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Part I

Invariance

1 Introduction

The most common type of property one checks that a specification Spec

satisfies is invariance—the assertion that some state formula I is true of all
states in every behavior satisfying Spec . The statement that Spec satisfies
this property is expressed mathematically by this theorem:

THEOREM Spec => []I

When this theorem is true, we say that I is an invariant of Spec . Part I
of this document explains how to prove such a theorem. Part II explains
how to prove more general safety properties asserting that a specification
implements a higher-level specification.

One can write completely formal proofs in TLA+ that can be checked
by the TLAPS proof system. This note does not explain how to do that. It
does explain how to use the TLC model checker to help you find a proof,
and how to use the TLA+ Toolbox and the TLAPS proof system to help
you decompose the complete proof into simpler steps. While the resulting
proof is not completely formal, it is much more trustworthy than the prose
proofs typically written by mathematicians and computer scientists. It is
also the first step in writing a completely formal proof and checking it with
TLAPS.

The explanation in Part I of how to prove invariance properties is based
on a single simple example: a mutual exclusion protocol.

2 Mutual Exclusion

The problem of achieving mutual exclusion was introduced by Edsger Dijk-
stra in a classic 1965 paper [1]. It assumes a set of processes, each containing
a section of code called its critical section. The problem is to devise an al-
gorithm in which processes can access their critical sections, but no two
processes can be executing their critical sections at the same time.

We consider only the case in which there are two processes, which we call
processes 0 and 1. We will write our algorithms in PlusCal, but the PlusCal
code is explained in terms of its TLA+ translation. The two processes will
be described by a process declaration
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process (proc \in {0,1}) { ... }

which produces the next-state action defined by

Next == \E i \in {0, 1} : proc(i)

where the definition of proc is determined by the body of the process dec-
laration. The process’s critical section is represented in that body by the
statement

cs: skip ;

A process is considered to be in its critical section when control in that
process is at the point labeled cs , where the process is about to execute this
skip statement. Executing the skip statement does nothing except change
the process’s control state to the labeled statement immediately following
it.

The TLA+ translation of the algorithm introduces a variable pc whose
value describes the control state of all the processes. The value of pc in
all reachable states of the algorithm is a function with domain {0,1} , and
pc[i] is equal to the string "cs" when control in process i is at label
cs . The invariant Mutex that a mutual exclusion algorithm must satisfy is
defined by:

Mutex == ~((pc[0] = "cs") /\ (pc[1] = "cs"))

This invariance property is trivially satisfied by an algorithm in which no
process can never reach label cs . In addition to the invariance of Mutex , a
mutual exclusion algorithm must also satisfy some liveness condition assert-
ing that critical sections will be executed if processes want to execute them.
However, since we’re interested here only in invariance, we’ll ignore liveness.

It might seem that we haven’t adequately modeled the mutual exclusion
problem because the purpose of mutual exclusion is to make critical sections
that execute multiple actions act like a single atomic action. By assuming
that a critical section is an atomic skip action, aren’t we making the mu-
tual exclusion problem trivial? The answer is that we’re not assuming that
execution of the critical section is a single atomic action. Considering only
safety, the statement cs: skip; is completely equivalent to:

cs: either skip

or goto cs ;
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The extra steps performed by choosing the or clause and repeating the
statement are stuttering steps, which are allowed by any algorithm. If we
add extra variables to any algorithm and replace any skip statement in that
algorithm by a sequence of unlabeled statements that can modify only those
extra variables, the resulting algorithm implements the original algorithm.
This means that if we rename the specification Spec produced by the TLA+

translation of the original algorithm to A and rename the corresponding
TLA+ spec of the second algorithm to B , then

THEOREM B => A

would be true. Steps allowed by B that change an extra variable are stut-
tering steps allowed by A . It would be awkward to write algorithm B in
PlusCal, since the extra steps it takes would have to leave pc unchanged.
However, it would be easy to replace the critical section by PlusCal code to
obtain an algorithm that implements A under a refinement mapping that
maps pc[i][l] to "cs" for every label l in the critical section.

3 The Simple Protocol

There is an extremely simple protocol for achieving mutual exclusion for
processes 0 and 1. Each process i in {0, 1} executes the following code,
where flag is a Boolean-valued function with domain {0,1} .

s1: flag[i] := TRUE ;

s2: await flag[1-i] = FALSE ;

cs: skip;

The await statement can be executed only when the condition
flag[1-i] = FALSE is true. Note that 1-i is the process other than i .
We call this a protocol because it’s a code snippet that can be used in an
algorithm, but it isn’t a complete algorithm.

The following simple argument shows that this protocol ensures mutual
exclusion. If both processes were at label cs , then the process i that
reached cs last must have executed statement s2 when process 1-i was at
cs , which is impossible because flag[1-i] equaled TRUE at that time.

This kind of proof, based on reasoning about the order in which things
happened, is what I call a behavioral proof. This particular behavioral proof
is quite convincing, and it is in fact correct. However, I and others have found
that behavioral proofs don’t work well for more complicated algorithms. It’s
easy to write convincing behavioral proofs of incorrect algorithms. Here,
you’ll learn a better way to reason about invariance.
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----------------------- MODULE SimpleMutex -----------------------

EXTENDS Integers

(*****

--algorithm SimpleMutex {

variables flag = [i \in {0, 1} |-> FALSE] ;

process (proc \in {0,1}) {

s1: while (TRUE) {

flag[self] := TRUE ;

s2: await flag[1-self] = FALSE ;

cs: skip ;

s3: flag[self] := FALSE } } }

*****)

===================================================================

Figure 1: The Simple Mutex Algorithm

To reason rigorously about the simple protocol, we need to turn it into a
complete algorithm. This is done in the module of Figure 1. Create a spec
named SimpleMutex in the Toolbox, copying the body of the module from
the figure and pasting it into the Toolbox’s editor. Note that in the body
of a process declaration, self is the name of the process—in this case, 0
or 1.

Run the PlusCal translator to put the definition of Spec , the al-
gorithm’s specification, into the module. As usual, Spec is defined
to equal Init /\ [][Next]_vars . (Remember that [Next]_vars equals
Next \/ (vars’=vars) , so it’s true on a step 〈s, t 〉 if and only if Next is
true on 〈s, t 〉 or the expression vars has the same value in state s and
state t .) Observe that, for every label in the code, there is a subaction of
the next-state action Next that describes the execution of the piece of code
from that label to the next label. For example, corresponding to the label
s3 is this action:

s3(self) == /\ pc[self] = "s3"

/\ flag’ = [flag EXCEPT ![self] = FALSE]

/\ pc’ = [pc EXCEPT ![self] = "s1"]

that is enabled when pc[self] equals "s3" , sets flag[self] to FALSE and
sets pc[self] to "s1".

We want to prove that Mutex is an invariant of Spec . It’s a lot easier to
prove something if it’s true, so we should first let TLC check that Mutex is
indeed an invariant of Spec . Add our definition

Mutex == ~((pc[0] = "cs") /\ (pc[1] = "cs"))
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to the module and have TLC check its invariance. The first thing TLC
will report is that the algorithm deadlocks. Its error trace shows that both
processes can wind up at the control point s2 and be stuck there forever.
This protocol is used in a number of mutual exclusion algorithms, including
Dijkstra’s original solution. Algorithms that use the protocol avoid this
deadlock situation by having one of the processes give up and set its flag
to FALSE , letting the other one proceed. But now, we just want to prove
that the protocol ensures mutual exclusion and we don’t care that it can
deadlock. So, tell TLC to ignore deadlock and check invariance again. It
finds that Mutex is an invariant of Spec . Moreover, it checks the complete
algorithm, not just a small model of it, so TLC has actually checked that
Spec => []Mutex is true for all possible behaviors. There’s no need to prove
the formula. But since this is about proving invariance, not about the
protocol, we will prove that Mutex is an invariant of Spec .

4 How to Prove Invariance

4.1 What is a Proof?

We write a proof when TLC cannot check an algorithm on a large enough
model to give us enough confidence that the algorithm is correct. “Proof”
can mean anything from the prose proofs commonly used by mathematicians
to completely formal, machine-checked proofs that can be written in TLA+

and checked with the TLAPS proof system. Prose proofs are unreliable and
can easily overlook the corner cases that often cause errors in algorithms, so
they don’t provide much confidence. A machine-checked proof is extremely
reliable, but the high degree of confidence it provides may not be worth the
effort required to write it. An actual implementation can have errors even
if the high-level algorithm is correct, and time spent writing a machine-
checked proof of the algorithm might be better spent trying to eliminate
those other errors. With TLA+ you can write proofs that are more reliable
than the ones mathematicians write but require less work than completely
machine-checked proofs.

TLA+ proofs are hierarchically structured. A proof is either a leaf proof
or else a sequence of statements, each with its proof. A leaf proof is a list
of facts from which TLAPS can deduce the stated result. We write TLA+

proofs in a top-down fashion. If TLAPS cannot deduce a statement from
hypotheses and already proved facts, we write its proof as a sequence of
simpler steps and then write the proof of each of those steps (in any order).
It can be a lot of work because it may require multiple levels of steps to get
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TLAPS to prove something that seems obvious to us. This is especially likely
for a step whose proof requires reasoning about high-level data structures
such as graphs.

Instead of writing a complete proof, we can stop this process of hierar-
chical decomposition when we get to a step that we are confident is true. If
TLAPS can’t prove it with a leaf proof, we omit the TLA+ proof of the step
and instead write in a comment an informal prose proof of why the step is
true—the way a mathematician would. The simpler the step is, the more
confidence we can have in a prose proof. The more levels deep we go, the
simpler the steps are and the more confidence we can have in the correctness
of our proof. This provides a tradeoff between the effort of writing the proof
and the confidence it provides.

Like other aspects of TLA+, these hierarchical proofs will seem strange
when you first see them. But you’ll see that they are the natural way to
write proofs of algorithms. The higher levels of the hierarchy are determined
by the structure of the results we are proving. In fact, most of the higher
level decomposition can be performed for us by Toolbox commands. Cor-
rectness proofs of algorithms differ from mathematical proofs because they
involve checking many details and usually involve only very simple math.
Hierarchical structure is the only way to make sure we check all the details.

4.2 The Structure of an Invariance Proof

We want to prove the theorem Spec => []Mutex , where Spec equals
Init /\ [][Next]_vars . The best way to do this apparently dates back
to the 1940s, but its current use was initiated by Robert Floyd in 1967 [2].
To prove that a state formula Inv is true in all states of a behavior, by
induction it suffices to prove:

1. Inv is true in the initial state.

2. If Inv is true in any state of the behavior, then it is true in the next
state of the behavior.

To show that 1 is true for any behavior, it suffices to prove that the initial
predicate Init implies Inv . To show that 2 is true for any behavior, it suf-
fices to show that for any step (pair of states) 〈s, t 〉 satisfying [Next]_vars ,
if Inv is true in state s then it’s true in state t . This leads to the following
proof rule, where the two theorems of the hypothesis imply 1 and 2.
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Inductive Invariance Rule

and THEOREM Init => Inv

and THEOREM Inv /\ [Next]_vars => Inv’

imply THEOREM Init /\ [][Next]_vars => []Inv

Remember that THEOREM F asserts that formula F is true for all behaviors,
where a behavior is any sequence of states. A formula Inv satisfying the
hypotheses of this rule is called an inductive invariant of Spec .

