L

The Principles Track

7

Mutual Exclusion
7.1 The Problem
7.2 The One-Bit Protocol
7.2.1 The Protocol
7.2.2 An Assertional Proof
7.2.3 Using TLC to Check an Inductive Invariant
7.3 The Two-Process One-Bit Algorithm
7.3.1 The Two-Process Algorithm
7.3.2 Busy Waiting Versus Synchronization Primitives
7.3.3 Requirement (c)
7.4 Proving Liveness
7.5 An Informal Proof
7.6 A More Formal Proof
7.7 The N-Process One-Bit Algorithm
7.8 The Bakery Algorithm
7.8.1 The Big-Step Algorithm
7.8.2 Choosing the Grain of Atomicity
7.8.3 The Atomic Bakery Algorithm
7.8.4 The Real Bakery Algorithm
7.9 Mutual Exclusion in Modern Programs

The Bounded Channel and Bounded Buffer
8.1 The Bounded Channel
8.1.1 The Specification
8.1.2 Safety
8.1.3 Liveness
8.1.4 Implementing The Bounded Channel
8.2 The Bounded Buffer
8.2.1 Modular Arithmetic
8.2.2 The Algorithm
8.3 The Bounded Buffer Implements the Bounded Channel
8.3.1 The Refinement Mapping
8.3.2 Showing Implementation
8.3.3 Liveness
8.4 A Finer-Grained Bounded Buffer
8.5 Further Refinement
8.6 What is a Process?

-~

L

7 Mutual Exclusion

7.1 The Problem

The mutual exclusion problem was introduced by Edsger Dijkstra in his article
Solution of a Problem in Concurrent Control, published in the Communications
of the ACM, Volume 8, Number 9 (September, 1965), page 569. This seminal
article launched the field of concurrent algorithms. Here is how Dijkstra began
his statement of the problem.

[Clonsider N computers, each engaged in a process which, for our aims,
can be regarded as cyclic. In each of the cycles a so-called “critical section”
occurs and the computers have to be programmed in such a way that at
any moment only one of these N cyclic processes is in its critical section.

Dijkstra wrote about multiple computers, but the application he had in mind
was multiple processes running on the same computer. The mutual exclusion
problem has come to be stated in terms of processes rather than computers, so
that is the terminology that we will use. The property that there is never more
than one process in its critical section is called mutual exclusion. It is, of course,
an invariance property.

Dijkstra next stated what operations the processes could use.

In order to effectuate this mutual exclusion of critical-section execution the
computers can communicate with each other via a common store. Writing
a word into or nondestructively reading a word from this store are undi-
vidable operations; i.e., when two or more computers try to communicate
(either for reading or for writing) simultaneously with the same common
location, these communications will take place one after the other, but in
an unknown order.

Mutual exclusion is central to modern concurrent programming. Today, mul-
tiprocess computers provide special instructions for implementing mutual ex-
clusion. That was not the case in 1965. The only interprocess communication
primitives were reading and writing a shared memory register—operations that
Dijkstra assumed to be atomic actions. Today, the mutual exclusion problem is
not restricted to solutions based only on reading and writing shared memory.
For example, there are distributed solutions in which processes communicate
with messages. Of course, the problem becomes trivial if we can use sufficiently
powerful communication primitives.

Dijkstra next stated four requirements that a solution must satisfy. The first
was:

(a) The solution must be symmetrical between the N computers; as a result
we are not allowed to introduce a static priority.

What is a process?

Dijkstra disliked the
anthropomorphic term
memory and usually
wrote store instead.

-~

L

Requirement (a) is the only part of this article that has turned out not to be
important, and it has been ignored. We too will ignore it. The next requirement
was:

(b) Nothing may be assumed about the relative speeds of the N computers;
we may not even assume their speeds to be constant in time.

This requirement is now taken for granted when studying concurrent algorithms,
and it requires no discussion. Explicitly stating it for the first time is one of the
major contributions of the article. The next requirement was:

(¢) If any of the computers is stopped well outside its critical section, this is
not allowed to lead to potential blocking of the others.

The part of a process’s code “well outside its critical section” is now called the
noncritical section. Implicit in this requirement is that a process is allowed to
stop in its noncritical section. Requirement (c) is a fundamental part of the
mutual exclusion problem. Removing it makes the problem much easier, both
in principle and in practice. For example, it is quite easy to write an algorithm
in which processes take turns entering the critical section. This satisfies mutual
exclusion, but stopping one process prevents the other from entering its critical
section more than one additional time, so it doesn’t satisfy (c). In fact, we have
already written such an algorithm.

Problem 7.1 Show that a solution to the alternation problem, as described in
Section 6.95, satisfies the mutual exclusion condition for N = 2, where the put
and get operations are the critical sections. Generalize this to show that a round-
robin synchronization algorithm (Section 6.10") satisfies mutual exclusion for
an arbitrary positive integer N.

Dijkstra’s final requirement was:

(d) If more than one computer is about to enter its critical section, it must
be impossible to devise for them such finite speeds, that the decision to
determine which one of them will enter its critical section first is postponed
until eternity. In other words, constructions in which “After you”—“After
you”-blocking is still possible, although improbable, are not to be regarded
as valid solutions.

This asserts a liveness property that the algorithm must satisfy. Today, this
property would be expressed as: if at least one process is trying to enter its
critical section, then some process must eventually enter its critical section.
However, it would be 10 years before the concepts of safety and liveness were
identified, and the meaning of “eventually” would not have been clear to readers
at the time. Dijkstra explained the requirement in a somewhat roundabout
way by saying what was not allowed, an explanation that readers were sure to
understand.

HINT

-~

L

What Dijkstra called after-you, after-you blocking is now known as livelock.
Requirement (d) is now called deadlock freedom. This is a somewhat confusing
name, since deadlock usually means a state in which no process can take a step,
which is not the case in the livelock that Dijkstra ruled out.

Deadlock freedom assures only that some process enters its critical section.
It doesn’t assure that any particular process does. It allows the possibility that
some process waits forever trying to enter its critical section while other pro-
cesses keep entering and leaving their critical sections. Such a process is said
to be starved. (The metaphor of starvation comes from the dining philosophers
problem, another multiprocess synchronization problem invented by Dijkstra.)
A stronger requirement than deadlock freedom is starvation freedom, which re-
quires that any process that tries to enter its critical section eventually does so.
The solution that Dijkstra presented in his 1965 paper is deadlock free but not
starvation free.

7.2 The One-Bit Protocol
7.2.1 The Protocol

Dijkstra’s original algorithm uses a simple protocol for ensuring mutual exclu-
sion that appears in a number of subsequent algorithms. I call it the One-Bit
Protocol. Here is how it works in the case of two processes: Each process main-
tains a Boolean value. It can enter its critical section only by setting its value
to TRUE and reading the other process’s variable equal to FALSE.

Let’s write the One-Bit Protocol more precisely. Let the processes be named
0 and 1 and let their Boolean values be z[0] and z[1]. Using PlusCal notation,
the algorithm of process self is as follows. (Note that 1 — self is the process
other than process self.)

el: z[self] := TRUE ;
e2: if (—x[l—self]) { cs: critical section }

We don’t specify the critical section, except that we assume it does not change
the value of the array (function) z. In particular, it need not be an atomic
action. (In PlusCal notation, it could contain labels.)

It’s easy to see that this protocol ensures mutual exclusion. Here’s a simple
proof by contradiction.

Assume that both processes are in their critical sections. The first one
that entered its critical section, call it process i, did so after setting z[i]
to TRUE. Process 1 — i entered the critical section after 7, so it read z[i]
in its if test after process i had set z[i] to TRUE. Hence the read of z[i]
by process 1 — ¢ in its if test obtained the value TRUE, so it couldn’t
have entered its critical section—contradicting the assumption that both
processes are in their critical section.

-~

L

This is a correct and convincing proof. It is a behavioral proof, based on rea-
soning about the order in which operations are executed. This proof is quite
informal. Behavioral proofs can be made more formal, but I don’t know any
practical way to make them completely formal—that is, to write executable
descriptions of real algorithms and formal behavioral proofs that they satisfy
correctness properties. This is one reason why, in more than 35 years of writ-
ing concurrent algorithms, I have found behavioral reasoning to be unreliable
for more complicated algorithms. I believe another reason to be that behav-
ioral proofs are inherently more complex than state-based ones for sufficiently
complex algorithms. This leads people to write less rigorous behavioral proofs
for those algorithms—especially with no completely formal proofs to serve as
guideposts.

To avoid mistakes, we have to think in terms of states, not in terms of ex-
ecutions. So, I will show you how to write a state-based proof. Since I have
not precisely specified the One-Bit Protocol (for example, by writing a com-
plete PlusCal algorithm), no proof of its correctness can be completely formal.
However, even the informal state-based proof is long and boring. Please don’t
be discouraged by this. It’s important to learn how to write a very rigorous
state-based proof, because that’s the kind of proof you’ll have to write if you
want to be sure that a more complicated algorithm is correct. Exciting proofs
concentrate on the interesting parts that display insight, skimming over unim-
portant details. Unfortunately, our insight is often not as good as we think, and
we can too easily miss a fatal flaw lurking in neglected details. Although finding
a state-based proof requires insight, checking it does not. A careful attention to
details is all it takes to avoid mistakes.

Still, behavioral reasoning provides a different way of thinking about an
algorithm, and thinking is always helpful. Behavioral reasoning is bad only if it
is used instead of state-based reasoning rather than in addition to it.

7.2.2 An Assertional Proof

Mutual exclusion is an invariance property. Let InCS(i) be the state predicate
that is true iff process i is in its critical section. Mutual exclusion asserts the
invariance of the state predicate MutualEzclusion, defined for our two processes
by

MutualBEzclusion = —(InCS(0) A InCS(1))

Suppose that the complete algorithm is described by an initial predicate Init
and next-state action Next. We saw in Section 4.9.15 that we prove a formula
Inv to be an invariant of the algorithm by proving:

I11. Init = Inv

12. Inv A Next = Inv’

-~

L

Condition I1 asserts that Inv is true initially, and condition 12 asserts that any
single step of the algorithm executed when Inv is true leaves Inv true. A state
predicate Inv that satisfies condition 12 is called an inductive invariant of the
algorithm. (More precisely, it’s an inductive invariant of the next-state action
Neaxt.)

To prove that MutualExclusion is an invariant of the algorithm, we find an
invariant Inv satisfying 1 and 2 such that the following condition also holds:

13. Inv = MutualExclusion

If Inv is an invariant, meaning it is true of every state of every behavior of the
algorithm, then condition I3 implies that MutualFzclusion is also an invariant.
Thus, to prove that MutualEzclusion is an invariant, we have to find an inductive
invariant Inv that is true initially and implies MutualExclusion. Before reading
further, see if you can find such an invariant Inv.

We don’t expect to be able to deduce anything about what a step might
do in a state not satisfying a type invariant, so Inv will have a type invariant
TypeOK as a conjunct. Since, we want Inv to imply MutualEzclusion, our first
guess might be to let Inv equal TypeOK A MutualExclusion. However, this
is not an inductive invariant. Consider a state in which process 0 is at e2,
process 1 is in its critical section, and z[1] equals FALSE. This state satisfies
TypeOK A MutualFzclusion, but an e2 step by process 0 in that state makes
MutualEzxclusion false.

The invariance of MutualEzclusion depends on z[i] equaling TRUE when pro-
cess i is in its critical section. So, our next attempt is to let Inv equal

TypeOK AN MutualExclusion A Vi € {0,1} : InCS(i) = =i

However, this formula is still not an inductive invariant. Consider a state sat-
isfying this formula in which neither process is in its critical section, z[0] and
z[1] equal FALSE, and some process ¢ is at e2. That process can then take an
e2 step making InCS(i) true and leaving z[i] false, making the formula false.
An inductive invariant must also assert that z[i] is TRUE if process i is at e2.
Remember that, for a PlusCal algorithm, process i is at label e2 iff pc[i] equals
“e2”. Modifying the last conjunct to assert this, we get:

A TypeOK
A MutualEzclusion
AV € {0,1} : InCS(i) V (pci] = “e2”) = x[i]

Further thought reveals no states satisfying this predicate from which a step of
the protocol can make the predicate false. This doesn’t mean that there are no
such states; it just means that we can’t think of them. The only way to be sure
that there are none is by proving that this is the required inductive invariant. So,

This is not quite correct.

-~

L

we define Inv to equal this formula and try to prove that it satisfies conditions
I1-13. It turns out that it does; but if it didn’t, the proof would reveal how it
needed to be changed.

Before we write the proof, observe how Inv was constructed. We started with
the type invariant and the invariant MutualFzclusion that we want to prove.
We then kept strengthening the invariant when we found a state satisfying the
formula that permitted a step that makes the formula false. This is a standard
method for finding an inductive invariant. With experience, you will learn to
see right away most of the conditions that an inductive invariant must assert.

We must now verify conditions I1-13. I've been writing invariance proofs for
many years, and for such a simple protocol I can check these conditions in my
head. You may not be so good at it, so let’s go through the dull, plodding proof.
The trick is to let the math tell us what we must do. This is tiresome for such a
simple example. With practice, you’ll be able to quickly check the trivial steps
of the proof and concentrate on the ones that need careful reasoning. However,
you should understand how to write a complete proof before you start cutting
corners. For complex algorithms, the only way to prevent errors is by checking
all the steps, as tiresome as that may be.

We have three conditions to verify, so we do them one at a time—in any
order. Let’s check the simplest ones first.

Condition I3 is Inv = MutualEzxclusion. It is obviously true because
MutualEzclusion is a conjunct of Inv.

Condition I1 is Init = Inv. We can’t really prove this, since we don’t know
what formula Init is. However, in writing the protocol’s code, I made two
implicit assumptions about the initial predicate:

Initl. Variables have values of the proper type.

Init2. Each process is started outside the protocol code.

With these assumptions, we can (informally) prove Init = Inv. Since Inv is the
conjunction of three formulas, we have to prove that Init implies each of them.
Here is the proof.

Condition 12 is Inv A Next = Inv’, where Inv’ is Inv with all the variables
primed. To prove this, we need to know what the next-state action Next is. The
protocol describes two actions of each process:

el(i) Describes the execution of statement el.

e2(1) Describes the execution of the if test of statement e2, which trans-
fers control either to the critical section or to the statement follow-
ing the if.

The next-state action of process 7 is the disjunction of those two actions plus
two others:

-~

L

CS(i) Describes the execution of process i’s critical section. We make
the following assumptions about it:

1. It is enabled only when control is in the critical section.

2. It leaves control either in the critical section or outside the
protocol.

3. It leaves x unchanged.

4. Tt does not make TypeOK false.

Rest(1) Describes the steps of process ¢ outside the protocol. We make
the following assumptions about it:

1. It is enabled only when control is outside the protocol.

2. It leaves control either outside the protocol or at label el.
3. It leaves z[1 — ¢] unchanged.

4. Tt does not make TypeOK false.

Note that we allow the Rest (i) action to change the value of z[].
For example, the algorithm could set z[i] to FALSE to allow the
other process to enter its critical section.

The next-state action Next then equals
Ji € {0,1} : el(i) V e2(i) V CS(i) V Rest(i)
and Condition I3 becomes
Inv A (31 € {0,1} : el(i) V e2(i) V CS(i) V Rest(i)) = Inv’

The structure of the formula immediately leads to this high-level proof structure.
We next prove steps 1-4 separately, in any order. Step 2 is the most interesting,
since it’s an e2(7) step by which process i enters its critical section. Since Inv’ is
a conjunction, here is the natural high-level proof of step 2. In writing step 2.3, I
used the fact that to prove a formula Vj € S : P(j), it suffices to assume j € S
and prove P(j). I substituted j for the bound symbol ¢ in the third conjunct of
Inv’ to avoid conflict with the symbol 4 introduced in the statement of step 2.

