not be necessary to modify a spec
in order to model-check it. Instead, we let the model tell TLC to override
the definition of Int, redefining it to equal some finite set of numbers. Have
the model redefine Int to equal —1000..1000, and run TLC again. This time,
TLC’s evaluation of Divides(2, 4) obtains the value TRUE. Check that TLC
calculates Divides(2, 5) to equal FALSE.

The ged of m and n is the largest divisor of both m and n. In other words,
it is the maximum of the set of divisors of both m and n. To write this def-
inition mathematically, we first define the set of divisors of a number and the
maximum of a set of numbers. The set DivisorsOf(n) of divisors of an integer
n is obviously:

How to use TLC to evaluate
a constant expression.

How to override a definition
in TLC.

Recall that {z € S : P(z)}
is the subset of S consisting
of all its elements x
satisfying P(z).0

DivisorsOf (n) = {p € Int : Divides(p,n)} Divisors0f(n) == {p \in Int : Divides(p, n)}

Add this definition to module GCD and have TLC evaluate DivisorsOf(493).
It should obtain {—493, —29, —17, —1, 1, 17, 29, 493}.

-~

L

31

4.1.2 CHOOSE and the Maximum of a Set

To define the maximum of a set of numbers, we need to introduce the TLAT CHOOSE
operator. The expression

CHOOSE z € S : P(z)

equals some value v in S such that P(v) equals TRUE, if such a value exists. Its
value is unspecified if no such v exists. For example, if we define

Foo 2 CHOOSE i € Int : i2 =4

then Foo equals either 2 or —2, since these are the two elements of Int whose
square equals 4. The semantics of TLA™ do not say which of those two values
Foo equals. We have absolutely no idea what the value of this expression is:

CHOOSE i € Int : i2 = —4

since there is no integer whose square equals —4. Learn more about CHOOSE
Using CHOOSE, it’s easy to define the maximum of a set S of numbers. The here.”
maximum of S is an element of S that is greater than or equal to every element

of S:
SetMazx(S) 2 SetMax (S) ==,
CHOOSE 1 € S o V] (S S) Z] uuuuCHDOSEuiu\inuSu . u\Auj |_|\in|_,S|_| . |_|i|_|>=|_|j

Note that > is typed >=. It can also be typed \geq. Add this definition
to module GCD and check it by having the Toolbox evaluate the expression
SetMax (DivisorsOf (493)), which should of course equal 493.

4.1.3 The GCD Operator

The ged of two positive integers m and n is the maximum of the set of all
numbers that are divisors of both of them. That set is just the intersection of If you are not familiar with

their two sets of divisors. We can therefore define: the Eet operator N, detour
here™.
GCD(m,n) = GCD(m, n) ==,
SetMax (DivisorsOf (m) N DivisorsOf (n)) uuuSetMax (Divisors0f (m)\cap Divisors0f (n))

Add this definition to module GCD and check that it’s correct by evaluating
GCD for some numbers. You will find that TLC can quickly evaluate the ged
of pairs of numbers less than 1000.

Question 4.1 How can you easily find pairs of numbers whose gcd you know ANSWER
in order to test the definition?

-~

L

32

This sort of testing will not satisfy a mathematician, but it’s good enough for
engineers. It checks that we haven’t made a gross error, such as misspelling
something or writing U instead of N. The only plausible source of error is
missing a subtle corner case. We are claiming that this is the correct definition
of GCD(m, n) only if m and n are positive integers, so obvious corner cases are
(i) if one or both of them equals 1 and (ii) if they are equal. A little thought
reveals that there is nothing exceptional about these cases. However, it’s a good
idea to test them anyway.

4.2 Comments

Mathematics is precise, compact, and elegant. But it’s hard to look at a math-
ematical formula and see what it’s about. For example, suppose instead of
Divides, DivisorsOf, SetMax, and GCD, we had named our operators 4, B, C,
and D. Their definitions would then look like this.

Alp,n) = 3Jqgelnt:n=qxp

B(n) 2 {pent:Alp, n)}

C(S) = CHOOSEi € §:Vje€8:i>]
D(m, n) = C(B(m)N B(n))

Imagine how hard it would now be to figure out what these operators mean.

Choosing explanatory names certainly helps, but it’s seldom enough to make
our specifications easy to understand. We need to add explanatory comments—
for example, as in this definition of Divides.

Divides(p, n) = Iqge Int:n=qxp
For integers p and n, equals TRUE iff p divides n.

There are two ways to write comments in TLAT. Text between (* and *) is a
comment, and all text that follows a * on the same line is a comment. Thus,
the comment above following the definition of Divides can be written in either
of the following two ways:

(* For integers p and n, equals
TRUE iff p divides n. *)

* For integers p and n, equals TRUE iff p divides n.
Comments can be nested within one another, as in
(* This is all (* commented *) text *)

Nesting comments is useful for commenting out parts of a specification during
testing, but don’t do it in actual comments. The pretty-printer ignores com-
ments inside comments. The one exception is that comments inside a PlusCal

-~

L

33

algorithm are handled properly, even though the algorithm appears inside a
comment.

I like to make comments more visible in the ASCII version by boxing them
like this:

(o ok sk ok ok ook ook ok Kok ok KKk Kok Kok Kk K)
(* For integers p and n, equals *)
(x TRUE iff p divides n. *)
(********************************)

The Toolbox provides commands for writing boxed comments. They are de-
scribed in the Editing Comments section of the Editing Modules help page.
The pretty-printer handles boxed comments properly—even if you write

something like this. Give it a try.
Divides(p, n) == (ke ok sk ok ok ok sk ok K ok K ok 3 ok 3 ok 3k oK 3k oK ok 3 ok 3 ok 3 ok Kok Kok %k)
\E g \in Int : (* For integers p and n, equals *)
n=gq*p (x TRUE iff p divides n -- which x)
(* I think is really neat; don’t *)
(* you? *)

(**********************************)

The pretty-printer generally does a reasonably good job of formatting the com-
ments. However, if you want nicely printed comments for others to read, you will
have to help it. To find out how, see the Toolbox’s Helping the Pretty-Printer
help page.

Because I explain the specifications in the text as I present them, I will
usually omit comments in this hyperbook. You should not omit comments from
your specs. Unless you're going to stand next to all the readers of your spec as
they read it, and you can project yourself into the future to explain the spec
to yourself when you read it a year later, include extensive comments. Every
definition and the purpose of every declared variable should be explained in a
comment.

Comments are especially important in TLA™ because it is untyped. In a
typed language, you would have to declare that the arguments of Divides are
integers and its value is a Boolean. The absence of type declarations makes the
definition shorter and mathematically simpler. However, it imposes on us the
responsibility of telling the reader that we expect the arguments to be integers.
(It’s pretty obvious in this case that the value of Divides(p, n) is a Boolean.)

Text that comes in the file before or after the module is ignored; it can be
used to record any information about the spec that you don’t want to put in
comments within it. The pretty-printer does output this text, but it might not
do a very good job of formatting it.

What does Divides(p, n)
mean if p and n are not
integers—or not even
numbers?

http://tla.msr-inria.inria.fr/tlatoolbox/doc/spec/editing-modules.html
http://tla.msr-inria.inria.fr/tlatoolbox/doc/spec/help-print.html
http://tla.msr-inria.inria.fr/tlatoolbox/doc/spec/help-print.html

-~

L

34

4.3 The Algorithm

Let the positive integers whose gcd we are computing be M and N. Euclid’s al-
gorithm uses two variables, which we call z and y. It can be described informally
as follows.

e Start with z equal to M and y equal to N.

e Keep subtracting the smaller of z and y from the larger one, until z and
y are equal.

e When z and y are equal, they equal the gcd of M and N.

We represent the algorithm in the standard model, describing it in PlusCal.

Open the Toolbox and open a new spec with root module Fuclid. We’ll
want to use the definition of GCD, so we want to import it with an EXTENDS
statement. Since the GCD module extends the Integers module, the EXTENDS
statement will also import the Integers module. However, I think the spec is
easier to understand if it explicitly includes Integers in the EXTENDS statement,
even if it is redundant. So, we begin the module with

EXTENDS Integers, GCD EXTENDS Integers, GCD
We need to declare M and N, which we do by writing.
CONSTANTS M, N CONSTANTS M, N

This declares M and N to be unspecified constants—unspecified because we are
saying nothing about their values, and constants because their values do not
change during the course of a behavior.

We don’t want the values of M and N to be totally unspecified; we want
them to be positive integers. To assert this assumption, we must express the set
of positive integers in TLA™. The Integers module defines Nat to be the set of
all natural numbers (non-negative integers). The set of positive integers is the
set of all natural numbers except 0, which can be written with the set difference
operator \ as Nat\{0}. Our assumption about M and N can therefore be
written as follows:

The keywords CONSTANT
and CONSTANTS are
equivalent.

ASSUME A M € Nat\ {0} ASSUME,/_M_\in Nat, \,{03}
A N € Nat \ {0} vuuuoon/ \uNG\ing Nat \ {0}

Question 4.2 Use set notation to write this assumption more compactly.

Question 4.3 How many other ways can you write the set of positive integers
in TLAT?

ANSWER

ANSWER

-~

L

35

As always, the algorithm appears inside a multi-line comment, beginning with
the keyword --algorithm and followed by the name and an opening {. Let’s
name the algorithm Fuclid.

(ko ook ok ook ook ook Kok oK ok Kok KoK KoK K ok KKK KKK ok KoKk ok Kok K ok ok ok
--algorithm Euclid {

}

***)

The algorithm uses the two variables = and y, initially equal to M and N,
respectively.

variables z = M, y =N ; uvariables, x =_M, yu=uNu;

This is followed by the body of the algorithm, enclosed in curly braces.

Euclid’s algorithm works by continually subtracting the smaller of z and
y from the larger, stopping when z equals y. If you have used an ordinary
programming language, you will probably understand this code, which follows
the variable declaration.

{while (z #£y) {if (z<y){y :=y—=} ufuwhiley Geo#toy) o{odfu (xo<uy) uluyn : =uyu-uxo}
else {33 =T y} LoouuuuLLoLooouuoooelseuuuuuuu{uxy =uxL-uy Ut
} LULLULLLLOUOOODLDT 3
} 2}

If you don’t understand the code, be patient. We’ll soon see exactly what it
means.

Having finished the algorithm, you must run the translator to compile it to
a TLAT specification. Do this with the File menu’s Translate PlusCal Algorithm
command, or by typing control+t. The translator inserts the TLAT transla-
tion after the end of the comment containing the algorithm, between BEGIN
TRANSLATION and END TRANSLATION comment lines. If the file already contains
such comment lines, the translator replaces everything between those lines with
the algorithm’s translation.

4.4 The TLAT Translation

The TLAT translation describes the precise meaning of the PlusCal algorithm.
It begins by declaring the algorithm’s variables:

VARIABLES Z, Y, pc

The translation has added a new variable pc, which is short for program control.
The intuitive meaning of the while loop is that it continues to execute as long
as ¢ # y is true. When that formula becomes false, the code following the while

-~

L

36

loop is executed. In the Standard Model underlying TLAT, there is no concept
of code. An execution is represented simply as a sequence of states. What code
is being executed must be described within the state. In the PlusCal translation,
it is described by the value of the variable pc.

After declaring the variables, the translation defines the identifier vars to
equal the triple of all the variables.

vars = (z, y, pc)

In TLAT, tuples are enclosed between angle brackets { and), which are typed
<< and >>, so the definition of wars is written

vars == << X, y, pc >>
Next comes the definition of the initial predicate.

Init 2 ANz=M
ANy=N
A pc = “Lbl_1"

The variables x and y have the expected initial values; pc initially equals the
string “Lbl-1". We shall see later what this value means and how it was chosen.

The translation next defines Lbl_1 to be the action that describes the steps
that can be taken when execution is at the control point “Lbl_1”. Such a step
represents the execution of a single iteration of the while loop. The first conjunct
of action Lbl_1 has no primed variables, so it is an enabling condition. It asserts
that an Lbl_1 step can occur only when pc equals “Lbl_1", meaning only when
control is at the beginning of the while statement.

The second conjunct, which is an IF/THEN/ELSE expression, specifies the
new values of the three variables z, y, and pc. Let’s first look at the new value
of pe, which is specified by the value of pc’. If z # y is true, then the second
conjunct of the outermost THEN clause asserts p¢’ = “Lbl_1”. When z and y
are not equal, executing one iteration of the while statement leaves pc equal to
“Lbl_1", meaning that it leaves control at the beginning of the while. If z # y is
false, so z and y are equal, then the first conjunct of the outermost ELSE clause
asserts pc’ = “Done”, meaning that control is after the while loop.

Let’s now look at the new values of z and y, which are specified by the
values of 2’ and y'. If z # y is true, then these values are specified by the
first conjunct of the outermost THEN clause, which is an IF ... THEN ... ELSE
expression. This inner IF expression asserts that, if < y is true, then z’ equals
z and ¥y’ equals y — z; otherwise z’ equals z — y and 3y’ equals y. If z # y is
false (so z equals y), then the outermost ELSE clause (of the IF z # y) asserts
UNCHANGED (z, y). The built-in TLAT operator UNCHANGED is defined by

UNCHANGED ¢ = ¢ =e¢

Tuples are explained here.l

| have reformatted the
translation slightly to make
it a bit easier to read.

Here is a pop-up window
with this definition.

-~

L

for any expression e. Priming an expression e means priming all the variables
in e (after fully expanding the definitions of all symbols that occur in e). We
therefore have

UNCHANGED (z,Yy) (z,y) = (z,y) By definition of UNCHANGED.

<= (7,
< (2',y') =(z,y) By definition of priming an expression.
<~

(z' = z) A (y' = y) Because two ordered pairs are equal iff their cor-
responding elements are equal.

Putting this all together, we see that action Lbi_1 describes a step that
e can occur only when pc equals “Lbl_1".

e if x # y, subtracts the smaller of z and y from the larger, leaving the
smaller of them and pc unchanged.

e if x = y, sets pc to “Done”, leaving the values of z and y unchanged.

The algorithm begins with pc equal to “Lbl_1". As long as = # y, it can execute
Lbl_1 steps that leave pc equal to “Lbl_1" and decrease x or y. If x = y, it can
execute an Lbl_1 step that leaves z and y unchanged and sets pc to “Done”.
When pc equals “Done”, the algorithm has terminated and it can do nothing else.
We therefore expect Lbl_1 to be the algorithm’s next-state action. However, the
translation defines Next to be the disjunction of Lbl_1 and another formula.
Let’s forget about that other formula for now; we’ll return to it soon.