It’s easy to see that for our example, the initial condition Init implies
that no process is in its critical section, so the first hypothesis of the rule is
satisfied for Inv equal to Mutex . But the second hypothesis is not satisfied.
As a counterexample, let s be a state with pc[0]="cs" , flag[0]=FALSE , and
pc[1]="s2" ; and let t be the state obtained from s by executing process 1’s
statement s2. The formula Mutex /\ [Next]_vars is true on the step 〈s, t 〉
because Mutex is true in state s and Next is true on the step, but Mutex’

is not true on the step because Mutex is false in state t .
Of course this state s is not a reachable state of the algorithm, since

process 0 cannot be at cs with flag[0] equal to FALSE . So, it’s tempting
to say that we don’t have to worry about such a state s. Before going down
that path, let me relate a little experience I had. Sometime in the 1980s, I
was visited by a computer scientist who had recently published a concurrent
algorithm. I asked him to show me the algorithm and explain his correctness
proof. He began to sketch a formula he said was an inductive invariant. At
some point I stopped him and pointed out a state satisfying his formula and
a step of the algorithm from that state that made the formula false. He said
we didn’t have to worry about that state, and gave a behavioral argument
that the state wasn’t reachable. I explained to him that for a formula Inv to
be an inductive invariant, a step of the algorithm from any state satisfying
Inv had to leave Inv true. We then tried to find an inductive invariant
for his algorithm. This led us to discover that the “unreachable” state I
had found was indeed reachable, and his claimed invariant was incorrect. (I
don’t remember if the algorithm was incorrect or only its proof was.)

To write an inductive invariance proof, we need to find an inductive
invariant Inv . If that inductive invariant satisfies

THEOREM Inv => Mutex

then it proves that Mutex is an invariant of Spec . This is because the
theorem states that Inv => Mutex is true for all states, so if Inv is true for
all states in a behavior then Mutex is true for all states in that behavior.
Hence Spec => []Inv implies Spec => []Mutex .
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THEOREM Spec => []Mutex

<1>1. Init => Inv

<1>2. Inv /\ [Next]_vars => Inv’

<1>3. Inv => Mutex

<1>4. QED

Figure 2: The high-level proof structure.

These observations lead to the high-level proof structure of Figure 2.
Every non-leaf proof ends with a QED step that asserts the goal we are
trying to prove, in this case Spec => []Mutex . This goal follows from
the three steps <1>1 – <1>3 and the fact that Spec is defined to equal
Init /\ [][Next]_vars . Thus, we expect the QED step to have a leaf proof
telling TLAPS to use those three steps and the definition of Spec . The step
and this leaf proof are written as:1

<1>4. QED

BY <1>1, <1>2, <1>3 DEF Spec

However, because the QED step involves temporal-logic reasoning, we have to
tell TLAPS to use a special back-end prover called PTL (for Propositional
Temporal Logic), which we do by changing the QED step’s proof to

BY <1>1, <1>2, <1>3, PTL DEF Spec

We also have to import the special TLAPS module in which the symbol PTL

is defined, which we can do either by putting it in an EXTENDS statement at
the beginning of the module or by adding the statement

INSTANCE TLAPS

anywhere before the theorem.2 Now get TLAPS to check the proof of step
<1>4 by clicking anywhere in the step or its proof and running the Prove
Step or Module command. (You can do that by either right clicking and
selecting the command or typing control+g control+g .) The Toolbox colors
the step green to indicate that TLAPS has successfully checked the proof.

Even when not writing a proof to be completely checked by TLAPS, I
recommend having TLAPS check all the QED steps. Usually, a proof’s goal
should be a simple consequence of its steps, so the QED step should have a
BY proof.

1Instead of BY we can write PROOF BY , which readers not familiar with TLA+ proofs
might find easier to understand.

2This requires the Toolbox to be set up to use the TLAPS library modules. Instructions
to set it up should be available on the TLAPS web site.
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5 Finding the Inductive Invariant

An inductive invariant almost always needs to assert type correctness of the
variables. So the first thing to do is define the type-correctness invariant:

TypeOK == /\ flag \in [{0, 1} -> BOOLEAN]

/\ pc \in [{0, 1} -> {"s1", "s2", "cs", "s3"}]

You can copy and paste it into the SimpleMutex module.
As shown by the example of why Mutex isn’t an inductive invariant,

invariance of Mutex depends on the fact that flag[i] equals TRUE when
pc[i] equals "s2" . It’s also clearly important that flag[i] equals TRUE

when pc[i] equals "cs" . Instead of trying to figure out exactly what the
important facts are about the relation between the values of flag[i] and
pc[i] , we can just state what that relation is. It’s easy to see from the code
that flag[i] equals TRUE if and only if pc[i] equals "s2" , "cs" , or "s3" .
So the inductive invariant should assert:

\A i \in {0,1} :

(flag[i] = TRUE) <=> (pc[i] \in {"s2", "cs", "s3"})

The conjunction of this formula and TypeOK looks like it should be an in-
ductive invariant, but it doesn’t imply Mutex . Mutual exclusion is imple-
mented by the algorithm because process i can reach label cs only when
flag[1-i] equals FALSE . So, an obvious approach is to have Inv imply that
(pc[i]="cs") => (flag[1-i] = FALSE) . Putting this all together, we get the
definition:

Inv == /\ TypeOK

/\ \A i \in {0,1} :

/\ (flag[i] = TRUE) <=> (pc[i] \in {"s2", "cs", "s3"})

/\ (pc[i] = "cs") => (flag[1-i] = FALSE)

With this definition, Inv implies Mutex because it implies that (a) a pro-
cess’s flag value equals TRUE if it’s in its critical section and (b) if a process
is in its critical section, then the other process’s flag value equals FALSE .
Copy and paste the definition into module SimpleMutex .

For algorithms that aren’t so simple, writing proofs is hard. We want
to do everything we can to check what we have to prove before trying to
prove it. An inductive invariant is an invariant, so the first thing to check
is that Inv is an invariant of Spec . Run TLC to check if it is. TLC reports
that it isn’t, because the algorithm can reach a state with pc[0]="cs" and
flag[1]=TRUE , making the last line in the definition of Inv false for i=0 .
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This state has pc[1]="s2" , and is reached by process 1 executing statement
s1 , which sets flag[1] to TRUE , when process 0 is at cs .

The obvious way to fix this problem with Inv is to let it allow such a
state by changing the last line of its definition to

/\ (pc[i] = "cs") => (flag[1-i] = FALSE) \/ (pc[1-i] = "s2")

Make this change to the definition and have TLC check if it’s now an invari-
ant. TLC finds that it is. But before trying to prove that it is an inductive
invariant, we can let TLC try to check if the three steps <1>1 – <1>3 (of
Figure 2 on page 8) are true.

TLC has already checked that <1>1 is true, because invariance of Inv

implies that Inv is true in every possible initial state. We can similarly
get TLC to check <1>3 by checking that Mutex is an invariant of a spec
whose initial formula is Inv . The simplest such spec that TLC can check is
one whose next-state action leaves all the variables unchanged. The TLA+

translation of a PlusCal algorithm defines vars to be the tuple of all its
variables, so a next-state relation that leaves all those variables unchanged
can be written as

UNCHANGED vars

In the Toolbox, create a TLC model with a behavior specification having this
UNCHANGED formula as its next-state relation and Inv as its initial predicate.
Add Mutex as an invariant to be checked and run TLC on the model. TLC
finds no error, so <1>3 is true.

Let’s now have TLC check step <1>2 . That step asserts that starting in
a state satisfying Inv and taking a Next step or a stuttering step produces a
state that also satisfies Inv . This is true if and only if Inv is an invariant of
the spec Inv /\ [][Next]_vars . To check that it is, create in the Toolbox a
TLC model with a behavior specification having Inv as its initial predicate
and Next as its next-state relation. Then have TLC check if Inv is an
invariant of this spec. TLC finds that it is, so step <1>2 is true.

Of course, in most cases, TLC can check these steps only on a small
model of the spec, not on the complete spec. So there will still be something
to prove. A closer look at the specs we’ve checked reveals that model check-
ing should be less effective at finding errors in steps <1>2 and <1>3 than it
is for finding errors in ordinary invariance checking. The specs we used to
check these steps had Inv as their initial predicate. Formula Inv is not a
typical initial predicate of a spec. TLC’s algorithm for computing the set
of initial states, which is explained in Section 14.2.6 of Specifying Systems,
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implies that it computes the initial states satisfying Inv by finding all states
satisfying TypeOK and throwing away the ones that don’t satisfy the second
conjunct of Inv . Formula TypeOK is satisfied by all type-correct states, and
most specs have an enormous number of such states. Even with models for
which model checking the spec doesn’t take very long, computing the set of
type-correct states can cause TLC to run for a very long time, often run-
ning out of memory. Usually, checking <1>2 and <1>3 this way is practical
only for the tiniest of models—models that are too small to provide much
confidence that the steps are correct. However, even very tiny models are
good at catching errors—especially when checking step <1>2 . You should
always do this checking before trying to write a proof.

A method for doing this checking on small, randomly chosen sets of type-
correct states has recently been developed. It is described in the document
Using TLC to Check Inductive Invariance. Preliminary tests indicate that
it works quite well at quickly finding errors in an inductive invariant, even
on models for which ordinary invariance checking takes quite a long time.
It is worth trying before you start to write a proof.

6 Writing the Proof

If you’ve done all the checking you can with TLC, it’s time to write the
proof—which means proving steps <1>1 – <1>3 . Proofs of those steps use
ordinary mathematical reasoning; they require no understanding of algo-
rithms or mutual exclusion. Unfortunately, writing rigorous proofs is a sci-
ence in which most computer scientists and mathematicians are unschooled.
Fortunately, TLAPS will help you learn how to do it.