Let’s consider step 2.2. It’s simple enough that you can probably see right
away why it’s true. However, if you're not absolutely sure that it is true, you
can write a proof like this one. If you’re unsure of the correctness of any of its
lowest-level paragraph proofs, you can expand the paragraph proof to a sequence
of lower-level steps.

The rest of the proof is similar. For example, here’s a proof of step 2.3. The
proofs of the high-level steps 3 and 4 use the assumptions made above about the
actions CS(i) and Rest(i). You can complete the proof yourself.

Problem 7.2 (a) Write a complete proof of condition 12, the inductive invari-
ance of Inv.

(b) Where does the proof of inductive invariance fail if we remove the Type OK
conjunct from Inv?

-~

L

This is a boring proof. However, observe that once we discovered the inductive
invariant Inv, the proof required no insight or creativity. It was just a matter
of repeatedly using the structure of the formula to be proved to decompose the
proof into simpler steps, until we reach the point where the steps have such
simple proofs that it’s easy to see they are correct. If you have to go down to
such a low level of detail to be confident of the correctness of a proof, you should
consider checking the proof with TLAPSH. Of course, that’s impossible for this
proof without precise definitions of the operators el, €2, CS, and Rest.

Finding an inductive invariant can require creativity. The method of succes-
sively strengthening an invariant until it is inductive can guide you. But without
insight, it could take quite a few iterations until you find one—perhaps even an
infinite number of iterations. The only way to become proficient at finding an
inductive invariant is through practice. However, TLC can help you.

7.2.3 Using TLC to Check an Inductive Invariant

As you get better at writing proofs, it becomes increasingly difficult to prove
something that isn’t true. So, before trying to prove anything, you should first
try to use TLC to check if it really is true. We can’t use TLC (or any other tool)
to check a property of the One-Bit Protocol until we have specified it precisely.
Let’s specify it as a complete PlusCal algorithm called OneBitProtocol.

Other than the implicit variable pc, the algorithm uses only the single vari-
able x, where z[i] can initially have either Boolean value, for each process i.
There are two processes, named 0 and 1. The algorithm therefore has the fol-
lowing structure, where BOOLEAN is a built-in TLA™ symbol defined to equal
the set {TRUE, FALSE} of Booleans.

--algorithm OneBitProtocol {
variable z € [{0,1} — BOOLEAN] ;
process (P € {0,1}) { ... }

}

The protocol can be repeated any number of times by a process, so the body of
the process statement should be:

r : while(TRUE)
{ rest of process code
el: z[self] := TRUE ;
e2: if (—z[l—self]) { cs: critical section }

}

We now have to decide how to represent the critical section and the rest of
process code.

The simplest way to represent the critical section is with a skip statement,
which does nothing except advance the process’s control state. This represents

L

10

[79

the critical section as a single atomic step, with InCS (i) equal to pc[i] = “cs”.
We can do this for the same reason that we could represent the put and get
operations as skip statements in algorithm AltSpec, the specification of alterna-
tion in Section 6.95. The skip statement is an abstraction that represents all
but the last step performed in executing the critical section as stuttering steps
of the algorithm with pec[i] = “cs”.

The rest of process code in process self is allowed only to change z[self] and
pelself], and it can’t jump to e2 or cs. Since we don’t want to worry about
what the other process might do if it reads z[self] to be a non-Boolean value,
we want z[self] € BOOLEAN to be an invariant. Hence, process self should set
z[self] only to a Boolean value. Here is a PlusCal statement that sets z[self] to
an arbitrarily (nondeterministically) chosen Boolean value:

with (v € BOOLEAN) { z[self] :=wv }

Recall that™ the PlusCal statement with (id € S) { ¥ } executes the code ¥
with an arbitrarily chosen value in the set S substituted for the identifier id.
(There can be no labels in X.)

The algorithm should allow this with statement to be executed any number
of times before the process reaches el. We can express this by letting the while
loop begin:

r : while(TRUE)

{ either { with (v € BOOLEAN) { z[self] :=v };
goto r
}
or skip ;

The PlusCal statement
either { 1 } or {33} ... or{X;}

executes a nondeterministically chosen ¥;. (The curly braces are optional for a
Y; consisting of a single statement.)

Open a new specification OneBitProtocol in the Toolbox. It will need to
extend the Integers module. Insert the ASCII text of the algorithm and run the
PlusCal translator on it. Create a new model and run TLC on it. TLC should
find 35 reachable states. The TLA™ definitions of the state predicates used in
our informal proof are:

TypeOK = Apc € [{0, 1} — {*", “el”, “e2", “cs"}]
Az € [{0, 1} — BOOLEAN |

InCS(i) = pefi] = “cs”
MutualEzclusion = —(InCS(0) A InCS(1))

ASCII version

-~

L

11

Inv = A TypeOK
A MutualExclusion
AV i € {0, 1} : InCS (1) V (pcfi] = “e2") = x[i]

Add these definitions to the specification. The first thing we should have TLC
check is that MutualFExclusion is an invariant. We should actually have done
this before even trying to write our informal proof. Writing the protocol as a
PlusCal algorithm and checking its correctness with TLC is easier than writing
even an informal proof. Since TLC can easily check all possible executions of
this simple algorithm, there was no need to write any proof. We wrote the proof
as an exercise in proof writing, not to check correctness of the protocol. For
an N-process mutual exclusion algorithm, TLC can check correctness only for
particular values of N—often for values no greater than 3.

Before checking that Inv is an inductive invariant, we should check that it
is an invariant. This checks that it is true in the initial state (the first of the
three conditions in our proof). Of course, TLC does this in milliseconds (plus
its startup time) for all executions of this simple algorithm.

We want TLC to check that Inv is an inductive invariant of the next-state
action Next (the second of the three conditions in our proof). Inductive in-
variance means that if we take a Nezt step starting in any state satisfying Inv,
we get a state that also satisfies Inv. However, TLC can check only ordinary
invariance—meaning that Inv is true in every state obtained by starting in a
state satisfying the initial predicate and taking steps satisfying the next-state
action. To check inductive invariance of Inv, we consider the specification ISpec
having initial predicate Inv and next-state action Next. (We can write ISpec in
TLA™ as Inv A D[Neat](,, pc)-) The key is:

Question 7.3 Show that Inv is an inductive invariant of Nezt iff it is an
ordinary invariant of the specification ISpec.

Let’s check that Inv is an invariant of ISpec. Create a new model having Inv
as the initial predicate and Next as the next-state action and add Inv to the
list of invariants to be checked. Alternatively, you can use the temporal-formula
specification:

Inv A O[Neat](z, pc) Inv /\ [][Next]_<<x, pc>>

TLC will find that Inv is an invariant of this specification, and it will report
that there are 35 reachable states. That’s the same number of states it found
for the original specification, which implies that every state satisfying the in-
ductive invariant Inv is reachable. This is not always the case. More often, the
inductive invariant allows states not reachable by the algorithm. Some of those
unreachable states might be deadlock states, so you should unselect deadlock
checking when using TLC to check inductive invariance.

-~

L

12

Now change the definition of Inv by reversing the order of the conjuncts
TypeOK and MutualEzclusion, and run TLC on the specification ISpec to check
that Inv is an inductive invariant of Next. TLC reports the error:

In evaluation, the identifier pc is either undefined or not an

operator.

To understand why this happens, review the description in Section 2.6™ of how
TLC computes the possible initial states of a spec. It explains why the type-
correctness invariant must almost always be the first conjunct of an inductive
invariant that you check with TLC.

The way TLC computes the initial states for such a specification implies
that it first computes all states satisfying the type-correctness invariant. It then
throws away states that don’t satisfy the other conjuncts. For most specifica-
tions, there are a huge number of type-correct states. TLC can therefore usually
check inductive invariance for only very tiny models. If there are too many states
satisfying the type-correctness invariant, TLC will report the error:

Too many possible next states for the last state in the trace.

The largest number of type-correct states that TLC can handle is specified by
a parameter called Cardinality of largest enumerable set, which has the default
value of one million. You can change its value in the TLC Options section of the
Advanced Options model page.

Finding an inductive invariant can be difficult. You’ll need all the help that
TLC can provide. Even a very tiny model can show that an invariant needs to
be strengthened to be inductive. You can often use tricks to reduce the number
of states TLC must examine.

As an example, suppose the type invariant simply asserts that p is in the set
Nat of natural numbers. TLC obviously cannot enumerate all the values of p.
A simple solution to this problem is to redefine Nat in the Definition Override
section of the Advanced Options model page so it equals 0..99. However, if the
algorithm can increment p by 1, then TLC would not find the type invariant to
be inductive because it would find 9941 not to be in Nat. To prevent TLC from
reporting this error, you can add the State Constraint p < 98 on the Advanced
Options model page. (TLC checks that a state satisfies the invariant before
checking if it satisfies the state constraint, so the constraint p < 99 wouldn’t
prevent the error.)

In this same example, suppose there is another variable ¢ for which the type
invariant asserts that ¢ is a natural number but the rest of the invariant implies
it is always in p..(p + 2). You could modify the type invariant by replacing
g € Nat with ¢ € p..(p+2), so TLC has to examine only 100 % 3 pairs of p, ¢
values rather than 100 * 100.

Discovering that a predicate is not an inductive invariant by trying to prove
that it is can take a lot of time. It’s worth putting quite a bit of effort into using

-~

L

13

TLC to catch errors. And don’t forget that your inductive invariant must be an
ordinary invariant of the specification. Whenever you make any changes to it,
check first that it’s still an invariant.

Question 7.4 (a) Use TLC to show that TypeOK is also an inductive invariant
of Next.

(b) When you do this, or when you run TLC on the specification ISpec, TLC
reports that the diameter of the state graph is 1. Why?

7.3 The Two-Process One-Bit Algorithm
7.3.1 The Two-Process Algorithm

We now turn the one-bit protocol into a complete mutual exclusion algorithm,
starting with a two-process one. We have seen that the protocol ensures mutual
exclusion, but we have not discussed deadlock freedom. Our OneBitProtocol
PlusCal algorithm is obviously not deadlock free because it permits an execution
in which z[0] and z[1] both always equal TRUE, so no process ever enters its
critical section.

In a mutual exclusion algorithm, we want x[i] to equal FALSE except when
process i is in its critical section or trying to enter it. The obvious way to do
this is to let each z[4] initially equal FALSE and let the body of process self be:

ncs: while (TRUE)
{ skip;
el: x[self] := TRUE ;
e2: if (—z[1 — self]) { cs: skip }
else { goto €2 } ;
f: xz[self] := FALSE

}

The ncs action (execution from label nes to label el) represents the noncritical
section. For the same reason we can represent the noncritical section as an
atomic skip statement, we can also represent the noncritical section as one.
Complete this code to a two-process algorithm named OneBit, and put it
in a new specification OneBit2Procs. The result should look like this. Run the
translator on the algorithm. As we did for the protocol specification, define:

InCS(i) = peli] = “cs”
MutualExclusion = —(InCS(0) A InCS(1))

and let TLC check that MutualEzclusion is an invariant of the algorithm. You
can also check that the predicate Inv we defined for the protocol, except with
a suitably modified definition of TypeOK, is an inductive invariant of the algo-
rithm.

-~

L

14

Problem 7.5 Have TLC check that this algorithm OneBit implements the al-
gorithm OneBitProtocol defined above under the following refinement mapping:

T < T

won

pe < [i € {0, 1} — 1F pc[i] € {"ncs”, "f'} THEN “r
ELSE pcli]]

(See Section 6.65.)

Of course, we expected the algorithm to satisfy mutual exclusion since the pro-
tocol does. However, we want an algorithm that also is deadlock free. Deadlock
freedom was Dijkstra’s requirement (d). Today, that requirement would be
stated as:

If any process tries to enter its critical section, then some process even-
tually reaches its critical section.

To state this more precisely, we first define a state predicate Trying(i) that is
true iff process i is trying to enter its critical section. The definition is

Trying(i) = pcli] € {“el”, “e2”}

Add the definitions of Trying and DeadlockFree to the specification.

Deadlock freedom means that if Trying(0) V Trying(1) ever becomes true,
then eventually (at that point or some later point in the execution) InCS(0) V
InCS (1) will be true. This assertion is written as the temporal formula

DeadlockFree = (Trying(0) V Trying(1)) ~ (InCS(0)V InCS(1))

In general, the temporal operator ~ (read leads to and written in ASCII as ~>)
is defined so that for any state predicates P and @, the formula P ~» @ is true
of a behavior s; — so — ... iff, for any 4 such that P is true in state s;, there
is a 7 > 4 such that @ is true in state s;.

The translation defines the specification Spec of the algorithm to be Init A
O[Next]yars- This specification can’t satisfy deadlock freedom because it specifies
only safety; it doesn’t require the algorithm to take any (non-stuttering) steps.
Thus, it allows a behavior in which process 0 remains forever in its noncritical
section and process 1 reaches control point e2 and stops. We must add some
fairness assumption.

The traditional fairness assumption for multiprocess algorithms, and the one
implicitly assumed by Dijkstra, is weak fairness™ of each process—that is, of
each process’s next-state action. As we saw in our specification of alternation,
this assumption is specified in PlusCal by preceding the keyword process with
the keyword fair. Make this change to the algorithm and run the translator.
The translator then adds the conjunct

Vself € {0,1} . WFvars(P(Self))

L

15

to specification Spec, where P(i) is the next-state action of process i.

Have TLC check the property DeadlockFree (by adding it to the Properties
list in the What to check? section of the model’s Model Overview page). TLC
reports that the property is not satisfied; it gives an error trace that reaches
the state with z[0] and z[1] both equal to TRUE and pc[0] and pc[1] both equal
to “e2”, and then stutters forever. From this state, all the algorithm can do is
have either process i execute its e2 action, finding z[1 — 4] equal to TRUE and
remaining in the same state.

Question 7.6 Explain why WF,4.s(Proc(i)) is true for a behavior in which
eventually z[1 — i] A (pc[i] = “€2”) is always true.

To make the algorithm deadlock free, we must prevent both processes from
waiting forever at e2. The One-Bit algorithm does this by having one process %
set z[i] to FALSE and allowing the other process to enter its critical section. Let
process 1 be the one to do that. We leave process 0 the same and replace the
else clause of process 1 with

e3: z[1] : = FALSE ;
e4: while (z[0]) { skip} ;
goto el

The two processes now don’t execute the same code. We could declare them
with two separate process statements, but it’s more convenient to use a single
process statement, replacing statement e2 with:

e2: if (—z[1 — self]) { cs: skip }
else { if (self =0) { goto €2 }

else { e3: z[l] := FALSE ;
e4: while (z[0]) { skip} ;
goto el

}

Change the algorithm in module OneBit2Procs. The definition of Trying also
needs to be changed to reflect the change to the code. A suitable definition is

Trying(i) é pc[z] E {“elﬁ’ “62”’ Lée377’ “64”}
Since pc[0] does not equal “e3” or “e4” in any reachable state, we could also
define Trying by

Trying(i) = pec[i] € 1F i =0 THEN {“el”, “e2”}
ELSE {“elﬂ , “e277 , LLe377 , LLe477}
but the simpler definition will do just as well. Run the translator and run TLC
on the same model as before. TLC should verify that this algorithm does satisfy
property DeadlockFree.

