MODULE SpanTreeRandom

The specification in this module is a modified version of the one in module SpanTree obtained by
replacing the declared constant Edges with a defined constant that equals a randomly chosen set
of edges joining the nodes in Nodes. Thus it can be used to test the algorithm of SpanTree on a
randomly chosen node, making it easy to check the algorithm on a sequence of different graphs.

EXTENDS Integers, FiniteSets, TLC
CONSTANTS Nodes, Root, MaxCardinality

Edges =
UNION {{{n, m}: m € RandomElement(SUBSET (Nodes\{n}))} : n € Nodes}
To understand this definition let’s look at its subformulas, from the inside out.

— SUBSET (Nodes\ {n}) is the set of all subsets of the set Nodes\ {n} , which is the set of
all nodes other than n.

— RandomElement(. ..) is a hack introduced in the TLC module. TLC computes its value to
be a randomly chosen element in the set This is hack because, in math, an expression
has the same value whenever it’s computed. The value of 2°{1/2} is the same next Thursday
as it is today. Every mathematical expression exp satisfies exp = exp. However, TLC may
evaluate

RandomElement(S) = RandomElement(S)

to equal FALSE if S is a set with more than 1 element, This is one of the few cases in which
TLC does not obey the rules of math.

— {{n, m} : m € RandomElement(...)} is the set of elements that equal the set {n, m} for
m some element of RandomElement(...) .

— UNION {... : n € Nodes} is the union of all sets ... for n an element of Nodes. This
expression makes sense if the expression equals a set that depends on the value of n.

ASSUME A Root € Nodes
A MazCardinality € Nat
A MazCardinality > Cardinality(Nodes)

VARIABLES mom, dist
A .
vars = (mom, dist)

Nbrs(n) = {m € Nodes : {m, n} € Edges}

TypeOK = A mom € [Nodes — Nodes]
A dist € [Nodes — Nat]
AYe € Edges: (e C Nodes) A (Cardinality(e) = 2)

Init = A mom = [n € Nodes — n]
A dist = [n € Nodes — IF n = Root THEN 0 ELSE MazCardinality]
Next = dn € Nodes :

Im € Nbrs(n) :
A dist[m] < 1+ dist[n]
A3d € (distfm]+ 1) .. (dist[n] — 1) :

A dist’ = [dist EXCEPT ![n]
A mom’ = [mom EXCEPT ![n] =

Ll
E

Spec = Init A O[Next]yars A WEF yors (Next)

1

PostCondition =
Vn € Nodes :

V A n = Root
A dist[n] =0
A mom[n] =n

V A dist[n] = MaxCardinality
A mom[n] =n
AV m € Nbrs(n) : distim] = MaxCardinality

V Adist[n] € 1.. (MaxCardinality — 1)
A mom[n] € Nbrs(n)
A dist[n] = dist[mom[n]] + 1

Safety = O((—ENABLED Neat) = PostCondition)

Liveness = < PostCondition
Model Model_1 has TLC check these correctness condition for a (randomly chosen) graph with
six nodes. On a few tries, it took T'LC an average of a little more than 30 seconds to do it.

I J
\ * Modification History

\ * Last modified Mon Jun 17 05:39:15 PDT 2019 by lamport
\ * Created Fri Jun 14 03:07:58 PDT 2019 by lamport