Before writing a proof, you should understand a little bit about “ordi-
nary” math. What mathematicians call a variable is what programmers,
computer scientists, and TLA+ users call a constant. When you solved a
problem involving the “variable” x in high-school algebra, the value of x
was fixed throughout the problem. Usually, the problem was figuring out
what that value was, given certain facts about it—for example that the
value satisfied the equality x 2 − 2x = −1. The TLA+ variables flag and
pc of the simple mutex algorithm don’t have fixed values; their values can
be different in different states of an execution. However, when proving steps
<1>1 and <1>3 , we can pretend that those TLA+ variables are mathemat-
ical variables—that is, constants. This is because each of those steps is an
assertion about states. To prove such an assertion true, we have to prove
it true of a single, arbitrary state—that is, an arbitrary fixed assignment of
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values to those two variables. This is exactly what we do in ordinary math:
we prove that an assertion is true for an arbitrary, fixed assignment of values
to its (mathematical) variables. So we can prove <1>1 and <1>3 by pre-
tending that the TLA+ variables flag and pc are ordinary mathematical
variables—that is, TLA+ constants.

6.1 Proving Step <1>1

Here’s how I went about trying to use TLAPS to prove <1>1 . This is a
simple enough assertion that I figured TLAPS should be able to prove it by
just expanding the definitions of Init and Inv , as well as the definition of
TypeOK , which appears in the definition of Inv . So, I tried this:

<1>1. Init => Inv

BY DEF Init, Inv, TypeOK

Run the Prove Step command on this step. TLAPS fails to prove it, so
the Toolbox colors the step red and raises a window showing exactly what
formula TLAPS was trying unsuccessfully to prove. It would be a good idea
to look at that formula to see if we can figure out why the proof failed. But
instead of doing that, I decided to decompose the proof into smaller steps
and see which of those steps TLAPS can’t prove. This is often the best
way to find a problem when the decomposition can be done for us by the
Toolbox and requires no thinking.

6.1.1 The First Decomposition

The way to break a proof into smaller steps without thinking is to let the
structure of the formula we’re trying to prove tell us how. In this case, the
first decomposition is one that is so natural to mathematicians that they
usually don’t even bother to write it down: they prove Init => Inv by
assuming that Init is true and proving that Inv is true. What they are
doing can be expressed in TLA+ by replacing step <1>1 by:3

<1>1a. ASSUME Init

PROVE Inv

Both <1>1 and <1>1a assert the same thing: that Init implies Inv . How-
ever, their proofs are written differently. The proof of a step is decomposed

3Naming proof steps with sequential numbers is just a convention. Instead of naming
our four steps <1>1 – <1>4 , we could have named them <1>Tom , <1>Dick2 , <1>16 , and
<1>3Harry .
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the same way we decomposed the proof of the entire theorem: as a sequence
of steps ending with a QED step. We can use the fact that Inv is the con-
junction of TypeOK and the formula \A i \in ... to decompose the proof
of <1>1 as follows:

<1>1. Init => Inv

<2>1. Init => TypeOK

<2>2. Init => \A i \in {0,1} : ...

<2>3. QED

BY <2>1, <2>2 DEF Inv

This same basic decomposition of the proof of <1>1a can be written:

<1>1a. ASSUME Init

PROVE Inv

<2>1a. TypeOK

<2>2a. \A i \in {0,1} : ...

<2>3a. QED

BY <2>1a, <2>2a DEF Inv

In both proofs, the QED stands for the goal to be proved. In the proof of
<1>1 , that goal is Init => Inv . In the proof of <1>1a , that goal is Inv .
The proofs of <2>1a and <2>2a can assume the truth of the assumption
Init .

The proof of <1>1a is nicer than the proof of <1>1 ; the assumption that
Init is true is made right at the beginning. In the proof of <1>1 , it will
have to be made twice—in the proofs of both <2>1 and <2>2 . However, I
think the statement of <1>1 is nicer than that of <1>1a . We can have both
by writing:

<1>1. Init => Inv

<2>0. SUFFICES ASSUME Init

PROVE Inv

OBVIOUS

<2>1a. TypeOK

<2>2a. \A i \in {0,1} : ...

<2>3a. QED

BY <2>1a, <2>2a DEF Inv

In general, the step SUFFICES T asserts that proving T proves the current
goal, and changes the current goal of the proof to that of the proof of T . The
proof of a SUFFICES T step must show that T implies the current goal. The
proof OBVIOUS is essentially an empty BY proof (which is not syntactically
legal),4 meaning that the step follows by ordinary mathematical reasoning

4You can write PROOF OBVIOUS instead of OBVIOUS .
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from what it has already been told to use. (You’ll see later how it can be
told to use facts that don’t appear in a BY proof.)

This last decomposition can be performed for us by the Toolbox using
the Decompose Proof command. Running that command on step <1>1 (by
clicking on the step or its BY proof and typing control+g control+d) raises
this window:

(Make sure that the Use SUFFICES option is selected.) Click on the => but-
ton to decompose the proof of the implication into a SUFFICES ASSUME/PROVE

proof (but not to change it in the module yet), which changes the command’s
window to:

Clicking on the P button on the top line would tell the command to write
that decomposition in the module and stop. Instead of doing that, click on
the button labeled /\ . This decomposes the proof of the conjunction into
two steps, replacing the original BY proof of step <1>1 with this:

<2> SUFFICES ASSUME Init

PROVE Inv

OBVIOUS

<2>1. TypeOK

BY DEF Init, Inv, TypeOK

<2>2. \A i \in {0,1} :

/\ (flag[i] = TRUE) <=> (pc[i] \in {"s2", "cs", "s3"})

/\ (pc[i] = "cs") => (flag[1-i] = FALSE) \/ (pc[1-i] = "s2")

BY DEF Init, Inv, TypeOK

<2>3. QED

BY <2>1, <2>2 DEF Inv
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The original BY proof has become the proof of both steps <2>1 and <2>2 .
One significant change from the decomposition proposed above is that the
SUFFICES step has no name, just the level number <2> . Were that step
named <2>0 , TLAPS would use the assumption Init only when we directed
it to do so, which we can do by putting <2>0 in BY proofs. A fact or
assumption from an unnumbered step is automatically used by TLAPS. In
this example, the assumption Init is automatically used in proving <2>1

and <2>2 .

6.1.2 Decomposing the Proof of <2>2

Tell TLAPS to check the proof of <1>1 by clicking on that step and running
the Prove Step or Module command. TLAPS successfully checks the proofs
of the SUFFICES step and the QED step—which I knew it would because those
steps were written by the Decompose Proof command. However, it fails on
the proofs of <2>1 and <2>2 . At this point, I looked at what TLAPS was
trying to prove and quickly saw the problem. Perhaps you can see it too.
But let’s examine proof decomposition some more before fixing the problem.

Step <2>2 is an assertion of the form

<2>2. \A i \in {0, 1} : ...

If a mathematician writes an assertion like that in a proof (which she usually
does by writing \A i \in {0,1} in prose), she will prove it by assuming that
i is an element of {0,1} and proving formula “ ... ”—usually without even
mentioning that’s what she’s doing. Her proof can be expressed in TLA+

as replacing step <2>2 with

<2>2a. ASSUME NEW i, i \in {0,1}

PROVE ...

As we did when decomposing the implication <1>1 , we can do this decom-
position without changing step <2>2 , instead putting the ASSUME / PROOF in
a level- <3> SUFFICES step. Since the “ ... ” is a conjunction of two formu-
las, we can decompose its proof into two steps. Again, we do all this with
the Decompose Proof command. Putting the cursor in step <2>2 or its BY

proof and running the command raises this window:
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Click on the \A button to decompose the proof of the implication into a
SUFFICES ASSUME/PROVE proof and change the command window to:

As before, click on the button labeled /\ . This decomposes the proof of
the conjunction into two steps, replacing the original BY proof of step <2>2

(which was originally the BY proof of <1>1) with this:

<3> SUFFICES ASSUME NEW i \in {0,1}

PROVE /\ (flag[i] = TRUE) <=> (pc[i] \in {"s2", "cs", "s3"})

/\ (pc[i] = "cs") => (flag[1-i] = FALSE) \/ (pc[1-i] = "s2")

OBVIOUS

<3>1. (flag[i] = TRUE) <=> (pc[i] \in {"s2", "cs", "s3"})

BY DEF Init, Inv, TypeOK

<3>2. (pc[i] = "cs") => (flag[1-i] = FALSE) \/ (pc[1-i] = "s2")

BY DEF Init, Inv, TypeOK

<3>3. QED

BY <3>1, <3>2

Now run the Prove Step or Module command on step <2>2 . TLAPS proves
all the steps except <3>1 . The time has come to stop decomposing and
start thinking. Step <3>1 is true because the initial predicate Init implies
flag[i] = FALSE and pc[i] = "s1" ; so both sides of the equivalence equal
FALSE . Now let’s look at the obligation that the error window tells us TLAPS
is trying to prove:

ASSUME NEW VARIABLE flag,

NEW VARIABLE pc,

/\ flag = [i \in {0, 1} |-> FALSE]

/\ pc = [self \in ProcSet |-> "s1"] ,

NEW CONSTANT i \in {0, 1}

PROVE flag[i] = TRUE <=> pc[i] \in {"s2", "cs", "s3"}

The hard part of figuring out what went wrong is to look at this statement
and see what it actually says, not what you think it should mean. TLAPS
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knows absolutely nothing about mutual exclusion, the PlusCal code, or any-
thing else that is not mentioned in the statement. If you gave this statement
to a mathematician to prove, she would tell you that you’re asking her to
prove something about pc[i] . She knows that pc is a function and that
i equals 0 or 1, but she knows nothing about pc[i] because she doesn’t
even know if i is in the domain of pc . She knows that the domain of pc

is a set called ProcSet , but she has no idea what that set is. The problem
is that I forgot to tell TLAPS to use the definition of ProcSet . Go back to
the two BY steps that TLAPS failed to check, steps <2>1 and <3>1 , and
add ProcSet to their DEF clauses. Run the Prove Step or Module command
on step <1>1 , and TLAPS will now prove it. In fact, there’s no need to
decompose the proof of <1>1 . TLAPS should be able to check that it is
proved by:

BY DEF Init, Inv, TypeOK, ProcSet

This example illustrates a problem of using PlusCal when writing proofs:
The TLA+ translation defines a few symbols that don’t appear in the Plus-
Cal code, but have to appear in the proof. Fortunately, there are few such
symbols—usually just the three symbols pc , ProcSet , and proc , as well as
the canonical names Init , Next , vars , and Spec . And you’ll almost never
be able to write a useful inductive invariant if you forget about pc .