ANSWER

ASCII version

L

16

Problem 7.7 Find an inductive invariant of the algorithm that can be used to
prove the invariance of MutualEzclusion. Write the invariance proof.

7.3.2 Busy Waiting Versus Synchronization Primitives

Consider the code

e4: while (z[0]) { skip} ;
goto el

executed by process 1. This is the way Dijkstra might have written that code,
indicating that the process keeps reading z[0] until finding it equal to FALSE,
whereupon it goes to location el. Since Dijkstra posited reading and writing
shared memory registers as the only synchronization primitives, a process could
wait for 2[0] to become false only by repeatedly reading it.

A more natural way to write this code in PlusCal is with an await statement:

ed: await —z[0] ;
goto el

In 1965, the two versions of e4 would have been considered to produce two dif-
ferent algorithms. The await construct would have been viewed as a special
synchronization primitive, very different from the while loop of the first ver-
sion. Most computer scientists today would probably also consider them to be
different. However, the two PlusCal algorithms are completely equivalent.

To see that the two versions of the code produce equivalent specs, we need
only examine their TLA™ translations. The translation of both versions of the
algorithm is the formula Spec, defined to equal

Init A O[Next]yars N (Vself € {0,1} : WFyqrs (P(self)))
where

Init is the initial predicate.

Next is the algorithm’s next-state action, which equals
Iself € € {0,1} : P(self).

P(self) is the next-state action of process self, which equals
nes(self)V el(self)V e2(self)V cs(self)V e3(self)V ed(self)V f (self).

vars is the pair (z, pc)

The specifications of the two versions are the same except for the definition of
e4. In the version with the while loop, e4 is defined by:

ANSWER

L

17

ed(self) = A pe[self] = “e4”
ATF z[0]
THEN A TRUE
A pc’ = [pc EXCEPT ![self] = “e4d"]
ELSE A pc’ = [pc EXCEPT ![self] = “el”]
NG =&

In the version with await, e4 is defined by:

ed(self) = A pe[self] = “e4”

A (—=z[0])
A pc¢’ = [pc EXCEPT ![self] = “el”]
Nt =z

When pc[self] equals “e4” and z[0] equals TRUE, the first definition allows an
e4(self) step that leaves pc and z unchanged—that is, a stuttering step. (Setting
the new value of pe[self] to equal its old value is the same as not changing it.)
With those values of pe[self] and z[0], the second definition does not allow an
ed(self) step. Hence the definitions of Next and P(self) differ only in whether
or not they allow certain stuttering steps (ones that leave z and pc unchanged).
Since action [Next],qrs allows stuttering steps, the two definitions of e2(self)
yield equivalent definitions of [Next],qrs. They also yield equivalent definitions
of (P(self))vars, which allows only the non-stuttering steps allowed by P(self).
Hence, the definition of WF implies that they yield equivalent definitions of
WEF yors (P(self)). The two definitions therefore yield equivalent definitions of
the specification Spec.

Problem 7.8 Use TLC as follows to show that the two specifications Spec are
equivalent. Put the two versions of the algorithm in two different specifications,
with root modules that I will call here M1 and M2. Add the following statement
to M1

Other = INSTANCE M2 WITH = x, pc < pc

and use TLC to check that the algorithm of M 1 satisfies the property Other!Spec.
Explain why this shows that formula Spec of M1 implies formula Spec of M2.
Then use the analogous procedure to show that formula Spec of M2 implies
formula Spec of M1, showing that the two formulas are equivalent.

The equivalence of the two algorithms doesn’t mean that busy waiting is the
same as using an operating-system primitive to wait for a condition to be true.
What it does mean is that the PlusCal code describes the algorithm at a high
enough level of abstraction that the distinction between these two ways of wait-
ing disappears. In the algorithm’s abstraction, waiting means not changing pc or
x. This describes implementations in which a waiting process repeatedly reads

-~

L

18

the value of z[0], as well as implementations in which a waiting process “sleeps”
until it is notified that 2[0] has been changed.

PlusCal is not a programming language. It is a convenient way to write
certain kinds of system specifications—including ones that are usually called
“algorithms”. Like any system specification, an algorithm is not a system; it is
a mathematical formula that serves as a blueprint of a system. What matters
is the mathematical formula, not the syntax of the PlusCal code that generated
it.

7.3.3 Requirement (c)

TLC has checked that the two-process One-Bit algorithm satisfies deadlock free-
dom, which is the precise statement of Dijkstra’s requirement (d). We have de-
cided to ignore his requirement (a), which was symmetry of the processes’ code.
His requirement (b), that there is no assumption about the relative speeds, is
built into our method of specifying algorithms. (Any such assumption would
have to be explicitly asserted.) What about his requirement (c)?

As we observed above, requirement (c) implicitly requires that either process
be able to stop in its noncritical section. In our algorithm, a process 7 is in
its noncritical section iff it is at control point ncs—that is, iff pc[i] = “ncs”.
Our liveness requirement of weak fairness on the next-state action P(7) of each
process ¢ means that the process cannot stop taking non-stuttering steps if such
a step remains enabled. When pec[i] = “ncs”, the process can execute the skip
statement, which is a non-stuttering step (it sets pc[i] to “el”). Hence weak
fairness of P(i) implies that process i cannot stop in its noncritical section,
violating requirement (c).

As we saw for the finer-grained Handshake algorithm™, PlusCal allows us
to modify the fairness requirement so that it does not apply to a process when
control is at ncs by putting - after the label, like this:

ncs :- while (TRUE) . ..
This causes the translation to produce the fairness assumption:
Vself € {0,1} : WF s ((pe[self] # “ncs”) A P(self))

Weak fairness of the action (pc[i] # “ncs”) A P(i) requires process i eventually to
take a P(i) step only when pc[i] does not equal “ncs”, so it allows the process to
stop in its noncritical section. Have TLC check that the algorithm still satisfies
deadlock freedom with this weaker fairness assumption.

It’s not clear whether a process should be allowed to remain forever in its
critical section. Dijkstra’s article says nothing about this possibility, and I don’t
know if he considered it. Most computer scientists seem to assume that a pro-
cess must eventually leave its critical section. Indeed, my statement of star-
vation freedom—that any process trying to enter its critical section eventually

-~

L

19

succeeds—makes it impossible to satisfy if a process can remain forever in its
critical section. However, it can be argued that the only assumption a mutual ex-
clusion algorithm should make about the noncritical and critical sections is that
they do not modify the values of any variables used by the algorithm—except
for the obvious changes to the value of pc.

For deadlock freedom, it makes little difference whether or not we allow
a process to remain forever in its critical section. However, assuming that it
can’t allows a simpler definition of starvation freedom. I will therefore make the
customary assumption that a process in its critical section eventually exits from
it.
Question 7.9 What is the weak fairness property that allows processes to
stop inside their critical and noncritical sections? Compare your answer to the
fairness condition produced by the translator when you modify the PlusCal code

to allow this possibility. Use TLC to check that deadlock freedom is satisfied
even with this weaker fairness assumption.

Question 7.10 Assuming the appropriate definitions of Trying and InCS,
write the fairness formula expressing the customary statement of starvation free-
dom for an algorithm with an arbitrary set Proc of processes.

7.4 Proving Liveness

7.5 An Informal Proof

In Problem 7.7, you proved the safety property of the Two-Process One-Bit
Algorithm—namely, that it satisfies mutual exclusion. Let’s now prove liveness.
The liveness property satisfied by this algorithm is deadlock freedom. Letting
Trying (1) mean that process i is trying to enter its critical section and InCS (i)
to mean that it is in its critical section, we expressed this condition above by
the formula

DeadlockFree = (Trying(0) V Trying(1)) ~ (InCS(0)V InCS(1))
For our algorithm, we have

Trying(i) = pefi] € {“el”, “e2”, “e3”, “ed”}
InCS(i) = pcli] = “cs”

(2]

(It’s an invariant of the algorithm that pc[0] never equals “e3” or “e4”.) We now
give an informal proof of this property. We must prove that it is true for some
arbitrary behavior s; — so — s3 — - - - satisfying the algorithm’s specification.
For linguistic convenience, we say that something is true at time ¢ if it is true
in state s; or in the suffix s; — s;11 — - - - of this behavior.

ANSWER

-~

L

20

For brevity, let’s define

TO = Trying(0) T1 = Trying(1) Success = InCS(0)V InCS(1)

We have to show that if T0 Vv T1 is true at some time t;, then Success is true
at some time ¢ > t;. In general, proving a formula F by contradiction is easier
than proving it directly because we have the additional hypothesis —=F. To prove
by contradiction that a formula F' is eventually true, we get to assume not just
that —F' is true, but that it is always true. This makes proof by contradiction
especially useful. We are therefore led to the following high-level proof.

1. It suffices to assume that T0V T'1 is true at some time ¢; and —Success
is true at all times ¢ > ¢1, and to obtain a contradiction.

2. TO0 is false at time ¢1.
3. T1 is false at time ¢1.

4. Q.E.D.
PRrROOF: By 2, 3, and the step 1 assumption.

When writing the proof of step 3, we discover that we need to know that 70
is false at some time t5 > t;. We can avoid a separate proof of this fact by
strengthening step 2 to:

2. TO0 is false at all times ¢t > ¢;.

Here is the algorithm and here is the proof, carried down to a reasonable level
of detail. T have omitted the proof of step 2.

If you are not interested in writing more rigorous proofs, skip to Section 8. Otherwise,
detour to a discussion of temporal logic™ before continuing to the next section.

7.6 A More Formal Proof

We now give a more formal version our informal proof of deadlock freedom—a
proof in which each assertion is a TLA™ formula. For convenience in writing the
proof, let’s define Fairness to be the formula expressing the fairness property of
the algorithm, so Spec equals Init AO[Next],qrs A Fairness. The TLAT translation
of the algorithm tells us that its definition is:

Fairness = ¥ self € {0, 1} : WF yqrs ((pc[self] ¢ {“ncs”, “cs”}) A P(self))

However, we won’t carry our proof down to the level of detail for which the
formal definition of Fairness matters. The only formal property of Fairness
that we need to know is that it’s a O formula”. This follows from the fact that
the definition of WF implies that any WF formula is a O formula. However, you

We can prove F' by
assuming —F' and proving
F, since =F A F implies
FALSE.

-~

L

21

should be able to verify intuitively from the meaning of this fairness condition
that Fairness is true of a behavior o iff it is true of all suffixes of 7, which implies
that it is a O formula.

To prove that the algorithm is deadlock free, we must prove the theorem
Spec = DeadlockFree. The usual way to prove such an implication is to as-
sume Spec and prove DeadlockFree. However, this is a temporal theorem, and
assumptions in temporal proofs should be O formulas. Formula Spec is not a O
formula because of its conjunct Init, which is a state predicate.

We should not expect assuming Spec to be useful. To prove that an arbitrary
behavior ¢ satisfying Spec satisfies a liveness property, we reason about states
that occur at arbitrary points in the behavior. In other words, we reason about
suffixes of 0. The formula Spec is true of o but not necessarily of a suffix
of o, because the initial predicate Init is not true for an arbitrary state in o.
Therefore, the fact that Spec is true of o cannot be used directly to reason about
suffixes of o.

To prove a liveness property, instead of using Init, we need to use a state
predicate that is always true—in other words, we must use an invariant. Let’s
call the invariant LInv. Our proof begins as follows, where we first prove that
LInv is an invariant and then use OLInv as an assumption.

1. Spec = OLInv

2. SUFFICES ASSUME: OLInv A O[Next|yqrs A Fairness
PRrROVE: DeadlockFree

The invariant Inv that we used to prove mutual exclusion is not strong enough
for proving deadlock freedom. For example, step 3.3 of our informal proof uses
the fact that z[0] equals FALSE when process 0 is at ncs. However, that fact
was not needed to prove mutual exclusion and is not implied by Inv. Here is an
invariant that is strong enough. It strengthens Inv by specifying the value of
z[i] as a function of pc[i], for each process i.

LInv £ A TypeOK
A MutualEzclusion
A pcl0] ¢ {"“e3", “e4"}
AVi € {0, 1} : z[i] = (pc[i] € {"e2", “e3", “cs", “f'})

Since DeadlockFree equals T0V T1 ~ Success, we use a standard temporal
proof by contradiction with the next proof step:

3. SUFFICES ASSUME: O-Success
ProOVE: (T0V T1)~> FALSE

When you get used to writing these proofs, you will save space by combining
steps 2 and 3 into:

2. SUFFICES ASSUME: OLInv A O[Next|yqrs A Fairness A O=Success

-~

L

22

PrOVE: (T0V T1)~> FALSE

Here is the full proof. If you’d like to read the proof in the Toolbox, using its
commands for hiding subproofs, click here for an Ascir version. (It does not
contain the graphs that explain the uses of Leads-To Induction.)

7.7 The N-Process One-Bit Algorithm

It’s easy to generalize the basic 2-process one-bit protocol to N processes. Each
process i sets its bit z[¢] to TRUE and can enter its critical section if it then sees
z[j] equal to FALSE for every other process j. We first write this protocol in
pseudo-PlusCal.

Let Procs be the set of processes, which following Dijkstra we take to be
the set 1.. N of integers from 1 through N. As in PlusCal, we let self be the
name of the current process. We let process self read the other bits z[j] in an
arbitrary, nondeterministically chosen order. We let unchecked be a variable
local to process self that holds the set of all processes j for which self has not
yet read z[j]. Process self sets unchecked to the set of all processes in Procs
other than self itself—that is, the set Procs\ {self}. It then repeatedly sets a
local variable other to any process in the set unchecked, removes other from
unchecked, and then continues only if z[other] is FALSE. The pseudo-code for
the protocol is:

el: z[self] := TRUE ;
unchecked := Procs \ {self} ;
e2: while(unchecked # {})
{ Set other to any element of unchecked ;
unchecked : = unchecked \ {other} ;
await —z[other]

}

cs: critical section

As we have seen in the case N = 2, this algorithm can deadlock—each process
waiting for the other’s variable to become false. The two-process algorithm
breaks this deadlock by having process 1 set its variable false, allowing process 0
to enter the critical section. The generalization to N processes is to have each
process wait for any lower-numbered process that it observes also to be waiting
to enter the critical section. Here is the algorithm in PlusCal, where Procs
is defined to be the set 1.. N of processes. As in the two-process version, we
assume fairness of each process, but not of its non-critical section action.
Create a new specification with the AScII version of the algorithm and run
the translator. (You will have to declare N to be a constant and define Procs.)
Use TLC to check that the algorithm satisfies mutual exclusion by checking that

MutualBzclusion = Yi,j € Procs : (i # j) = —~(InCS(i) A InCS(5))

-~

L

23

is an invariant, and check that the algorithm is deadlock free by checking that
it satisfies the property

DeadlockFree = (3i € Procs : Trying(i)) ~ (3i € Procs : InCS(i))
where Trying and InCS are defined by:

Trying(i) = pefi] € {“el”, “e2”, “e3”, “ed”, “e5”, “e6”}

InCS(i) = pcli] = “cs”

TLC will check these properties in a few seconds for N = 3 and in around 20
minutes for N = 4.

To prove mutual exclusion, we first define the state predicate Past(i,7) to
assert that process ¢ is trying to enter its critical section and has “passed”
process j, meaning that it has seen z[j] equal to FALSE when executing the
if (z[other]) test of statement e3. The precise definition is:

Past(i, j) = V (pc[i] = “e2") A (j ¢ unchecked][i])
V Apcli] € {"e3", "“e6"}
Nj & unchecked[i] U {other]i]}
V peli] = “cs”

The basic reason the algorithm achieves mutual exclusion is that, when Past (3, j)
is true, Past(j, i) cannot become true because z[i] is true. In other words, the
following formula is an invariant of the algorithm:

Vi € Procs : Vj € Procs\{i} : Past(i,j) = —Past(j, i) A z[i]

Use TLC to check that this is an invariant.