The translation then defines two temporal formulas. A temporal formula is
a predicate on behaviors (a formula that is true or false of a behavior). Formula
Spec is defined to equal Init A O[Next]yqrs, Where vars is defined to be the
triple (x, y, pc) of the algorithm’s variables. (The formula is written in ASCII as
Init /\ [][Next]_vars.) We will see later that this temporal formula is true
of a behavior iff the behavior is a possible execution of the algorithm. In other
words, formula Spec is the TLAT behavior specification of the algorithm.

The second temporal formula defined by the translation is Termination. As
we will also see later, it is true of a behavior iff the behavior eventually reaches
a state in which pc equals “Done”. Hence, formula Termination asserts (of a
behavior) that the algorithm terminates.

You may have remarked that the variable pc did not appear in the translations
of our previous PlusCal algorithms: the one-bit clock algorithm Clock and algo-
rithm DieHard. The translator is clever enough to realize that control is always
at the same point in an execution of those algorithms, so pc is not needed.

4.5 Checking Safety

Correctness of algorithm Fuclid means that it satisfies two properties:

-~

L

38

e If the algorithm terminates, it does so with z and y both equal to GCD (M, N).

e The algorithm eventually terminates.

The first property is what is called a safety property; the second is a liveness
property. We consider the safety property.

The algorithm has terminated iff pc equals “Done”. Therefore, the safety
property is equivalent to the assertion that the following formula is an invariant
of the algorithm (true in all reachable states):

(pc = “Done”) = (z = y) A (z = GCD(M, N))

So, let’s have TLC check that it is an invariant of the algorithm.

Create a new TLC model for the Fuclid specification. The Toolbox reports
two errors in the model, because the model must specify the values of the de-
clared constants M and N. Double-clicking on a constant in the What is the
model? section of the Model Overview page of the model pops up a window in
which you can enter the value. (Keep the default Ordinary assignment selection.)
Set M to 30 and N to 18.

The Toolbox has set the model’s behavior specification to the temporal for-
mula Spec. Before checking the invariant, let’s just run TLC to make sure there
is no error in the algorithm’s specification. TLC finds no errors, and reports that
there are 6 reachable states and the diameter of the state graph is 5. This is
what we expect for an algorithm with a single possible behavior that terminates
after taking 5 steps.

Let’s now check the invariant. We can enter the invariant directly into the
model. However, we might as well put the invariant in a definition in the spec-
ification itself. The property of an algorithm that it terminates only with the
correct result is called partial correctness, so let’s add to module Euclid the
definition:

PartialCorrectness = PartialCorrectness ==

What are safety and liveness
properties?

(pc = “Done”) = (:C = y) A (x = GCD(]W7 N)) L (pCLFu"DOne")u=>u(Xu=uY)u/\u(Xu=uGCD M,LN))

Add the invariant PartialCorrectness to the Invariants part of the What to check?
section of the Model Overview page and run TLC. This produces an error, with
the not very helpful error message

Evaluating invariant PartialCorrectness failed.

The error trace shows that this error occurred when TLC was evaluating the
invariant on the last state of a complete execution. This is the first state TLC
computed in which pc = “Done” equals true, so it is the first state in which it
had to compute GCD(M, N) when evaluating PartialCorrectness. TLC can’t
evaluate GCD(M, N) unless we override the definition of Int to make it a finite
set. As we did for the GCD spec, use the Definition Override section of the
Advanced Options page to have the model redefine Int to equal —1000..1000.

L

39

TLC should now find no error, verifying that the algorithm terminated with z
and y equal to GCD(M, N).

Try changing the values of M and N and running TLC again. Each run
should take a couple of seconds for values of M and N less than 1000. Since we
know that Euclid’s algorithm is correct, checking a few values of M and N will
give us confidence that our PlusCal version is correct.

If we didn’t know that Euclid’s algorithm was correct, we would need to
check it for many more values. Instead of checking that our algorithm computes
the ged of M and N, let’s check that it computes the ged of all pairs of numbers
in 1..N. We do this by declaring the initial values of z and y to be arbitrary
elements of 1.. N. We also add two variables 0 and y0 that initially equal z
and y, respectively, and whose values are left unchanged. We then check that,
when the algorithm terminates, x and y equal GCD(z0, y0).

Change the variables declaration of the algorithm to:

variables z € 1..N,y€1..N,20=1z, y0 = y;

Rerun the translator and examine the formulas Init and Next that it produces.
Formula Init should be what you expect it to be, and formula Nezt is the same
as before except for a conjunct asserting that z0 and y0 are unchanged.

Create a new model by cloning the model you already created. In the model’s
Invariants section, uncheck the invariant PartialCorrectness and add the invari-
ant:

(pc = “Done”) = (z = y) A (z = GCD(z0, y0))

When you're not sure how long checking a model will take, start with a very
small model. Set the value of N to be 5, so there are 25 possible behaviors of
the algorithm (because there are 25 different initial states). Even with such a
small model, running TLC with a single worker thread takes 30 seconds on my
computer. Why is it so slow?

TLC is spending almost all its time computing GCD(z0, y0) when evaluating
the invariant. Doing that requires it to compute Divisors(z0) and Divisors(y0).
TLC computes Divisors(n) from the definition of Divisors by enumerating all
the elements p in Int and checking if Divides(p,n) is true. In the common
case when p does not divide n, this computing Divides(p, n) requires TLC to
check that n does not equal p * g for every element ¢ of Int. Since our model
redefines Int to be a set with about 2000 elements, computing GCD(z0, y0)
requires TLC to compute an expression of the form n = p x ¢ about 8 million
times. It computes GCD(z0, y0) 25 times for this model-—once for the final
state of each of the behaviors. Experimentation reveals that there is a constant
7 second start-up overhead, and simple arithmetic then shows that it takes TLC
a little over .1 microsecond to compute n = p*¢. This is about 100 times longer
than it takes a Java program to evaluate the same expression on my computer.

This is one situation where
there is no good way to test
the algorithm without
modifying it.

-~

L

40

All the positive divisors of a positive integer n are elements of 1..n. TLC will
therefore correctly compute GCD(z0, y0) for 0 and y0 in 1.. N if we redefine
Int to equal 1.. N. Change the model to override the definition of Int with this
value. It now takes TLC only 7 seconds to run the model on my computer for
N =5. For N =100, it takes 33 seconds.

This example illustrates that for checking a spec, it helps to have a basic
understanding of how TLC works. It also shows that the simplicity and elegance
of mathematics compared to programming languages comes at a high price in
efficiency of execution. Fortunately, checking all behaviors of a small model is
generally more effective at finding errors in an algorithm than checking randomly
chosen behaviors of a programming-language implementation.

Instead of checking the algorithm by adding an invariant to the model, we
can add an assert statement to the algorithm. Place the following statement
right after the while statement:

assert (r =y) A (z = GCD(z0,y0)) assert (x =y) /\ x

Execution of the statement assert P does nothing if P is true, and it reports
an error if P is false. Save the module and run the translator again. If you
followed the directions above exactly, this will yield a translator error reporting
a missing semicolon (;) before the assert. Separate PlusCal statements must be
separated by semicolons. (A semicolon can be placed at the end of a sequence
of statements, but it is not required.) Insert the missing semicolon, which most
people place just to the right of the } that ends the while statement. Save the
module and run the translator again. This should result in the parser error:

Unknown operator: ‘Assert’.

The translation of the assert statement uses a special operator Assert defined
in the standard TLC module. It defines Assert(P, m) to equal TRUE if P equals
TRUE. If TLC evaluates P to be different from TRUE, it reports an error that
includes m. (In that case the value of P shouldn’t matter.) Add TLC to the
EXTENDS statement and save the module. The parser error disappear, and you
can now run TLC.

Try changing the assert statement to cause an error—for example change
x =y to x # y—and run TLC. Clicking on the appropriate links in the error
message will take you to the assert statement and to its translation.

4.6 Checking Liveness

Open the model for the Fuclid algorithm that you have been checking with
TLC. Open the Properties part of the What to check? section of the Model
Overview page. It should list the property Termination, but with it unchecked.
Remember that Termination is the temporal formula that is true of a behavior

= GCD(x0, y0))

If you got a different error,
click here.

-~

L

41

iff the behavior terminates (reaches a state with pc equal to “Done”). (If it’s
not in the list, add it.) Check that property to tell TLC to check it. Have the
model set N to 10 and run TLC on it.

TLC reports that

Temporal properties were violated.

and it produces an error trace consisting of a single state, which is a possible
initial state (one satisfying the Init predicate), followed by the mysterious indi-
cation (Stuttering). This trace describes a behavior consisting of a single state,
representing an execution that stops in an initial state. (It will become clear
later why the trace says Stuttering.)

A behavior of the algorithm is a sequence s; — so — --- that satisfies two
conditions:

1. Init is true if the variables have their values in state s;. (Remember that
a state is an assignment of values to variables.)

2. For any pair s; — s;41 of successive states, Nezt is true if the unprimed
variables have their values in s; and primed variables have their values in

Si41-

It seems natural also to require that the behavior doesn’t end before it has to—in
other words, to add the condition:

3. The behavior does not end in a state s, if there exists a state s,41 such
that the sequence s; — ... — s,41 also satisfies condition 2.

However, the PlusCal algorithms we have written thus far do not have this
requirement. They allow all behaviors that satisfy conditions 1 and 2, including
behaviors that stop in the initial state. More precisely, the temporal formulas
Spec that are those algorithms’ translations allow all such behaviors.

To add requirement 3 for the behaviors of an algorithm, instead of beginning
the algorithm with --algorithm, we begin it with:

--fair algorithm

Make this change, run the translator, and run TLC again on the model. This
time, TLC finds no error, verifying that for the model, all behaviors terminate.

Examining the translation, we find that the new definition of the behavior
specification Spec is the conjunction of its original definition and the formula
WF yars (Next) (written in ASCII as WF_vars(Next)). It is this formula that
expresses condition 3. The requirement is called weak fairness of the action
Next. We will study fairness formulas later. For now, you need only know that
this particular formula, with Next the specification’s next-state action, asserts
condition 3.

Why don’t we require
condition 3 to hold for all
algorithms?

-~

L

42

4.7 The Translation Revisited

Let’s return to the definition of Next in the translation, which is
Next = Lbl_1 V (pc = “Done” A UNCHANGED vars)

where vars is defined to equal (z, y, 20, y0, pc). Action Lbl_1 describes the
steps allowed by the body of the algorithm. The second disjunct allows steps that
start in a state in which pc equals “Done” and leaves the algorithm’s five variables
unchanged. A step that leaves all of a specification’s variables unchanged is
called a stuttering step.

The comment added by the translator tells us that this disjunct is added
to prevent deadlock on termination. To verify that it’s needed, comment out
the disjunct, save the module, and run TLC on the same model. (An easy way
to comment out those two lines is to select them and type control+/.) Indeed,
TLC reports that deadlock was reached and shows an error trace ending in a
terminated state.

TLC considers a reachable state from which there is no next state satis-
fying the next-state action to be a deadlock error. The only difference be-
tween deadlock and termination is that termination is deadlock that we want to
happen—or equivalently, that deadlock is termination we don’t want to happen.
TLC doesn’t know whether or not we wanted this deadlock to happen. We can
tell TLC to ignore deadlock by unchecking the Deadlock box in the What to
check section of the model overview page. However, it’s possible to write Plus-
Cal algorithms that can deadlock at a state with pc # “Done”. This usually
indicates an error—that is, deadlock that we didn’t want to happen—so we want
TLC to report it. Therefore, the translation adds this disjunct to the next-state
action so TLC doesn’t treat termination as deadlock.

4.8 The Grain of Atomicity

The TLA™T translation defines the next-state action Next for which an execution
of one iteration of the while loop is a single step. Why? Why didn’t the
translator produce a definition of Next in which evaluating the while test and
executing the body of the while statement are represented as two separate
steps? Perhaps it should have made execution of the if statement two steps,
one evaluating the condition and the second executing either the if or the else
clause.

In PlusCal, what constitutes a step is specified by the use of labels in the code.
A step is execution from one label to the next. For uniprocessor algorithms like
the ones we have written so far, we can omit the labels and let the translator
decide where they belong. For algorithm Fuclid, the translator decided that
there should be a single label Lbl_1 on the while statement. To see that this is
the case, let’s explicitly add the label abc to the while loop, so it becomes:

-~

L

43

abc: while (z#y) { ...

Run the translator. The translation is exactly the same as before except that
formula Lbl_1 has become formula abc, whose definition is the same as the
original definition of Lbl_1 except that the string “Lbl_1” has been replaced by
“abc”.

There are rules for where labels must go and where they may not go. Most
of the rules serve to make the translation simple, which is important because we
want to be able to reason about it. You’ll learn the rules as we go along, and
the translator’s error messages will tell you if you've omitted a necessary label
or put one where it shouldn’t go. The first two rules are:

e The first statement in the body of the algorithm must have a label.
e A while statement must have a label.

Both imply that the translator had to add a (virtual) label where it did. If we
let it decide where the labels should be, it uses as few as possible. This produces
a specification in which an execution has the fewest possible steps, which makes
model checking most efficient. It also produces the simplest translation. For
uniprocess algorithms, we usually care only about the answer they produce and
not what constitutes a step.

Let’s see what happens when we add another label. Put the label d on the
if statement, so the body of the algorithm becomes:

abc: while (z#y) { d:if (z<y){y=y—z}
else {z=2—-y}
}s
assert (z = y) A (z = GCD(z0, y0))

There are two kinds of steps in an execution of this algorithm:

An abc step: The step starts with control at abc and, based on the value of the
test x # y, either moves control to d or else executes the assert statement
and moves control to Done (the implicit control point at the end of the
algorithm).

A d step: A step that starts with control at d, executes the if step, and then
moves control to abc.

Run the translator. The translation defines two subactions, abc and d, that
describe these two kinds of steps. It defines Next to be the disjunction of these
two subactions and of the subaction allowing stuttering steps when the algorithm
has terminated.

Try adding other labels in addition to or instead of d. Make sure you under-
stand the translations. In this algorithm, you can add a label at the beginning
of any complete statement. The only requirement is that the while statement

-~

L

44

be labeled. As you have already figured out, the translation defines a subaction
for each label. Run TLC on the different versions (for a small value of N) and
compare their numbers of reachable states.

4.9 Why Euclid’s Algorithm Is Correct

Checking an algorithm with TLC can give us some confidence that an algorithm
is correct. How much confidence depends on the algorithm. It cannot show us
why the algorithm is correct. For that, we need a proof.

