
Subexpression Names

Labels and Labeled Subexpression Names

Any subexpression of a definition can be labeled. The syntax of a labeled ex-
pression is

label :: expression

(The symbol “::” is typed “::”.) The label applies to the largest possible ex-
pression that follows it. In other words, the end of the labeled expression is the
same as the end of the expression that you would get by replacing the “label ::”
with “∀ x : ”. However, the expression is illegal if removing the label would
change the way the expression is parsed. For example,

a + lab :: b ∗ c

is legal because it is parsed as a +(lab :: (b ∗c)), which is how it would be parsed
if the label lab were not there. However,

a ∗ lab :: b + c

is illegal because it would be parsed as a ∗ (lab :: (b + c)) and removing the label
causes the expression to be parsed as (a ∗ b) + c.

Label parameters are required if labels occur within the scope of bound
identifiers. Here is an example.

F (a)
∆
= ∀ b : l1(b) :: (a > 0)⇒

∧ . . .
∧ l2 :: ∃ c : ∧ . . .

∧ ∃ d : l3(c, d) :: a − b > c − d

For this example, F (A)! l1(B)! l2! l3(C ,D) names the expression A−B > C−D .
Note how the parameters of each label are the bound identifiers introduced
between it and the next outer-most label. Those identifiers can appear in
any order. For example, if the label l3(c, d) were replaced by l3(d , c), then
F (A)! l1(B)! l2! l3(C ,D) would name the expression A− B > D − C .

In this example, a reference to the subexpression labeled by l3(c, d) from
outside the definition of F , must specify the values of all the bound identifiers a,
b, c, and d . That’s why labels must include the bound identifiers as parameters.
Also observe that to name a labeled subexpression, we have to name all the
labeled subexpressions within which it lies. We’re not even allowed to eliminate
the label l2, even though it is superfluous in this example.

Label names do not conflict with operator names. In this example, any one
of the label names l1, l2, or l3 could be replaced by F . The rule for name
conflict is the obvious one needed to guarantee that there’s no ambiguity in a
subexpression name (where we are not allowed to use the number of parameters



to disambiguate). Thus, we cannot label the first conjunct of the ∃ c expression
with l3(c), but we could label it with l1(c) or l2(c).

For subexpressions of the definition of an infix, postfix, or prefix operator,
we use the “nonfix” form. For example, a subexpression of the definition of &&
would have the form &&(A,B) ! . . . .

We can also name subexpressions of definitions in instantiated modules. For
example, if we have

Ins(x )
∆
= instance M with . . .

and ν is the name of any subexpression of a definition in module M , then
Ins(exp)!ν is the name of the subexpression of the instantiated definition ob-
tained when exp is substituted for x .

We call a subexpression name having one of the forms described here a labeled
subexpression name. We include in this category the trivial case in which there is
no label name, only the name of a defined operator—possibly in an instantiated
module. The precise definition is contained in the “fine print” below. You
probably don’t want to read it.

The Fine Print

Here is the general definition explained above with examples. We say that label lab1
is the containing label of lab2 iff (i) lab2 lies within the expression labeled by lab1 and
(ii) if lab2 lies within the expression labeled by any other label, then lab1 also lies
within that expression.

We use the notation that f (e1, . . . , ek ) denotes f when k = 0. A label lab has
the form id(p1, . . . , pk ) where id and the pi are identifiers, the pi are all distinct, and
{p1, . . . , pk} is the set of all bound identifiers pi such that:

• Label lab lies within the scope of pi .

• If lab has a containing label labc, then the expression that introduces pi lies
within the expression labeled by labc.

We call id the name of the label. Two labels that either have no containing label or
have the same containing label must have different names.

A simple labeled subexpression name of a module M has the form
prefix ! labexp1 ! . . .! labexpn , where prefix has the form Op(e1, . . . , ek [0]), each labexpi

has the form id i(e1, . . . , ek [i]), Op and the id i are identifiers, and the e j are expres-
sions. It must satisfy:

• The definition

Op(p1, . . . , pk [0])
∆
= . . .

occurs at the top level (not inside a let or inner module) of M .

• id1 must be the name of a label lab1 in the definition of Op that has no containing
label.

• If i > 1, then id i must be the identifier of a label labi whose containing label is
labi−1.