An inductive invariant should contain a type-correctness invariant, which I
like to name TypeOK , as a conjunct. However, the conjunction of TypeOK and
the formula above isn’t an inductive invariant. If you try writing a proof, you'll
quickly discover why it isn’t. However, for fun, let TLC show you it isn’t. Use
the method described above to have TLC check if this invariant is inductive.
(Use N = 2.) Examine the error trace and figure out why it isn’t inductive.
(Don’t peek at what comes below.)

The error trace reveals that the invariant allows Past(i,j) to be true when
z[i] is false, which allows a step to make Past(j,4) also true. We need to add a
conjunct asserting that z[i] is true at those points in the code where it obviously
is true. This leads us to the following invariant:

Inv & A TypeOK
AVi € Procs :
A (pcli] € {“e2", “e3", “e6", “cs"}) = x[i]
AYj € Procs\{i} : Past(i, j) = —Past(j, i) A z[i]

In the TLAT translation, the
process-local variables
unchecked and other
becomes arrays indexed by
Proc.

ASCII version

-~

L

24

Use TLC to check that this is an inductive invariant for N = 2.

Question 7.11 How many states must TLC generate in the course of checking
that Inv is an inductive invariant for N = 37

Question 7.12 Write a proof that Inv is an inductive invariant of the algorithm,
and that it implies MutualFEzclusion.

Let’s now show that the algorithm is deadlock free. For that, it suffices to
assume that, at some time during the execution, some process is trying to enter
its critical section but no process ever does, and to obtain a contradiction. A
naive argument goes as follows: Consider the smallest ¢ for which Trying(i)
ever becomes true. Since any non-trying process j eventually sets z[j] false,
eventually process i never reads z[j] true for any j less than 4, so it never sets

z[i] false. Therefore, every other waiting process must eventually reach e5 and
wait forever for z[i] to become false. At this point, z[j] is false for all j # 1,
so process 7 must eventually enter the critical section, which is the requlred
contradiction.

This kind of reasoning about executions is unreliable; it’s easy to miss a
possible sequence of actions. In fact, the argument above is wrong because it
ignores the possibility that process i is waiting for z[j] to become false, for some
j > 14, but j is one of a group of processes that keep continually looping from
el to eb and back. Process j keeps setting z[j] alternately false and true, and
process 4 is unlucky and keeps reading z[j] when it is true, remaining forever at
e6. We need a more rigorous proof.

A rigorous liveness proof needs an invariant. Once again, the invariant Inv
used to prove mutual exclusion isn’t strong enough to prove deadlock freedom
because it asserts when z[i] must be true, but not when it must be false. An
inductive invariant that does the job is:

Linv = A Inv
AY1i € Procs :
A i ¢ unchecked]i]
A (pci] € {“ncs”, “e5"}) = —xi]
A (peli] = "e3") = (otheri] # 1)
A (pcli] € {“e4” “e5"}) = (i > other[i])
A (pcli] = “e6") = (other[i] > 1)

Question 7.13 Use TLC to check that LInv is an inductive invariant of the
algorithm, then prove that it is
Here is a more rigorous proof of deadlock freedom.

Question 7.14 Make this liveness proof more rigorous by expanding the proof
sketches of steps 7-9 into another level of structured proof.

ANSWER

-~

L

25

7.8 The Bakery Algorithm

Dijkstra’s 1965 paper inspired the publication of many mutual exclusion algo-
rithms. The first, published four months later by Harris Hyman, was incorrect.
Four months after that, Donald Knuth published an article pointing out the
error in Hyman’s algorithm and presenting the first starvation-free mutual ex-
clusion algorithm. Since then, there have probably been hundreds of published
mutual exclusion algorithms. My favorite is called the bakery algorithm. It’s
my favorite because it’s the first one that I invented, because it’s simple, and
because it has a remarkable property that I'll discuss later.

The inspiration for the bakery algorithm comes from a common method for
serving customers that I first saw as a child in a neighborhood bakery. Each
arriving customer gets a numbered ticket from a dispenser, tickets being num-
bered successively. The waiting customer with the lowest numbered ticket is the
next one served.

In the bakery algorithm, each process that wants to enter its critical section
obtains a number, and the process with the lowest number enters its critical
section. In keeping with the metaphor, we say that a process that is mot in
its non-critical section is in the bakery. Upon entering the bakery, a process
obtains its number by reading the numbers of all other processes in the bakery
and setting its own number to a number higher than any that it reads. (The
obvious such number is one greater than the highest number it reads, but any
larger number also works.) Processes outside the bakery have their numbers
equal to 0, so a process entering the bakery simply sets its number to be greater
than that of any other process, inside or outside the bakery.

The obvious problem with this approach is that two processes entering the
bakery at the same time can choose the same number. This problem is easily
solved by naming the processes with numbers and using process names to break
ties: if two processes choose the same number, the one with the smallest name
enters its critical section first.

7.8.1 The Big-Step Algorithm

We first write a version of the bakery algorithm called the big-step algorithm in
which a process’s entire operation of choosing its number is a single step. Having
a process read every other process’s number and set its own number all in a single
step makes the algorithm rather uninteresting. In fact, it makes it impossible
for two different processes ever to have the same non-zero number. However,
to make the transition to the finer-grained algorithm easier, we’ll ignore that
and write the big-step algorithm as if it were necessary to use process names to
break ties.

The Algorithm
We start by declaring the number N of processes and defining Procs to be the

-~

L

26

set of processes—more precisely, the set of process names, which are numbers
from 1 through N.

[MODULE BigStepBakery
EXTENDS Integers

CONSTANT N
ASSUME N € Nat

Procs 2 1..N

The algorithm uses an array num, where num|p] is process p’s number. We
define < on pairs of integers so that, if processes p and ¢ are in the bakery, then
p enters its critical section before ¢ does iff (num[p], p) < (numlql, ¢). This is
the case iff either num/[p] is less than num[g] or else they are equal and p < q.
The TLA™ definition of < is

a<b = Va[l] < b[l]
V (a[1] = b[1]) A (af2] < b[2])
The relation < is called the lexicographical ordering on the set of pairs of num-

bers. It is a total ordering on pairs of numbers, meaning that for any pairs A,
B, and C of numbers:

e A< Band B=< Cimply A=< C.
e Exactly one of the relations A < B, B < A, or A = B holds.

Upon entering the bakery, process p can set num[p] to any natural number that
is greater than num/|q| for every other process q. The set of all such numbers is:

{j € Nat : ¥Yq € Procs\ {p} : j > num|q]}
Since num|[p] equals 0 at that point, this expression can be simplified a bit to:
{j € Nat : ¥Yq € Procs : j > num[q|}

Here is the PlusCal code. In addition to the variable num, it declares the
process-local variable unchecked. A process uses unchecked to store the set of
other processes that it has determined it does not have to wait for. To simplify
the type-correctness invariant, unchecked is initialized to the empty set even
though its initial value is never used. Here are what the algorithm’s atomic
actions do:

e The actions corresponding to the labels cs and ncs represent the critical
and non-critical sections, respectively.

e The enter action sets num[self] to an arbitrary integer greater than num/|i
for all processes ¢. It also initializes unchecked to the set of all processes
except self.

-~

L

27

e The wait statement’s while loop chooses an arbitrary process ¢ in unchecked
and, if num[i] equals 0 (so 4 is not in the bakery) or (num|self], self) pre-
cedes (numli],i) in the lexicographical ordering (so process self should
enter its critical section before process i does), then it removes i from
unchecked. The loop terminates and self enters its critical section when
unchecked is empty.

e After leaving the critical section, the process executes the exit statement
to set num[self] to 0 and enters the non-critical section.

Safety
The type-correctness invariant and the invariant asserting the mutual exclusion
property are:

TypeOK = A num € [Procs — Nat]
A unchecked € [Procs — SUBSET Procs]
A pc € [Procs — {"“ncs’, “enter”, “"wait",

“

cs”’, “exit" }]

MutualExclusion =
Vp, g € Procs : (p # q) = ~((pelp] = "cs") A (pe[g] = “cs"))

Here is the AscII version of a module containing the algorithm and the TLAT dec-
larations and definitions. Use it to create a new specification in the Toolbox. It
will report undefined operator errors until you run the PlusCal translator.

To check the algorithm with TLC, you will have to use a model that rede-
fines Nat to be a finite set of numbers. For the assumption N € Nat and type
correctness to hold, Nat must contain 0 and N. A model with N equal to 3
and Nat defined to equal 0..5 has only 2528 reachable states, and TLC quickly
checks that it satisfies the two invariants. TLC finds no errors on the small
models it can check quickly. While we let it run on a larger model, it’s time to
prove that the algorithm satisfies mutual exclusion.

You will probably find the following argument the most intuitively appealing.
Suppose process p has entered the bakery and set num[p]. Any process ¢ that
then enters the bakery sets num[q] greater than num[p], and therefore ¢ cannot
enter the critical section while p is still in the bakery. Two processes therefore
can’t be in their critical sections at the same time, since one of them must have
set its number after the other did. To make this proof more rigorous, we must
recast it in terms of an invariant.

Mutual exclusion clearly depends on the invariance of:

NumPos If a process p is at its wait statement or critical section, then
num[p] > 0 holds.

Liveness also depends on the fact that num[p] = 0 when p is in its noncritical
section. To avoid having two separate invariants for safety and liveness, we
strengthen NumPos to

-~

L

28

NumPos num|[p] > 0 iff process p is at its wait statement, its critical
section, or its exit statement.

To write the more interesting part of the invariant, let’s define:

Before(p, q) 2 v num[q] =0
V (num([p], p) < (num[q], q)

(For the proof of the big-step algorithm, we could replace the second disjunct
by num[p] < numlq].) The key invariant is:

Before If a process p is either at the wait statement and has executed
the while loop iteration for process ¢, or is in its critical section, then
Before(p, q) is true.

The NumPos and Before invariants imply mutual exclusion because:

1. It suffices to assume two different processes p and ¢ are in their critical
sections and obtain a contradiction.
PRrROOF: Obvious.

2. Before(p, q) N\ Before(q,p)
PRrROOF: By 1 and invariant Before.

3. (num[p] > 0) A (num[q] > 0)
PROOF: By 1 and invariant NumPos.

4. ((num[p], p) < (numlq], q)) A ({num[q], q) < (num[p],p))
PROOF: By 2, 3, and the definition of Before.

5. Q.E.D.
PROOF: Since < is a total ordering on the set of pairs of integers, 4 is
impossible.

The conjunction of invariants NumPos and Before and the type-correctness in-
variants is an inductive invariant. To define it precisely, we observe that the set
unchecked[p] contains the processes for which p has not yet executed the while
loop body.

Inv = A TypeOK
AV p € Procs :
A (pe[p] € {"wait", “cs”, “exit"}) = (num|p] > 0)
AY q € (Procs\ {p}) :
V (pe[p] = "wait") A (¢ ¢ unchecked|[p)])
V pelp] = “cs”
= Before(p, q)

Problem 7.15 (a) Using the method described in Section 7.2.3, check that Inv
is an inductive invariant of the big-step algorithm.

(b) Prove that Inv is an inductive invariant of the algorithm, completing the
proof that the big-step algorithm satisfies mutual exclusion.

Remember that

unchecked[p] is p's
“copy” of the local
variable unchecked.

ASCII version

-~

L

29

Liveness
Let us now check that the big-step bakery algorithm is starvation free. First, we
need to add a fairness assumption for the algorithm. As usual, we assume fairness
for each process by adding the keyword fair before the keyword process in the
PlusCal code. As we observed in Section 7.3.3, satisfying Dijkstra’s requirement
(c) means we must allow a process to stop in its non-critical section, which we
do by putting “-” after the label “ncs:”. Make those changes and re-translate
the algorithm.

Recall the definition of DeadlockFree given above for the one-bit algorithm.
Modifying the definitions for the big-step bakery algorithm yields:

Trying(p) = pclp] € {"enter”, “wait"}
InCS(p) pelp] = “cs
DeadlockFree = (3p € Procs : Trying(p)) ~ (3p € Procs : InCS(p))

e 1

ASCII version

Add those definitions to the module and have TLC check the property DeadlockFree.

It should succeed.
In Question 7.10, you defined starvation freedom by:

StarvationFree = Yp € Procs : Trying(p) ~ InCS(p)

(We are using the simpler definition, which assumes that a process may not stop
in its critical section.) Add that definition to the model and have TLC check
that the algorithm satisfies it. TLC reports that the property is not satisfied!
Have we made a mistake? Before reading further, examine the error trace and
see if you can figure out what happened.

When I check starvation freedom for the model with N < 3 and Nat <+
0..5, TLC produces an error trace that ends with processes 1 and 2 always at
statement enter, and process 3 forever repeating the following sequence of steps:

e Enter the bakery.
e Set num|[3] to 5.

e Execute the wait loop, seeing num[1] and num[2] equal to 0, and enter the
critical section.

e Exit the critical section and return to the non-critical section.

This behavior is not allowed by the algorithm. Processes 1 and 2 have stopped
at statement enter even though the enter action is always enabled. (Since there
are a finite number of processes, it is always possible to choose a natural number
that is greater than num/[p] for all processes p.) Hence, this behavior does not
satisfy the assumption of weak fairness for all processes, so it is not a behavior
of the algorithm.

-~

L

30

TLC reports the violation because it isn’t checking if the algorithm is star-
vation free; it’s checking if a model of the algorithm is starvation free. In my
model, Nat is defined to equal 0..5. There is no element of 0..5 greater than 5.
Hence, the enter action of processes 1 and 2 is not enabled if num[3] = 5. The
model allows this behavior because weak fairness does not require a process to
execute an action that is continually disabled.

TLC can check only models of the algorithm in which Nat is replaced with a
bounded set of numbers, and any such model will allow behaviors that are not
starvation free because some process p keeps setting num[p] equal to the largest
number in Nat. To check if the algorithm is starvation free, we have to tell TLC
to ignore this class of behaviors. We do this by adding a state constraint to the
model. A state constraint is a state predicate P (a formula containing no primes
or temporal operators) that tells TLC to examine only behaviors in which each
state satisfies P. More precisely, when it finds a reachable state s that does not
satisfy P, it does not look for states that are reachable from s. (However, it will
test if s satisfies the invariants it is checking.) For my model with Nat equal to
0..5, I enter the state constraint

Vp € Procs : num|[p] <5

in the State Constraint field on the Advanced Options model page. TLC then
reports that property StarvationFree is satisfied by the model.

The problem of errors that occur in a model but not in the actual algorithm
can occur when checking any kind of property with TLC. However, it seems
to be more common when checking liveness than when checking safety. For
safety properties, a state constraint usually provides a satisfactory solution. For
liveness properties, the constraint could easily cause TLC not to check actual
behaviors of the algorithm that violate the property. For example, TLC could
not find a failure of starvation freedom in the bakery algorithm caused by a
process never entering its critical section because other processes kept setting
their numbers to ever increasing values. We need to prove that this is impossible.
Still, we should let TLC try to find whatever errors it can. There’s no point
trying to write a proof if TLC can find a counterexample.

Question 7.16 Find an algorithm that satisfies an invariant, but for which the
invariant is violated by any model TLC can check—if the model doesn’t use a
state constraint.