In this track, we write only informal correctness proofs. Writing any kind of
proof helps you understand an algorithm and therefore helps you avoid errors.
However, it’s often easy to write an incorrect informal proof that claims to prove
a property that an algorithm doesn’t satisfy—especially for a safety property.
The informal safety proofs we will write can be made as rigorous as necessary
to give us sufficient confidence in their correctness. (What constitutes sufficient
confidence depends on what the algorithm is going to be used for.) If necessary,
they can be turned into formal TLA™ proofs and checked with the TLAPS proof
system. Few readers will ever need to write a formal proof. However, learning
to write formal proofs will improve your ability to write rigorous informal ones.
I therefore urge you to learn how to write and check formal proofs by reading
at least the beginning of the TLA* Proof Track™.

Since we are reasoning about the algorithm, not testing it, let’s use the
simpler, original version of the algorithm. Recall that this version computed the
ged of M and N with z and y the only (declared) variables, and it had no labels
and no assert statement. Change the algorithm in the Fuclid module back to
that version and run the translator.

4.9.1 Proving Invariance

The safety property we want to prove about algorithm Fuclid is the invariance
of the state predicate PartialCorrectness, which is defined to equal

(pc = “Done”) = (z=y) A (x = GCD(M,N))

A state predicate is a formula that is true or false of a state. In other words,
it is a Boolean-valued expression that may contain variables but no primes (or
temporal operators). Invariance of a state predicate means that it is true in
every state of every behavior of the algorithm. To prove that a state predicate
Inv is true in every state of a particular behavior s; — so — ..., we prove:

1. Inv is true in state s;.

2. For every step s, — Sn+1 in the behavior, if Inv is true in state s,, then
it is true in state S,41.

-~

L

45

It follows by induction from 1 and 2 that Inv is true for every state s, of the
behavior. This reasoning shows that we can prove that Inv is true in every state
of every behavior by proving:

1. Inv is true for any initial state, and

2. If Inv is true in a state s and s — t is a possible step of the algorithm,
then Inv is true in state t.

An initial state is one that satisfies the initial predicate Init. Therefore the first
condition is equivalent to the truth of:

11. Init = Inv

A step s — t is a possible step of the algorithm only if the next-state action Next
is true when each unprimed variable has its value in state s and each primed
variable has its value in state ¢. For any state predicate P, we define P’ to be
the formula obtained from P by priming all the variables in it. For example,
PartialCorrectness’ equals

(pc' = “Done”) = (2’ =y') A (¢ = GCD(M,N))
Condition 2 is then satisfied if the following formula is true:
12. Inv A Next = Inv’

Make sure you understand why the truth of I2 implies the truth of condition 2
above.

An invariant Inv satisfying I1 and 12 is called an inductive invariant of the
algorithm. (A predicate satisfying I2 is sometimes called an inductive invariant
of the next-state action Next.) Although PartialCorrectness is an invariant of
algorithm Fuclid, it is not an inductive invariant. It satisfies I1 but not 12. For
example, consider the following values for the unprimed and primed variables:

r=42 y=42 pc= “Lbl_1” =42 ¢y =42 pc’ = “Done”

You can check that Next is true for these values of the primed and unprimed
variables by substituting them in the definition of Lbl_1 and checking that the
resulting formula equals TRUE. This is perhaps easier to see by observing that
the step

y = 42 — y = 42
pc = “Lbl_1” pc = “Done”

which starts with control at the beginning of the while statement and ends
with control at the end of the algorithm, is allowed by the code in the al-
gorithm’s body. With those values of the primed and unprimed variables,

L

46

PartialCorrectness equals TRUE (because pc = Done equals FALSE), and
PartialCorrectness’ equals the formula 42 = GCD(M, N) (because pc’ = “Done”
and z’ = y’ both equal TRUE). Hence with these substitutions, I2 becomes
TRUE A TRUE = (42 = GCD(M, N)), which equals 42 = GCD(M, N). Thus,
12 is false for Inv equal to PartialCorrectness unless the gcd of M and N hap-
pens to equal 42. In that case, we can replace 42 by another number to get an
example in which 12 is false. Therefore, PartialCorrectness is not an inductive
invariant.

This was a long calculation to demonstration something that should have
been obvious. Formula PartialCorrectness is true in any state with pc not equal
to “Done”. Its truth tells us nothing about the relation between the values of
z, y, and GCD(M, N) during the algorithm’s execution, so its truth during the
execution can’t imply that it will be true upon termination. However, doing this
long calculation should help you understand that, by describing the algorithm
with two formulas, Init and Next, TLAT reduces reasoning about an algorithm
to simple mathematics.

We are still left with the problem of proving the invariance of PartialCorrectness.

We do that by finding an inductive invariant Inv that, in addition to I1 and 12,
satisfies:

13. Inv = PartialCorrectness

Conditions I1 and I2 imply that Inv is true in all reachable states, which by
I3 implies that PartialCorrectness is true in all reachable states, so it is an
invariant.

The fundamental reason why Euclid’s algorithm computes the ged is that it
maintains the invariance of the state predicate:

GCD(z,y) = GCD(M,N)

This is an inductive invariant of the algorithm. However, it doesn’t satisfy 13
because it doesn’t imply that z equals y on termination. An inductive invariant
Inv that satisfies I3 is:

Inv = A GCD(z,y) = GCD(M,N)
A (pc = “Done”) = (z = y)

The proof that Inv satisfies I1-13 requires three facts about the gcd. These facts,
which we call GCD1-GCD3, are expressed by the following theorems:

THEOREM GCD1 = ¥V m € Nat\ {0} : GCD(m, m) =m
THEOREM GCD2 = Vm, n € Nat\ {0} : GCD(m, n) = GCD(n, m)

THEOREM GCD3 = VYm, n € Nat\ {0} : (n > m) = (GCD(m, n) = GCD(m, n — m))

Let’s just assume them for now; we’ll return to them later.

-~

L

47

Click here for a proof of the invariance of PartialCorrectness. The first thing
you will notice is that this proof doesn’t look like an ordinary mathematician’s
proof. Instead, it is hierarchically structured. Proofs of algorithms can be quite
complicated, and the way to handle complexity is by hierarchical structure. Here
are some other things to observe about the proof style.

e A proof is either a leaf proof, consisting of a short paragraph; or it is a
sequence of steps, each with a proof, ending with a QED step.

e A QED step asserts the goal of the current level of proof. Its proof shows
that this goal is proved by the preceding steps.

e A CASE statement asserts that the current proof’s goal is true if the CASE
assumption is.

Learning to write proofs that are correct and easy to read is an art. Here are a
couple of tips.

e If a leaf proof is too long to be easily understood, it should be decomposed
into a non-leaf proof, adding another level to the hierarchy. A leaf proof
that is not easy to understand could easily be incorrect.

e Any previous proof steps required by a leaf proof should be explicitly
mentioned, as should other significant facts being used (such as GCD1-
GCD3).

This proof may seem rigorous. Actually it is incorrect—for a reason that should
eventually become obvious to you. Throughout the proof, there is an implicit
assumption that z, y, M, and N are positive integers. The ASSUME statement
in the module asserts that M and N are positive integers, justifying that as-
sumption. Step 1 is therefore correct, though its proof should mention that it
uses the assumption. However, there is nothing in the hypotheses of any other
step to imply that z and y are positive integers—an assumption that is needed
to apply GCD1-GCD3. We can’t even prove that z and y are numbers.

In all the proofs except for that of step 1, we get to assume that Inv is true.
Thus, we can justify the assumption that = and y are positive integers by having
Inv assert it. Let’s do that by defining:

TypeOK = Az € Nat\ {0}
Ay € Nat\ {0}

and changing the definition of Inv to

Inv = A TypeOK
A GCD(z,y) = GCD(M,N)
A (pc = “Done”) = (z = y)

-~

L

48

With this change, our proof becomes correct in the sense that the assertion made
by every step is true. However, a more rigorous proof would mention that the
proof uses TypeOK. Also, in steps 2.1-2.3, the proofs of Inv’ need to prove
TypeOK'.

In general, an inductive invariant must contain a type-correctness condition.
Since that’s not a very interesting part of the invariant, we encapsulate this
condition in a separate formula that I like to call TypeOK. The formula usually
has a conjunct for each variable, asserting that the variable is an element of some
set. For uniprocess PlusCal algorithms such as this one, there may be no need of
a type-correctness condition for the variable pc. We may not bother mentioning
the use of TypeOK in an informal proof. However, we should include it in the
inductive invariant, because proving statements that are not true is a bad habit
to get into.

Question 4.4 Modify the algorithm by labeling the while loop abc and labeling
the if statement d. Show that the formula Inv defined above is not an inductive
invariant of the resulting algorithm. Find an inductive invariant of this algorithm
that implies PartialCorrectness.

Click here if you already learned how to prove partial correctness of programs.

4.9.2 Verifying GCD1-GCD3

A complete proof of Euclid’s algorithm should include a proof of GCD1-GCD3.
However, before we do any proving, we should use TLC to check the correctness
of these theorems. It’s a lot easier to prove something if it’s true. And even an
obviously true theorem could be incorrect because of a typo.

Open the GCD spec in the Toolbox and create a new model. We can check
all three theorems at once by having the model tell TLC to evaluate the constant
expression

ANSWER

(GCD1, GCD2, GCD3) <<GCD1, GCD2, GCD3>>

We saw in Section 4.1 that we must override the definition of Int with a finite
set of integers to allow TLC to evaluate the GCD operator. The three theorems
are all of the form

V... € Nat\ {0} : ...

TLC can evaluate such formulas only if we override the definition of Nat. Have
the model override the definitions of Nat and Int with small sets of integers—for
example, 0..5—and run TLC on it. If you’ve made no error, it should report
the value (TRUE, TRUE, TRUE). You can then check GCD1-GCD3 on a
larger model. It should take TLC one or two minutes to do this for a model that
defines Nat and Int to equal 0. . 100.

-~

L

49

Having checked GCD1-GCD3 with TLC, we can now think about proving
them. Theorems GCD1 and GCD2 follow easily from the definition of GCD
and we won’t bother proving them. The proof of GCD3 uses this simple fact

Lemma Div For any integers m, n, and d, if d divides both m and n
then it also divides both m + n and n — m.

You should have no trouble proving it.

Here is a proof of GCD3. The structure of the proof becomes clearer, and
the proof easier to read, if we introduce notation to replace some of the prose,
obtaining this proof. Compare the two proofs. To help you understand the
second proof, here it is with comments. Although the notation may seem strange,
you should be able to see that it makes the second proof easier to read. Ease of
reading is very important for complex proofs.

The formal TLAY versions of the invariance proof of Euclid’s algorithm and
the proof of GCD1—GCD3 are in Section 11 of the Proof Track™.

4.9.3 Proving Termination

To prove that algorithm FEuclid always terminates (assuming fairness), we ob-
serve that each step of the algorithm that doesn’t reach a terminating step
decreases either z or y and leaves the other unchanged. Thus, such a step de-
creases z + y. Since z and y are always positive integers, = 4+ y can be decreased
only a finite number of times. Hence, the algorithm can take only a finite number
of steps without terminating.

In general, to prove that an algorithm terminates, we find an integer-valued
state function W for which:

e W > 0 in any reachable, non-terminating state.

e If s is any reachable state and s — ¢ is any step satisfying the next-state
action, then either the value of W in state s is greater than its value in
state t, or the algorithm is terminated in state t.

To reason about reachable states, we use an invariant—which by definition is a
predicate that is true in every reachable state of an algorithm. Let Next be the
algorithm’s next-state action. The same kind of reasoning that led to condition
12 above shows that we can prove termination by finding a state function W
and an invariant I of the algorithm satisfying:

Ll. I = (W € Nat) V (pc = “Done”)
L2. I A Next = (W > W')V (pc’ = “Done”)

L

50

The state function W is called a variant function. For algorithm Fuclid, we let
W be z + y and we let I be the (inductive) invariant Inv.

The use of the ordering > on natural numbers in this method can be gen-
eralized to any well-founded ordering on a set. However, the generalization is
seldom needed to prove termination of uniprocess algorithms.

4.10 Euclid’s Algorithm for Sets

We now consider a generalization of Euclid’s algorithm that I find elegant. It
computes the ged of a set of numbers, rather than of just two numbers. We start
by defining SetGCD(T) to be the ged of a set T of positive integers. It equals
the maximum of the set of numbers that divide all the numbers in T

SetGCD(T) = SetMax({d € Int :Vt € T : Divides(d, t)})

Add the definition to module GCD and check it for one or two small sets of
positive integers. (Use the same model you did before, which defined Int to be
a finite set of integers.)

The algorithm, which computes the ged of a non-empty set Input of positive
integers, uses a single variable S. Its informal description is:

e Start with S equal to Input.

e While S has more than one element, choose elements z and y in S with
y > z, remove y from S and insert y — z in S.

e If S contains a single element, that element is SetGCD (Input).

(If you don’t understand how removing one element from S and inserting another
could reduce the number of elements in S, you need to read about sets".)

The body of the PlusCal algorithm should be a while loop whose test asserts
that S has more than one element. The standard FiniteSets module defines
Cardinality(S) to equal the number of elements in S, if S is a finite set. The
value of Cardinality(S) is unspecified if S is not a finite set. We will assume
that Input is a finite set, so S will always be a finite set. The while loop’s test
can therefore be written as Cardinality(S) > 1. Here is the complete body of
the algorithm:

while (Cardinality(S) > 1)
{ with (z€8, ye{seS:s>z})
. { §=06\{ghufy—a} }

To understand the meaning of the with statement, let’s look at the translation
of the algorithm’s body:

ASCII version

L

51

A

Lbl_1 = Apc= "Lbl_1"
ATF Cardinality(S) > 1
THEN Adz € S:
dye{seS:s>uz}:
S = ((S\{y}) U{y —=})

A pc = “Lbl_1"
ELSE A pc’ = “Done”
NS =8

The colored formula is the translation of the with statement; the green formula
is the translation of its body, the assignment to S. Let’s examine the formula
piece by piece.

S\{y}

The set obtained by removing all the elements in the set {y} from S—in
other words, obtained by removing y from S.

(S\{y}) Uiy — =}

The set obtained from S by removing y and inserting y — z.

The green formula therefore asserts that S’ (the new value of S) equals the set
obtained by removing y from (the old value of) S and inserting y — z.

{s€S:s>ua}
The set of elements in S that are greater than z.

