
module Paxos
This is a high-level specification of the Paxos consensus algorithm. It refines the spec in module
Voting, which you should read before reading this module. In the Paxos consensus algorithm,
acceptors communicate by sending messages. There are additional processes called leaders. The
specification here essentially considers there to be a separate leader for each ballot number. We
can consider “leader” to be a role, where in an implementation there will be a finite number of
leader processes each of which plays infinitely many of these leader roles.

Note: The algorithm described here is the Paxos consensus algorithm. It is the crucial component
of the Paxos algorithm, which implements a fault-tolerant state machine using a sequence of
instances of the consensus algorithm. The Paxos algorithm is sometimes called MultiPaxos,
with the Paxos consensus algorithm being incorrectly called the Paxos algorithm. I’m afraid
I have contributed to this confusion by being lazy and calling the module “Paxos” instead of
“PaxosConsensus”. But incarnations of this module have already appeared, so I’m reluctant to
change its name now.

extends Integers

The constants and the assumptions about them are the same as for the Voting algorithm. However,
the second conjunct of the assumption, which asserts that any two quorums have a non-empty
intersection, is not needed for the Paxos consensus algorithm to implement the Voting algorithm.
The Voting algorithm, and it, do not satisfy consensus without that assumption.

constants Value, Acceptor , Quorum

assume ∧ ∀Q ∈ Quorum : Q ⊆ Acceptor
∧ ∀Q1, Q2 ∈ Quorum : Q1 ∩Q2 6= {}

Ballot
∆
= Nat

None
∆
= choose v : v /∈ Ballot

This defines None to be an unspecified value that is not a ballot number.

We now define Message toe be the set of all possible messages that can be sent in the algorithm.

In TLA+, the expression

(1) [type 7→ “1a”, bal 7→ b]

is a record r with two components, a type component, r .type, that equals “1a” and whose bal
component, r .bal , that equals b. The expression

(2) [type : {“1a”}, bal : Ballot ]

is the set of all records r with a components type and bal such that r .type is an element of {“1a”}
and r .bal is an element of Ballot . Since “1a” is the only element of {“1a”}, formula (2) is the set

of all elements (1) such that b ∈ Ballot .

The function of each type of message in the set Message is explained below with the action that
can send it.

Message
∆
=

[type : {“1a”}, bal : Ballot ]
∪ [type : {“1b”}, acc : Acceptor , bal : Ballot ,

mbal : Ballot ∪ { − 1}, mval : Value ∪ {None}]
∪ [type : {“2a”}, bal : Ballot , val : Value]
∪ [type : {“2b”}, acc : Acceptor , bal : Ballot , val : Value]
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We now declare the following variables:

maxBal − Is the same as the variable of that name in the Voting algorithm.

maxVBal

maxVal − As in the Voting algorithm, a vote is a 〈ballot , value〉 pair. The pair

〈maxVBal [a], maxVal{a]is the vote with

the largest ballot number cast by acceptor a.Tt equals

〈 − 1, None〉if a has not cast any vote.

msgs − The set of all messages that have been sent .

Messages are added to msgs when they are sent and are never removed .

An operation that is performed upon receipt of a message is represented

by an action that is enabled when the message is in msgs.This

simplifies the spec in the following ways :

−A message can be broadcast to multiple recipients by just adding

(a single copy of )it to msgs.

−Never removing the message automatically allows the possibility of

the same message being received twice.

Since we are considering only safety, there is no need to explicitly

model message loss.The safety part of the spec says only what

messages may be received and does not assert that any message actually

is received .Thus, there is no difference between a lost message and

one that is never received .

variables maxBal , maxVBal , maxVal , msgs
vars

∆
= 〈maxBal , maxVBal , maxVal , msgs〉

It’s convenient to name the tuple of all variables in a spec.

The invariant that describes the “types” of the variables.

TypeOK
∆
= ∧maxBal ∈ [Acceptor → Ballot ∪ { − 1}]
∧maxVBal ∈ [Acceptor → Ballot ∪ { − 1}]
∧maxVal ∈ [Acceptor → Value ∪ {None}]
∧msgs ⊆ Message

The initial predicate should be obvious from the descriptions of the variables given above.