Let’s now prove that the big-step bakery algorithm is starvation free. It, and the
actual bakery algorithm, satisfy the stronger property of being first-come-first-
served (FCFS). Not only does each process trying to enter its critical section
do so, but it enters before any process that enters the bakery algorithm after it
does. More precisely, if process p executes the enter statement before process ¢
does, then p enters the critical section before ¢ does. First-come-first-served is
described formally by the property FCFS, defined as follows.

ANSWER

-~

L

31

InNCS(p) = pe[p] = “ncs”
Waiting(p) = pe[p] = “wait”
FCFS =

Vp, q € Procs :

O(Waiting(p) N InNCS(q) A O-InCS(p) = O-InCS(q))

It is easy to see why this property holds. From Waiting(p) A O—InCS(p), we
deduce that Waiting(p) remains forever true, with num[p] > 0. From InNCS(q)
we can then deduce that if ¢ tries to enter its critical section, it will set num]q]
greater than num[p] and will wait forever in its await statement with i = p.
Here is a more rigorous proof.

FCFS is a safety property™; starvation freedom is a liveness property. A
safety property cannot imply a liveness property—except in trivial cases. (For
example, the safety property FALSE implies every liveness property.) Starvation
freedom is implied by FCFS and deadlock freedom. The idea of the proof is
simple. Suppose a process p is trying to enter its critical section. FCFS implies
that no process that later tries to enter its critical section can succeed before
p. Deadlock freedom implies that as long as p is trying to enter, processes
must keep entering and leaving the critical section. Since there can be only a
finite number of processes waiting at any time, eventually no process other than
p will be able to enter the critical section, so it must do so. Here is a more
rigorous proof of this result. Thus, to prove that the big-step bakery algorithm
is starvation free, we just have to prove that it is deadlock free. This is left as
an exercise:

Problem 7.17 Prove Spec = DeadlockFree.

7.8.2 Choosing the Grain of Atomicity

The big-step bakery algorithm isn’t a useful algorithm because it assumes that
process self can read num[i] for all other processes i and set numlself] all in
a single step. The only way I know of making such an operation act like an
atomic step is to put it in the critical section of a mutual exclusion algorithm—
not helpful if we’re trying to implement mutual exclusion. So, we want a finer-
grained algorithm.

The algorithm’s process declaration should look something like this, where
the with statement of the Big-Step algorithm has been refined to a while
loop that reads the values num[i] individually, for all i # self, and then sets
num|self]. T have not yet added the labels that specify exactly what the atomic
steps are. We now consider how that should be done.

Dijkstra assumed that reading or writing a single word of memory is an
atomic action. Viewing Dijkstra’s paper from the perspective of our standard
model, we would phrase this assumption as follows. The system’s state consists
of a collection of memory words that can be read and written by all the processes,

-~

L

32

together with a collection of registers, each local to a single process. An operation
of a process may be taken to be atomic if it reads or writes at most one word of
memory. The operation may perform arbitrary operations on its local registers.
We would justify this assumption by arguing that, because the operations to the
local registers cannot affect or be affected by operations performed by another
process, we can assume that they all occur at the same instant, which is the
same instant as the read or write of memory (if there is such a read or write) is
performed.

Memory and registers are meaningful concepts for a computer, but not for an
algorithm. When computer scientists generalized from computers to processes,
they (often implicitly) partitioned the state of an algorithm into elementary
data items, some shared by multiple processes and others local to individual
processes. Typically, an integer-valued variable was taken to be an elementary
data item—tacitly assuming that an implementation would ensure that its value
remained small enough to fit in a single word of physical memory. For now, let
us take numl|i|, unchecked[i], maz[i], and pc[i], for all processes i, to be the
elementary data items of the bakery algorithm. (Remember that process i’s
copies of the process-local variables unchecked and maz are the array elements
unchecked[i] and max[i].)

Dijkstra’s assumption translates to the requirement that an atomic action
contain at most one read or write of at most one shared elementary data item.
A closer look at its justification, which involves grouping together operations
that are invisible to another process into a single atomic action, shows that we
can weaken that requirement to the following:

Single Access Rule A single atomic action of a process may contain
either (a) a single write to a shared elementary data item or (b) a single
read of a shared data item that may be written by another process (but
not both).

For example, the following atomic action a

a: num[self] ;== num[self] + mazx ;
unchecked|[self] := Procs ;

b:

would satisfy the Single Access Rule for the bakery algorithm. It writes to the
single data item num[self], which is allowed by condition (a). It also reads
num/[self] and mazx[self], neither of which is written by any process other than
self, and it writes unchecked[self], which is not shared. (The constant Procs is
not a data item because it is not part of the state.)

We want to represent the bakery algorithm as the coarsest-grain PlusCal
algorithm possible (the one with the biggest atomic steps) that satisfies the
Single Access Rule. Here is how we can add labels to do that. (Note that
statements e2 and wait both contain two occurrences of the shared data item

-~

L

33

num|i]. We consider those two occurrences to represent a single read of num|i],
since a sensible implementation of those statements would read num[i] only
once.) Before we examine this algorithm, let’s take a more critical look at the
Single Access Rule.

Let II be an algorithm satisfying the rule. We can view it as an abstract
model of a finer-grained algorithm IT that more accurately models a real system.
What we would like to be true is that the correctness of II implies the correctness
of II, assuming that II maintains the atomicity of reads and writes to shared
elementary data items. Whether or not it ¢s true depends on what constitutes
correctness. For example, suppose x is an array of shared data items and h is a
process-local variable. A PlusCal algorithm II containing the following action a

a:h:=h+1;
z[self] := h;
b:
might satisfy the invariance property O(z[i] = h[i]) for every process i. However
that property is not satisfied by the finer-grained version II containing the steps:

a: h:=h+1;
a2: z[self] .= h;
b:

We shouldn’t expect an invariant of II to be an invariant of M ifit depends on the
values of process-local data items, since IT combines multiple operations to those
items in a single atomic action. However, we are doing that when we apply the
Single Access Rule to a mutual exclusion algorithm, whose correctness condition
is the invariance of a formula depending on the values of the process-local data
items pc[i].

Even an invariant of IT depending only on shared data items need not be an
invariant of II. Suppose z is an array of shared data items, h is a process-local
variable, and II contains the statement:

a:with (7€ Nat) { h:=1i } ;
z[self]:=h
await h = 42;

b:

(Examining its TLA™ translation shows that statement a is a complicated way
of writing h:=42; z[self] :=42.) Algorithm II might satisfy the invariance
property O(z[i] = 42) for all processes i. Now let II be obtained by adding a
label to this code:

a: with (1€ Nat) {h:=i} ;
zlself] :=h

a2: await h = 42;

b:

-~

L

34

(The modified code sets h and z[self] to an arbitrary natural number and then
stops unless h = 42.) Algorithm II does not satisfy that invariance property.

In this example, the invariant of II fails to be an invariant of II because
the section of code consisting of statements a and a2 of II that implements
the atomic action a of IT allows executions that don’t correspond to executions
of that atomic action. It turns out that this is the only way there can be a
safety property satisfied by II that depends only on shared data items but is not
satisfied by . In general, for any atomic action A of II, let A be the section
of PlusCal code that implements A in II. Any safety property satisfied by II
that depends only on shared data items is also satisfied by II if the following
condition holds:

For every atomic action A of II and any states s and ¢, if executing A
starting in state s can produce state ¢, then executing A in state s can
produce state t.

I will not try to state this result more rigorously. In most modern multiprocessor
computers, each processor has its own cache, and reading or writing a single word
of memory cannot be regarded as an atomic action. The rationale behind the
Single Access Rule is therefore no longer valid. Understanding the Single Access
Rule will help you determine the appropriate grain of atomicity for an algorithm.
However, determining if an algorithm is a useful model of a real system requires
an understanding of the algorithm, the system, and the properties you are trying
to check.

I will let you convince yourself that the algorithm given above has an ap-
propriate grain of atomicity for checking mutual exclusion, assuming that reads
and writes of each data item num[i] are atomic.

7.8.3 The Atomic Bakery Algorithm

We now develop the atomic bakery algorithm, so called because reads and writes
of each numli] are taken to be atomic. I presented an initial attempt at such
an algorithm above. Here is its complete ascii version. It does not implement
mutual exclusion. Before reading any further, run TLC to see why not.

Here is the incorrect behavior that TLC produces for a model with N <+ 2
and Nat < 0..4.

e Both processes execute statement el and e2, reaching e3 with maz = 0.
Process 1 then executes e3, setting num[l] = 2, executes the wait loop
(seeing num[2] = 0), and reaches cs.

e Process 2 then executes e3, setting num[l] = 1, executes the wait loop
(seeing num[l] = 2, s0 (num|2],2) < (numll],1)), and reaches cs, making
MutualExclusion false.

-~

L

35

This incorrect execution would not occur if, instead of setting num[self] to an
arbitrary integer greater than mazx, it set num[self] to max + 1. Make that
change to the algorithm and use TLC to show that it is still incorrect.

With this change to the algorithm, TLC will find a behavior in which both
processes reach e3 with mar = 1. Process 2 then executes the waiting loop,
sees num[1l] = 0, and reaches cs. Process 1 then executes the waiting loop, sees
num|[2] = 1 and also reaches c¢s because (1,1) < (1,2).

The scenario that must be prevented is processes p and ¢ starting in their
non-critical sections and:

e Process p reaches e3 after seeing num[q] = 0.
e Process ¢ reaches its critical section before p sets num/[p].

e Process p then sets num[p] < num|g], so p does not have to wait for
process ¢q before entering its critical section.

We prevent the second item in the scenario by requiring ¢ to wait for p when
p has left its non-critical section but not yet set num[p]. To do this, we have
process p indicate that it is in this part of its code by setting flag[p] to TRUE,
where flag is a global variable of the algorithm.

Here is the algorithm. The Single Access Rule requires that the body of
the waiting loop consist of two separate actions: one reading flag[i] and another
reading num|i], for each process i in unchecked. We therefore need an additional
local variable, which we call nzt, to remember which process ¢ has been chosen
from unchecked. To simplify an invariance proof, we initialize the local variables
to type-correct values even though those initial values are never used.

You can let TLC check that this algorithm does satisfy mutual exclusion.
On my computer, it checks a model with N < 3 and Nat < 0..5 in less than
1.5 minutes. How large a model do you have the patience to check? Note that
checking this model also checks any model with N < 3 and N a subset of 0..5,
since it includes executions in which a smaller number of processes actually
take steps and the numli] take only values in that subset. Writing a rigorous
invariance proof of the atomic bakery algorithm is good practice.

Problem 7.18 Write a rigorous proof that the atomic bakery algorithm’s
specification implies OMutualEzclusion. (Use TLC to help you find the inductive
invariant.)

The bakery algorithm has the inelegant property that the values of the data
items num[i] can get arbitrarily large. We can keep them from getting too large
by replacing statement e3 with num[self]:= maxz 4+ 1. It’s easy to see that this
keeps num[i] at most equal to the number of times some process has tried to
enter its critical section. So, if processes enter their critical section no more than

ASCII version

ANSWER

-~

L

36

once a nanosecond, the value of num[i] will fit in 64 bits of memory for 50000
years.

It seems that by restricting e3 in this way, the non-zero values of num/[i] at
any one time will all lie within about N of one another, so we could allow the
values of the num[i] to cycle through a finite set of integers. In the following
problem, you will show that this is not possible.

Problem 7.19 If N > 3, then even if e3 is replaced by num|self] = maz + 1,
for any two natural numbers M and P, there is an execution in which num[i] =
M and num[j] = P for two processes i and j.

However, there is a two-process algorithm with a bounded set of values.

Problem 7.20 For N = 2, find a version of the bakery algorithm in which
there is a finite set of values that always contains the value of each num/[i].

For liveness, as usual we turn the process declaration into a fair process
and allow a process to stop in its non-critical section by putting “-” after the
label “ncs:”. The proof that the atomic bakery algorithm is starvation free is
essentially the same as for the big-step algorithm.

7.8.4 The Real Bakery Algorithm

While it may be useful, an algorithm that assumes atomic reads and writes of
shared data items cannot really be said to solve the mutual exclusion problem.
Implementing those atomic reads and writes would seem to require mutually
exclusive access to the data items. From a scientific point of view, an algorithm
that assumes lower-level mutual exclusion cannot be said to solve the mutual
exclusion problem.

The most remarkable property of the bakery algorithm is that it does not
require atomic reads and writes of individual data items. It needs only two
properties of reads and writes: (i) a read that does not overlap a write obtains
the correct value, and (ii) any read obtains a value of the correct type. For
example, a read of num|[i] by a process other than process i returns the current
value of numli] if ¢ is not writing the value during that read, and it always
returns a natural number. Thus, num|[i] could be implemented with an array of
bits; process i can write num|i] by writing the bits one at a time in any order;
another process can read num[i] by reading the bits in any order. Reading and
writing of an individual bit need not even be atomic.

Here is one way to model such non-atomic reads and writes of num/[i]: Pro-
cess i sets num[i] to a number m by first setting numl[i] to a special value L
and then setting it to m. A read by another process reads the current value of
num/[i] atomically, and it returns an arbitrarily chosen natural number if it sees
num|i] equal to L.

HINT

ANSWER

-~

L

37

This way of modeling reads and writes is probably the best one for model
checking, since it seems to minimize the number of reachable states. However,
there is another way that is more convenient for reasoning about the algorithm:
A process sets num|[i] to m by first performing a sequence of writes of arbitrarily
chosen natural numbers to numli], and then setting num|i] to m. A read just
atomically reads the current value of num[i]. Here’s the PlusCal code for the
bakery algorithm’s exit statement that sets num[self] to O:

exit: either { with (k£ € Nat) { num[self] .=k } 3
goto exit }
or { numlself] =0 }

Here is the algorithm. (You can compare it to the atomic bakery algorithm.)
Note that because flag[self] is Boolean-valued, we can simplify our modeling of
writes to it. Here is the ASCII version.

TLC can check this algorithm on a model with N < 2 and Nat <~ 0..6 in
a couple of seconds. It takes a couple of minutes for a model with N < 3 and
Nat < 0..3. TLC will not check a large enough model to give us very much
confidence in the algorithm’s correctness; that requires a proof.

Problem 7.21 Write a rigorous invariance proof that the specification Spec of
the bakery algorithm implies O MutualEzclusion.

Making the process declaration a fair process does not ensure that any process
ever enters its critical section. For example, a process could loop forever in
step el, always choosing to execute the either clause. We need an additional
fairness condition to require that, if a process keeps executing el, then it will
eventually execute the statement’s or clause. I think it is impossible to express
this requirement in PlusCal. However, it is expressed in TLA™ by weak fairness
of the action e1(i)A(pc'[i] # pe[i]), for each process i. When process i is looping
at el, this action is continuously enabled. Weak fairness implies that this action
must eventually occur, which means that the el or clause must eventually be
executed. Similar fairness requirements are needed to prevent infinite looping
at e3, e4, and exit. We can express these requirements with the formula
Vi € Procs : WF o5 (A el(i) V. e3(7) V ed(i) V exit(i)
A (pe'[i] # pelil))

Define FairSpec to be the conjunction of the formula Spec of the algorithm’s
TLA™ translation with this formula. Use TLC to check that algorithm FairSpec
is deadlock free and starvation free. (Remember that you have to use a state con-
straint when checking starvation freedom.) Checking liveness properties takes
TLC longer that checking safety properties, so you may want to use smaller
models than you used to check mutual exclusion.

The proofs of these liveness properties have the same general form as the
proofs for the other versions of the bakery algorithm.

HINT

This action is equivalent to
el(i) A (pc'[i] = “e2").