The entire formula therefore asserts that there exist z and y in S, with y > =z,
such that the green formula is true. The meaning of the with statement is
therefore:

Execute the body with z an arbitrary element of S and y an arbitrary
element of S greater than x.

In general, the statement
with(vleSl,...,vleSl){E}

is executed by letting each v; be arbitrary element in §; and executing > with
those values of the v;. TLC will check the executions obtained by all possible
choices of the v;.

Create a new module named SetFuclid that EXTENDS module GCD and
Integers. Enter the PlusCal specification, translate it, and test that TLC ex-
ecutes the specification on a model with Init a small set of positive integers.
Make it a fair algorithm (beginning with --fair algorithm) and have TLC
check that it terminates.

Partial correctness of Euclid’s algorithm, which asserts that on termination
S contains the single element SetGCD (Input), is expressed by the invariance of:

with (v € S') versus
with (v =5)

L

52

PartialCorrectness = (pc = “Done”) = (S = {SetGCD(Input)})

Add this definition to module SetFuclid and have TLC check that the invariance
of PartialCorrectness. (Since evaluating this formula requires TLC to compute
SetGCD(Input), your model will have to override the definition of Int.)

The proof of partial correctness is analogous to that of algorithm Euclid and
is based on the invariance of

SetGCD(S) = SetGCD(Input)
A rigorous proof uses the inductive invariant

SInv = A TypeOK
A SetGCD(S) = SetGCD(Input)
A PartialCorrectness

where the type invariant is defined by

TypeOK = A S C Nat\ {0}

NS #{}
A IsFiniteSet(S)

The assumption that S is finite is required because we don’t know what the
expression Cardinality(S) in the while test means if S is not a finite set. To
prove that TypeOK is true in the initial state, we need the assumption:

ASSUME = A Input C Nat\ {0}

A Input # {}
A IsFiniteSet(Input)

Question 4.5 Rewrite the algorithm without using the Cardinality operator, so ANSWER
partial correctness is true even for infinite sets Input. (The rewritten algorithm
obviously does not terminate if Input is an infinite set.)

The proof of termination is based on the observation that each non-terminating
step of the algorithm decreases the sum of all the elements of S. To state this
rigorously, we must define the sum of the elements in a finite set of numbers.
The only way I know to define this mathematically is with a recursive definition
(also called by mathematicians an inductive definition):

e The sum of the empty set is 0.

e The sum of a non-empty set T of integers is the sum of some element ¢ in
T plus the sum of the elements in T'\ {¢}.

Since it doesn’t matter what element ¢ of T is chosen in the recursive step, we
can use the CHOOSE operator to select it. The obvious definition is then:

L

53

SetSum(T) = w T = {} THEN 0
ELSE LET t = CHOOSE z € T : TRUE
IN ¢+ SetSum(T\{t})

Add the definition to module SetFuclid and save the module. This produces
a parsing error complaining that the operator SetSum is undefined when used
on the right-hand side of the symbol. In TLA™, a symbol must be defined or
declared before it can be used. To allow such a recursive definition of SetSum,
the definition must be preceded by this RECURSIVE declaration:

ASCII version

RECURSIVE SetSum(-) RECURSIVE SetSum(_)

The declaration should be put right before the definition. The parser should
now accept the specification. You can use TLC to check that this is a correct
definition of the sum of a finite set of integers.

To prove termination, we prove conditions L1 and L2 with the invariant
equal to SInv and the variant function W equal to SetSum(S). The informal
proof is straightforward. It uses the following fact about SetSum:

VT € SUBSET Nat :
IsFiniteSet(T) = AVt € T : SetSum(T \ {t}) = SetSum(T) — t
AVt € Nat : SetSum (T U {t}) < SetSum(T) + ¢

where SUBSET Nat is the set of all subsets of the set Nat of natural numbers. A
rigorous proof reveals that some simple facts about finite sets and Cardinality
are also required.

Question 4.6 Show that the correctness of algorithm SetFuclid implies the
following important result from number theory. The gcd of a set {n1,...,ng}
of positive integers equals %1 x nq + ...+ iy * ny for some integers ;.

If you want to learn how to write formal TLA™T proofs, you can now start reading
the Proof track.5

ANSWER

-~

L

54

5 The Generalized Die Hard Problem

We now generalize the Die Hard problem of Section 3 to the problem of obtaining
an arbitrary quantity of water with an arbitrary collection of jugs. The main
purpose of this example is to introduce the use of functions.

5.1 The PlusCal Representation

Open a new spec named DieHarder and add an EXTENDS statement to import
the Integers module. As in the original DieHard spec, we’ll need the operator
Min, where Min(m,n) is the smaller of the two numbers m and n. So, add its
definition to the module.

Min(m, n) = IF m < n THEN m ELSE 7 Min(m,n) == IF m < n THEN m ELSE n

A specification of the general Die Hard problem requires two constant parame-
ters:

Jugs The set of jugs.
Capacity A value that describes the capacity of each jug.

For later use, we also declare the constant Goal, which will represent the number
of gallons of water that our generalized heros must obtain. So, add the following
declaration to the DieHarder module:

CONSTANTS Goal, Jugs, Capacity CONSTANTS Goal, Jugs,

We let Capacity describe the capacities of the jugs by making it a function.
Mathematical functions appear in programming languages, where they are called
arrays. What programming languages call the index set of an array is known
to mathematicians as the domain of a function. However, while programming
languages limit what kind of set can be the index set of an array, mathemat-
ics allows a function to have any set as its domain—including an infinite set.
Programmers think of an array A as a collection of “containers”, one for each
element in its index set; they think of A[i] as the contents of A’s container i.
Mathematicians think of a function A as a rule that assigns to each element ¢ in
its domain a value A(i). TLAT uses the notation of programmers in writing the
value of a function A applied to an element i as A[i] rather than as A(7). In all
other ways, I will use the language of mathematicians, writing about functions
rather than arrays.

The constant Capacity will be a function whose domain is the set Jugs of
all jugs. For each jug j, the value of Capacity[j] should be a positive integer—
that is, an element of Nat \ {0}. We say that Capacity is a function from Jugs

Splitting a module into
sections.

Capacity

In the C language, the index
set of an array can only be a
set of the form 0..n for
some integer n. Too many
language designers have
copied this limitation of C.

L

55

to Nat\{0}. The set of all such function is written [Jugs — Nat\ {0}]. We
obviously want Goal to be a natural number. We therefore add the following
“type assumption” to the module:

ASSUME A Goal € Nat ASSUME,,/\Goal \in, Nat
A Capacity € [Jugs — Nat \ {0}] vouuuuu/ \uCapacity \ing, [Jugs,—> Nat\,{0}]

We will specify the system of jugs and water in PlusCal. The system’s state
is described by the contents of the jugs. We represent it with a variable injug,
where injug[j] is the number of gallons of water in jug j. The declaration of
variable injug must specify its initial value. Initially, injug[j] equals 0 for each
jug j. In other words, initially injug equals a function with domain Jugs that
assigns 0 to every element in its domain. Mathematics provides no standard
notation for writing this function. It is written in TLA™T as [j € Jugs + 0]. In
general, the expression

[ve S e(v)

equals a function f with domain S such that f[v] = e(v) for every v in S. Thus,
the algorithm begins

--algorithm DieHarder {
variable injug = [j € Jugs — 0] ;

Had we wanted all the jugs to be full in the initial state, we would have declared
the initial value of injug to be [j € Jugs — Capacitylj]].

From our original DieHard algorithm, we see that the body of algorithm
DieHarder should be a while (TRUE) loop whose body is an either/or state-
ment that permits three different actions:

e Filling some jug j.
e Emptying some jug j.
e Pouring from some jug j to another jug k.
It should be clear how to express the first two actions as PlusCal statements:
with (j € Jugs) |fll jugj with (j € Jugs) | empty jugj
{ injuglj] := Capacity[j] } { injuglj] =0}

Remembering the with statement in the body of algorithm SetEuclid and how
we represented pouring from one jug to another in algorithm DieHard, we see
that pouring from a jug j to a jug k is represented by this PlusCal statement.

with (j € Jugs, k € Jugs\{j}) |pour from jug j to jug k Warning: this code has an
{ with (poured = error.

-~

L

56

Min(inguglj] + injug[k], Capacity[k]) — injug[k])
{ inguglj] = injuglj] — poured ;
inguglk] := injuglk] + poured
}
}

Add the AsciI1 code of the algorithm to a comment in the module, save the
module, and run the translator. The translator reports the following error:

Second assignment to same variable inside a ‘with’ statement
line ...

Clicking on the error message takes you to the second assignment statement
inside the code representing pouring from jug 7 to jug k. The message is telling
us that we can’t have two assignment statements within the body of a with
statement that assign to the same variable. To understand why not, you need
to know two additional rules for labels in a PlusCal algorithm.

e Two separate assignment statements that assign to the same variable can-
not occur within a single step.

e The body of a with statement cannot contain a label.

Recall that a step consists of execution from one label to the next. The first rule
implies that a label must come between any two assignment statements to the
same variable. In this case, that means that the assignment to injug[k] must
have a label. However, the second rule says that a label cannot go there. Hence,
these two rules imply that it is impossible for the translator to assign labels to
this algorithm.

The solution to this problem is to replace the semi-colon () between the
assignment statements with || (two | characters), turning the two separate
assignment statements into this single multi-assignment:

injuglj] : = injuglj] — poured | injuglk] : = injug[k] + poured
A multi-assignment statement consists of a sequence of assignments of the form:
vy i=e1 || ... || vni=en

It is executed by evaluating all the expressions e;, and then simultaneously
performing the assignments to all the v;. For example, if v and w are variables,
then executing

vi=w | wi=vw

interchanges the values of the two variables, setting the new value of v to the
old value of w and vice-versa. A multi-assignment statement is most often used
to assign to multiple “components” of a function in the same step, as in the
DieHarder algorithm.

After turning the two assignment statements into one multi-assignment, the
module should look like this. The translator should now produce no more errors.

at

L

Y

5.2 Checking the Algorithm

We now use TLC to check algorithm DieHarder. Let’s create a model for which
algorithm DieHarder is equivalent to algorithm DieHard—that is, one with two
jugs of capacities 3 and 5, and a goal of 4. Open a new model and have it set
Goal to 4.

We want the model to assign some set of two elements to Jugs. We could let
those elements be two numbers such as 3 and 47, or two strings such as “bigJug”
and “smallJug”. However, when some part of a spec can have any value, it’s
usually a good idea to have the model assign it a model value. A model value
is treated by TLC to be a value about which it knows nothing, except that
it is unequal to any other model value. We can give a model value any legal
identifier name. Since we’re modeling the original Die Hard system, let’s make
the elements of Jugs be the model values big and small. On the dialog for
assigning a value to the constant Jugs, type {big, small} into the text field and
select the Set of model values option. Click on Next and then on Finish.

We want the model to assign to Capacity a function with domain {big, small}
such that Capacity[big) = 5 and Capacity[small] = 3. One way of doing this is
to assign it the value

[j € Jugs — IF j = big THEN 5 ELSE 3]

However, when creating a model, we can write this function more conveniently
as follows:

To learn more about model
values, see the Model
Values and Symmetry
Toolbox help page.

(big :>5) @QQ (small :> 3) (big :> 5) @@ (small :> 3)

(Select the Ordinary assignment option when assigning the value to Capacity.
The assignment of the set of model values {big, small} to Jugs declares big and
small to be model values in this model.) It should be clear how to use this
notation to write any function with a finite domain. The operators : > and QQ,
which are defined in the standard TLC module, are explained in Section 15.25.
(Operators defined in the TLC module can be used in creating a model, even if
the spec doesn’t import that module.)
Add the formula

Vi € Jugs : injuglj] # Goal

to the model’s list of invariants to be checked. Running TLC should produce as
an error trace a behavior that solves the Die Hard problem for this selection of
jugs. Try other models. Start with a model with two jugs of capacity 3 and 6
gallons, having the goal of obtaining 4 gallons of water. TLC will report that
the alleged invariant actually is an invariant. For that model, the problem has
no solution.

Question 5.1 Under what condition does the generalized Die Hard problem
have a solution? That is, for what values of the constants is the formula above
not an invariant of algorithm DieHarder?

ANSWER

http://tla.msr-inria.inria.fr/tlatoolbox/doc/model/model-values.html
http://tla.msr-inria.inria.fr/tlatoolbox/doc/model/model-values.html

L

58

5.3 The TLAT Translation

Let’s now consider the TLA™T translation of the algorithm. Let’s start with the
either clause, which describes the action of filling a jug.

with (j € Jugs) [fill jug j
{ injuglj] := Capacity[j] }

We know that its translation is 35 € Jugs : ¥, where X is the translation of
the assignment statement. What is the translation of the assignment statement?
Most people think it should be injug[j]’ = Capacity[j]. Let’s see if it is.

In the Toolbox, run TLC on a model that produces an error trace showing
a solution to the Die Hard problem. The first step in that trace is one that
fills a jug. Double-click on the row <Action line ... between the two states
of that first step, which takes you to the part of the next-state action satisfied
by that step. Holding down the control control key while double-clicking takes
you to the corresponding place in the PlusCal code, which is indeed the either
clause. As you can see, the translation of the assignment statement is not

injug[j]’ = Capacity[j]. Why not?
Recall the body of algorithm Fuclid and its TLAT translation. Observe
that the translation of the assignment statement y : = y — z is not the formula

y' = y — z. That formula describes the new value of y, but says nothing about
the new value of z. The translation of the assignment statement is the formula

ANy =y—=x
ANz =z

that also describes the new value of z.

Similarly, the translation of the statement injug[j] : = Capacity[j] must de-
scribe not only the new value of injug[j], but the values of injug[k] for all k in
the domain of injug. The formula injuglj]’ = Capacity[j] says nothing about
the new value of any expression other than injug[j]. Not only does it say nothing
about the value of injug[k] for k # j, it doesn’t even say anything about the
domain of injug’. There are lots of values of injug’ that satisfy this formula—for
example, it is satisfied if injug’ is the function

[k € {j} — Capacity[j])

whose domain contains only the single element j.

