
1 module SnapSpec
2 constant Proc, Val

4 PUnion(Q)
∆
= union {Q [p] : p ∈ Proc}

7 --algorithm SnapSpec
8 { variables myVals = [i ∈ Proc 7→ {}],
9 nextout = [i ∈ Proc 7→ {}] ;

10 process (Pr ∈ Proc)
11 variable out = {} ;
12 { A: while (true)
13 { with (v ∈ Val) { myVals[self] := myVals[self] ∪ {v} } ;
14 B : with (V ∈ {W ∈ subset PUnion(myVals) :
15 ∧myVals[self] ⊆W
16 ∧ PUnion(nextout) ⊆W })
17 { nextout [self] := V } ;
18 C : either out := nextout [self]
19 or goto B ;
20 }
21 }
22 }

24 BEGIN TRANSLATION

25 variables myVals, nextout , pc, out

27 vars
∆
= 〈myVals, nextout , pc, out〉

29 ProcSet
∆
= (Proc)

31 Init
∆
= Global variables

32 ∧myVals = [i ∈ Proc 7→ {}]
33 ∧ nextout = [i ∈ Proc 7→ {}]
34 Process Pr

35 ∧ out = [self ∈ Proc 7→ {}]
36 ∧ pc = [self ∈ ProcSet 7→ “A”]

38 A(self)
∆
= ∧ pc[self] = “A”

39 ∧ ∃ v ∈ Val :
40 myVals ′ = [myVals except ! [self] = myVals[self] ∪ {v}]
41 ∧ pc′ = [pc except ! [self] = “B”]
42 ∧ unchanged 〈nextout , out〉

44 B(self)
∆
= ∧ pc[self] = “B”

45 ∧ ∃V ∈ {W ∈ subset PUnion(myVals) :
46 ∧myVals[self] ⊆W

1

47 ∧ PUnion(nextout) ⊆W } :
48 nextout ′ = [nextout except ! [self] = V]
49 ∧ pc′ = [pc except ! [self] = “C”]
50 ∧ unchanged 〈myVals, out〉

52 C (self)
∆
= ∧ pc[self] = “C”

53 ∧ ∨ ∧ out ′ = [out except ! [self] = nextout [self]]
54 ∧ pc′ = [pc except ! [self] = “A”]
55 ∨ ∧ pc′ = [pc except ! [self] = “B”]
56 ∧ out ′ = out
57 ∧ unchanged 〈myVals, nextout〉

59 Pr(self)
∆
= A(self) ∨ B(self) ∨ C (self)

61 Next
∆
= (∃ self ∈ Proc : Pr(self))

63 Spec
∆
= Init ∧2[Next]vars

65 END TRANSLATION

66

It’s always a good idea to write and have TLC check a type invariant.

70 TypeOK
∆
= ∧myVals ∈ [Proc → subset Val]

71 ∧ out ∈ [Proc → PUnion(myVals)]
72

Specification BigSpec is the same as the specification Spec produced by translating the SnapSpec
algorithm’s code except that it allows a step, enabled when some process p is at control point
A, that moves some set of processes at control point C to control point B – just as if they had
all simulateously executed statement C , choosing to perform the second clause of the enabled/or
statement. Spec BigSpec has the same initial predicate as Spec. It’s next-state action BigNext is
the disjunction of the next-state action of algorithm SnapSpec with an action that describes the
extra step the BegSpec allows.

84 BigNext
∆
= ∨Next

85 ∨ ∃ p ∈ Proc :
86 ∧ pc[p] = “A”
87 ∧ ∃P ∈ subset (Proc \ {p}) :
88 ∧ ∀ q ∈ P : pc[q] = “C”
89 ∧ pc′ = [q ∈ Proc 7→ if q ∈ P then “B”
90 else pc[q]]
91 ∧ unchanged 〈myVals, nextout , out〉

93 BigSpec
∆
= Init ∧2[BigNext]vars

94

\ * Modification History

\ * Last modified Fri Jul 20 11:48:06 PDT 2012 by lamport

\ * Created Wed Jul 04 23:50:00 PDT 2012 by lamport

2