-~

L

38

7.9 Mutual Exclusion in Modern Programs

Most early solutions of the mutual exclusion problem assumed that reading or
writing a single value is an atomic action. These algorithms could easily be
implemented in real programs because, in the few multiprocess computers that
existed, reading or writing a single word of memory could be modeled was an
atomic action. Those days are long gone. In modern computers, each individual
processor (now usually called a core) has its own memory cache. Reading or
writing a single memory word is a complex operation that may involve com-
munication among multiple caches and main memory. A read or write is no
longer accurately modeled as an atomic action. A naive implementation of an
algorithm like the one-bit algorithm does not ensure mutual exclusion. Even the
method of representing reads and writes used in the bakery algorithm is not an
accurate model for a modern computer. That model assumes a read or write
operation is completed before the next step is executed, but a modern computer
will continue executing the next program steps while actions that are part of
the operation are still being performed in various parts of the memory system.

In today’s multiprocess programs, processes don’t communicate solely by
ordinary reading and writing of memory. Modern computers provide special
instructions for interprocess synchronization. These instructions make it trivial
to implement mutual exclusion. Modern programming languages also provide
constructs for implementing mutual exclusion. A common construct is a lock
that can be acquired and released by a process. (Processes are usually called
threads.) At most one process can “own” a lock; another process that tries to
acquire the lock will wait until its owner releases it. Processes can use locks to
execute multiple separate mutual exclusion algorithms, each with its own critical
section.

The function of mutual exclusion is to make execution of a process’s entire
critical section act like an atomic action. Consider a multiprocess program in
which each process has a single critical section. If the shared variables that
are accessed in each process’s critical section are accessed by other processes
only in their critical sections, then an execution of each critical section can be
considered to be an atomic action. Here is a more precise statement of what
“can be considered to be an atomic action” means: Let ¥ be the the original
program and let IT be the program with the critical sections made atomic actions.
Program V¥ implements program II under a refinement mapping such that, for
every variable v of the two programs, v equals v in every state in which no process
is in its critical section. (For the variable pe of II such that pec[p] represents the
location of process p in its code, when p is in its critical section, pc[p] equals
the control point either at or immediately after the atomic action that executes
the critical section.)

The generalization to processes that execute multiple mutual exclusion algo-
rithms is straightforward. Here is the condition that allows every critical section
to be considered an atomic action: For each critical section of each process p,

-~

L

39

the shared variables accessed in that critical section cannot be accessed by any
other process while p is executing the critical section.

If all shared variables are accessed only in critical sections and we can consider
those critical sections to be atomic actions, then we can apply the Single Access
Rule.

I have been discussing programs as if they were precisely described by
TLAT specifications. In principle, any discrete system, including a multipro-
cess program, can be accurately described by such a specification. In practice,
that’s seldom the case. The meaning of the C statement x = x+1 in a real
multiprocess program executed on a real operating system running on a real
computer would be quite complicated (assuming it even had a precise meaning).
In an accurate model of the program, an execution of the statement would prob-
ably consist of dozens of steps. An accurate model of an arbitrary non-trivial
multiprocess program would be impossible.

For this reason, we don’t write arbitrary multiprocess programs. We write
programs that access shared variables only in critical sections, so we can consider
those critical sections to be atomic actions, and we can then apply the Single
Access Rule. In this way, we can obtain an accurate model of the program—a
model that we can describe precisely in TLAT (or PlusCal). A sensible pro-
grammer thinks about the program in terms of such a model even if she doesn’t
write it explicitly.

-~

L

40

8 The Bounded Channel and Bounded Buffer

8.1 The Bounded Channel
8.1.1 The Specification

We now consider a two-process system in which a sender process puts messages
in a channel that are removed in sequence by a receiver process. This is a FIFO
(first in, first out) channel, meaning that messages are received in the order in
which they are sent. We consider a bounded channel, which is one that can
hold at most some number N of messages. If the channel contains N messages,
then the sender cannot send another message until a message is removed from
the channel by the receiver. We use a variable ch to represent the sequence of
messages in the channel. We might draw a picture of the system like this:

ch

Y

Sender Receiver

Such pictures convey almost no useful information, but they help many people
understand the actual specification.

To model the sender and receiver, we pretend that the sequence of all mes-
sages that the sender will send is known in advance. Let’s call it Input. We
add a variable in that holds the sequence of messages that the sender has yet
to send, initially equal to Input; and a variable out that holds the sequence of
messages that the receiver has received thus far, initially equal to the empty
sequence. Our picture then becomes:

m ch . out
—» Sender Recetver ———»

Y

To model a system that runs forever, we let Input be an infinite sequence of
messages.

Here is the specification of the bounded channel in pseudo-PlusCal. The
processes are named Send and Rcv and have identifiers 0 and 1, respectively. To
turn this pseudo-code into real PlusCal code, we need to know how to represent
operations on sequences.

In TLAT, a finite sequence is the same as a tuple. Finite sequences/tuples are
explained in Section 15.19 and Section 15.5%. Therefore, the empty sequence is
the empty tuple (), so the variable declarations can be written:

variables in = Input, out = (), ch = ();

L

41

For writing the spec, you will need to know only these operators that are defined
in the standard Sequences module™: Seq, Len, Append, Head, and Tail. Since
ch and out are finite sequences, we can write the body of the receiver’s while
loop as:

await Len(ch) # 0;
out := Append(out, Head(ch));
ch := Tail(ch)

If in were a finite sequence, we could write the body of the sender’s while loop
as:

await Len(ch) # N ;
ch = Append(ch, Head(m));

in := Tail(in)

Since in is an infinite sequence, we need to replace Head and Tail with operators
to take the head and tail of an infinite sequence. To do that, we have to decide
how to represent an infinite sequence in terms of the mathematical sets and
operators we have at our disposal.

A length-k sequence s is a function with domain 1. .k, where s[i] is the *!
element of s. Let’s define infinite sequences so s[i] is also the i*!' element of
an infinite sequence s. This means that an infinite sequence should be a func-
tion whose domain is the set of positive integers—a set we can write Nat \ {0}.
Therefore, we define the set ISeq(S) of all infinite sequences of elements in a set
S by

A

1Seq(S) = [Nat\{0} — S]

We can then define the operators IHead and ITail, the head and tail operators
for infinite sequences, by

IHead (iseq) = iseq[l]
ITail(iseq) = [i € (Nat\{0}) — iseq[i + 1]

Compare these definitions with the definitions of Head and Tail in the Sequences
module. The definition of IHead is identical to that of Head, but it makes the
specification a little easier to understand if we write Head(s) when s is a finite
sequence and [Head(s) when it is an infinite sequence.

Let’s now use TLC to check that we haven’t made any errors. Using this
AscIl version of the specification, open the spec in the Toolbox and run the
PlusCal translator on it. To run TLC, we have to create a model. This requires
specifying values for the constants N, Msg, and Input. This is easy for N
and Msg; let N equal a small integer (say 4), and let Msg equal some small
set of model values (say {m1, m2, m3}). But what value should we choose for
Input, which must be an infinite sequence of messages. There are infinitely many
choices—for example, (m1, m2, ml, m2,...), which can be written:

-~

L

42

[i € Nat\ {0} — [i \in Nat \ {0} |->

IF { %2 =1 THEN ml ELSE m2] IF i % 2 = 1 THEN ml ELSE m2]

However, you should by now have enough of a feeling for how TLC works to
realize that it’s unlikely to be able to handle a spec in which the value of a
variable is an infinite sequence. Give it try and see what error TLC produces.

To let TLC model check the spec, we create a model that substitutes finite
objects for infinite sequences. The obvious approach is to substitute finite se-
quences for infinite ones. We do this by overriding the definitions of ISeq and
ITail by Seq and Tuail, respectively. (There’s no need to override the defini-
tion of IHead because it’s equivalent to the definition of Head.) You can then
let the model assign to Input any short finite sequence of messages. Do that
and run TLC on the model. This should produce an error message that ends
approximately as follows:

The error occurred when TLC was evaluating the nested
expressions at the following positions:

Line 41, column 12 to line 69, column 22 in BoundedChannel
Line 42, column 12 to line 70, column 38 in BoundedChannel
Line 42, column 18 to line 70, column 38 in BoundedChannel
Line 42, column 29 to line 70, column 37 in BoundedChannel
Line 8, column 16 to line 8, column 22 in BoundedChannel

> W NN - O

You can probably figure out why the error happened by reading the beginning of
the message. But let’s suppose you can’t. Click on the last line (numbered 4) in
the message. It highlights and jumps to the expression iseg[1] in the definition
of IHead. This tells you that the error occurred when evaluating IHead (iseq)
for some expression iseq. Clicking on the preceding line (numbered 3). Shows
you that this evaluation occurred when TLC was evaluating the Send action,
and iseq equaled in. (The definition of Send is part of the TLA™ translation of
the PlusCal code. If you hold the Control key down when clicking on line 3, it
will take you to the occurrence of that expression in the PlusCal code.) TLC
evaluates Send when trying to find a possible next state. The error occurred
when TLC was doing this for the last state in the error-trace. The value of in in
that state is the empty sequence (). The error occurred because TLC was eval-
uating Head({)), which it obviously doesn’t know how to do since TLA™ doesn’t
specify what that value is.

Examining the error trace, we see that the error occurred because the sender
had already sent all the messages in Input—something that could not happen if
Input were an infinite sequence, like it’s supposed to be. Since we want to find
all the errors we can, we want to prevent TLC from being stopped by this error.
To do that, we tell TLC not to look for any successor states to a state with in
equal to (). As we've seen before, we do this by adding the State Constraint
in # () on the model’s Advanced Options page. TLC should now report no
errors.

-~

8.1.2 Safety

We regard module BoundedChannel as the specification of the bounded channel.
A specification is essentially a definition, and we cannot prove the correctness
of a definition. However, we can check that a specification means what we think
it does by checking that it satisfies properties we expect it to satisfy. The first
property we should usually check is type correctness. The type invariant for the
BoundedChannel spec is:

TypeOK = Ain € ISeq(Msg) TypeOK == /\ in \in ISeq(Msg)
A out € Seq(Msg) /\ out \in Seq(Msg)
A ch € Seq(Msg) /\ ch \in Seq(Msg)

L

43

Add that definition to the module and have TLC check that TypeOK is an
invariant of the spec.

The interesting safety property we want to check is that the receiver receives
the correct messages. This means that the sequence out of received messages is
an initial part of the infinite sequence Imput. This requirement is expressed by
the invariance of the following state predicate:

CorrectReceipt = Vi € 1..Len(out) : out[i] = Input[i]

Another invariance property we want is that there are always at most N messages
that have been sent but not received. This invariant and the invariance of
CorrectReceipt are implied by the invariance of the following assertion:

A Len(inv) < N
A Init equals the concatenation of out, ch, and in

We can’t write the second conjunct mathematically yet because in is an infinite
sequence and our concatenation operator o is defined only for finite sequences.
The only kind of concatenation that makes sense for infinite sequences is the
concatenation of a finite sequence and an infinite one. We define the operator
xx as follows so seq#*x*iseq is the concatenation of the finite sequence seq and the
infinite sequence iseq. (Compare this with the definition of o in the Sequences
module.)

seq xxiseq = [i € (Nat\{0}) —
IF ¢ < Len(seq) THEN seq|i]
ELSE iseq[i — Len(seq)]]

Using ** to express the invariant stated informally above, and combining it
with type correctness, we obtain the following invariant:

Inv £ A TypeOK
A Len(ch) < N
A Input = (out o ch) *xin

Add the AsciIi version of the definitions of ** and Inv to module Bounded Channel
and have TLC check that Inv is an invariant.

-~

L

44

8.1.3 Liveness

The natural liveness requirement on the channel is that any message that is sent
should be received. We do not require that any message is actually sent. This
requirement is expressed in TLA by weak fairness™ of the receiver’s action—
the Rcv action defined by the algorithm’s TLAT translation. It is specified in
PlusCal by adding the keyword fair before the receiver’s process declaration.
Add it and run the translator. This adds the conjunct WF 4.5 (Rev) to the
specification Spec.

Let’s check that this fairness condition really does imply that every message
that’s sent eventually gets received. The invariant implies only messages that
are sent are received, and that they are received in the correct order. This
implies that to ensure that sent messages are received, we need only ensure that
if messages have been sent, then some messages are received. More precisely,
it suffices to show that for every message in ch, another message is eventually
added to out. This is expressed in temporal logic by requiring that if there are
ever 1 messages in ch and j messages in out, then eventually there are 7 4 j
messages in out:

0 A
Liveness =

Vi€ Nat, j€1..N :
(Len(out) = i) A (Len(ch) = j) ~ (Len(out) = i + j)

Of course, to get TLC to check this property, you will have to use a model that
overrides the definition of Nat.

Question 8.1 (a) How would you rewrite the PlusCal specification of the
bounded channel to turn it into a bounded stack, in which the receiver always
receives the most recently sent message?

(b) Explain why fairness of the Rcv process in that specification does not
imply that every message sent is eventually received.

8.1.4 Implementing The Bounded Channel

The variables in and out are not meant to be implemented in a real system.
Real systems don’t maintain an infinite sequence of inputs to be sent, and they
usually don’t record the entire sequence of messages that are received. What
I'm interested in implementing are the steps of adding a message to the end of
ch and removing it from the head of ch. I want to implement these operations in
terms of lower-level operations—ones that are closer to the primitive operations
performed by computers. I am therefore looking for an algorithm that uses the
same variables in and out, but refines the variable ch. More precisely, I want an
algorithm that implements algorithm BChan under a refinement mapping that
is the identity on in and out, meaning that in = in and out = out.

Another way of saying this is that I want in and out to be the “observable”
variables whose behavior must be preserved. The variable ch is an “internal”

ASCII version

ANSWER

L

45

variable whose only function is to help describe the behavior of in and out. An
implementation is free to use other internal variables, but must maintain the
same behavior of in and out.

8.2 The Bounded Buffer

We next give a “lower-level” PlusCal implementation of the bounded channel.
But first, we need a brief mathematical digression.

8.2.1 Modular Arithmetic

The Integers module defines the modulus operator % so that a % b is the re-
mainder when « is divided by b. More precisely, for any integers a and b with
b positive, a % b is the unique number satisfying the two conditions:

a%be0..(b—1) Jgent:a=bxqg+ a%b

For any positive integer K, let us define the operators +,. and —. by

1>

Gt b 2 (a+b)%K

a—4 b = (a-b%K

The symbols +,. and —, can’t be written in TLA™, but it’s convenient to use
them here anyway. We are interested in these two operators when applied to
numbers in the set 0..(K —1). To understand their meaning, we write this set
of numbers in a circle, as shown in this picture.

If aand b arein 0..(K —1), then a+, b is the number obtained by starting
at a and moving clockwise b numbers. For example, we see from the picture
that (K —2)+, 5 equals 3. We can characterize a —, b as the distance from
b to a going counterclockwise around the circle. For example, 3 —, (K — 2)
equals 5.

If you have studied group theory, you may recognize 0..(K — 1) as the
Abelian (commutative) group known to mathematicians as 7k, where +,. and
— are its addition and subtraction operators. This means that, when applied
to elements of 0..(K — 1), the operators +, and —, obey most of the same
rules of arithmetic that + and — do on the set Int of integers. For example, if

a, b, and ¢ are in 0.. (K — 1), then:
a+y (b—c) = (a—p)+ b

8.2.2 The Algorithm

Our bounded buffer algorithm implements the bounded channel by implementing
the sequence ch of messages with a function (array) buf. Each message in ch
is contained in some element buf[i] of buf. Since ch can contain up to N

L

46

messages, buf must contain at least N elements. We let it be a function with
domain 0.. (N —1). (In programming terms, buf is an N-element array indexed
by 0..(N —1).)