The translation of injug[j] : = Capacity[j] must be a formula asserting that
ingug’ is a function that is exactly the same as the function injug, except that
injug'[j] equals Capacity[j]. We can write that function as:

[k € Jugs — 1F k = j THEN Capacity[j] ELSE injug[k]]
The domain of an arbitrary function f can be written in TLAT as DOMAIN f.
We can therefore also write the function above as

[k € DOMAIN injug — IF k = j THEN Capacity[j] ELSE injug[k]]

L

59

Since assignments to arrays appear frequently in specifications, TLA* provides a
more convenient way of writing this function. As you can see from the translation
of algorithm DieHarder, it can be written as

[injug EXCEPT ![j] = Capacitylj]]

A further examination of the algorithm’s translation shows that the multi-
assignment statement

injuglj] : = injuglj] — poured || injuglk| : = injug[k] + poured
is translated as

injug’ = [injug EXCEPT ![j] = injug[j] — poured,
1[k] = injug[k] + poured]

In general, the expression [f EXCEPT ![z] = d, ![y] = e] is defined to equal
[[f EXCEPT ![z] = d] EXCEPT ![y] = e]. The meaning of the further generaliza-
tion [f EXCEPT ![z1] = e, ..., ![z,] = e,] should be clear.

Question 5.2 Explain why changing the body of the while loop of algorithm
DieHarder to the following produces an equivalent algorithm.

with (j € Jugs)
{ either { injug[j] := Capacity[j] }

or { injuglj] :=0 }

or with (k& € Jugs\ {j})

{ with (poured =
Min(injug[j] + ingug[k], Capacity[k]) — injug[k])
{ inguglj] := injug[j] — poured ||
injug[k] := injug[k] + poured

}

What do the EXCEPT and
the | mean?

ANSWER

-~

L

60

6 Alternation

6.1 The Problem

We now begin the subject that concerns most of the Principles track of this
hyperbook: multiprocess algorithms and systems. We start with alternation,
which is the simplest form of multiprocess synchronization. In alternation syn-
chronization, two processes each have an operation to perform, and they must
execute those operations alternately.

Let’s call the processes the producer and the consumer, and let their opera-
tions be called put and get, respectively. The two processes must cooperate to
perform the sequence of operations:

put — get — put — get — ...

Think of the put operation as putting an object into a box, and the get operation
as taking the object out of the box and doing something with it.

To express the problem in our Standard Model, we let the variable box rep-
resent the state manipulated by the operations. For simplicity, we represent the
put and get operations by these two PlusCal statements

bor : = Put(box) box := Get(box)

Question 6.1 This representation makes the put and get operations determin-
istic. Given the initial value by of boz in a behavior, the sequence of values of
boz in the behavior must be

[box = by] — [box = Put(by)] — [box = Get(Put(by))] — [box = Put(Get(Put(by)))] — ...

How can we modify the representation to allow the put and get operations to
be nondeterministic?

We can declare Put and Get to be parameters of a specification with the state-
ment

CONSTANTS Put(-), Get(-)

However, each TLC model that we use would then have to assign particular
operators to Put and Get. For convenience, we define specific operators Put
and Get.

I could probably think of hundreds of sensible ways to define Put and Get.
For reasons that may (or may not) become clearer in a later section, I like to
define them so the value of boz is a tuple that initially equals the O-tuple ().
We define Put to be the operator that appends the value “widget” to a tuple, so

Put({e1,...,en)) =(€1,...,en, “widget”)

ANSWER

-~

L

61

We define Get to be the operator the removes the first element of a tuple, so

Get({e1,...,en)) = (ea,...,en)

Thus, a behavior should have the following sequence of values of bozx:

[box = ()] — [box = (“widget”)] — [box = ()] — [box = (“widget”)] — ...

These definitions make it easy to have TLC check that an algorithm does execute
the two operations alternately. Executing two successive put operations sets
boz to a tuple containing two or more elements. If that doesn’t happen, then
executing two successive get operations causes the second one to try to remove
the first element of a O-tuple, which will produce a TLC error. Having TLC
check the invariant that the tuple box has at most one element will therefore
produce an error if the two operations are not executed alternately.

In TLAT, tuples are the same as finite sequences, an n-tuple being a sequence
of length n. We define Put and Get using the operators Append and Tail defined
in the standard Sequences module®™. The definitions are:

Put(s) = Append(s, “widget") Put(s) == Append(s, "widget")
A

Get(s) Tail(s) Get(s) == Tail(s)

The Sequences module also defines the operator Len so that Len(s) is the length
of a sequence s. We can have TLC check that an algorithm implements alter-
nation by checking the invariance of Len(boz) < 1.

6.2 The One-Bit Clock Revisited

The simplest way to implement alternation is with a one-bit clock that starts
at 0. The put operation is performed when the clock changes from 0 to 1, and
the get operation is performed when it changes from 1 to 0. So, let’s return to
our first example: the one-bit clock. We again represent the value of the clock
with a variable b. However, this time we represent the clock as a two-process
algorithm: a Tick process that changes the value of b from 0 to 1, and a Tock
process that changes it from 1 to 0. The algorithm begins as usual, with the
declaration of variable b setting its initial value to 0.

--algorithm TickTock {
variable b = 0;

In PlusCal, a process has both a name and an identifier (id for short), which
can be any value. We let the process named Tick have id 0 and the one named
Tock have id 1. Here is the code for the two processes. The order of the two
process declarations makes no difference. By default, the translator requires us
to provide labels for a multiprocess algorithm. Since a step consists of execution
from one label to the next, the single label in each process makes an entire
execution of its while loop’s body a single step.

-~

L

62

Intuitively, the statement await b = 0 causes process Tick to wait until
b equals 0 before it can execute the rest of the step. However, that intuitive
explanation shouldn’t be taken too seriously. The real meaning of an await
statement is revealed by its TLA™ translation.

Open a new specification named TickTock and insert into it the ASCII version
of the algorithm. Run the translator, and then create a model and run TLC on it.
There should be no error. TLC reports as expected that there are two reachable
states. Now examine the initial predicate Init and the next-state action Next
generated by the TLAT translation. The predicate Init obviously is defined to
equal b = 0 (with a superfluous A). The action Next is the disjunction of the
two subactions Tick and Tock. From their definitions, we see that Next equals

VAb=0
Ab =1
VAb=1
Ab =0

This is the action Nextl that we defined above in our first specification of the
one-bit clock.

The Toolbox’s Goto PCal Source command allows you to find the PlusCal
code corresponding to parts of the TLA™ translation. Select a region of the
translation and run the command either from the module editor’s right-click
menu or by typing F10. The command jumps to and highlights the PlusCal
source. If you try that on the translation, you will discover that the statement
await P simply adds the conjunct P to the appropriate part of the next-state
action.

Question 6.2 Write a uniprocess PlusCal algorithm whose translation defines
exactly the same definitions of Init and Next as that of algorithm TickTock.

Is the one-bit clock a uniprocess system or a multiprocess system? It’s nei-
ther. The number of processes is a property of the syntactic representation of
a system in PlusCal or in some programming language. It is not a property
of the system itself. The true meaning of (a model of) a system lies in the
mathematics: the initial predicate and next-state action (plus perhaps a fair-
ness formula). As we saw in our original discussion of the one-bit clock, there
are many ways to write the initial predicate and next-state action to produce the
same behavior specification—that is, to produce equivalent temporal formulas
Init A O[Next]yqrs- As shown by Question 6.2, different PlusCal code can even
produce syntactically identical behavior specifications.

6.3 Specifying Alternation: Safety

We now specify alternation synchronization by adding to the one-bit clock spec-
ification the put and get operations, expressed using the Put and Get operators
defined above. The specification is in module Alternation.

ANSWER

-~

L

63

The module first imports the standard Integers and Sequences modules and
defines Put and Get. Then comes the behavioral specification, written as a
PlusCal algorithm called Alternate. The algorithm declares the variable b of
the one-bit clock, with initial value 0, and the variable box used by the put and
get operations, with initial value equal to the empty sequence.

The producer and consumer processes are specified by process declarations,
which are the same as the the two clock processes except with the added assign-
ments to boz that represent the put and get operations. The labels have also
been changed. Create the Alternation specification in the Toolbox, using this
AscIl version of the module’s body.

It should be clear that the only behaviors of this algorithm are the infinite
behavior

b =0 b = 1 b =0

[b0$=<>] {bawz(“widget’ﬁ} - [boa:z()]
and any finite prefix of it. (We haven’t specified any fairness requirement yet,
so execution can stop at any point.) Hence, except for fairness, the sequence of
values of boz specifies the proper alternation of the put and get operations. Let’s
use TLC to check that this is the case, and that we haven’t made a mistake.
Create a new model, add to it the invariant Len(boz) < 1, and run TLC on it.
TLC reports that the invariant is satisfied, and that there are just two reachable
states, as expected.

There are two problems with this specification. I’ve mentioned the first: that
we haven’t specified any fairness requirements. The spec therefore describes
only the safety properties of alternation, not any liveness properties. Liveness
is discussed below.

The second problem is that I informally described alternation in terms of put
and get operations, which are represented in terms of the single variable bozx.
However, algorithm Alternation also specifies the values of the variable b. The
variable b serves only to “control” the possible values of the variable box. We
don’t care about its value. It’s possible to write a philosophically correct speci-
fication that hides the variable b, but we won’t bother with philosophy. Instead,
we take a practical approach that depends on what it means to implement the
specification. This approach is discussed later.

6.4 Specifying Alternation: Liveness

We saw in Section 4.6 that the initial predicate Init and next-state action Next
assert the following safety properties of a behavior s; — s — ---.

1. Init is true in s;. (Remember that a state is an assignment of values to
variables.)

2. Each step s; — s;41 of the behavior is a Next step.

b =
{ bor = (“widget”)

1

How to hide variables in
TLA.

-~

L

64

Recall that condition 2 means that formula Next is true when each unprimed
variables is replaced by its values in state s; and each primed variable is replaced
by the variable’s value in state s;11.

Beginning the algorithm with --fair algorithm adds the fairness require-
ment WF - (Next), which asserts:

3. The behavior does not end in a state s, if there exists a state s,41 such
that the sequence s; — ... — s,41 also satisfies condition 2.

We say that an action A is enabled in a state s iff there exists a state ¢ such
that s — ¢ is an A step. Assuming the truth of condition 2, we can restate
condition 3 as:

3a. The behavior does not end in a state s,, in which Nexzt is enabled.

For algorithm Alternate, the next-state action Next is enabled in every reachable
state, so weak fairness of Next implies that it has no finite behaviors. It must
execute forever.

This same liveness condition can be expressed as weak fairness of each of the
processes. For an arbitrary action A, the weak fairness requirement WF 4, (A)
is defined to assert the following two conditions for the behavior s; — so — - -.

3a. The behavior does not end in a state s,, in which A is enabled.

3b. If the behavior is infinite, then there is no n such that the infinite behavior
Sp — Spa1 — -+ has no A steps but A is enabled in all of its states.

If A is the next-state action Next, then condition 3b is implied by condition 2,
which asserts that every step of the behavior is a Next step.

Preceding the keyword process by fair causes the translator to conjoin weak
fairness of that process’s next-state action to the specification Spec. For example,
change the Producer process’s declaration in algorithm Alternate so it begins:

fair process (Producer =0)
and run the translator. This produces the definition

Spec = A Init A O[Next]yars
A WF s (Producer)

The action Producer is the next-state action of process Producer, which describes
an execution of the body of the process’s while loop. That action is enabled
in a state s iff s assigns the value 0 to b. Conditions 1 and 2 imply that every
second step of a behavior is a Producer step. Hence, with this definition, Spec
asserts that a behavior cannot stop in a state with & = 0. Similarly, fairness
of the Consumer process implies that a behavior cannot stop in a state with
b = 1. Fairness of both processes therefore implies that a behavior must be

What is strong fairness?

-~

L

65

infinite, so it is equivalent to fairness of the next-state action. The equivalence
of weak fairness of all processes and weak fairness of the next-state action for
a system specification indicates a special class of system in which stopping one
process causes the entire system to stop.

What liveness requirement do we want for alternation synchronization? There
is no single answer. In some applications, the producer and consumer represent
two components of a system that we want to model as running forever. In that
case, we want fairness of both processes—or equivalently, fairness of the entire
algorithm’s next-state action. In other applications, the producer represents a
client whose put operations are requests, and the consumer represents a server
whose get operations are responses. In that case, we usually require the server
to respond to each request, but don’t require the client to keep sending requests.
The requirement that the server responds to each request is expressed by fairness
of the Consumer process, since that implies that a Consumer step must occur
after every Producer step.

Let’s ignore fairness for now. Eliminate all fairness from the algorithm and
run the translator.

6.5 The Two-Phase Handshake Protocol

We now consider a common hardware signaling protocol for implementing alter-
nation synchronization called the two-phase handshake. As illustrated here,

p

Producer Consumer

(63

the processes communicate using two one-bit “wires” p and c¢, where p is set by
the producer and read by the consumer, and c is set by the consumer and read
by the producer.

We describe the algorithm in terms of the operator @, which is defined by:

a®b = (a+0b)%2

We are interested in applying @ only to elements in the set {0, 1}, for which its
table of values is shown in the margin. When restricted to the set {0, 1}, the
operator @ is called exclusive or. Observe that if a equals 0 or 1, then a @ 1 is
the “complement” of a.

We represent the two-phase handshake protocol as algorithm Handshake in
the Handshake module. Compare the bodies of the processes’ while loops in
algorithm Handshake with those in algorithm Alternation:

@ is typed (+) or \oplus.

000=0
1¢0=1

0dl1=1
1¢1=0

L

66

Handshake Alternation

Producer: await p = c; await b =03
bozr := Put(box); box := Put(box);
p:=pdl b:=1
Consumer: await p # c; await b =1;
bor := Get(box); bor := Get(box);
c:=chl b:=0

Question 6.3 Write down the single infinite behavior of algorithm Handshake.
In each of the states of that behavior, write down the value of p & c.

Create specification Handshake in the Toolbox, using this ASCII version of its
body, and run the PlusCal translator on it. Have TLC check that the formula
Len(box) <1 is an invariant of the algorithm, as it should be for an implemen-
tation of alternation synchronization with these definitions of Put and Get.

6.6 Refinement

Compare the answer to Question 6.3, with the behavior of algorithm Alternation.
You will see that the values of p @ ¢ in the behavior of algorithm Handshake
equal the values of b in the corresponding behavior of algorithm Alternation.
We can view algorithm Handshake as implementing the variable b of algorithm
Alternation with the expression p & c¢. It also implements the variable box of
algorithm Alternation with the expression boz. (Algorithm Handshake is thus
implementing the variable box of the Alternation algorithm with its own variable
boz.)