Init
∆
= ∧maxBal = [a ∈ Acceptor 7→ − 1]
∧maxVBal = [a ∈ Acceptor 7→ − 1]
∧maxVal = [a ∈ Acceptor 7→ None]
∧msgs = {}

We now define the subactions of the next-state actions. We begin by defining an action that will

be used in those subactions. The action Send(m) asserts that message m is added to the set msgs.

Send(m)
∆
= msgs ′ = msgs ∪ {m}
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The ballot b leader can perform actions Phase1a(b) and Phase2a(b). In the Phase1a(b) action, it
sends to all acceptors a phase 1a message (a message m with m.type = “1a”) that begins ballot b.
Remember that the same process can perform the role of leader for many different ballot numbers
b. In practice, it will stop playing the role of leader of ballot b when it begins a higher-numbered
ballot. (Remember the definition of [type 7→ “1a”, bal 7→ b] from the comment preceding the

definition of Message.)

Phase1a(b)
∆
= ∧ Send([type 7→ “1a”, bal 7→ b])
∧ unchanged 〈maxBal , maxVBal , maxVal〉

Note that there is no enabling condition to prevent sending the phase 1a message a second
time. Since messages are never removed from msg, performing the action a second time leaves
msg and all the other spec variables unchanged, so it’s a stuttering step. Since stuttering steps
are always allowed, there’s no reason to try to prevent them.

Upon receipt of a ballot b phase 1a message, acceptor a can perform a Phase1b(a) action only if
b > maxBal [a]. The action sets maxBal [a] to b and sends a phase 1b message to the leader contain-
ing the values of maxVBal [a] and maxVal [a]. This action implements the IncreaseMaxBal(a, b)

action of the Voting algorithm for b = m.bal .

Phase1b(a)
∆
=

∧ ∃m ∈ msgs :
∧m.type = “1a”
∧m.bal > maxBal [a]
∧maxBal ′ = [maxBal except ! [a] = m.bal ]
∧ Send([type 7→ “1b”, acc 7→ a, bal 7→ m.bal ,

mbal 7→ maxVBal [a], mval 7→ maxVal [a]])
∧ unchanged 〈maxVBal , maxVal〉

In the Phase2a(b, v) action, the ballot b leader sends a type “2a” message asking the acceptors to
vote for v in ballot number b. The enabling conditions of the action–its first two conjuncts–ensure
that three of the four enabling conditions of action VoteFor(a, b, v) in module Voting will be true
when acceptor a receives that message. Those three enabling conditions are the second through
fourth conjuncts of that action.

The first conjunct of Phase2a(b, v) asserts that at most one phase 2a message is ever sent for
ballot b. Since an acceptor will vote for a value in ballot b only when it receives the appropriate
phase 2a message, the phase 2a message sent by this action this ensures that these two enabling
conjuncts of VoteFor(a, b, v) will be true forever:

∧ ∀ vt ∈ votes[a] : vt [1] 6= b

∧ ∀ c ∈ Acceptor \ {a} : ∀ vt ∈ votes[c] : (vt [1] = b) ⇒ (vt [2] = v)

The second conjunct of the Phase2a(b, v) action is the heart of the Paxos consensus algorithm.
It’s a bit complicated, but I’ve tried a number of times to write it in English, and it’s much easier
to understand when written in mathematics. The let /in construct locally defines Q1 to be the
set of phase 1b messages sent in ballot number b by acceptors in quorum Q ; and it defines Q1bv
to be the subset of those messages indicating that the sender had voted in some ballot (which
must have been numbered less than b). You should study the in clause to convince yourself
that it equals ShowsSafeAt(Q , b, v), defined in module Voting, using the values of maxBal [a],
maxVBal [a], and maxVal [a]a sent in its phase 1b message to describe what votes it had cast
when it sent that message. Moreover, since a will no longer cast any votes in ballots numbered
less than b, the in clause implies that ShowsSafeAt(Q , b, v) is still true and will remain true

forever. Hence, this conjunct of Phase2a(b, v) checks the enabling condition

∧ ∃Q ∈ Quorum : ShowsSafeAt(Q , b, v)
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of module Voting’s VoteFor(a, b, v) action.