• k [i ] must equal the number of parameters in labi , for each i > 0.

This labeled subexpression name denotes the expression obtained from the expres-
sion labeled with labn by substituting for each parameter of Op and of each labi the
corresponding argument of prefix and labexpi , respectively.

A labeled subexpression name of a module M is either a simple labeled subexpres-
sion name of M or else has the form Id(e1, . . . , ek ) ! λ where there is a statement

Id(e1, . . . , ek )
∆
= instance N . . .

at the outermost level of M and λ is a labeled subexpression name of module N .

Positional Subexpression Names

Instead of using labels, we can name subexpressions of a definition by a sequence
of positional selectors that indicate the position of the subexpression in the parse
tree. Consider this example

F (a)
∆
= ∧ . . .
∧ . . .
∧ Len(x [a]) > 0
∧ . . .

Here are how some of the subexpressions of this definition are named, where A
is an arbitrary expression:

• F (A)!3 names Len(x [A]) > 0, the third conjunct of F (A)—that is, of the
right-hand side of the definition with A substituted for a. We think of this
conjunct list as the application of a conjunction operator that takes four
arguments, the third being Len(x [A]) > 0.

• F (A)!3!1 names Len(x [A]), the first argument of > , the top-level operator
of the expression F (A)!3

• F (A)!3!1!1 names x [A], the first (and only) argument of the top-level
operator of the expression F (A)!3!1.

• The naming of subexpressions of x [A] is based on the realization that
this expression represents the application of a function-application oper-
ator to the two arguments x and A. Thus, F (A)!3!1!1!1 names x and
F (A)!3!1!1!2 names A

The positional selector “!〈” is always synonymous with !1, and “! 〉” is synony-
mous with !2 when selecting the second argument of an operator that takes two
arguments. Thus, instead of F (A)!3!1!1!2 , we could write F (A)!3!〈 !〈 ! 〉 or
F (A)!3!〈 !1! 〉 or F (A)!3!1!〈 !2 or . . . . As usual, “〈” is typed “<<” and “〉” is
typed “>>”.



The use of positional selectors to pick an argument of an operator is self-
evident for most operators that do not introduce bound identifiers. Here are the
cases that are not obvious.

• In [f except ![a] = g , ![b].c = h] we select f with !1, g with !2,
and h with !3. No other subexpressions of the except construct can be
named.

• r .fld is an application of a record-field selector operator to the two argu-
ments r and “fld”, so !1 selects r . (You can also use !2 to select “fld”, but
there’s no reason to name a simple string constant with a subexpression
name.)

• In [fld1 7→ val1, . . . , fldn 7→ valn ] and [fld1 : val1, . . . , fldn : valn ]
the selector ! i names the subexpression val i for i ∈ 1 . . n. The field
names fld i cannot be selected. (There is no point naming fld i , since it’s
just a string constant.)

• In if p then e else f the selector !1 names p, the selector !2 names
e, and the selector !3 names f .

• In case p1 → e1 2 . . . 2 pn → en the selector !i !1 names pi and
!i !2 names ei . If pn is the token other, then it cannot be named.

• In WFe(A) and SFe(A) the selector !1 names e and !2 names A.

• In [A]e and 〈A〉e the selector !1 names A and !2 names e.

• In let . . . in e the selector !1 names e. This is rather subtle because
we are naming an expression that contains operators defined in the let
clause that are not defined in the context in which the subexpression name
appears. Consider this example

F
∆
= let G

∆
= 1 in G + 1

G
∆
= 22

H
∆
= F !1

The F !1 in the definition of H names the expression G + 1 in which G
has the meaning it acquires in the let definition. Thus, H is equal to 2,
not to 23.

We will see below how to name subexpressions of let definitions, such as
the first (local) definition of G above.

I now describe selectors for subexpressions of constructs that introduce bound
identifiers. Consider this example:

R
∆
= ∃ x ∈ S , y ∈ T : x + y > 2



• R !(X ,Y ) names X + Y > 2, for any expressions X and Y .

• R !1 names S .

• R !2 names T .

In general, for any construct that introduces bound identifiers:

• !(e1, . . . , en) selects the body (the expression in which the bound identi-
fiers may appear) with each expression ei substituted for the i th bound
identifier.