The value of buf will be a function from 0..(N — 1) to the set Msg of
messages. This means that it will be a function with domain 0..(N — 1) such
that buf[i] € Msg for all ¢ in its domain. The set of all such functions is written
in TLA' as [0..(N — 1) — Msg]. Thus, our bounded buffer algorithm will
satisfy the type invariant

buf € [0..(N —1) — Msg]

In addition to buf, our algorithm uses two variables p and ¢ whose values are
“pointers” to elements in 0.. (N —1). The value of ¢ points to the buffer element
that contains (or will contain) the next message to be received; the value of p
points to the buffer element into which the next message sent will be put.

As explained in Section 8.2.1 above, we think of the elements of the domain
0..(N-1) of buf as being arranged in a ring. The sequence of messages that have
been sent but not yet received is the sequence of elements in the buffer starting
from one pointed to by ¢ and, moving clockwise, ending with the element right
before the one pointed to by p. In this picture, the sequence of messages equals

(buf [N — 2], buf [N — 1], buf[0], buf[1], buf[2])

Observe that the length of this sequence is 5, which equals 3 — (N — 2), where
—y is defined in Section 8.2.1. As this example illustrates, in general the length
of the sequence of messages is p —,; c.

However, this can’t be correct. The value of p —, ¢ is an integer from 0
through N — 1, but the bounded channel can contain sequences of messages of
length N. The problem is that if ¢ points to the buffer element containing the
next message to be received and p points to the element into which the next
message sent is to be put, then p equals ¢ both when the channel is empty
(equals the empty sequence) and when it is full (it is a sequence of N messages).
We must find a way to disambiguate these two cases.

One solution is to use an N + 1 element buffer, with one buffer element
always unused. The channel is then empty when p and ¢ point to the same
buffer element; it is full when p points to the element just before the one pointed
to by c.

Instead, we use what I find to be a more elegant solution. We let p and ¢ be
elements of 0.. (2N —1), and we let p % N and ¢ % N be the buffer pointers—as
shown in this picture. The length of the sequence of messages is then equal to
P —y ¢ The buffer is empty when p equals ¢ and is full when p equals ¢+, N.
In general, the sequence of messages is

(buf[c% N), buf[(c 4, 1)%N], ..., buf[(p -, 1) %N])

The bounded buffer algorithm works because of the following property of num-
bers:

L

47

BB. For any N € Nat\ {0}, c €0..(2N — 1), and j € 0.. N, the j numbers
chN, (c+yy DN, ..., (c+y (7 —1))%N are all distinct.

Property BB is true with 2N replaced by kN for any integer k£ > 1, so we could
use kN instead of 2N in the algorithm. For simplicity, we use 2N.

We can now write our algorithm. Like the bounded channel algorithm, the
bounded buffer algorithm will have a variable in containing the infinite sequence
of messages yet to be sent on the channel and a variable out containing the
(finite) sequence of messages that have been received from the channel. We
will need the same definitions of ISeq, ITail, [Head, and ** as in the bounded
channel specification. We could just copy and paste them into the bounded
buffer spec, but it’s a little nicer to use a separate module that’s imported into
each specification. Create a new module ISequences using this ASCII text. Delete
the definitions of those four operators from module BoundedChannel and add
ISequences to that module’s EXTENDS statement.

Now create a new spec with root module BoundedBuffer. The module begins
just like module BoundedChannel.

EXTENDS Integers, Sequences, ISequences EXTENDS Integers, Sequences
CONSTANT N, Msg, Input CONSTANT_N, Msg, Input

A Input € ISeq(Msg)

The module next defines @ and © (typed (+) and (-)) to be the operators that

we have been calling +, ;, and —, .

aPb
a©b

e 1

We now come to the algorithm, which we name BBuf. In this type of bounded
buffer algorithm, it is customary to call the two processes the producer and
consumer, rather than the sender and receiver. We therefore name the processes
Producer and Consumer, giving them the identifiers “P” and “C”, respectively.
Click here to see the algorithm’s code.

The variables statement declares the same variables in and out as in the
bounded channel spec, plus the three variables buf, p, and ¢, along with their
initial values. We let buf initially equal an arbitrary function from 0..(N — 1)
to Msg. Since we want the sequence of messages in the channel to be initially
empty, we must let p and ¢ both initially equal the same element of 0.. (N —1).
For simplicity, we let them both equal 0.

Question 8.2 How would you write the declarations of p and ¢ so they both
initially equal the same arbitrary element of 0..(N — 1)?

As in the bounded channel’s PlusCal code, each process executes a while (TRUE)
loop whose body is a single atomic action. I used the labels p1 and c¢1 because

vuuuuon/ \uInput \in ISeq (Msg)

(a + b) %2% N a (+) ubu== (a+ub) L%hu2*N
(a — b) %2x N ay, (=) ubu==u(a,—ub) L#hL2%N

ANSWER

L

48

later we will add labels p2, p3, ¢2, and ¢3. You should have no trouble under- Note
standing these processes by comparing them with the processes of the bounded
channel algorithm in Section 8.1. As in the bounded channel, we require that
sent messages are eventually received by making the Consumer a fair process.
Here is the complete ASCII version of the BoundedBuffer module. Use it to
complete the module in the Toolbox, and run the translator.
To check that we haven’t made any simple mistakes, we should check that
the spec is type correct—i.e., that is satisfies a type-correctness invariant. Here
is a suitable invariant:
TypeOK = Ain € ISeq(Msg) TypeOK == /\ in \in ISeq(Msg)
A out € Seq(Msg) /\ out \in Seq(Msg)
Abuf € [0.. (N —1) = Msg] /\ buf \in [0..(N-1) -> Msg]
Apel..(2xN —1) /\ p \in 0..(2*N-1)
ANcel..(2xN—1) /\ ¢ \in 0..(2%N-1)

Use TLC to check that TypeOK is an invariant of the spec. As with the bounded
channel spec, you will have to use a model that overrides the definitions of ISeq
and ITail and that uses a state constraint to prevent TLC from reporting an
error after all the elements of Input have been sent.

8.3 The Bounded Buffer Implements the Bounded Channel

8.3.1 The Refinement Mapping

We now show that the BoundedBuffer specification implements the
BoundedChannel specification under a suitable refinement mapping. Refinement
mappings and implementation were explained in Section 6.6 and Section 6.85.
You may want to review those sections now.

A refinement mapping from BoundedBuffer to BoundedChannel consists
of definitions of state functions in, ouf, and ch in terms of the variables of
BoundedBuffer. Recall that for any formula F' of BoundedChannel, we define
F to be the formula obtained from F by substituting the expressions in, out,
and ch for in, out, and ch, respectively. (The variables of F are variables of
BoundedBuffer.)

Let Specc be formula Spec of module BoundedChannel and let Specp be for-
mula Spec of module BoundedBuffer, so Spec ¢ is the specification of the bounded
channel and Specp the specification of the bounded buffer. We say that Specp
implements Specc under the refinement mapping iff the following condition is
satisfied: For every behavior s; — so — - - - satisfying formula Specp, the state
sequence s; — S — --- is a behavior satisfying formula Specc, where each s;
is the state that assigns to the variables in, out, and ch of BoundedChannel the
values of the state functions in, ouf, and ch, respectively, in the state s;. This
condition is equivalent to the assertion that Specy = Specc is a theorem—that
is, a formula that is true for all behaviors.

A more precise definition of

L

As explained in Section 8.1.4, we want the refinement mapping to be the
identity on in and out, so in = in and out = out. This means that the behavior
s$1 — 89 — - - - of BoundedBuffer and the corresponding behavior s; — s — - - -
have the same values of in and out, so they represent the same sending and
receipt of messages. We consider in and out to be the only observable variables,
and if we look only at the observable variables in and out, then s; — so — - -+
and s1 — sy — - - - are the same behavior (where two behaviors that differ only
in stuttering steps are considered to be the same). Let VSpecc be specification
Speco with the internal variable ch hidden. Then Specp implements Speco
under the refinement mapping iff every behavior that satisfies Specp also satisfes
VSpec c—in other words, iff Specg = VSpeco is a theorem. We write VSpeco
informally as I ch : Spece.

The interesting part of the refinement mapping is the definition of ch. Recall
that the sequence of messages in the channel ch is represented by the sequence
of elements

(buf[c % N], buf[(c®1)%N], ..., buf[(p©1)%N])

We define ch to equal this sequence of messages. For example, in this picture,
ch equals

(buf [N =2], buf [N —1], buf[0], buf[1], buf[2])

To define ch precisely, recall that the number of messages in the buffer is p © c.
From this and the fact that the first message in the buffer (if there is one) is
buf[c % N, the definition is straightforward. Since ch isn’t a TLAY identifier,
we call it chBar:

¢chBar = [iel..(p&c) — chBar == [i \in 1..(p () ¢) [|—>
buf[(c® (i — 1))%N]] buf[(c (+) (i - 1)) % NI

Add this definition to module BoundedBuffer. To check it, create an error trace
by having TLC check an incorrect invariant—for example, Len(out) # 4. Run
the Trace Explorer (as you did before), using it to display the value of chBar in
each state of the trace.

The following statement imports module BoundedChannel into module
BoundedBuffer so that C'!Spec equals Specc :

C = INSTANCE BoundedChannel WITH ch < chBar, in < in, out < out,
N < N, Msg < Msg, Input < Input

TLAT allows us to omit any substitution of the form id ¢« id from the wWiTH
clause, so we can write this statement as

C 2 INSTANCE BoundedChannel WITH ch < chBar ASCII version

L

50

In fact we could have used the identifier ch instead of chBar in module
BoundedBuffer and eliminated the entire WITH clause.

Add the INSTANCE statement to module BoundedBuffer. You can now have
TLC check that Specg = Specc is a theorem by having it check the property
C'!Spec. (Add C!Spec to the Properities subsection of the What to check? part
of the Model Overview page.) If you followed the instructions in Section 8.1.3
and added a fairness condition to the bounded channel spec, then TLC should
report the error

Temporal properties were violated.

Since we haven’t yet added any fairness condition to the bounded buffer algo-
rithm, Specp is satisfied by behaviors s; — sy — --- for which s7 — 55 — ---
doesn’t satisfy the weak fairness property of Spece. If you remove that fairness
condition (by deleting the fair keyword and running the translator), TLC should
find no error.

8.3.2 Showing Implementation

Since TLC finds no counterexample, we can try to prove Specg = Specc.
Let’s drop the subscripts and write our proof as it would appear inside module
BoundedBuffer. Remember that C'!Id means Id for any identifier Id defined in
BoundedChannel. Any other identifier has the meaning it has in BoundedBuffer.
Thus, we have to prove Spec = C'!Spec. We saw in Section 6.8 that to prove
Spec = C'! Spec, we have to prove two things:

R1. Init = C'!Init
R2. Inv A Inv’ A Next = [C'! Next] o1 yars

for some invariant Inv of the bounded buffer. Let’s start with R1.
Looking at the translations of the two PlusCal algorithms, and remembering
that ch = chBar, in = in and out = out, we see that:

Init = A in = Input ClInit = N in = Input
A out = () A out = ()
Abuf € [0..(N —1) — Msg] A chBar = ()
Ap=0
ANec=0

Obviously, Init implies the first two conjuncts of C'!Init. To see that it also
implies chBar = (), recall that chBar is the sequence

(buf[c % NJ, buf[(c® 1) % N], ..., buf[(pe1)%N])

of length p © ¢. Since p = ¢ implies p © ¢ = 0, Init implies chBar = (), proving
R1. (A rigorous proof uses the third conjunct of Init, which implies that buf is
a function with domain 0..(N —1).)

L

51

Let’s now prove R2. We expect that Inv should imply TypeOK. We have
defined chBar to be a sequence of length p © ¢. Since Spec implies that ch is
always a sequence of length at most N, to prove Spec we must be able to prove
that p © ¢ is at most N. Hence Inv must imply p © ¢ < N. It turns out that
this is the only additional property we need to prove R2, so we can define:

Inv = TypeOK A (p&c<N)

Note that by definition of © and TypeOK, this implies p© ¢ € 0.. N.
From the specifications, we see that

C!Next = C!Send V C!Rcv

Next = Producer V Consumer

We expect a Producer step of the bounded buffer to implement a Send step of
the bounded channel, and a Consumer step of the bounded buffer to implement
a Rcuv step of the bounded channel. To prove R2, we therefore prove

1. Inv A Inv' A Producer = C!Send
2. Inv A Inv’ A Consumer = C!Rcv

Here is a partial proof of R2 containing the proof of property 1. It uses these
definitions:

C'Send = A Len(chBar) # N
A chBar' = Append(chBar, [Head(in))
A in' = ITail(in)
A out’ = out
Producer = ApSc#N
A buf’ = [buf EXCEPT ![p%N] = [Head(in))
A in' = ITail(in)
Ap'=p&l
A UNCHANGED (out, ¢)

The proof of property 2 is left as an exercise, as is the proof of invariance of Inv.

Question 8.3 Complete the proof of R2 and show that Inv is an inductive
invariant of Spec.

8.3.3 Liveness

Our liveness requirement for the bounded channel is weak fairness of the re-
ceiver’s action. The corresponding requirement for the bounded buffer is weak
fairness of the consumer’s action, which we assert by adding the keyword fair

-~

L

52

before the producer’s process declaration. Do that and rerun the translator.
The specification Spec now becomes

Init A O[Next]pars N WF yqrs (Consumer)

We expect that the fairness requirement of the bounded buffer should implement
the fairness requirement of the bounded channel, under the refinement mapping
we have been using. More precisely let’s once again add to the specification
Spec of module BoundedChannel the fairness conjunct WF,,.s(Rcv) (by putting
fair before its process declaration and running the translator). We expect
Spec = C'!Spec to still be a theorem. Use TLC to check that it is. We now
prove that it’s a theorem.

The fairness condition of the bounded channel spec gives C'! Spec the conjunct
WEF ars (Rev), the formula obtained from WF ,,,s(Rcv) by substituting chBar
for ch. We can’t write this formula in TLA™. It does not equal WF%(%),
which we can write as the TLAT formula WF ¢1yars(C! Rev). We know that
WF yars (Rev) equals

OO =ENABLED (Rcv)yars V OO(CVRev) ¢rvars

but we can’t write ENABLED (Rcv)yars in TLAT. Even though we can’t write
this formula in TLA™T, it is mathematically well defined and we can use it in our
informal proof.

We've already proved the safety part of Spec = C'!Spec—namely, the for-
mula:

Init A O[Next]yars = Initc A O[Neztclvarse

We therefore just have to prove Spec = WF 4,5, (Rcv o). Before we do this, you
should read (or re-read) Section 17.5.55 on proving liveness properties.

In proving the safety part, we showed that a consumer step implements a
receiver step—that is, we proved that Consumer implies C'! Rev. This suggests
that we should be able to use the simplest proof rule from Section 17.5.5:

(4), A ENABLED (BYw = (Blw

ENABLED (B), = ENABLED (A4),

WF,(4) = WF,(B)
with the substitutions:
A + Consumer v < vars B < Rcve w < varsc

Actually, we can’t expect to prove either of the hypotheses without an invariant,
so we extend the proof rule to make use of an invariant I of the bounded buffer

Any symbol appearing under
a bar comes from module
BoundedChannel.