6.2 Proving Step <1>2

6.2.1 Reduction to Ordinary Math

Let’s now consider step <1>2 , which is always the hardest to check. This
step is different from steps <1>1 and <1>3 because those steps assert state
predicates—formulas true or false on a state. We could prove them with
ordinary mathematical reasoning by considering TLA+ variables to be ordi-
nary mathematical variables, known to us as constants. Step <1>2 asserts
an action formula, which is true or false on a step, which is a pair of states.
We can’t use ordinary mathematical reasoning about action formulas be-
cause they contain the priming operator ′, which means “in the next state”.
Prime is not an operator of ordinary math. For example, an ordinary math-
ematical operator like unary minus (−) preserves equality–that is, x = y
implies −x = −y . That’s true if x and y are constant expressions, or if
they contain variables. That’s why we could use ordinary math to prove
<1>1 and <1>3 . However, priming does not preserve equality. If x and y
are variables, then x = y doesn’t imply x ′ = y ′ because x and y equal in
one state doesn’t imply that they’re equal in the next state.
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Ordinary mathematical operators are constant operators. A constant
operator is one that can be defined in terms of the TLA+ operators
appearing in the lists of constant operators and miscellaneous constructs
in the Summary of TLA+ and in Tables 1 and 2 (pages 268-269) of
Specifying Systems. Priming distributes over constant operators. For
the constant operator +, this means that (x + y)′ equals x ′ + y ′ for
any expressions x and y . Moreover, since any constant has the same
value in all states of a behavior, c′ equals c for any constant expres-
sion c. This implies that if we expand all the definitions in module
SimpleMutex and distribute all primes “inward” over constant operators,
any expression defined in the module can be rewritten in terms of only
constants such as TRUE , constant operators, variables, and primed vari-
ables. Note that bound identifiers, such as i in \A i \in {0,1} : ...

and in [i \in {0,1} |-> ...] , are constants. Therefore,
[i \in {0,1} |-> ...]’ equals [i \in {0,1} |-> (...)’] .

If we expand the definitions from SimpleMutex in the statement of step
<1>2 , we get a formula containing only ordinary mathematical operators
(constant operators) and the symbols flag , pc , flag’ , and pc’ . This
formula is true for all steps (pairs of states) if and only if it is true for all
possible assignments of the values to the symbols flag , pc , flag’ , and pc’ .
Hence, it is true if it can be proved with ordinary mathematical reasoning
when these four symbols are considered to be four different, completely
unrelated mathematical variables (TLA+ constants). So, that’s what we
have to do to prove step <1>2 .

We don’t actually have to completely expand all definitions so only vari-
ables are primed. For example, we can prove some simple results about the
formula of step <1>2 without expanding the definition of Inv ; and we will
do so in decomposing its proof. We just consider Inv and Inv’ to be two
independent, arbitrary values.

6.2.2 Decomposing the Proof

The forthcoming release of TLAPS may be able to check a simple BY proof
of <1>2 that expands all necessary definitions. However, that will usually
not be the case for more complicated algorithms. So, let’s examine how to
decompose the proof. Recall that the step is:

<1>2. Inv /\ [Next]_vars => Inv’

Since it’s an implication, we can decompose its proof as
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<2> SUFFICES ASSUME Inv /\ [Next]_vars

PROVE Inv’

OBVIOUS

...

Run the Decompose Proof command on step <1>2 . (You can do that even
though it has no BY proof.) As before, click on the => button, which
changes the command’s window to:

Make sure the Use CASE option is selected.
As before, we could decompose the proof to prove the two conjuncts

of formula Inv’ separately by clicking on the /\ button at the bottom,
next to Inv’ . However, I’ve found that it’s usually better to use a different
decomposition instead. Click on the other /\ button, next to the formula
Int /\ [Next]_vars . This tells the Toolbox to replace the SUFFICES step
with

<2> SUFFICES ASSUME Inv, [Next]_vars

PROVE Inv’

OBVIOUS

It simply replaces the single assumption Int /\ [Next]_vars with the two
assumptions Int and [Next]_vars . Just doing this accomplishes nothing;
the two steps are completely equivalent. However, it changes the command’s
window to:
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The \/ button next to [Next]_vars tells us that we can further decompose
the proof by using the fact that [Next]_vars is a disjunction—namely, it’s
the disjunction of Next and UNCHANGED vars . Clicking on that \/ button
changes the command window to:

Clicking on the P button will then generate this proof of <1>2 :

<2> SUFFICES ASSUME Inv,

[Next]_vars

PROVE Inv’

OBVIOUS

<2>1. CASE Next

<2>2. CASE UNCHANGED vars

<2>3. QED

BY <2>1, <2>2

A statement CASE P is an abbreviation for ASSUME P PROVE G where G is
the current goal. Thus, step <2>1 is an abbreviation for

<2>1. ASSUME Next

PROVE Inv’

since Inv’ is the current goal of the proof.
This proof is what would be generated by clicking on the window’s P

button. However, the \E button indicates that we can further decompose
the Next case because Next has the form \E i \in S : ... . An assumption
of that form is used by simply assuming that the formula “ ... ” is true for
some value of i in S . Clicking on that \E button tells TLAPS that we
want to replace step <2>1 above with

<2>1. ASSUME NEW self \in {0,1},

proc(self)

PROVE Inv’
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It also changes the command window to:

The \/ button next to proc(self) indicates that a further decomposition
of that case can be done because proc(self) is a disjunction. The definition
of proc(self) in the module tells us that it equals

s1(self) \/ s2(self) \/ cs(self) \/ s3(self)

Click on that \/ button. It changes the command’s window to:

confirming that it has split step <2>1 into those four separate cases. Finally,
click on the P button to put into the module the proof of <1>2 in Figure 3.
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<1>2. Inv /\ [Next]_vars => Inv’

<2> SUFFICES ASSUME Inv,

[Next]_vars

PROVE Inv’

OBVIOUS

<2>1. ASSUME NEW self \in {0,1},

s1(self)

PROVE Inv’

<2>2. ASSUME NEW self \in {0,1},

s2(self)

PROVE Inv’

<2>3. ASSUME NEW self \in {0,1},

cs(self)

PROVE Inv’

<2>4. ASSUME NEW self \in {0,1},

s3(self)

PROVE Inv’

<2>5. CASE UNCHANGED vars

<2>6. QED

BY <2>1, <2>2, <2>3, <2>4, <2>5 DEF Next, proc

Figure 3: The decomposition of step <1>2.

We are left with the problem of proving steps <2>1 – <2>5 . The proof of
<2>5 is trivial, since the truth of Inv’ (the current goal) follows trivially
from the truth of Inv (assumed in the SUFFICES statement) and the as-
sumption UNCHANGED vars , which asserts that all the variables that appear
in Inv are unchanged. So TLAPS will be able to check an OBVIOUS proof.

The steps whose proofs are not trivial are <2>1 – <2>4 . Each of those
steps asserts that the state transition described by each labeled statement of
the algorithm preserves the truth of the inductive invariant Inv . Since their
goal is Inv’ , which is a conjunction, they can each be further decomposed
with the Decompose Proof command.

6.3 The Hard Part

I’ve discussed the proofs of steps <1>1 and <1>2 . The proof of <1>3 is
similar to that of <1>1 , and I won’t discuss it. The explanation of how we
decomposed the proofs was quite long. With a bit of practice, the actual
decomposition is performed very quickly with just a few clicks, using the
Decompose Proof Toolbox command.

You have seen all the basic methods of decomposing a proof that can be

22



performed with the Decompose Proof command. Further information about
the command, including the available options, are described in its help page.
That page can be viewed by clicking on the ? button in the upper-right
corner of the command’s window, or by clicking here. Real algorithms are
more complex than SimpleMutex . But their invariance proofs all have the
same basic structure. The proofs of steps <1>1 and <1>3 are usually easy;
TLAPS can often check them with BY proofs that just tell it what definitions
to expand.

The hard part of invariance proofs of real algorithms are the proofs
corresponding to steps <2>1 – <2>4 in the proof of <1>2 of SimpleMutex ,
which are shown in Figure 3. Those proofs can usually be decomposed
further without thinking, based solely on the structure of what is to be
proved, with a few clicks of the Decompose Proof command. Many of the
resulting steps will have trivial proofs—for example, a step asserting that
an action of the algorithm leaves true a part of the invariant all of whose
variables are left unchanged by that action.

I’ll illustrate how that’s done for step <1>2 in Figure 3. Since this is
the step in which a process enters its critical section, it probably has the
most interesting proof. The goal Inv’ is a conjunction, so we can use the
Decompose Proof command to obtain this proof:

<3>1. TypeOK’

<3>2. (\A i \in {0,1} :

/\ (flag[i] = TRUE) <=> (pc[i] \in {"s2", "cs", "s3"})

/\ (pc[i] = "cs") => (flag[1-i] = FALSE) \/ (pc[1-i] = "s2"))’

<3>3. QED

BY <3>1, <3>2 DEF Inv

Step <3>2 looks like the more difficult step to prove, so let’s prove it. We
can decompose it the same way we decomposed the proof of step <2>2 of
the proof of <1>1 , in Section 6.1.2 on page 15. This yields:

<4> SUFFICES ASSUME NEW i \in ({0,1})’

PROVE (/\ (flag[i] = TRUE) <=> (pc[i] \in {"s2", "cs", "s3"})

/\ (pc[i] = "cs") => (flag[1-i] = FALSE) \/ (pc[1-i] = "s2"))’

OBVIOUS

<4>1. ((flag[i] = TRUE) <=> (pc[i] \in {"s2", "cs", "s3"}))’

<4>2. ((pc[i] = "cs") => (flag[1-i] = FALSE) \/ (pc[1-i] = "s2"))’

<4>3. QED

BY <4>1, <4>2

Step <4>2 is the more interesting one, so we’ll prove it. Step <2>2 asserts
that an s2 step preserves the truth of the invariant Inv . So, our proof
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s2(self) == /\ pc[self] = "s2"

/\ flag[1-self] = FALSE

/\ pc’ = [pc EXCEPT ![self] = "cs"]

/\ flag’ = flag

Figure 4: The s2 action.

will rely heavily on assumption s2(self) of <2>2 and its definition, which
appears in Figure 4.

When you start trying to prove <4>2 , you should realize that the ar-
gument depends on whether i and self are the same process or different
processes. This suggests that the two cases should be made separate steps
and proved separately. The Decompose Proof command won’t do that for
us; we have to do it manually to obtain:

<5>1. CASE i = self

<5>2. CASE i /= self

<5>3. QED

BY <5>1, <5>2

Since we typed this ourselves, we should have TLAPS check the proof of
the QED step to make sure we didn’t make a mistake. We might as well
check the proofs added by the Decompose Proof command as well, so we
tell TLAPS to check the entire proof of step <2>2 . (We do this by clicking
anywhere in the step itself and running the Prove Step or Module command.)
The Toolbox colors yellow the steps that have no proofs.

Step <5>1 seems easy enough to prove that an informal paragraph proof
should be convincing enough. Here’s what I might write:

<5>1. CASE i = self

(*****************************************************************)

(* The <2>2 assumption s2(self) and the definition of s2(self), *)

(* which by the case assumption equals s2(i), imply *)

(* flag[1-i] = FALSE and flag[1-i]’ = flag[1-i]. Hence, <4>2 is *)

(* true by propositional logic. *)

(*****************************************************************)

I’m assuming that the reader of the proof understands that

• <4>2 is the current goal.