• If the bound identifiers are given a range by an expression of the form
“ ∈ S”, then !i selects the i th such range S .

For example, in the expression

[x , y ∈ S , z ∈ T 7→ x + y + z ]

the selector !1 names S , the selector !2 names T , and the selector !(X ,Y ,Z )
names X + Y + Z .

Parentheses are “invisible” with respect to naming. For example, it doesn’t
matter if ν names the subexpression a + b or the subexpression ((a + b)) ; in
either case, ν !〈 names a.

We usually don’t need to name the entire expression to the right of a “
∆
=”

because the operator being defined names it. However, as observed in Sec-
tion 16.2.32, this is not true for recursively defined operators. If Op is recursively
defined by

Op(p1, . . . , pk )
∆
= exp

then “Op(P1, . . . ,Pk ) ! :” names exp with P i substituted for pi , for each i in
1 . . k .

A positional subexpression name consists of a labeled subexpression name
(defined in Section above) followed by a sequence of positional selectors. For
example, in

F (c)
∆
= a ∗ lab :: (b + c ∗ d)

F (7)! lab ! 〉 names 7∗d . Remember that a labeled subexpression need not contain
labels—for example, F (7) is a labeled subexpression name.



Subexpressions of let Definitions

If a positional subexpression name ν names a let/in expression and Op is
an operator defined in the let clause, then ν !Op(e1, . . . , en) is the name of
the expression Op(e1, . . . , en) interpreted in the context determined by ν. For
example, in

F (a)
∆
= ∧ . . .
∧ let G(b)

∆
= a + b

in . . .

F (A)!2!G(B) names the expression G(B), where the definition of G is inter-
preted in a context in which A is substituted for a. This expression of course
equals A + B . (However, if G were recursively defined, F (A)!2!G(B) might

not be so simply related to the expression to the right of the “
∆
=” in G ’s defi-

nition.) We can also name subexpressions of the definition of G . For example,
F (A)!2!G(B)! 〉 names B . The naming process can be continued all the way
down, naming subexpressions of let definitions contained within let definitions
contained within . . . .

If the let/in expression is labeled, then it can be named by a labeled subex-
pression name λ. In that case, λ!Op(e1, . . . , en) is a labeled subexpression
name that names a subexpression of the in clause with label Op(p1, . . . , pn). To
refer to the operator Op defined in the let clause, just add a “! :” to the end of
λ, writing λ! :!Op(e1, . . . , en) . In particular, if H is defined to equal the let/in
expression, then we write H ! :!Op(e1, . . . , en) , even if H is not recursively de-
fined.

Subexpressions of an assume/prove

If we have

theorem Id
∆
= assume A1, . . . ,An prove G

then Id is not an expression and cannot be used as one. Subexpressions of an
assume/prove can be named with labels or positionally, where Id !i names Ai if
1 ≤ i ≤ n, and Id !n+1 names G . However, the assumptions can contain declara-
tions like new C , so it is possible to name a subexpression of an assume/prove
that contains identifiers declared within the assume/prove. Such a name can
be used only within the scope of those declarations. For example, consider

theorem T
∆
= assume x > 0, new C ∈ Nat , y > C

prove x + y > C
...

Foo
∆
= . . .



Then T !1 names the expression x > 0, which can be used in the definition of
Foo. However, T !3 names the expression y > C that contains the constant
C , and the definition Foo is not within the scope of the declaration of C , so
T !3 cannot be used within the definition of Foo. In fact, T !3 can be used only
within the proof of T .

Using Subexpression Names as Operators

Subexpression names can be used as operator names by replacing every part of
the form !id(e1, . . . , en) by !id , and every selector !(e1, . . . , en) by !@ . For
example, consider:

F (Op(_, _, _))
∆
= Op(1, 2, 3)

G
∆
= ∀ x : P ⊆ {〈x , y +z 〉 : y ∈ S , z ∈ T}

Then G !(X )! 〉!(Y ,Z ) is the expression 〈X , Y+Z 〉 , so G !@! 〉 !@ is the oper-
ator

lambda x , y , z : 〈x , y +z 〉

and F (G !@! 〉 !@) equals 〈1, 2+3〉 .
close