L

53

spec:

WF2s. IAI'A(A), NENABLED (B), = (B)w
)v

I NENABLED (B),, = ENABLED (A4

Ol AWF,(A) = WF,(B)
We will determine below what invariant to substitute for 1.
Question 8.4 Derive rule WF2s from rule WF2aU. ANSWER

Proving the safety part required proving Inv A Inv’ A Consumer = C'! Rev. Since
a Consumer step modifies ¢ and out, it’s easy to prove

TypeOK = (Consumer = (vars’ # vars))

Hence, InuAInv’ (which implies TypeOK) implies Consumer = { Consumer) yars-
Thus, the first hypothesis of WF2s follows from what we have already proved if
I implies Inv. (We don’t need the ENABLED (B),, on the left of the implication
to prove the first hypothesis.)

When we turn to the second hypothesis of WF2s, we face a problem: It
requires reasoning about the formula ENABLED (Rcv ¢)yars., that we can’t even
write in TLAT. It’s actually easy to write this formula in TLAT; we just add
the definition

RcvEnabled = ENABLED (Rcv)yars

to module BoundedChannel, so ENABLED (Rcv)yars €quals C'! RevEnabled. This
doesn’t help because we can’t expand the definition of C'!RcvEnabled as a
TLA™ formula, but it suggests the following approach: We define RcvEnabled to
be a formula that’s equivalent to ENABLED (Rcv)yq4rs such that C'! RcvEnabled
can be written in TLAT. More precisely, we prove (in module BoundedChannel)
that RevEnabled is equivalent to ENABLED (Rcv)yqrs. The obvious definition is

RevEnabled = Len(ch) #0
In the context of module BoundedChannel, we must prove:
THEOREM RcvEnabledThm = TypeOK = (RcvEnabled = ENABLED (Rcv)yars)

(Here, TypeOK is the formula of that name defined in BoundedChannel.) Since
substituting state functions for variables (and constant expressions for constants)
in a valid formula produces a valid formula, C'! RevEnabled Thm is a valid theo-
rem. It asserts:

C! TypeOK = (C'! RevEnabled = ENABLED (Rcv)yars)

L

54

Thus, if 7 implies C'! TypeOK , then (after expanding the definition of C'! RevEnabled)

the second hypothesis of WF2s becomes
I A (Len(chBar) # 0) = ENABLED (Consumer),qrs

There was no need to define RcvEnabled. We could simply replace it with its
definition, Len(ch) # 0, in RcvEnabled Thm.

Let I equal Inv A C!TypeOK. We have reduced the proof of Spec =
WF yarse (Rev o) to proving three things:

1. Theorem RcvEnabledThm.
2. Inv A (Len(chBar) # 0) = ENABLED (Consumer) yqrs
3. Spec = O(Inv A C! TypeOK).

The proofs of 1 and 2 use rules E1-E77 of Section 17.5.1. For 1, ob-
serve that TypeOK (of module BoundedChannel) implies that a Rcv ac-
tion changes ch and out, so (Rcv)yars 18 equivalent to Rev and E7 implies
ENABLED {Rcv)yqrs = ENABLED Rcv. We then use E1, E4, and E5 to show
ENABLED Rcv = Len(ch) # 0, proving 1. The proof of 2 is similar (except in
the context of module BoundedBuffer).

To prove 3, first observe that in proving safety, we proved Spec = Olnv.
Hence, we just have to prove Spec = OC'! TypeOK. In proving safety, we also
proved

Spec = C'!Init A O[C! Next] c1vars
Hence we just have to prove
C!Init AO[C! Next] cryars = C! TypeOK

Since substitution (barring) preserves truth of a formula, it suffices to prove the
following theorem in module BoundedChannel:

Init A O[Next]yars = TypeOK

This is a straightforward invariance proof.

8.4 A Finer-Grained Bounded Buffer

We have written the bounded buffer algorithm so each of its steps implements
one step of the bounded channel. Thus, in one step, the producer (1) evaluates
the test p © ¢ # N, (2) assigns a value to buf[p % N], and (3) increments p
modulo 2N. As explained in Section 7.8.2, such an algorithm is not considered
to be a satisfactory implementation because it doesn’t satisfy the Single Access
Rule.

L

55

We get a finer-grained implementation of the bounded channel by adding
labels to the bounded buffer algorithm BBuf. That algorithm’s shared variables
are buf, p, and c. (Variable in is accessed only by the producer; variable out
is accessed only by the consumer.) Moreover, p is written only by the producer
and ¢ is written only by the consumer. We get a finer-grained version that
satisfies the Single Access Rule by adding labels as shown here.

Here is the AsciI text of a new module FGBoundedBuffer that’s the same as
the beginning of the BoundedBuffer module, except with the additional labels
in the algorithm and the algorithm renamed FGBBuf. Open it in the Toolbox
and run the translator. Create the same kind of model for it that you used for
the original bounded buffer spec, and check that the algorithm satisfies the same
type invariant TypeOK .

The TLAT translation of FGBuf introduces the additional variable pc, which
satisfies this type-correctness invariant, where STRING is the set of all strings:

pc € [{"P", “C"} — STRING] pc \in [{"P", "C"} -> STRING]

Add it as an additional conjunct to TypeOK. We can make this condition more
precise by adding the following two conjuncts as well:

/\pC[HP”] 6 {“pl”’ “p2”’ “p3”} /\ pC["P"] \in {Ilplll’ |Ip2"’ IIPSII}
Ape["C'] € {"el”, "2, "3} A pellve?] N 1010, T, TR

Have TLC check that the resulting formula TypeOK is invariant of FGBBuf.

Question 8.5 We might expect algorithm FGBBuf to implement the bounded
channel algorithm BChan under the same refinement mapping as algorithm
BBuf. Use TLC to see why it doesn’t.

Instead of showing directly that FGBBuf implements BChan, we show that it
implements BBuf under a refinement mapping

buf < buf p+—p c+c¢ in < in out + out
where we use red overbars to distinguish this refinement mapping from the
refinement mapping

ch « ch in < in out < out

under which BBuf implements BChan. We know that BBuf implements BChan
under the “black” refinement mapping. If FGBuf implements BBuf under the
“red” refinment mapping, then we can conclude that FGBuf implements BChan
under refinement mapping

ch < ch in < in out < out

For any expression e in the variables ch, in, and out of BChan, the expression
‘e is obtained as follows.

ANSWER

-~

L

56

1. Perform the black substitutions for the variables of BChan to obtain the
expression e in the variables buf, p, ¢, in, and out of BBuf.

2. Perform the red substitutions for the variables of BBuf to obtain e, which
is an expression in the variables buf, p, ¢, in, out, and pc of FGBBuf.

As explained in Section 8.1.4, we are letting both refinement mappings be the
identity on in and out, so in = in and out = out.

Since in = in, a Producer step of BBuf must be simulated by a p2 step of
FGBuf. Therefore, a p2 step must increment p and a pl or p3 step must leave
p unchanged. This is accomplished by letting

p = 1IF pc["P"] = “p3" THEN p @1 ELSE p

Similar reasoning leads to the analogous definition of ¢. Therefore, add the
following to module FGBoundedBuffer.

pBar = 1F pc[“P"] = “p3” THEN p & 1 ELSE p

cBar 2 17 pc[“C"] = “c3" THEN ¢ ® 1 ELSE ¢

B £ INSTANCE NewBoundedBuffer WITH p < pBar, c < cBar

Let TLC check if FGBBuf implements BBuf under this refinement mapping by
having it check the temporal propertyh B!Spec. TLC will report that tempo-
ral properties are violated, which means that FGBBuf doesn’t implement the
fairness properties of BBuf under this refinement mapping. The error trace is
one in which the producer executes actions pl and p2, and then the execution
halts (stutters forever). In this last state, p = ¢ = 0, so a consumer action is
not enabled. The only enabled action is the producer’s p3 action. Since there
is no fairness condition on the producer, that step need not be taken, so the
execution can halt.

We don’t want to require that the producer keeps performing observable
steps—p2 steps that remove an element from in. However, if it does perform such
a step, then it must complete the operation and perform a p3 step. Therefore,
we want to require fairness of the p3 action but not of the p2 action. We express
this in PlusCal by making the producer a fair process, but change the p2 label to
p2:-. Since a pl step changes no variable except pc, it doesn’t matter whether
we require fairness of pl or not require it by adding a - after its label. I find it
more natural not to require it.

Make the necessary change to the PlusCal code, rerun the translator, and
have TLC check that FGBBuf now implements BBuf under the refinement
mapping. Check it without fairness of pl. Since adding fairness strengthens the
spec, so FGBBuf still satisfies any properties that it did without fairness of p1,
it will also implement BBuf with the fairness property.

Question 8.6 Write the refinement mapping under which FGBBuf implements
the bounded channel specifiction BChan, and have TLC check that it’s correct.

ASCII version

L

Y

8.5 Further Refinement

When the producer is at p2, it is about to access buffer element p % N. When
the consumer is at ¢2, it is about to access buffer element ¢ % N. The following
state predicate asserts that if both processes are about to access buffer elements,
then they are about to access different elements:

BufMutez = (pc[“P”] = “p2”) A (pc[“C”] = “2”) = (p% N # c% N)

Have TLC check that BufMutez is an invariant of algorithm FGBBuf.
Formula BufMutex asserts a sort of mutual exclusion property. We can think
of each of the two processes having N separate critical sections, numbered from
0 to N — 1. The producer is in its " critical section when pc[“P”] equals “p2”
and p % N equals 4; and likewise, the consumer is in its i*? critical section when
pc[“C’] equals “c2” and ¢ % N equals i. The state predicate BufMutex asserts
that the two processes cannot be in their i*" critical sections at the same time,
for each ¢ in 0..(N —1). If we can consider buf[i] and buf[j] to be separate Are buf[0] and buf[1]
variables if 4 # j, then the discussion in Section 7.9 shows that we can implement separate variables?
statements p2 and ¢2 with non-atomic actions.
As a very simple example of refining the grain of atomicity of the p2 and
c2 steps, let’s just refine p2 into two separate atomic actions. Create a new
specification by copying the beginning of module FGBoundedBuffer through
the algorithm declaration, and changing the algorithm by replacing the two-line
statement p2 with

p2a:- buf[p%N] := [Head(in) ; p2a:- buflp % N] := IHead(in);
p2b: in := ITail(in) ; p2b: in := ITail(in) ;

This algorithm implements FGBBuf under a refinement mapping for which buf
and out are changed by p2a. They are defined as follows:

E é " pC[“P”] - “P2b” THEN ITaZl(Zn) ASCII version
ELSE n
ﬁ — [Z 6 {uPu, “C'Y}*—)
CASE i = “P" — CASE pc[“P"] = “p2a” — “p2"
O pe*P"] = "p2b" — "p3"

O OTHER — pc[“P"]
O i="C"—pc["C"]]

The refinement mapping is the identity on out, buf, p, and ¢. Use TLC to check
that the new algorithm implements FGBBuf under this refinement mapping.

Question 8.7 Why do we want a “-” after the label p2a but not after the ANSWER
label p2b.

-~

L

58

This refinement mapping is not the identity on in. The new algorithm also
refines FGBBuf under a refinement mapping that is the identity on in (as well
as out)—a mapping under which a p2 step of FGBBuf is implemented by a
p2b step. To define that refinement mapping, we must add a history variable
that records the value of buf[p % N]|—the value that is overwritten by step p2a.
History variables are explained in Section 185,

Question 8.8 Add the necessary history variable to the new algorithm and
define the refinement mapping that is the identity on in and out under which
the algorithm implements FGBBuf.

8.6 What is a Process?

It seems obvious that the bounded channel and the bounded buffer are two-
process systems. It also seems obvious that sequential systems like the one-bit
clock and Euclid’s algorithm have just a single process. What is obvious is not
always true.

Consider this PlusCal algorithm. It is a two-process algorithm whose basic
structure is identical to that of the bounded channel algorithm (without fair-
ness). Algorithm Clock describes a one-bit clock, the Tick process waiting until
b equals 0 and setting b to 1, the Tock process does the inverse. In the Toolbox,
create a new specification containing this algorithm (the module needs noth-
ing else), and run the PlusCal translator. The translation defines the initial
predicate Init and next-state action Next by:

Init = be{0,1}
Next = Tick V Tock
where Tick and Tock are defined by:

a

Tick Ab=0

AV =1

Tock = Ab=1
Ab =0

These formulas Init and Next are equivalent to the formulas Initl and Next1D
that were the initial predicate and next-state formulas of our first specification
of the one-bit clock. In other words, the specification defined by this two-
process algorithm is the same as our original specification of the one-bit clock.
This is the same one-bit clock that we also specified in Section 2.8 as a one-
process (sequential) PlusCal algorithm. Expressing this more mathematically,
the specification Spec defined by the translation of the two-process one-bit clock
algorithm is equivalent to the specification Spec defined by the translation of
our original PlusCal specification of the one-bit clock.

-~

L

59

If we look at the TLA™T specifications that represent what we think of as
describing two processes, we see that the next-state action is the disjunction
of two formulas, each describing the steps taken by one of the processes. In
fact, one reasonable definition of a process is a disjunct of the next-state action.
However, as we saw in our several specifications of the one-bit clock, there can be
many different ways to write equivalent specifications. Their next-state actions
need not have the same disjuncts—or even the same number of disjuncts.

We usually view a concurrent system as a collection of processes, and we
tend to find that view so natural that we think that the process structure is
inherent in the system. It isn’t. The decomposition of a system into a particular
collection of processes is just a way of viewing the system; there are often other
ways of viewing it. For a number of years, it seemed completely obvious that
in a multi-computer system, a process was something that was executed on a
single computer. The invention of remote procedure calls made it clear that
one can also describe a multi-computer system with processes whose execution
moves from one computer to another.

Processes provide a way of viewing a system. They are not an innate part
of the system.

Question 8.9 Write a two-process PlusCal version of Euclid’s algorithm whose
translation produces a specification equivalent to the one we wrote in Sec-
tion 4.3 in module Fuclid.

We have been viewing the bounded buffer algorithm BBuf and its refinements
as two-process algorithms. However, they can also quite naturally be viewed as
N-process algorithms, the i** process being responsible for reading and writ-
ing from buffer element buf[i], for each ¢ in 0..(N — 1). Here is algorithm
NProcBBuf, an N-process version of algorithm BBuf. Compare it with algo-
rithm BBuf. We show that if we ignore the value of the variable pc of algorithm
NProcBBuf, the two algorithms have the same behaviors. (The TLA™ transla-
tion of NProcBBuf has a variable pc, but the translation of BBuf does not.) To
state this more precisely, let Specy be the TLAT formula Spec in the translation
of BBuf—the formula that is the specification of algorithm BBuf. Let Specy
be the corresponding formula for algorithm NProcBBuf. We show that Specs is
equivalent to 3 pc : Specy, the formula obtained by hiding the variable™ pc in
Spec .

Here is the ASCII text of the algorithm and its enclosing module. First show
that NProcBBuf implements BBuf under the identity refinement mapping—one
that defines v = v for every variable v of BBuf. This shows that every behavior
of NProcBBuf is a behavior of BBuf, so Apc : Specy implies Speca. We now
want show that Specy implies A pc : Specy. For this, we must show that BBuf
implements NProcBBuf under a refinement mapping that is the identity on all
variables of NProcBBuf except pc. You can do this in:

Question 8.10 Find an invariant of algorithm NProcBBuf of the form pc =

ANSWER

60

expr that expresses the value of pc in terms of the values of the other variables.
Use TLC to check that BBuf implements NProcBBuf under the refinement
mapping with pc = ezpr that is the identity on all other variables of NProcBBuf.