The type “2a” message sent by this action therefore tells every acceptor a that, when it receives
the message, all the enabling conditions of VoteFor(a, b, v) but the first, maxBal [a] ≤ b, are

satisfied.

Phase2a(b, v)
∆
=

∧ ¬∃m ∈ msgs : m.type = “2a” ∧m.bal = b
∧ ∃Q ∈ Quorum :

let Q1b
∆
= {m ∈ msgs : ∧m.type = “1b”

∧m.acc ∈ Q
∧m.bal = b}

Q1bv
∆
= {m ∈ Q1b : m.mbal ≥ 0}

in ∧ ∀ a ∈ Q : ∃m ∈ Q1b : m.acc = a
∧ ∨Q1bv = {}
∨ ∃m ∈ Q1bv :
∧m.mval = v
∧ ∀mm ∈ Q1bv : m.mbal ≥ mm.mbal

∧ Send([type 7→ “2a”, bal 7→ b, val 7→ v ])
∧ unchanged 〈maxBal , maxVBal , maxVal〉

The Phase2b(a) action describes what acceptor a does when it receives a phase 2a message m,
which is sent by the leader of ballot m.bal asking acceptors to vote for m.val in that ballot.
Acceptor a acts on that request, voting for m.val in ballot number m.bal , iff m.bal ≥ maxBal [a],
which means that a has not participated in any ballot numbered greater than m.bal . Thus, this
enabling condition of the Phase2b(a) action together with the receipt of the phase 2a message m
implies that the VoteFor(a, m.bal , m.val) action of module Voting is enabled and can be executed.
The Phase2b(a) message updates maxBal [a], maxVBal [a], and maxVal [a] so their values mean

what they were claimed to mean in the comments preceding the variable declarations.

Phase2b(a)
∆
=

∃m ∈ msgs :
∧m.type = “2a”
∧m.bal ≥ maxBal [a]
∧maxBal ′ = [maxBal except ! [a] = m.bal ]
∧maxVBal ′ = [maxVBal except ! [a] = m.bal ]
∧maxVal ′ = [maxVal except ! [a] = m.val ]
∧ Send([type 7→ “2b”, acc 7→ a,

bal 7→ m.bal , val 7→ m.val ])

The definitions of Next and Spec are what we expect them to be.

Next
∆
= ∨ ∃ b ∈ Ballot : ∨ Phase1a(b)

∨ ∃ v ∈ Value : Phase2a(b, v)
∨ ∃ a ∈ Acceptor : Phase1b(a) ∨ Phase2b(a)

Spec
∆
= Init ∧2[Next ]vars
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We define votes to be the function such that votes[a] is the set of pairs 〈b, v〉 such that acceptor
a has voted for v in ballot number b by sending executing the Phase2b(a) action to send the
appropriate type “2b” message. The Paxos consensus algorithm implements the Voting algorithm
by implementing the variable votes of module Voting with the expression votes of the current
module, and implementing the variable maxBal of module Voting with the variable of the same
name of the current module.

votes
∆
=

[a ∈ Acceptor 7→
{〈m.bal , m.val〉 : m ∈ {mm ∈ msgs : ∧mm.type = “2b”

∧mm.acc = a}}]
The following instance statement omits the redundant clause

with votes ← votes, maxBal ← maxBal ,

Value ← Value, Acceptor ← Acceptor , Quorum ← Quorum

V
∆
= instance Voting

The inductive invariant Inv explains why the Paxos consensus algorithm implements the Voting
algorithm. It is defined after the instance statement because it uses the operator V !ShowsSafeAt
imported by that statement.