• Because priming distributes over the constant operators => , \/ , and
= , formula <4>2 equals

... => (flag[1-i]’ = FALSE) \/ ...
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• By propositional logic, any formula of the form ... => TRUE \/ ...

equals TRUE .

Were these three facts obvious to you? If not, or if you’re writing the proof
for someone for whom they’re not obvious, you should expand the proof to
explain that they’re being used. The best way to do that is to decompose
the proof into substeps—for example:

<6>1. /\ flag[1-i] = FALSE

/\ flag[1-i]’ = flag[1-i]

<6>2. flag[1-i]’ = FALSE

<6>3. QED

But if you want to write rigorous proofs of real algorithms, those three facts
should be obvious to you. If not, you’ll need to practice on very simple
examples like this algorithm—and perhaps brush up on your propositional
logic.

Proving <5>2 seems to require considering separately the two cases de-
pending on whether pc[i] equals or doesn’t equal "cs" . So, I wrote the
following proof. Read it and make sure you understand it.

<5>2. CASE i /= self

<6>1. CASE pc[i] = "cs"

(***************************************************************)

(* The <5>2 case assumption implies i = 1-self, so the <2>2 *)

(* assumption s2(self) and the definition of s2 imply *)

(* flag[i] = FALSE. However, the <6>1 case assumption and the *)

(* definition of Inv, assumed in the level <2> SUFFICES step, *)

(* imply flag[i] = TRUE. This contradiction shows that the *)

(* <6>1 case is impossible. *)

(***************************************************************)

<6>2. CASE pc[i] /= "cs"

(***************************************************************)

(* The <2>2 assumption s2(self), the definition of s2(self), *)

(* and the <5>2 case assumption imply that pc[i] = pc[i]’. By *)

(* the <6>2 case assumption, this implies that pc[i]’ = "cs" *)

(* is false, so <4>2 is vacuously true. *)

(***************************************************************)

<6>3. QED

BY <6>1, <6>2

This proof of <6>2 would convince most people. However, TLAPS would
not be able to check it. If you decomposed the proof into simpler steps,
you’d discover that TLAPS would not be able to prove pc[i] = pc[i]’ .
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This seems surprising, since we’re assuming and s2(self) , whose definition
asserts

pc’ = [pc EXCEPT ![self] = "cs"]

The assumption i /= self therefore seem to imply that the value of pc[i]

is unchanged. However, it implies this only if pc is a function and i is in
its domain. To deduce that, we need to assume that TypeOK is true, which
is implied by our assumption that Inv is true. Thus, TLAPS has to be told
to use the definitions of Inv and TypeOK .

For this simple example, we can avoid worrying about what TLAPS
needs to know and simply have it expand all definitions and use all the facts
it knows. However, that doesn’t work for a more complicated algorithm
because TLAPS will often fail to find a proof if it wastes too much time
trying to use irrelevant facts. Having to tell TLAPS to use exactly the facts
it needs is one reason that it can take a lot of work to translate an informal
proof into a TLA+ proof that TLAPS can check. Another reason is that
while TLAPS is better at some kind of reasoning than humans, it can be a
lot worse at other kinds. For example, it isn’t very good at deciding when
to split a proof into cases, so you may have to help it by decomposing the
proof of a step with CASE statements.

Writing this kind of rigorous informal proof is useful even if you intend
to complete the proof to one that TLAPS can check. Trying to get TLAPS
to prove something that isn’t true can waste a lot of time, so it’s worthwhile
to first make sure that the step is true. The informal proof can also guide
you in writing the complete proof. Moreover, it will help others understand
the final proof.

You have seen most of what you need to know about the TLA+ con-
structs for writing proofs. All of those constructs are explained in the doc-
ument TLA+ Version 2: A Preliminary Guide. The important constructs
that you haven’t yet seen are USE , DEFINE , and PICK . They are explained
in sections 7.4 and 7.5 of the aforementioned document.

6.4 Using One Invariant to Prove Another

Sometimes we want to prove more than one invariant. The first invariant has
to be proved as explained above, using an inductive invariant. But that’s not
necessary for the rest, because we can use invariants we’ve already proved
to prove others. Here’s the generalization of the Inductive Invariance Rule
that let’s us use the invariance of Inv1 to help prove the invariance of Inv2 .
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Generalized Inductive Invariance Rule

and THEOREM Init /\ Inv1 => Inv2

and THEOREM Inv1 /\ Inv2 /\ [Next /\ Inv1’]_vars => Inv2’

imply THEOREM []Inv1 => (Init /\ [][Next]_vars => []Inv2)

The rule is valid because, for any behavior, []Inv1 implies that Inv1 and
Inv1’ are true at any point in the behavior. The hypothesis Inv1 in the
first theorem is seldom necessary. If Inv1 is an inductive invariant, then
The “ /\ Inv’ ” is not necessary in the second theorem because it’s implied
by Inv1 /\ Next . The rule is embodied in the following high-level proof
structure:

THEOREM Thm1 == Spec => []Inv1

THEOREM Spec => []Inv2

<1>1. Init /\ Inv1 => Inv2

<1>2. Inv1 /\ Inv2 /\ [Next /\ Inv1’]_vars => Inv2’

<1>3. QED

BY <1>1, <1>2, Thm1, PTL DEF Spec

We can use TLC to check steps <1>1 and <1>2 much as we did for the
ordinary Inductive Invariance Rule. TLC can check <1>1 by checking that
Inv2 is an invariant of a specification with initial predicate Init /\ Inv1

and next-state action UNCHANGED vars . It can check <1>2 by checking that
Inv2 is an invariant of a specification with initial predicate Inv1 /\ Inv2

and next-state action Next /\ Inv1’ .

7 Examples

The following examples give you the opportunity to write your own proofs
of invariance. Even if you don’t write complete proofs, you should at least
find the necessary inductive invariants with the help of TLC.

7.1 Peterson’s Algorithm

Peterson’s algorithm is a well-known, very simple two-process mutual exclu-
sion algorithm. It avoids the deadlock of the simple protocol in our example
by introducing a variable turn , whose value is always either 0 or 1, and
changing process i’s await statement to

await (flag[1-i] = FALSE) \/ (turn = 1-i)
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Thus, if both processes are at their await statements, process 1-turn will
be able to enter its critical section. A process i sets turn equal to i when
it exits the critical section. If the other process is waiting then, it can enter
the critical section before process i can enter again.

The algorithm is described on this web page. It’s easy to prove mutual
exclusion with a simple modification of the inductive invariant of the simple
algorithm used here.

7.2 Another Simple Example

Our next example appeared in this note published in the ACM SIGACT
News. Although very simple, it’s a high-level abstraction of one aspect of
a very complex cache coherence algorithm [3]. I originally devised it and
proved its correctness to help me understand that algorithm. A modified
version of the cache-coherence algorithm is on the Web.

The algorithm presented here is executed by a set of processes, which
we think of as arranged in a ring facing inwards. There are two variables,
x and y , whose values are functions having as domain the set of processes.
Initially x[i] equals 0 for each process i ; the initial value of y[i] doesn’t
matter. Each process i performs two actions: It first sets x[i] to 1; it then
sets y[i] to x[j] , where j is the process to its right, and terminates.

Here’s the algorithm written in PlusCal. The set of process identifiers
is the set 0..(N-1) , where N is a positive integer. It’s convenient to make
the initial values of all the y[i] integers; those initial values are somewhat
arbitrarily taken to be 0.

--algorithm Simple {

variables x = [i \in 0..(N-1) |-> 0],

y = [i \in 0..(N-1) |-> 0] ;

process (proc \in 0..N-1) {

a: x[self] := 1 ;

b: y[self] := x[(self-1) % N] } }

The problem is to prove that, when the algorithm terminates, y[i] equals
1 for at least one process i . Here’s a simple behavioral proof. Suppose i is
the last process to terminate. Its right-hand neighbor (i-1) % N must have
already set x[(i-1) % N] to 1, so process i must have set y[i] to 1 when
it executed action b and terminated.

The statement that all processes have terminated is expressed in TLA+

as \A i \in 0..(N-1) : pc[i] = "Done" . The problem is therefore to prove
the invariance of this formula:

28

https://lamport.azurewebsites.net/tla/peterson.html
http://lamport.azurewebsites.net/pubs/teaching-concurrency.pdf
http://lamport.azurewebsites.net/pubs/wildfire-challenge.pdf
http://lamport.azurewebsites.net/pubs/wildfire-challenge.pdf
http://lamport.azurewebsites.net/tla/wildfire-challenge.html


(\A i \in 0..(N-1) : pc[i] = "Done")

=> (\E i \in 0..(N-1) : y[i] = 1)

The key to the proof is finding the inductive invariant that implies this
formula. You can compare your solution to one on the web that contains a
complete TLAPS-checked proof.

When N equals 2, this algorithm is essentially the simple mutual exclu-
sion protocol of Section 3. To see why, let’s first rewrite that protocol as
follows by adding a variable y[i] local to each process and changing the
await to an equivalent waiting loop.

s1: flag[i] := TRUE ;

s2: y[i] := flag[1-i] ;

if (y[i] = TRUE) {goto s2} ;

cs: skip;

Let’s now replace TRUE by 1 and flag by x . Since 1-i equals (i-1) % 2

for i in {0,1} , we can then rewrite the protocol as:

s1: x[i] := 1 ;

s2: y[i] := x[(i-1) % 2] ;

if (y[i] = 1) {goto s2} ;

cs: skip;

Each process in the simple mutual exclusion protocol begins by executing a
process of our example algorithm for N equal to 2. Therefore, at least one
of the processes must find y[i] equal to 1 when executing statement s2 ,
so both processes can’t enter their critical sections.

7.3 Loop Invariants

Before you write a piece of code that is supposed to compute something and
then terminate, you should decide what the code is supposed to compute.
What it computes is usually expressed as a postcondition—an assertion Q
that should be true when the code terminates. Depending on what that
code is for, Q might be written as a mathematical formula or in prose.

Avoiding errors requires understanding why a piece of code satisfies its
postcondition. Nontrivial code almost always contains one or more loops,
and the key to understanding why it satisfies its postcondition is under-
standing why its loops satisfy their postconditions.

A loop satisfies its postcondition because it satisfies a loop invariant. A
loop invariant for this PlusCal loop

a: while (test) { ... }
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is an invariant of the form (pc = "a") => P where P /\ (test = FALSE)

implies the loop’s postcondition. (Formula P is usually called the loop
invariant, the “ (pc = "a") => ” being left implicit.)

Below are three examples of loops for which you are asked to find the loop
invariant and prove its invariance. Of course, proving its invariance requires
finding an inductive invariant that implies it. All three examples are PlusCal
algorithms that consist entirely of a single while loop, each iteration of
which is a single atomic action. The program contains only the single label
a for the while loop, so pc can equal only "a" and "Done" . The formula
P , as well as the formula (pc = "a") => P , will be invariant. Solutions to
these three problems can be found in the GitHub TLA+ examples repository.
However, you should write your own solutions before looking at them.

