1 MODULE SnapSpec
2 CONSTANT Proc, Val

4 PUnion(Q) = unioN {Qlp] : p € Proc}
skoksksk ok

7 --algorithm SnapSpec
s { variables myVals = [i € Proc — {}],

9 nezctout = [i € Proc — {}];

10 process (Pr € Proc)

11 variable out = {};

12 { A: while (TRUE)

13 { with (v € Val) { myVals[self] :== myVals[self] U{v} } ;
14 B: with (V € {W € suBsSET PUnion(myVals) :
15 A myVals[self] C W

16 A PUnion(nextout) C W})
17 { nextout[self] :=V } ;

18 C': either out := nextout[self]

19 or goto B;

20 }

21 }

22}

Fokokk

24 BEGIN TRANSLATION
25 VARIABLES myVals, nextout, pc, out

27 vars = (myVals, nextout, pc, out)
29 ProcSet = (Proc)

31 Init = |Global variables

32 A myVals = [i € Proc — {}]

33 A neztout = [i € Proc — {}]

34 Process Pr

35 A out = [self € Proc — {}]

36 A pc = [self € ProcSet — “A"]

38 A(self) = A pelself] = “A”

39 ANJv e Val:

40 myVals' = [myVals EXCEPT ![self] = myVals[self] U {v}]
41 A pc’ = [pc EXCEPT ![self] = “B"]

42 A UNCHANCED (nextout, out)

44 B(self) = A pclself] = “B”
45 ATV € {W € suBsET PUnion(myVals) :
46 A myVals[self] C W

47 A PUnion(nextout) C W} :

48 nextout’ = [nextout EXCEPT ![self] = V]
49 A pc’ = [pc EXCEPT ![self] = “C"]
50 A UNCHANGED (myVals, out)

52 C(self) = A pelself] = “C”

53 AV A out’ = [out EXCEPT ![self] = nextout[self]]
54 A pc’ = [pc EXCEPT ![self] = "A"]

55 V A pc’ = [pc EXCEPT ![self] = "B"]

56 A out’ = out

57 A UNCHANGED (myVals, nextout)

50 Pr(self) = A(self)V B(self) Vv C(self)
61 Next = (Iself € Proc : Pr(self))
63 Spec = Init A O[Next]yars

65 END TRANSLATION
66 |

It’s always a good idea to write and have TLC check a type invariant.
70 TypeOK = A myVals € [Proc — SUBSET Val]

71 A out € [Proc — PUnion(myVals)]
72|

Specification BigSpec is the same as the specification Spec produced by translating the SnapSpec
algorithm’s code except that it allows a step, enabled when some process p is at control point
A, that moves some set of processes at control point C' to control point B — just as if they had
all simulateously executed statement C, choosing to perform the second clause of the enabled/or
statement. Spec BigSpec has the same initial predicate as Spec. It’s next-state action BigNext is
the disjunction of the next-state action of algorithm SnapSpec with an action that describes the
extra step the BegSpec allows.

84 BigNext <V Next

85 Vdp € Proc:

86 A pe[p] = "A"

87 A3JP € SUBSET (Proc\{p}):

88 AYq € P :pclq] ="C"

89 A pc' =[q € Proc— 1F ¢ € P THEN "B"
90 ELSE pc[q]]
91 A UNCHANGED (myVals, nextout, out)

93 BigSpec 2 Init A O[BigNext] pars
[
94

\ * Modification History
\ * Last modified Fri Jul 20 11:48:06 PDT 2012 by lamport
\ * Created Wed Jul 04 23:50:00 PDT 2012 by lamport