Let b and boz be the expressions (containing the variables of Handshake)
that implement the variables of algorithm Alternation:

b

pDc bor = box

Let’s write a behavior of algorithm Handshake showing the values of b and boz
in all the states.

p =20 p = 1 p =1
c =20 c = 0 c =1
bor = ()| — | box = (“widget”) | — | box = ()| —
b =0 b = 1 b =0
bor = () bor = (“widget”) bor = ()

P = 0 p =20

c = 1 c =0

box = (“widget”) | — | boz = () | —

b = 1 b =0

boxr = (“widget”) bor = ()

ANSWER

-~

L

67

If we delete the values of the variables p, ¢, and bor and erase the overbars from
b and box, we get the sequence

[ZOm - <O>] [zox _ <“Widlget”>} - [Zox _ <0>]

[é;x_&] Lo

which is a behavior of algorithm Alternation. The definitions of b and boz are
called a refinement mapping from Handshake to Alternation, and we say that
algorithm Handshake implements algorithm Alternation under this refinement
mapping.

I now generalize what we’ve done for the particular algorithms Handshake
and Alternation to two arbitrary specifications H and A. To do this, I need to
distinguish between the two meanings of the term specification. In the following
discussion, a specification S is a TLA' module, together with any modules
that it imports. This module must define a behavior specification, which is a
temporal formula (usually named Spec). A state of S is an assignment of values
to the variables declared in S; it is not necessarily a reachable state of S’s
behavior specification. A behavior of S is any sequence of states of S; it does
not necessarily satisfy S’s behavior specification.

A refinement mapping from a specification H to a specification A is an
assignment of an expression v to each variable v of A, where v is defined in
terms of the variables of H. This refinement mapping defines, for each state s
of H, the state s of A that assigns to each variable v of A the value of v in state
s. If o is the behavior s; — s9 — --- of H, we define the behavior o of A to be
§1 — S3 — ---. We say that H implements A under this refinement mapping
iff, for each behavior o satisfying the behavior specification of H, the behavior
o satisfies the behavior specification of A.

Having precisely defined the meaning of implementation under a refinement
mapping, I will resume the informal use of the term specification. If you are
confused by any informal statement that I write, translate it into a more rigorous
one that clearly distinguishes between modules and their behavior specifications.

We have seen that Handshake implements Alternation under the refinement
mapping defined above. Since the refinement mapping defines boz to equal
boz, this implies that for any behavior ¢ allowed by algorithm Handshake, the
behavior ¢ allowed by algorithm Alternation has the same sequence of values
of box. Since correctness of an alternation synchronization depends only of
the values assumed by boz, this implies that Handshake implements alternation
synchronization. In general, we define an algorithm to implement alternation
synchronization (for these particular definitions of Put and Get) to mean that
it implements algorithm Alternation under a refinement mapping that defines
box to equal boz.

1

h =
[boxr = (“widget”)

%

-~

L

68

As the following problem shows, whether or not it is interesting that one spec-
ification implements another under a refinement mapping depends very much on
the refinement mapping. In general, we can define correctness as implementation
under a refinement mapping satisfying some condition. However, we are often
content to show that a system or algorithm satisfies certain desired properties.

Question 6.4 Let Count be a specification with a single variable n whose
behavior specification allows the single infinite behavior

[n=1 —- [n=2] = [n=3] = [n=4] — ---

Show that if A is any specification whose behavior specification allows an infinite
behavior, then Count implements A under some refinement mapping.

Question 6.5 Show how to express the property that a formula [is an invariant
of a specification S as the property that S implements a specification under a
refinement mapping.

We can use TLC to check if one specification implements another under a
refinement mapping. In module Handshake, after the algorithm’s translation,
add this statement which we say instantiates module Alternation.

A 2 INSTANCE Alternation WITH b < p @ ¢, box + box

We'll see later what this statement means. For now, just observe that the wiTH
part describes the refinement mapping. If a variable v of the instantiated module
does not appear in a WITH clause, then the clause v + v is assumed. Thus, the
clause box < box can be eliminated from this statement. We could eliminate
the entire WITH part by preceding the statement with the definition

b = pde

We can use any identifier in place of A (as long as it’s not already defined or
declared).

To have TLC check that algorithm Handshake implements algorithm
Alternation under this refinment mapping, open a model and, in the Proper-
ties subsection of the What to check? section of the Model Overview page, add
the property A!Spec. This tells TLC to check that the Handshake specification
with its behavior specification Spec (indicated by the model), implements the
Alternation specification with its behavior specification Spec, under the refin-
ment mapping described by the INSTANCE statement. Run the model. TLC
should find no error, confirming that Handshake implements Alternation under
the refinement mapping.

Now, modify the algorithm of module Alternation by making the Consumer
process a fair process. Run the translator on that module and run TLC again
on the same model (of specification Handshake). This time, TLC should report:

ANSWER

ANSWER

ASCII version

-~

L

69

Temporal properties were violated.

and should produce an error trace that halts after the second state. (Again,
stopping is indicated by the mysterious <Stuttering>, which will soon be ex-
plained.) This behavior corresponds under the refinement mapping to a behavior
that stops after the producer takes a step, which is not allowed by the fairness
requirement for process Consumer in algorithm Alternation.

Add fairness to process Consumer of algorithm Handshake and run the trans-
lator. TLC should now confirm that Handshake (with fairness of the consumer)
implements Alternation (with fairness of the consumer) under the refinement
mapping. Fairness of the Consumer process of algorithm Handshake rules out
the behavior of the algorithm found by TLC showing that Handshake (with-
out consumer fairness) did not implement Alternation (with consumer fairness)
under the refinment mapping.

Detour Deriving the handshake protocol from the alternation specification.

6.7 Refinement and Stuttering
6.7.1 Adding Steps

In a more accurate model of the two-phase handshake protocol, execution of
one iteration of a process’s while loop would consist of multiple separate steps.
Let’s split each iteration into two steps: the first executing the await statement,
the second executing the two assignment statements. We do this by adding a
label to each process as follows:

pl: while (TRUE) c1: while (TRUE)
{ await p = c; { await p # c;
p2: box := Put(box) ; c2: box := Get(bor);
p=p&l c:=c®d1

} }

Run the translator and look at the translation. The first thing we notice is that
the translation has added a variable pc to represent the control state. It defines
ProcSet to equal {0}U{1}, which equals the set {0, 1} of process ids. The initial
predicate Init therefore states that the initial value of pc is

”

[self € {0, 1} — CASE self =0 — “pl
O self =1 — “cl”]

You can probably guess that Init asserts that pc equals a function with domain
{0, 1} such that pc[0] equals “pl” and pc[l] equals “cl1”, from which you can
figure out the meaning of the CASE construct”.

L

Let’s have TLC display the beginning of a behavior of this algorithm. Add
the formula pc[1] = “c1” as an invariant to your model and run TLC. It should
produce an error trace containing four states, the last state violating this “in-
variant” because it has pc[l] equal to “c2”. You should be able to figure out
how TLC uses the operators @Q and :> to write functions™. (Clicking on the

next to pe in one of the states may help.) We can continue this behavior to:

p =0 p =0 p =1
c =0 c =0 c =0
box = () — | boz = () — | box = (“widget”) —
pc = 0:> “pl” @Q pc = 0:> “p2” @Q pc = 0:> “pl” @Q
1:> “l” 1:> “l” 1:> “l”
i p =1 i p =1 D =1
c =0 c =1 c =1
box = (“widget”) — | box = () — | box = () —
pc = 0:> “pl” @Q pc = 0:> “pl” @Q pc = 0:> “p2” @Q
i 1:> “c2”] 1:> “l” 1:> “l”
) =0 -
c =1
box = (“widget”) — e
pc = 0:> “pl” @Q
i 1:> “l”]
Letting this be the behavior s; — so — ---, let’s compute the corresponding

behavior s7 — s — - - - of module Alternate defined by the refinement mapping

= p D c, box £ box. Using the same procedure as before (adding the values of Using TLC's Trace Explorer
b and bozx to each state, deleting the variables p, ¢, box, and pc of Handshake, to compute the values of b.
and erasing the overbars from b and bozx), we get this behavior:

Lo 20] 20

Lo 20] = [20

This behavior has stuttering steps—steps that repeat the same state—that were
not in the behaviors of algorithm Alternation that we have computed. So, it
looks like this version of algorithm Handshake, with the additional labels, doesn’t
implement Alternation under the refinement mapping. Let’s have TLC verify
that it doesn’t. Run TLC on the same model as before, except with pc[l] = “c1”
removed from the list of invariants. TLC reports no error! What’s going on?

b = 1 . b = 1
bor = (“widget”) bor = (“widget”)

b = 1 .
bor = (“widget”)

-~

L

71

6.7.2 Temporal Logic and Stuttering

To understand why this version of algorithm Handshake still implements
Alternation under the refinement mapping, we must examine the temporal for-
mulas Spec that are the behavior specifications of our algorithms. Ignoring fair-
ness, these specifications Spec have the form Init AO[Next]yars. A non-temporal
formula like Init or Next is an assertion about a step. Formula Nezxt is true of
a step s — t iff it is true when we substitute for each unprimed variable v the
value of v in state s, and for each primed variable v’ the value of v in state ¢.
Since Init has no primed variables, whether or not it is true on a step s — t
depends only on s, not on {. We can therefore think of Init being true or false
for a state.

We consider a formula without any temporal operators to be the temporal
formula that is true of a behavior iff it is true of the first step of that behavior.
Since the truth of Init in a step depends only on the step’s first state, Init is the
temporal formula that is true of a behavior iff it is true in the behavior’s first
state.

For a formula F with no temporal operators, OF is the temporal formula
that is true of a behavior iff it is true of every step of the behavior. Thus,
the formula Init A O[Next],qrs is true of a behavior iff Init is true of the first
state of the behavior and [Next],qrs is true of every step in the behavior. For
any action formula A and state expression e, the formula [A], is defined to
equal A V UNCHANGED e. The same reasoning used above for an ordered pair
of variables shows that, if vars is a tuple of variables, then UNCHANGED vars is
true of a step iff the step leaves all those variables unchanged. Thus, if vars is
the tuple of all the specification’s variables, a [Next],qs step is one that is either
a Next step or else is a stuttering step—one that leaves all the specification’s
variables unchanged.

If we wanted an algorithm to disallow stuttering steps, we would have to write
its specification as Init A ONext. Try it. Change the translation’s definition of
Spec in module Handshake by replacing O[Next],qrs with ONext, and save the
module. You will get the parsing error:

O followed by action not of form [A],.

ONext is not a legal TLAT formula. TLAT does not let us write a specifica-
tion that disallows stuttering steps. (Run the translator to restore the original
definition of Spec.)

We now see why the version of algorithm Handshake with the additional
labels implements algorithm Alternation under our refinement mapping. The
extra steps introduced by the additional labels are mapped by the refinement
mapping to stuttering steps, which are allowed by the Alternation algorithm’s
behavioral specification.

Writing specifications so they allow stuttering steps will seem strange to

-~

L

72

most readers. Why does TLA™ force us to do it? The answer is that allowing
stuttering steps yields the simplest, most natural definition of implementation.
To understand why, we must examine more closely what a state is.

In describing our Standard Model, T wrote that a state is an assignment of
values to variables. I didn’t say what variables. In describing behaviors, I have
described each state of the behavior by stating what values it assigns to the
system’s variables. This would naturally have led you to believe that a state
is an assignment of values just to the system’s variables, so what constitutes a
state depends on the system under consideration.

I have misled you. In TLA™, a state is an assignment of values to all of
the (infinitely many) possible variables. Any formula can contain only a finite
number of variables, so it describes only the values assigned to those variables.
The Alternation specification mentions only the variables b and boz. Hence,
whether or not a behavior o satisfies that specification depends only on the
values assigned to b and box by the states of 0. Those states also assign values
to all other possible TLAT variables: ¢, r, a2-4zyZ9muuP, and so on. However,
the values assigned to those other variables have no effect on whether or not o
satisfies the specification.

Think of a state as specifying a universe that might include the one-bit
clock, the Die Hard system, Euclid’s algorithm, and the Internet. A behavior
satisfying the Die Hard specification is not a behavior of a system of buckets and
water; rather, it is a behavior of the universe in which the part of the universe
that describes how much water is in the buckets (the variables big and small)
satisfies formula Spec of module PDieHard. A specification of the Die Hard
system should not be violated because the one-bit clock ticked (changing the
value of the variable b) between two successive steps of the Die Hard system. It
isn’t violated only because the DieHard specification allows steps in which the
value of b and other variables change while the values of big and small remain
the same. These are the stuttering steps (the steps satisfying UNCHANGED wvars)
allowed by formula Spec.

Similarly, whether a behavior 7 should implement the Alternation specifica-
tion under the refinement mapping b = p @ c, box £ poz should depend only on
the changes to the value assigned by the states of 7 to b and boz. It shouldn’t
depend on whether or not the values assigned to big or small changed between
changes to b and boz.

Any temporal formula we write should describe only the values of the vari-
ables in that formula. If a temporal formula F does not contain the one-bit
clock’s variable b, then whether or not F' is true or false of a behavior o should
not depend on whether or not the one-bit clock ticked between changes to the
variables of F'. Whether or not F is true of a behavior ¢ should not be changed
by adding or removing steps that do not change any variables of F'. A formula
F that has this property is said to be insensitive to stuttering.

The syntax of TLA™ allows you to write only formulas that are insensitive

Why must we declare
variables if not to specify
what a state's variables
are?

-~

L

73

to stuttering. It doesn’t allow you to write the formula ONext because adding
a stuttering step to a behavior satisfying this formula could make the formula
false on that behavior.

I have lied to you by writing that a finite behavior represents a behavior in
which the system halts. When a system halts, the values assigned to its variables
stop changing; the entire universe doesn’t come to a stop. Hence, an execution
in which a system halts is naturally represented as a behavior that ends with
an infinite sequence of states in which the system’s variables remain the same—
that is, an infinite sequence of stuttering steps of that system. We do not need
behaviors containing only a finite number of states to represent a system that
halts, so we define a behavior to be an infinite sequence of states. Thus, when
a TLC error trace ends with <Stuttering>, it is describing a behavior in which
the preceding state is repeated infinitely many times.

This confession calls for a re-examination of fairness. Recall that in Sec-
tion 6.4, I wrote that weak fairness of an action A is satisfied by a behavior
81 — 89 — - - - iff it satisfies these two conditions:

3a. The behavior does not end in a state s,, in which A is enabled.

3b. If the behavior is infinite, then there is no n such that the infinite behavior
Sn — Sp+1 — has no A steps but A is enabled in all of its states.