7.3.1 Summing a Sequence

Our first example is a very simple algorithm that computes the sum

seq[1] + seq[2] + ... + seq[Len(seq)]

of a sequence seq of integers. To make model checking easier, seq is taken
to be a sequence of elements in an unspecified set Values that we assume
is a set of integers. Here is the PlusCal code:

--fair algorithm SumSequence {

variables seq \in Seq(Values), sum = 0, n = 1 ;

{ a: while (n =< Len(seq))

{ sum := sum + seq[n] ;

n := n+1 } } }

The module containing the algorithm should contain:

CONSTANT Values

ASSUME Values \subseteq Int

The postcondition satisfied by the algorithm is:

sum = seq[1] + seq[2] + ... + seq[Len(seq)]

To write this as a TLA+ formula, we define an operator SeqSum so the sum
equals SeqSum(seq) . Here is the definition:

RECURSIVE SeqSum(_)

SeqSum(s) == IF s = << >> THEN 0 ELSE s[1] + SeqSum(Tail(s))

The postcondition to be satisfied by the algorithm is the invariance of
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(pc = "Done") => (sum = SeqSum(seq))

To prove that the algorithm satisfies this postcondition, you will need to find
a suitable loop invariant. You should use TLC to help you. (You should first
use it to check that you and I have not made any error, and the algorithm
really does satisfy the postcondition.) To run TLC on this algorithm, you
will have to create a model in which the definition of Seq is changed so
that Seq(S) is a set containing only suitably short sequences. The following
defines Seq(S) to consist of the set of all sequences of elements in S that
have length at most 3.

Seq(S) == UNION {[1..i -> S] : i \in 0..3}

You should use very small values of 3, starting with 1 and increasing them
by 1 until TLC takes too long to do its checking.

7.3.2 Binary Search

Binary search is a classic algorithm for searching a list of items sorted by
key to find one with a given key. We can most simply describe the algorithm
by assuming that the items consist only of keys, which are integers. So we
assume as input a sorted sequence seq of integers and an integer val , and
we let the algorithm set result to the computed output. The postcondition
is that the result equals a number i such that seq[i] equals val if such
an i exists; otherwise, result equals 0 .

Again, to make model checking easier, we assume that seq is a sequence
of values in some set Values of integers. The assumption that the sequence
is sorted is expressed by requiring it to be an element of the set SortedSeqs

of all sorted sequences of elements in Values , which can be defined by:

SortedSeqs ==

{ss \in Seq(Values) : \A i, j \in 1..Len(ss) :

(i < j) => (ss[i] =< ss[j])}

The algorithm is in Figure 5. You will have to define the postcondition
as well as the loop invariant. However, writing a correct binary search
algorithm is tricky. Before looking at Figure 5, try writing your own binary
search algorithm in PlusCal and checking it with TLC. It should begin with
the variable declarations

seq \in SortedSeqs, val \in Values,
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--fair algorithm BinarySearch {

variables seq \in SortedSeqs, val \in Values,

low = 1, high = Len(seq), result = 0 ;

{ a: while (low =< high /\ result = 0) {

with (mid = (low + high) \div 2, mval = seq[mid])

{ if (mval = val) { result := mid}

else if (val < mval) { high := mid - 1}

else {low := mid + 1} } } } }

Figure 5: The Binary Search Algorithm.

7.3.3 Quicksort

Quicksort is a well-known sorting algorithm invented by Tony Hoare. If
you’re not familiar with Quicksort, please read a conventional description of
the algorithm before looking at the version described here. The Wikipedia
web page is one place you might look. You can ignore questions of efficiency
and details of how the partition procedure is implemented.

Now for our algorithm. As with binary sort, we assume that the input is a
sequence seq of integers. The algorithm sorts the sequence in place, so the
postcondition has two parts:

• The final value of seq is a permutation of its initial value.

• The final value of seq is sorted.

The definition of SortedSeqs in the binary search algorithm shows how to
express the second condition precisely. Most people have trouble expressing
the first condition. Your first impulse might be to describe what a permu-
tation is in terms of an algorithm for generating the set PermsOf(s) of all
permutations of a sequence s . The simplest algorithm I can think of is based
on the idea of constructing an arbitrary permutation ps of s by starting
with ps equal to the empty sequence and repeatedly removing an arbitrary
element from s and appending it to the end of ps . As a fun exercise, I sug-
gest writing a PlusCal algorithm based on this idea to compute PermsOf(s) .
I think you’ll find that the algorithm is pretty complicated. A more useful
fun exercise is to write a recursive TLA+ definition of PermsOf , based on
the same idea. It will be more compact, but still hard to understand.

Rather than thinking algorithmically, we need to think mathematically
to find a simple definition of PermsOf . The first thought we might have
is that one sequence is a permutation of the other if both sequences have
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the same set of elements. We quickly realize that’s not right because the
sequences <<1, 1, 2>> and <<1, 2, 2>> have the same set of elements.
That idea works only if the elements in the sequence are distinct.

Further thought reveals that to specify a permutation of a sequence
of n elements, we just have to specify a permutation of the sequence
<<1,...,n>> , which has distinct elements. For example if s is a 3-element
sequence, the permutation <<3,1,2>> of <<1,2,3>> specifies the permuta-
tion <<s[3],s[1],s[2]>> .

Remember that a sequence is a function, and <<3,1,2>> is the function
f with domain 1..3 such that f[1] equals 3, f[2] equals 1, and f[3]

equals 2. The sequence <<s[3],s[1],s[2]>> is the sequence sf defined by
sf[i] = s[f[i]] for all i in 1..3 . Mathematicians call sf the composition
of the functions s and f , and they write it s ◦ f . Since TLA+ uses ◦ to
mean concatenation of sequences, let’s instead write it as s**f , which we
can define by:

s**f == [i \in 1..Len(f) |-> s[f[i]]]

We can now define PermsOf(s) to be the set of all s**f such that f is
a permutation of <<1,...,Len(s)>> . A permutation of <<1,...,Len(s)>>

is a function f in [1..Len(s) -> 1..Len(s)] such that every number j in
1..Len(s) equals f[i] for exactly one number i in 1..Len(s) . Mathemati-
cians sometimes call such a function an automorphism of the set 1..Len(s) .
For a finite set S , a function f in [S -> S] is an automorphism of S if either
of the following two equivalent conditions hold:

• \A x, y \in S : (x /= y) => (f[x] /= f[y]

• \A y \in S : \E x \in S : f[x] = y

We can generalize all this to define PermsOf(s) not just for a sequence s ,
but for an arbitrary function s :

PermsOf(s) ==

LET Automorphisms(S) ==

{f \in [S -> S] : \A y \in S : \E x \in S : f[x] = y}

g ** f == [x \in DOMAIN f |-> g[f[x]]]

IN { s ** f : f \in Automorphisms(DOMAIN s) }

Having defined PermsOf , we can get to the Quicksort algorithm. The most
interesting part of the algorithm is the Partition procedure. That’s what
determines how efficient the algorithm is, and it’s the hardest thing to get
right. But for this example, we’re going to ignore how it’s implemented.

33



We’re going to write an algorithm in which the Partition procedure’s choos-
ing of a pivot index within the subinterval and rearranging the elements of
the sequence seq are performed as part of a single atomic action. We define
the constant operator Partitions so that if s is the current value of the
variable seq , then Partitions(I,p,s) is the set of all new values of seq

that can be produced by executing a Partition operation on the subinterval
I using pivot index p in I . The definition is:

Partitions(I, p, s) ==

{t \in PermsOf(s) :

/\ \A i \in (1..Len(s)) \ I : t[i] = s[i]

/\ \A i, j \in I : (i =< p) /\ (p < j) => (t[i] =< t[j])}

Finally, we come to the PlusCal algorithm. Again, seq is initially a se-
quence with values in some subset Values of Int . To be able to state the
postcondition, it uses a variable seq0 to hold the initial value of seq . The
value of seq0 is initially set equal to seq and is never changed. The algo-
rithm uses constant operators Min and Max , defined so Min(S) and Max(S)

equal the minimum and maximum elements of a finite, nonempty set S of
integers.

Since PlusCal allows procedures that can call themselves recursively,
it’s easy to use it to write the usual version of Quicksort with a recursive
procedure that takes the current subinterval I as argument(s), chooses the
pivot index p , and sets seq to an arbitrary element of Partitions(I,p,s) .
But instead, our PlusCal algorithm does not use recursion, and it generalizes
the usual version. Before looking at it, see if you can devise a non-recursive
Quicksort algorithm. I’ve found that most computer scientists can’t do it in
ten minutes.

The algorithm is in Figure 6. You should be able to figure out how
it works and how to write its postcondition. Here’s a hint for finding the
inductive invariant. The algorithm removes from the set U subintervals I

consisting of a single number. Think of what the inductive invariant would
be if the algorithm didn’t remove those intervals and instead terminated
when they were the only intervals in U .
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--fair algorithm Quicksort {

variables seq \in Seq(Values) \ {<< >>}, seq0 = seq,

U = {1..Len(seq)};

{ a: while (U # {})

{ with (I \in U)

{ if (Cardinality(I) = 1)

{ U := U \ {I} }

else

{ with (p \in Min(I)..(Max(I)-1),

I1 = Min(I)..p,

I2 = (p+1)..Max(I),

newseq \in Partitions(I, p, seq))

{ seq := newseq ;

U := (U \ {I}) \cup {I1, I2} } } } } } }

Figure 6: The Quicksort Algorithm
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Part II

Implementation

8 Introduction

After invariance, the next most common safety property of a TLA+ spec-
ification that one proves is that it implements a higher-level specification
under a refinement mapping. Implementation under a refinement mapping
is explained in Lecture 10 of the TLA+ Video course.

The statement that one specification S 1 implements another specification
S 2 under a refinement mapping is usually expressed in TLA+ in this form:

THEOREM Spec => HL!Spec

where

• S 1 is the specification named Spec in the current module

• S 2 is the specification named Spec in a module HigherLevel that is
imported into the current module with a statement

HL == INSTANCE HigherLevel WITH ...

• The refinement mapping is the substitution of expressions of the
current module for the declared constants and variables of module
HigherLevel specified by the WITH clause.

We describe how to prove such a theorem when the specifications are canon-
ical TLA+ safety specifications of the form Init /\ [][Next]_vars . If the
lower-level specification S 1 also has a conjunct specifying a fairness condi-
tion, that conjunct can be ignored because a fairness condition does not
affect whether the spec satisfies a safety property. One of the advantages
of writing specifications in TLA+ is that any (finite or countably infinite)
conjunction of weak and/or strong fairness conditions on actions that imply
the spec’s next-state action Next is a fairness condition.