Inv
∆
=

∧ TypeOK
∧ ∀ a ∈ Acceptor : maxBal [a] ≥ maxVBal [a]
∧ ∀ a ∈ Acceptor : if maxVBal [a] = − 1

then maxVal [a] = None
else 〈maxVBal [a], maxVal [a]〉 ∈ votes[a]

∧ ∀m ∈ msgs :
∧ (m.type = “1b”)⇒ ∧maxBal [m.acc] ≥ m.bal

∧ (m.mbal ≥ 0)⇒
〈m.mbal , m.mval〉 ∈ votes[m.acc]

∧ (m.type = “2a”) ⇒ ∧ ∃Q ∈ Quorum :
V !ShowsSafeAt(Q , m.bal , m.val)

∧ ∀mm ∈ msgs : ∧mm.type = “2a”
∧mm.bal = m.bal
⇒ mm.val = m.val

∧ (m.type = “2b”)⇒ ∧maxVBal [m.acc] ≥ m.bal
∧ ∃mm ∈ msgs : ∧mm.type = “2a”

∧mm.bal = m.bal
∧mm.val = m.val

The following two theorems assert that Inv is an invariant of the Paxos cconsensus algorithm and
that this algorithm implements the Voting algorithm with the declared variables and constants of
that algorithm implemented by the correspondingly-named expressions in the current module.

theorem Invariance
∆
= Spec ⇒ 2Inv

theorem Implementation
∆
= Spec ⇒ V !Spec
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The assume statement of this module trivial implies trivially implies the instantiated version
of the assume statement of module Voting. (Because the instance statement substitutes the
constants of the current module for the constants of the same name in module Voting, the imported
assumption is the same as the assumption of the current module.) Hence, this theorem imported

from module Voting is true in the current module

theorem V ! Implementation
∆
= V !Spec ⇒ V !C !Spec

Theorems Implementation and V ! Implementation imply

theorem Spec ⇒ V !C !Spec

This theorem asserts that the Paxos consensus algorithm implements the Consensus specification
by substituting for the variable chosen of the Consensus specification the value V !chosen of the
current module. The expression V !chosen is obtained by substituting the expression votes of
the current module for the variable votes of module Voting in the expression chosen of module
Voting.

In other words, as we should expect, “implements” is a transitive relation–under a suitable un-
derstanding of what transitivity means in this situation.

This current module is distributed with two models, TinyModel and SmallModel . SmallModel is
the same as the model by that name for the Voting specification. TinyModel is the same except
it defines Ballot to contain only two elements. Run TLC on these models. You should find that
it takes a couple of seconds to run TinyModel and two or three minutes to run SmallModel .

Next, try the same thing you did with the Voting algorithm: Modify the models so the assumption
that any pair of quorums has an element in common is no longer true. (Again, it’s best to
modify clones of the models.) This time, running TLC will not find an error. The correctness
of theorems Invariance and Implementation does not depend on that assumption. The Paxos
consensus algorithm still correctly implements the Voting algorithm; but the Voting algorithm is
incorrect if the assumption does not hold.

Now go back to the original SmallModel , in which the quorum assumption holds. The sets
Acceptor and Value are symmetry sets for the spec. (See the “Model Values and Symmetry” help
page to find out what that means.) Try editing the values substituted for Acceptor and/or Value
by selecting the “Symmetry set” option and comparing the number of reachable states TLC found
and the time it took. (Remember to use cloned models.)

When you have other things to do while TLC is running, try increasing the size of the model
a very little bit at a time and see how the running time increases. You’ll find that it increases
exponentially with the numbers of acceptors, values, and ballots.

Fortunately, exhaustively checking a small model is very effective at finding errors. Since the
Paxos consensus algorithm has been proved correct, and that proof has been read by many
people, I’m sure that the basic algorithm is correct. Checking this spec on SmallModel makes me
quite confident that there are no “coding errors” in this TLA+ specification of the algorithm.

For checking safety properties, TLC can obtain close to linear speedup using dozens of processors.
After designing a new distributed algorithm, you will have plenty of time to run TLC while the
algorithm is being implemented and the implementation tested. Use that time to run it for as
long as you can on the largest machine(s) that you can. Testing the implementation is unlikely

to find subtle errors in the algorithm.
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