As we now know, every behavior is infinite, and ending in a state s,, really means
that all the steps in s, — sp41 — --- are stuttering steps. We can therefore
combine these conditions into the single condition:

There is no n such that s, — s,11 — -+ has no 4 steps but A is enabled
in all of its states.

There is a problem with this condition. If A allows stuttering steps, then the
condition is not insensitive to stuttering. Adding stuttering A steps from a
behavior can make the condition become true.

To solve this problem, we define (A),qrs to equal A A (vars’ # wvars). In
other words, an { A) s step is an A step that changes vars. If vars is the tuple
of all system variables, then a step that leaves vars unchanged is a stuttering
step. Therefore an (A)q,qrs step is a non-stuttering A step. We then define the
weak fairness formula WF,;.s(A) by:

WF ars (A) is satisfied by a behavior s; — s3 — - - - iff there is no n such
that s, — Sp+1 — -+ has no (A),ars step but (A) s is enabled in all
of its states.

Weak fairness is an important concept, so you should make sure you understand
this definition. Observe that it is equivalent to:

-~

L

74

WF ars (A) asserts of a behavior s — s3 — -+ that if (A),4rs is enabled
in all states s,, with m > n for some n, then there is an m > n such that
Sm = Sm1 1s an (A)yars step.

This can be expressed informally as: WF4.s(A4) asserts that if (A),q-s ever be-
comes enabled forever, then an (A}, s step must eventually occur. A common
situation is one in which an (A),.s step disables (A4),q-s—for example, if A
is the Tick or Tock action of algorithm TickTock. In this case, weak fairness
of (A)yars implies that the action can never be enabled forever, since if it were
enabled forever, then weak fairness would imply that an (A),q.s action must
occur, implying that it can’t be enabled forever. Some people find this observa-
tion confusing. If you’re one of them, you should re-read it until this all becomes
obvious rather than confusing.

Most of the time, you can forget that a state assigns values to all variables
and think only of a system state, which is an assignment of values to the system’s
variables. We will continue to describe behaviors by describing only the system
state, ignoring all the irrelevant variables. When thinking about a system imple-
menting a specification, it’s important to remember that a specification allows
stuttering steps. However, we usually ignore stuttering steps when considering
a system in isolation.

For most weak fairness formulas WF,4,s(A4) that occur in specifications, ac-
tion A does not allow stuttering steps that start in a reachable state. In that
case, we can forget about the distinction between A and (A),qrs, and T will
usually consider weak fairness of A to be the assertion that is true of a behavior
iff it doesn’t end in a sequence of states in which A is always enabled but no A
step occurs.

6.7.3 A Finer-Grained Algorithm

Let’s add still more steps to the algorithm by putting the label p3 on the pro-
ducer’s p := p @ 1 statement and the label ¢3 on the consumer’s ¢ :=c @1
statement. When we add steps to an algorithm by adding labels, we say that
the resulting algorithm is finer-grained than the original, and that the original
is coarser-grained than the new algorithm.

Run the translator and run TLC to see if this finer-grained algorithm Handshake

still implements Alternation under our refinement mapping. TLC reports the
error:

Action property line 50, col 20 to line 50, col 32 of module Alternation

is violated.

Clicking on the location in the error message shows that the error is in the
subformula O[Nezt],qrs of module Alternation. The error trace displayed by
TLC is the beginning of a behavior o of algorithm Handshake for which the
behavior ¢ is not a behavior of algorithm Alternation because it contains a step

-~

L

75

that is not a [Next],qrs step. Since TLC reports the shortest possible error trace
for a violation of a safety property, the problem must be in the last step of that
trace.

As you did before, use TLC’s Trace Explorer to compute the values of p @ ¢
(which equals b) for the states in the trace. You will see that the last step of the
error trace is one in which boz (which equals box) changes, but b is not changed.
However, in algorithm Alternation, boxr and b always change together. Hence
the corresponding change to the variables boz and b of module Alternation is
not a [Next]yars step (for Next and var defined in that module).

For the finer-grained Handshake algorithm to implement alternation, it needs
to implement algorithm Alternation under some refinement mapping for which
box equals box. It doesn’t have to be the refinement mapping we have been
using. To find such a refinement mapping, we must define b so it changes when
box changes. We do that by defining b to equal vp @ ve, where:

vp has the same value as p except that it’s changed by the execution of
statement p2 and left unchanged by execution of p3.

ve has the same value as ¢ except it’s changed by the execution of statement
c2 and left unchanged by execution of ¢3.

(The v stands for virtual.) We define vp to be that state function that equals p
except when the producer is at control point p3, when it equals p & 1; and we
define vc similarly. The definitions are:

vp = IF pc[0] = “p3” THEN p & 1 ELSE p vp == IF pc[0] = "p3" THEN p (+) 1 ELSE p
"c3" THEN c (+) 1 ELSE c

ve = 1F pc[l] = “c3” THEN ¢ ® 1 ELSE ¢ ve == IF pcl[1]
Add these definitions to the module and add the statement
A2 £ INSTANCE Alternation WITH b + vp & ve

Have TLC check property A2!Spec. (Don’t forget to remove or uncheck the
property A!Spec.) This time, TLC does not report violation of an action prop-
erty. However, it does report the error:

Temporal properties were violated.

(If it doesn’t, make sure that the two algorithms specify fairness of the consumer
processes and not the producer processes.)

The error trace shows a behavior o that stops (ends in an infinite sequence
of stuttering steps) with the producer at p3. This behavior is allowed because
there is no fairness requirement for the producer, so it can stop taking steps, and
the consumer can take no step (its next-state action is not enabled) because it
is at ¢l and p # ¢ equals FALSE. However, in the behavior ¢ corresponding to o
under the refinement mapping, the producer has performed its p1 action and the

-~

L

76

consumer’s next-state action is enabled, but the consumer does nothing. Hence,
the consumer’s fairness requirement is not satisfied by o, so ¢ is a behavior of
(the finer-grained) algorithm Handshake but o is not a behavior of algorithm
Alternation.

To make the the finer-grained Handshake algorithm implement alternation,
we must add a fairness requirement on the producer that prevents it from stop-
ping with control at p3. We can do this by requiring weak fairness of action
p3—that is, by adding the conjunct WF ,,,s(p3) to the definition of Spec. To
specify this requirement in the PlusCal code, we specify weak fairness of the
producer process except for its pl and p2 actions. We exempt an action from
a fairness requirement by putting a dash (=) after its label. (Spaces before and
after the “:” are allowed but not required.) So, we change the producer process
to:

fair process (Producer =0)
{ pl:- while (TRUE)

{ await p = c;
p2:- box := Put(bozx)
pd:p:=pPd1

}
}

This causes the translation to add the following conjunct to the definition of
Next:

WEFars ((pc]0] ¢ {“pl”, “p2”}) A Producer)

This is equivalent to WF,4,.(p3) because the definitions of Producer, pl, p2,
and p3 imply that (pc[0] ¢ {“pl”, “p2”}) A Producer is equivalent to p3. TLC
verifies that, with this additional fairness requirement, algorithm Handshake
implements algorithm Alternation under the refinement mapping.

6.8 Temporal Logic and Refinement

We now examine what refinement means in terms of temporal logic. Let’s start
by considering what it means for a system to satisfy a property, beginning with
the simple property of invariance of a state predicate. Remember that a temporal
formula F' is an assertion about behaviors, meaning that it is true or false of
a behavior. We often say that a behavior o satisfies F if F is true of 0. A
temporal formula that is satisfied by all behaviors is called a theorem, or simply
a true formula.

A state predicate [is an invariant of a specification Spec iff it is true in all
states of every behavior ¢ that satisfies Spec. The temporal formula O7 is true
of o iff I is true in all states of o. Thus, [is an invariant of Spec iff, for any
behavior o, if o satisfies Spec then ¢ satisfies OI. This is the case iff every

Theorems versus provable
formulas.

-~

L

77

behavior o satisfies the formula Spec = OI. In other words, [is an invariant of
Spec iff the formula Spec = OI is a theorem.

In general, a property P is a temporal formula. A specification Spec is said
to satisfy P iff Spec = P is a theorem. Invariance of a state predicate I means
that Spec satisfies the property OF.

Now let’s consider implementation under a refinement mapping. For con-
creteness, let’s consider the implementation of algorithm Alternation by algo-
rithm Handshake of Section 6.7.1 under the refinement mapping b 2 pdoe,
box = bozx. Using the same name for different formulas gets confusing, so let’s
use subscripts to indicate in which specification an expression is defined. For
example, let Init 4 be the formula Init defined in the Alternation spec, and let
varsy be expression vars defined in the Handshake specification.

Now that I've confessed that a state is an assignment of values to all variables,
I should restate what it means for algorithm Handshake to implement algorithm
Alternation under the refinement mapping—without talking about states of a
system. For any state s, we define s to be some state that assigns the value b
to the variable b and the value boz to the variable boz. It doesn’t matter what
values s assigns to other variables. For any behavior s; — so — -+ -, we define
81 — S — --- to be the behavior s; — s3 — ---. Implementation under the
refinement mapping means that if o is any behavior satisfying Specy, then the
behavior o satisfies Specy4.

For any formula F 4 defined in the Alternation spec, define F4 to be the
formula obtained from F 4 by substituting b for b and box for boz. (Of course,
the latter substitution does nothing because box equals boz for this particular
refinement mapping.) For example, we have

Inity = Ab=0 Tnity, = A(p®c)=0
/\bO.’L':<> /\bo;p:<>
Consumer, = Ab=1 Consumer, = Apdc=1
A box’ = Tail(box) A boz" = Tail(box)
AV =0 Np®dc)=0

where the definition of Get 4 has been expanded in the definition of Consumer 4.
For any step s — t:

Consumer 4 is true on the step s — ¢

iff Consumer 4 is true with b and box replaced by their values in state s and
b’ and box’ replaced by the values of b and box in state ¢
[by definition of what it means for an action to be true on a step]

ifft Consumer 4 is true with b and bozx replaced by the values of b and boz in
state s and b’ and box’ replaced by the values of b and box in state ¢
[by definition of s and]

-~

L

78

iff Consumer, is true on the step s — t.
[by definition of what it means for an action to be true on a step]

It’s clear that this is a general result for any action or state predicate. In
particular Next 4 is true on s — t iff Nexty is true on s — ¢, and Init 4 is true
on a state s iff Inity is true on s.

The analogous result holds for temporal formulas. In particular, if o is any
behavior, o satisfies Spec 4 iff o satisfies Specy. Remember that implementation
under the refinement mapping means that for any behavior o, if o satisfies
Specyr, then o satisfies Specs. Thus, it means that for any behavior o, if o
satisfies Specy, then o satisfies Specy. In other words, algorithm Handshake
implements algorithm Alternation under the refinement mapping means that
Specy satisfies the property Specs, which means that Specy = Speca is a
theorem.

How do we prove the theorem Specy = Specs ? The definitions of Specy
and Specy are:

Inity A O[Nextg]varsy A WFyars, (Consumer)
Initp A O[Neztalvars, N WFyars, (Consumer 4)

Specy

> e

Spec 4

Since overbarring a formula means substituting expressions for variables in the
formula, it’s clear that Specy equals

Init 4 N\ O[Next gl—— N WF 405, (Consumer 4)

vars A
From this, it follows that to prove Specy = Spec 4, it suffices to prove:

1. Specy = Init 4

2. Specy = O[Next 4]

vVars

3. Specyy = WF y4rs, (Consumer 4)
We prove 1 by proving:
R1. Inity = Inity

This follows easily from the definition of Inits given above and the definition of
Init g produced by the translator, since 0 @ 0 equals 0.
The obvious way to prove formula 2 is to prove

2a. O[Nextg|parsy, = DO[Next 4]

vVarsa

whose truth asserts that, for every behavior o, if every step of o is a [Next i yars

step, then every step of o is a [Next 4] step. This is true if it is true that

varsa

every [Nexty|parsy 1S & [Ne:z;tA]m step. In other words, we can prove 2a by
proving:

Why

WF yars, (Consumera)

and not

WEF

vars A

(Consumers)?

-~

L

79

2b. [Nextg|varsy = [Next]

vars A

Because [Next i) yars,; equals Nexty V UNCHANGED vars g, to prove 2b it suffices
to prove:

2b1. Nexty = [Nexta)

varsa

2b2. UNCHANGED varsy = [Next 4]

Vars

Condition 202 is obviously true, since [Next4]

vars: €quals [Nezta] V
UNCHANGED vars 4, and UNCHANGED wvarsy implies UNCHANGED vars, be-
cause UNCHANGED wvarsy asserts that all the wvariables of specification
Handshake are unchanged, which implies that v is unchanged for all the (two)
variables v of Alternation. So, we just have to prove 2b1.

To prove 2b1, we must prove that it is true for all steps s — t—even ones in
s and t assign non-numerical values to p and ¢ states. This is impossible—for
example, we don’t know what p @& 1 equals if p equals “abc”. To prove 2, it
suffices to prove that formula 2561 is true for all steps s — ¢ in which s and ¢ are
reachable states of Spec y—that is, states that can occur in a behavior satisfying
Specy. Any invariant of Specy is true in all reachable states. Therefore, to prove
that 2b1 is true for steps s — ¢ where s and ¢ are reachable, it suffices to prove:

R2. Invg A Invg' A Nexty = [Next]

vVars A

For our example, the invariant we need is

Invg = Apef0,1}
A c € {0,1}
A (pef0] = “p2”) = (p = ¢)
A (pell] = %27) = (p #)
Here is the proof of R2.
Writing proofs of liveness properties will become easier when you learn a

little more temporal logic. I will therefore defer an explanation of how to prove
condition 3.

Question 6.6 Show that the formula Invy defined above is an invariant of
the Handshake specification. Why isn’t it an inductive invariant? How can we
strengthen it to obtain an inductive invariant?

Let’s now return to the INSTANCE statement
A £ INSTANCE Alternation WITH b < p @ ¢, box box

and the formula A!Spec that we added to the Properties subsection of the TLC
model. For every symbol F' defined in module Alternation, this statement defines

A!F to be what we have been writing F. Thus, A!Spec equals what we have What does

where Specy = Olnvy is true.

ANSWER

wyn

mean?

-~

L

80

been writing Specs. Making A!Spec a property of the model to be checked
tells TLC to check that the formula Spec = A!Spec is true, where Spec is the
specification selected by the model’s What is the behavior spec? section. Thus,
telling TLC to check the property O, where [is a state predicate, tells it to
check that Spec = OI is true. It is equivalent to adding I to the Invariants
section of the model.