As with proofs of invariance, we explain (i) what needs to be proved,
(ii) how to use TLC to check that what needs to be proved is true, and
(iii) how to use TLA+ proof constructs to write and check the high-level
structure of a rigorous prose proof.
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9 The Two-Phase Handshake Protocol

Our goal is to prove the correctness of a simple widely-used hardware proto-
col by showing that it implements a high-level specification of that protocol.
The purpose of the protocol is to allow two processes, called pro and con,
to alternately perform operations. First pro can perform an operation, then
con can perform an operation, then pro can perform an operation, and so on.
Since we are interested only in safety, we do not require that any operation
must be performed.

To model this protocol, we represent the state being read and modified
by the two processes with a variable s whose initial value equals an unspeci-
fied constant s0 . We represent a pro operation by the statement s := P(s)

and a con operation by s := C(s) , where P and C are unspecified con-
stant operators. For simplicity, we assume that the processes’ operations
are atomic actions.

We want a protocol to ensure that initially s equals s0 and that the
statements s := P(s) and s := C(s) can only be executed alternately. This
requirement is obviously described by the algorithm in this module:

-------------------- MODULE Alternation --------------------

CONSTANTS s0, P(_), C(_)

(*****

--algorithm Alternation

{ variable s = s0 ;

{ a: while (TRUE)

{ s := P(s) ;

b: s := C(s) } } }

*****)

=============================================================

Create a specification with Alternation as its root module and run the
PlusCal to TLA+ translator.

The parameters of the specifcation Spec created by the translation are
the three constants and the variables s and pc . We are interested in the
executions of the processes’ two operations, which are represented by the
assignments to s . The variable pc is used only to describe the desired se-
quencing of those operations. An implementation of this specification should
contain the same three constants and the variable s . It may contain any
other constants and variables. The implementation’s spec should implement
formula Spec of module Alternation under a refinement mapping (instan-
tiation) that substitutes its constants s0 , P , and C and variable s for the
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----------------------- MODULE TwoPhase -----------------------

EXTENDS Integers

CONSTANTS s0, P(_), C(_)

(*****

--algorithm TwoPhase

{ variable s = s0, p = 0 ; c = 0;

process (pro = "a")

{ a1 : while (TRUE)

{ await p = c ;

a2: s := P(s) ;

a3: p := (p + 1) % 2 } }

process (con = "b")

{ b1 : while (TRUE)

{ await p /= c ;

b2: s := C(s) ;

b3: c := (c + 1) % 2 } } }

*****)

===============================================================

Figure 7: The two-phase handshake.

constants and variable of the same name, but can substitute any expression
for the variable pc .

Our example implementation is a hardware protocol called the two-phase
handshake. The protocol can be pictured like this

pro con
-

�

p

c

where p and c are one-bit values, with p set by pro and read by con and c
set by con and read by pro. The actual algorithm is in Figure 7.

Try executing this algorithm by hand. You’ll see that there is only one
possible execution. (More precisely, that’s true if we ignore the stuttering
steps that any algorithm allows.) You’ll also notice that, for each i in
{0,1} , the expression (i+1)%2 equals the “complement” of i . Create a
specification with this root module and run the translator on it.
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10 Finding the Refinement Mapping

To prove that the two-phase handshake implements the specification Spec

of module Alternation , we must add to module TwoPhase the statement

A == INSTANCE Alternation WITH pc <- ...

for some expression “...” , and then prove:

THEOREM Spec => A!Spec

I like to give the expression “...” the name pcBar . So, add this to module
TwoPhase :

pcBar ==

A == INSTANCE Alternation WITH pc <- pcBar

and let’s see how to fill in the definition of pcBar .
We must define pcBar so that in any execution of the two-phase algo-

rithm, the values of s and pcBar are the values of s and pc allowed by
specification Spec of module Alternation . Of course, this means that the
value of pcBar in any reachable state of the two-phase algorithm must be
either "a" or "b" .

The trick to writing the definition is to realize that pcBar must change
when the spec of Alternation allows pc to change. Since the Alternation

algorithm changes pc at the same time as it changes s , this means that the
value of pcBar must be changed only by executing statements a2 and b2

of the two-phase algorithm.
It’s clear that pcBar should equal "a" when process pro is at a2 , and

it should equal "b" when process con is at b2 . Since its value must change
when statement a2 or b2 is executed, we see that we must have:

• pcBar = "a" if pc["a"] = "a2" or pc["b"] = "b3" .

• pcBar = "b" if pc["b"] = "b2" or pc["a"] = "a3" .

This tells us the value of pcBar in all cases except when pc["a"] = "a1"

and pc["b"] = "b1" are both true. In executing the two-phase algorithm,
you should have observed that in this case s := P(s) is the next assignment
to s executed if and only if p = c is true.

It’s now straightforward to define pcBar . Most programmers would
probably write it with nested IF / THEN / ELSE expressions. I like this defini-
tion because it’s symmetric in the two processes:
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pcBar == CASE pc["a"] = "a2" \/ pc["b"] = "b3" -> "a"

[] pc["b"] = "b2" \/ pc["a"] = "a3" -> "b"

[] OTHER -> IF p=c THEN "a" ELSE "b"

Put this definition in the module and use TLC to check the theorem. Create
a model that checks the temporal property A!Spec . The theorem should
hold for any values of the constants s0 , P , and C . Those values should be
chosen so there aren’t too many reachable states. The order of execution
of the statements doesn’t depend on the value of s . So, to check that the
theorem holds, it suffices to check it for some values of the constants so
that, in any reachable state, (i) C(s) /= P(s) and (ii) C(s) and P(s) are
unequal to s . (Condition (ii) prevents assignments to s from implementing
stuttering steps allowed by A!Spec .) Let’s use these values:

s0 <- 0

C(x) <- (x + 1) % 3

P(x) <- (x - 1) % 3

TLC checks that the property A!Spec is satisfied, so there’s no need to prove
the theorem. But, of course, we’ll prove it anyway.

11 The Proof

11.1 The Proof Rule

We need to prove the theorem Spec => A!Spec in module TwoPhase . Since
A!Spec equals A!Init /\ [][A!Next]_A!vars , the obvious proof rule to use
is:

and THEOREM Init => A!Init

and THEOREM [Next]_vars => [A!Next]_A!vars

imply THEOREM Init /\ [][Next]_vars =>

A!Init /\ [][A!Next]_A!vars

In checking the theorem Spec => A!Spec , we checked that the first theorem
is true. However, the second theorem is not true. It asserts a property of
all steps 〈t , u 〉, including steps in which t is an unreachable state. Suppose
t is a state in which process pro is at statement a2 and process con is at
statement b2 . (This state is not reachable.) Let up be the state obtained by
executing a2 and let uc be the state obtained by executing b2 . The steps
〈t , up 〉 and 〈t , uc 〉 both satisfy Next , but they can’t both satisfy A!Next if
the values of s in states up and uc are different.
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The rule is valid as long as the second theorem’s formula is true on all
steps 〈t , u 〉 in which t and u are reachable states. We can assert that a state
is reachable by asserting that it satisfies an invariant of the specification.
This observation leads to the following valid proof rule:

Safety Implementation Rule

and THEOREM Init => A!Init

and THEOREM Init /\ [][Next]_vars => []Inv

and THEOREM Inv /\ Inv’ /\ [Next]_vars => [A!Next]_A!vars

imply THEOREM Init /\ [][Next]_vars

=> THEOREM A!Init /\ [][A!Next]_A!vars

11.2 Finding the Invariant

Let’s use TLC to help us find the invariant Inv . The first thing to try is the
type-correctness invariant. Type correctness of p and c obviously assert
that they’re in {0,1} . The usual type invariant for a function like pc is
that it’s in

[{"a", "b"} -> {"a1", "a2", "a3", "b1", "b2", "b3"}]

But it’s obviously important that control in each process is always at a label
in that process. So, we define this type invariant:

TypeOK ==

/\ p \in {0, 1}

/\ c \in {0, 1}

/\ pc \in [{"a", "b"} -> {"a1", "a2", "a3", "b1", "b2", "b3"}]

/\ pc["a"] \in {"a1", "a2", "a3"} /\ pc["b"] \in {"b1", "b2", "b3"}

Since we make no assumptions about s0 , P , and C , we can make no type
assertion about s .

Add this definition of TypeOK to module TwoPhase . We want to have
TLC check

THEOREM TypeOK /\ TypeOK’ /\ [Next]_vars => [A!Next]_A!vars

If the conjunct TypeOK’ were not there, we could use the same trick we used
for checking inductive invariance and have TLC check:

THEOREM TypeOK /\ [][Next]_vars => [][A!Next]_A!vars

Since TypeOK /\ UNCHANGED vars obviously implies TypeOK’ , it’s not hard
to see that we can check the desired theorem by having TLC check:
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THEOREM TypeOK /\ [][Next /\ TypeOK’]_vars => [][A!Next]_A!vars

Alternatively, we can observe that TypeOK is actually an inductive invariant
of Spec . This means that TypeOK /\ [Next]_vars implies TypeOK’ , so the
TypeOK’ conjunct in the theorem is redundant and can be omitted. Since
it’s simpler, let’s do that. Have TLC check

THEOREM TypeOK /\ [][Next]_vars => [][A!Next]_A!vars

by creating a model with initial predicate TypeOK , next-state relation Next ,
and [][A!Next]_A!vars as a temporal property to be checked.

Running TLC on this model produces an error when computing the
initial state. The error message indicates that the value of s is null ,
meaning that the initial predicate hasn’t assigned a value to s . We must
add a conjunct to the initial predicate to specify the type of s . We can’t do
that for the spec, but we can do it for the model. For the values of s0 , P ,
and C that we’ve chosen, that conjunct is s \in 0..2 . Add this conjunct
to the initial predicate in the model and run TLC again. It reports that the
property [][A!Next]_A!vars is violated.

To help see what’s going wrong, use the Error-Trace Explorer to show the
value of pcBar in the error trace. One possible error trace, which is the one
you’ll get if you run TLC with a single thread, starts with p and c equal
to 0, process pro at a1 , and process con at b2 ; and it executes statement
a1 . This changes pcBar from "b" to "a" but leaves s unchanged.

The first state in the error trace is not reachable because process con
can’t be at b2 when p and c are equal. When con is not at b1 , the values
of p and c must be unequal. Similarly, when pro is not at a1 , the values of
p and c must be equal. This suggests trying this definition for our invariant:

Inv == /\ TypeOK

/\ (pc["a"] /= "a1") => (p = c)

/\ (pc["b"] /= "b1") => (p /= c)

Add it to the module. Change the model to use Inv /\ (s \in 0..2) as the
initial predicate and Next /\ Inv’ as the next-state relation, and run TLC
on it. TLC reports no error, so this definition of Inv will work—if it’s an
invariant. If it isn’t, we can try to strengthen it to make it invariant—which
will ensure that Inv /\ [Next /\ Inv’]_vars still implies [A!Next]_A!vars .