If F' is defined in module Alternation to be an operator with the definition:

A

F(p17°"7pn) = €erp
then A!F is defined in module Handshake by

AF(p1,...,pn) = exp

where ezp is the expression obtained from ezp by replacing each variable v of
modle Alternation with v. For example, if module Alternation contained the
definition:

ProCon(i) = Ab=i
ANV =iDl

then the INSTANCE statement would effectively define

AlProCon(i) = Ap®c=1i
ANpdc)=i@1

in module Handshake. (Of course, we can’t actually write that definition because
A!ProCon is not a legal identifier.) Note that because the definitions of Put
and Get in module Alternation contain no variables, the INSTANCE statement
defines A! Put and A! Get in module Handshake to be the same as the operators
Put and Get defined in that model.

Everything we have done here generalizes to proving that any safety specifi-
cation (one with no fairness conditions) implements another safety specification
under a refinement mapping. Let me restate it:

To prove that Inity A O[Next | yars, implements Init 4 A O[Next alvars,
under a refinement mapping, we prove

Init g A O[Nextglvarsy; = Init 4 A O[Nezt]vars,
by finding an invariant Invgy of Inity A O[Nexty]yars, (2 formula for
which Inity A O[Nextglyarsy, = OInvg is a theorem) and proving:
R1. Inity = Inity4
R2. Invyg A Invyg' A Nexty = [Next]

vars A
Condition R2 is called step simulation. It asserts that any Nexty step simulates,
under the refinement mapping, either a Next 4 step or a stuttering step.

To prove that Invy is an invariant, we have to find an inductive invariant
that implies it. We usually take Invy to be that inductive invariant.

-~

L

81

6.9 Alternation Revisited

The main purpose of this discussion of alternation and the two-phase handshake
protocol has been to introduce the concepts of refinement and insensitivity to
stuttering. Now that you understand those concepts, we can describe the al-
ternation problem in a somewhat more conventional way. Such syncronization
problems are usually expressed in terms of pseudo-code. We will do it in terms
of PlusCal.

Let’s ignore variable declarations and consider only the two processes. We
are given two arbitrary pieces of PlusCal code, put and get, which may contain
labels, but can exit only by “falling off the bottom”. They must be executed so
that first put is executed, then get is executed, then put is executed, and so on.
We must achieve this by implementing code sections p_enter, p_ezit, c_enter
and c_ezit, using no variables that appear in put or get, in these two processes:

process (Producer =0) process (Consumer =1)
{ pe: while (TRUE) { ce: while (TRUE)
{ p_enter ; { c_enter ;
p: put; g: get;
px: p_ewit } cr: c_exit

} }

Let’s call this generic two-process algorithm AltImpl.
A trivial solution is the algorithm containing the following processes, where
we assume that the variable b does not occur in put or get.

process (Producer =0) process (Consumer =1)
{ pe: while (TRUE) { ce: while (TRUE)
{ await b =0; { await b =1;
pr put; g: get;
pr: b:=1 } cx: b:=0

} }

We can take this algorithm, which we call AltSpec, to be the specification of
the alternation problem. An algorithm AltImpl is an alternation solution if it
implements AltSpec under a refinement mapping with the following properties:

1. v equals v for every variable v that occurs in put or get.

2. pc satisfies:

e

e pc[0] equals “pe” if pc[0] equals “pe” or one of the label names in

p_enter.
e 7pcl0] equals pc[0] if pc[0] equals “p” or one of the label names in put.

e pcl0] equals “px” if pc[0] equals “px” or one of the label names in p_eit.

and the analogous three conditions for pc[1].

PlusCal has a goto
statement that can jump
out from the middle of a
piece of code.

-~

L

82

We want the solution AltImpl to work for any put and get code. It’s easy to see
that this will be the case if the solution works when put and get are just skip
statements, where a skip statement leaves all variabes (except pc) unchanged.
We simplify the problem by replacing put and get with skip statements. The
resulting algorithms are abstractions in which an execution of put or get is
represented as a sequence of stuttering steps followed by execution of the skip
(which modifies pc).

Our specification of alternation is then this algorithm AltSpec, in which we
have changed the labels p and g to put and get. Create a new specification
AltSpec and add the AsciI version of the algorithm to it. Run the translator and
observe the translation of the skip statements. A solution to the alternation
problem is a two-process algorithm with these processes

process (Producer =0) process (Consumer =1)
{ pe: while (TRUE) { ce: while (TRUE)
{ p_enter ; { c_enter ;
put: skip; get: skip;
pr: p_exit } cx: c_exit

} }

that implements algorithm AltSpec under a refinement mapping satisfying the
following conditions:

e pc[0] equals “pe” if pc[0] equals “pe” or one of the label names in p_enter.

e pc[0] equals “put” if pc[0] equals “put”.

e pc[0] equals “px” if pc[0] equals “px” or one of the label names in p_exit.
and the corresponding three conditions for pc[l1].

Question 6.7 Rewrite the two-phase handshake algorithm (by modifying its
ASCII version) so it is a solution to the new statement of the alternation problem.
Use TLC to check that it implements algorithm AltSpec under the appropriate
refinement mapping.

Let’s make the two-phase handshake example a little more interesting by
writing a finer-grained version that splits the evaluation of each await test
into two separate actions: reading the other process’s variable and then testing
its value. This is done in the following code, which introduces two features of
PlusCal: goto statements and process-local variables. If you don’t already know
what a goto statement does, its TLAT translation will explain it.

ANSWER

L

83

process (Producer =0) process (Consumer =1)

variable tp =0} variable tc =0;
{ pe: while (TRUE) { ce: while (TRUE)
{ tp:=c; { tc:=pj;
pel: if (p #tp) { goto pe } ; cel: if (c=1tc) { goto ce } ;
put: skip; get: skip;
pr: p:=pd1l } cx: c:=cdl }

} }

We could use the same name for the two process’s local variables, but one of
them would be renamed in the TLAY translation. The initial values of the local
variables tp and tc are irrelevant; we’ll see later what happens if we don’t specify
initial values for them.

We now must define the refinement mapping to show that the algorithm with
these process declarations is an alternation solution. The refinement mapping
again defines b to equal p @ c¢. The definition of pc follows directly from the
conditions that it must satisfy. Read and understand the following definition,
which defines pcBar to equal pe. (It is written with the CASE construct™ instead
of with IF / THEN / ELSE to make it more obviously symmetric in the process id.)

pcBar = [i € {0, 1} + CASE i = 0 — IF pc[0] = “pel” THEN “pe”
ELSE pc|[0]

O ¢=14 —IF pc[l] = “cel” THEN ‘“ce"

ELSE pc[l]]

Question 6.8 Modify the module you wrote as the answer to Question 6.7 to
have these finer-grained processes, and add this definition of pcBar to it. Add
an INSTANCE statement that instantiates module AltSpec under the refinement
mapping b < p @ ¢, pc < pcBar and have TLC check that the specification
implements AltSpec under this refinement mapping.

Remove the initialization of the process local variables ¢p and ¢c (by removing
the “= 0”s) and rerun the translator. Observe that the translation now asserts
that tp and tc equal the declared constant defaultInitValue. For TLC to check
a TLAT specification, the initial predicate must specify an initial value, or a set
of possible initial values, for each variable. The translation uses the unspecified
constant defaultInitValue as the initial value of any variable whose initial value
is not specified in its variable declaration. Now create a new TLC model of the
specification. You will see that the model has set defaultInitValue to be a model
value.

Question 6.9 Suppose a PlusCal algorithm contains a global variable f for
which there is an assignment statement of the form f[e] :=.... Why does the
algorithm probably have to specify the initial value (or set of possible initial
values) of f?

ASCII version

ANSWER

http://tla.msr-inria.inria.fr/tlatoolbox/doc/model/model-values.html
http://tla.msr-inria.inria.fr/tlatoolbox/doc/model/model-values.html

L

84

6.10 Round-Robin Synchronization

We now generalize from alternation to round-robin synchronization in which
there are N processes numbered 0 through N — 1, where each process i exe-
cutes an operation Op(i). An algorithm must ensure that these operations are
executed in round-robin order:

Op(0) — Op(1) - -+ = Op(N —-1) = Op(0) —» Op(1) — ---

To see how to state the more general problem, we first rewrite the one-bit clock
algorithm.

6.10.1 The One-Bit Clock Revisited Again

In Section 6.2, we saw how to describe the one-bit clock as a two-process PlusCal
algorithm. The module TickTock represented each process by a process decla-
ration. We now write the same specification in a slightly different way, using a
single process-set declaration to describe both processes.

In the Toolbox, create a new specification named TickTock2, and add an
EXTENDS Integers statement. Now add this PlusCal algorithm, which contains
this process statement:

process (TickTock € {0, 1})
{ ¢: while (TRUE)
{ await b = self ;
b= (self +1) % 2;
}
}

It defines two processes having the process ids 0 and 1. The identifier self in
the body of the process denotes the process’s id. Thus, this process statement
is equivalent to these two separate process statements:

process (TickTockO =0) process (TickTockl =1)
{ ¢: while (TRUE) { ¢: while (TRUE)
{ await b =0; { await b =1;
b:=(0+1) % 2; bi=(1+1) % 2

} }
} }

Since (0+1) %2 equals 1, and (14+1) % equals 0, these two processes TickTockQ
and TickTockl are the same as processes Tick and Tock of algorithm TickTock—
except for the labels, which don’t appear in the translations. A comparison of
the TLAT translations of the two algorithms shows them to be equivalent.

L

85

6.10.2 An N-Valued Clock

Algorithm TickTock2, like the equivalent algorithm TickTock, describes a two-
value clock. We now generalize it to describe an N-valued clock, for an arbitrary
integer N greater than 1. Create a new specification named ClockSpec that
begins with:

EXTENDS Integers EXTENDS Integers
CONSTANT N CONSTANT N
ASSUME (N € Nat) A (N > 1) ASSUME (N \in Nat) /\ (N > 1)

We represent the clock by a variable ¢ that, in an execution, has values lying in
the set 0.. (N —1); it initially equals 0. The PlusCal algorithm has the following
process declaration, which is the obvious generalization of the one in algorithm
TickTock2 above.

process (Tick €0.. (N —1))
{ t: while (TRUE)
{ await ¢ = self ;
c:=(self +1) % N
}
}

Add the AscI text of the algorithm to the module and run the translator on it.
Check that you haven’t made any error by having TLC check that the algorithm
satisfies the invariant ¢ € 0.. (N — 1), for some value of N.

6.10.3 An Implementation of the N-Valued Clock

The heart of the handshake algorithm is an implementation of the one-bit clock
under the refinement mapping b = (p + ¢) %2, where the variables p and ¢
have one-bit values that are each modified by a single process. We now generalize
this to an implementation of the N-valued clock by an array ca of 1-bit values.
To indicate how the implementation works, here are the values of ca with the
corresponding values of ¢ for the refinement mapping in the first few states of
an execution, with N = 4.

L

86

o
)
=)
o
g
=
Q
S
L2
Q
S
L5

State 1:
State 2:
State 3:
State 4:
State 5:
State 6:
State 7:
State 8:

O O O = = =k O
O O~ = =R O O
O M= === O O
—= === O O O O
oowy—xocom»—no‘m

Think of the N processes with ids 0, ..., N —1 arrayed clockwise around a circle
like this, so process (i + 1) % N follows process i. The value of ca[i] is modified
only by process i, and is read only by processes ¢ and (i +1) % N.

Open a new specification named HSClock, and have it extend the Integers
module and declare the constant N to be an integer greater than 1 as in module
ClockSpec above. Add the same definition of @ as in the two-phase handshake
algorithm:

a®b = (a+b)%2 a (+) b==(a+b) %2

The HSClock algorithm initializes ca to be an array indexed by 0.. (N —1) with
calil] =0 forall iin 0..(N —1).

variable ca =i € 0.. (N —1)— 0];
The code for process 0 differs from the code for processes 1, ..., N — 1.

process (Proc0 =0)
{ t: while (TRUE)
{ await ca[0] = ca[N —1];
cal0] := cal0]®1
}
}

process (Proce1.. (N —1))
{ t: while (TRUE)
{ await ca[self] # ca[self —1];
ca[self] = ca[self] ® 1
}
}

Add the Asci text of the algorithm to the module and run the translator.
Examine the code and its translation. Observe that for N = 2, the values of

L

87

ca[0] and ca[1] behave the same as the values of p and ¢ in the original Handshake
algorithm (the one with only a single label in each process).
Type correctness of the algorithm is expressed by invariance of:

ca € [0..(N—1) = {0,1}] ca \in [0..(N-1) -> {0, 1}]

Have TLC check that this is indeed an invariant of the algorithm.

The algorithm executes the following sequence of actions: Proc0, Proc(1),
Proc(2), ..., Proc(N — 1), Proc0O, Proc(1l), It does this because, in every
reachable state, either:

HS1. ca[0] = ca[l] = ... = ca[N — 1], so only action Proc0 is enabled, or

HS2. cal0] = ... = ca[i — 1] # cai] = ... = ca[N — 1] for some i in
1...(N —1), so only action Proc(i) is enabled.

We expect HSClock to implement ClockSpec under a refinement mapping
in which ProcO implements Tick(0) and Proc(i) implements Tick(i), for ¢ in
1..(N —1). From HS1 and HS2, this leads us to define the refinement mapping
by letting ¢ equal

IF3ie€l..(N—1):cali] # cali — 1]
THEN CHOOSE i € 1 .. (N —1) : ca[i] # ca[i — 1]
ELSE 0

In module HSClock, define cBar to equal this expression and add:

CS £ INSTANCE ClockSpec WITH ¢ + cBar

(Note that there is an implicit WITH clause N < N that substitutes the de-
clared constant N of module HSClock for the declared constant N of module
ClockSpec.) Check that algorithm HSClock implements algorithm ClockSpec
under this refinement mapping by having TLC check that specification Spec of
HSClock satisfies the property CS!Spec, for a model with a small value of N.

Question 6.10 Prove that HSClock implements ClockSpec under this refine-
ment mapping by proving conditions R1 and R2 for a suitable invariant Inv.

6.10.4 Round-Robin Synchronization

Question 6.11 (a) Add a skip statement and labels to algorithm ClockSpec to
obtain a specification RoundRobin of round-robin synchronization that general-
izes the specification of alternation by algorithm AltSpec we wrote in Section 6.9.

(b) Modify algorithm HSClock to obtain a generalization of the two-phase
handshake protocol that implements specification RoundRobin under a suitable
refinement mapping. Use TLC to check your answer.

ASCII version of definition
and INSTANCE statement

HINT