Running TLC shows that Inv is an invariant of Spec . To prove that
it’s invariant, we need to find an inductive invariant that implies it. We
start by using TLC to check if the invariant Inv itself is inductive. We
do this by making Inv an invariant to be checked in the model with
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Inv /\ (s \in 0..2) as its initial predicate and Next as its next-state rela-
tion . TLC finds no error, so Inv is an inductive invariant.

We know that Inv satisfies the required hypotheses of the Safety Im-
plementation Rule because this example is small enough so TLC can essen-
tially check those hypotheses for the actual specification rather than for just
a small model of it. (Correctness of the algorithm doesn’t depend on the
values of the constants, and our invariant doesn’t mention the variable s ,
so checking it on properly chosen values of the constants is good enough.)
In a real spec, we could do this kind of checking only on a model that’s
too small to give us much confidence that Inv satisfies those hypotheses.
The method in Using TLC to Check Inductive Invariance, mentioned at the
end of Section 5 that checks for small, randomly chosen sets of type-correct
states of a larger model can be used here as well.

11.3 Writing the Proof

When we’ve used TLC to check as best we can that the hypotheses of the
Safety Implementation Rule are true, we can start writing a proof. Begin by
either adding an INSTANCE TLAPS statement to the module or adding TLAPS

to the module’s EXTENDS statement.
Because the invariance of Inv is an interesting property of the algorithm,

it’s best to prove it as a separate theorem. So, add this to the module:

THEOREM Invariance == Spec => []Inv

We give the theorem the name Invariance so it can be used in our imple-
mentation proof. Since Inv is an inductive invariant of Spec , the high-level
proof of this theorem is:

<1>1. Init => Inv

<1>2. Inv /\ [Next]_vars => Inv’

<1>3. QED

BY <1>1, <1>2, PTL DEF Spec

Invariance proofs were discussed in Part I, so we will not examine this proof.
The theorem asserting that the two-phase handshake algorithm imple-

ments the specification Spec of module Alternation , and its high-level
proof, are in Figure 8. Because the definition of pcBar will be used through-
out the proof, we add the USE step that tells TLAPS to use that definition
as if it appeared in the DEF clause of all BY proofs. We can tell TLAPS not
to use the definition in some part of the proof with the step

HIDE DEF pcBar
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THEOREM Spec => A!Spec

<1> USE DEF pcBar

<1>1. Init => A!Init

<1>2. Inv /\ Inv’ /\ [Next]_vars => [A!Next]_A!vars

<1>3. QED

BY <1>1, <1>2, Invariance, PTL DEF Spec, A!Spec

Figure 8: High-level implementation proof of the two-phase handshake.

A USE or HIDE step is local to the current subproof and obeys the obvious
scoping rules.

The identifier Invariance in the BY proof of step <1>3 tells TLAPS to
use the theorem with that name.

For most examples, the proof of step <1>1 is straightforward. For this
simple example, you and TLAPS should be able prove it without having to
decompose the proof. For more complicated examples, you can prove each
conjunction of A!Init as a separate step. This should be done with the
Toolbox’s Decompose Proof command.5

The interesting part of the proof is the proof of step <1>2 . The same
sort of decomposition we used in Section 6.2.2 to decompose the proof of
step <1>2 of the invariance proof leads in this case to the decomposition of
Figure 9.

The easiest step is <2>7 , so let’s look at it first. A stuttering step of
algorithm TwoPhase should implement a stuttering step of the Alternation

spec. Therefore, UNCHANGED vars should imply UNCHANGED A!vars , which
implies [A!Next]_A!vars . (The latter implication is trivial, since [A]v equals
A ∨ (unchanged v) for any A and v .) The INSTANCE statement defines
A!vars to equal <<pcBar, s>> , so it’s easy to see that leaving the three
variables in the triple vars unchanged leaves both components of the pair
A!vars unchanged. This is obvious, and TLAPS should prove <2>7 with
the proof

BY <2>7 DEF vars, A!vars

5A bug in versions through 1.5.7 of the Toolbox causes the command to produce garbage
when the formula being proved contains a defined symbol such as A!Init that is imported
with an INSTANCE statement containing implicit instantiation of module parameters. The
workaround is to make the instantiation of all module parameters explicit—in this case
by changing the INSTANCE statement that imports module Alternation to

A == INSTANCE Alternation WITH pc <- pcBar, s <- s, s0 <- s0

This bug has been fixed in version 1.5.8 which, as I write this, has not yet been released.
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<2> SUFFICES ASSUME Inv,

Inv’,

[Next]_vars

PROVE [A!Next]_A!vars

OBVIOUS

<2>1. CASE a1

<2>2. CASE a2

<2>3. CASE a3

<2>4. CASE b1

<2>5. CASE b2

<2>6. CASE b3

<2>7. CASE UNCHANGED vars

<2>8. QED

BY <2>1, <2>2, <2>3, <2>4, <2>5, <2>6, <2>7 DEF con, Next, pro

Figure 9: The decomposition of step <1>2.

The <2>7 in this BY proof tells TLAPS to use the step’s case assumption.
As we’ve seen, TLAPS does not use named facts by default. The CASE step
<2>7 is an abbreviation for

<2>7. ASSUME UNCHANGED vars

PROVE [A!Next]_A!vars

and within a named ASSUME/PROVE step’s proof, the step’s name names its
assumptions.

Let’s now look at the proofs of steps <2>1 – <2>6 . TLAPS can probably
prove each of them with a single BY proof, but let’s suppose we want to
prove them by ourselves. We’ll start with <2>1 .

Since an a1 step leaves s unchanged, we expect a1 to imply that A!vars

is unchanged. This leads to two possible ways to decompose the proof. The
first is

<3>1. UNCHANGED A!vars

<3>2. QED

BY <3>1

The second is:

<3> SUFFICES UNCHANGED A!vars

OBVIOUS

...
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The second is better if we need to further decompose the proof, since the
decomposition is done with level <3> steps while the first way uses a level
<4> proof. If this were a complex algorithm, we might want to check that
the step is actually true and a1 does imply UNCHANGED A!vars . We can do
this by having TLC check

THEOREM Inv /\ [][a1]_vars => [][FALSE]_A!vars

This is done in essentially the same way we used TLC to check step <1>2 .
Since A!vars equals <<pcBar, s>> , we can decompose the proof of <2>1 as

<3> SUFFICES UNCHANGED A!vars

OBVIOUS

<3>1. pcBar’ = pcBar

<3>2. s’ = s

<3>3. QED

BY <3>1, <3>2 DEF a1, A!vars

Step <3>2 follows immediately from the <2>1 case assumption and the
definition of a1 . Step <3>1 is more subtle. Here is a very detailed hand
proof.

<4>1. /\ pc["a"] = "a1"

/\ p = c

(************************************************************)

(* By a1, which is the <2>1 case assumption. *)

(************************************************************)

<4>2. pc’["a"] = "a2"

(************************************************************)

(* By a1 and TypeOK, which is implied by the level <2> *)

(* SUFFICES assumption Inv. *)

(************************************************************)

<4>3. pc["b"] = "b1"

(************************************************************)

(* By Inv and p=c, which is asserted by <4>1. *)

(************************************************************)

<4>4. QED

<5>1. pcBar = "a"

(**********************************************************)

(* By <4>1, <4>3, and the definition of pcBar. *)

(**********************************************************)

<5>2. pcBar’ = "a"

(**********************************************************)

(* By <4>2 and the definition of pcBar. *)

(**********************************************************)
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<5>3. QED

BY <5>1, <5>2

Note that the type-correctness hypothesis TypeOK is needed to prove <4>2

because we can deduce pc’["a"]="a2" from

pc’ = [pc EXCEPT !["a"] = "a2"]

only if pc is a function whose domain contains "a" .
This finishes the proof sketch for step <2>1 . Like action a1 , the actions

a3 , b1 and b3 imply UNCHANGED A!vars . The proofs of steps <2>3 <2>4 ,
and <2>6 are therefore similar to that of <2>1 . Let’s examine the proof of
<2>2 .

Action a2 of the algorithm TwoPhase implements action a of the Alternation

spec. We can therefore decompose the proof of <2>2 as:

<3>1. A!a

<3>2. QED

BY <3>1 DEF A!Next

I have written it this way instead of with a SUFFICES step because I want
to decompose the proof of A!a , and the Decompose Proof command doesn’t
decompose a goal introduced with SUFFICES . Applying that command to
step <3>1 yields this proof:

<4>1. pcBar = "a"

<4>2. s’ = P(s)

<4>3. pcBar’ = "b"

<4>4. QED

BY <4>1, <4>2, <4>3 DEF A!a

Steps <4>1 and <4>2 follow directly from the case assumption a2 . Here’s
the sketch of a proof of <4>3 :

<5>1. pc’["a"] = "a3"

(************************************************************)

(* By a2 (the <2>2 case assumption), which implies *)

(* *)

(* pc’ = [pc EXCEPT !["a"] = "a3"] *)

(* *)

(* and TypeOK (which is implied by Inv, a level <2> *)

(* SUFFICES assumption). *)

(************************************************************)
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<5>2. pc’["b"] = "b1"

(************************************************************)

(* <5>1 and Inv’ (which holds by the level <2> SUFFICES *)

(* assumption) imply p’ = c’, which by Inv’ implies <5>2. *)

(************************************************************)

<5>3. QED

BY <5>1, <5>2 DEF pcBar

This finishes the proof of step <2>2 .
Action b2 implies A!b , and the proof of step <2>5 is similar to that of

step <2>2 . This completes our sketch of the proof of step <1>2 .

12 Conclusion

The proofs in Sections 6 and 11 are excruciatingly detailed. There’s no
reason for a human to check such proofs because TLAPS can do it. For
algorithms not as trivial as our examples, proving some steps requires human
thought. Before you can prove such a step, either by hand or with TLAPS,
you need to understand why it’s true. And that requires writing a proof—
one that’s detailed enough and rigorous enough to convince a person.

The kind of proof written by most mathematicians isn’t good enough.
The paper How to Write a 21st Century Proof describes why mathemati-
cians should write structured proofs and how they can do it. Proofs of
properties of TLA+ specifications differ from mathematicians’ proofs be-
cause the statement of what has to be proved, as well as the steps in the
proof, can be written as precise mathematical formulas. This permits the
degree of rigor needed to avoid the tiny mistakes in a proof that can mask
serious bugs in an algorithm.

You have now seen how to write such proofs for trivial examples. With
practice, it will feel like the natural way to prove correctness of real algo-
rithms. Later, you may want to try writing completely formal proofs checked
by TLAPS.
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