
module SpanTree

This is an algorithm to compute a spanning tree of an undirected graph with a given root. Look
up “spanning tree” on the Web to see what that means. You may find pages for finding spanning
trees of graphs with weighted edges. The algorithm here effectively assumes each edge has weight
1.

A rooted tree is usually described by a set of nodes with a parent/child relation, where the root
is the oldest ancestor of all other nodes. The algorithm computes this relation as a function mom
where mom[n] equals the parent of node n, except that if n is the root then mom[n] = n. If the
graph is not connected, then the rooted tree does not contain nodes of the graph that have no
path to the root. Such nodes n will have mom[n] = n.

A simple algorithm to compute the rooted spanning tree computes a function dist where dist [n]
is the distance of node n from the root. Initially, dist [n] equals 0 if n is the root and otherwise
equals infinity. The algorithm repeatedly performs the following action. It chooses an arbitrary
node n that has a neighbor m such that dist [n] > dist [m] + 1, and it sets dist [n] to dist [m] + 1.

For simplicity, we assume that we’re also given a number MaxCardinality that’s greater than or
equal to the number of nodes, and we use MaxCardinality instead of infinity. For a reason to be
given below, we also modify the algorithm as follows. For a node n with dist [n] > dist [m} + 1,
instead of setting dist [n] to dist [m] + 1 the algorithm sets it to an arbitrary number d such that

dist [n] > d ≥ dist [m}+ 1.

extends Integers, FiniteSets

We represent the graph by a set of Nodes of nodes and a set Edges of edges. We assume that
there are no edges from a node to itself and there is at most one edge joining any two nodes. We
represent an edge joining nodes m and n by the set {m, n}. We let Root be the root node.

constants Nodes, Edges, Root , MaxCardinality

This assumption asserts mathematically what we are assuming about the constants.

assume ∧ Root ∈ Nodes
∧ ∀ e ∈ Edges : (e ⊆ Nodes) ∧ (Cardinality(e) = 2)
∧MaxCardinality ∈ Nat
∧MaxCardinality ≥ Cardinality(Nodes)

This defines Nbrs(n) to be the set of neighbors of node n in the graph–that is, the set of nodes

joined by an edge to n.

Nbrs(n)
∆
= {m ∈ Nodes : {m, n} ∈ Edges}

The spec is a straightforward TLA+ spec of the algorithm described above.

variables mom, dist
vars

∆
= 〈mom, dist〉

TypeOK
∆
= ∧mom ∈ [Nodes → Nodes]
∧ dist ∈ [Nodes → Nat ]

Init
∆
= ∧mom = [n ∈ Nodes 7→ n]
∧ dist = [n ∈ Nodes 7→ if n = Root then 0 else MaxCardinality ]

Next
∆
= ∃n ∈ Nodes :

∃m ∈ Nbrs(n) :
∧ dist [m] < 1 + dist [n]

1



∧ ∃ d ∈ (dist [m] + 1) . . (dist [n]− 1) :
∧ dist ′ = [dist except ! [n] = d ]
∧mom ′ = [mom except ! [n] = m]

Spec
∆
= Init ∧2[Next ]vars ∧WFvars(Next)

The formula WF vars(Next) asserts that a behavior must not stop if it’s possible to take a
Next step. Thus, the algorithm must either terminate (because Next equals false for all values
of dist ′ and mom ′) or else it continues taking Next steps forever. Don’t worry about it if you

haven’t learned how to express liveness in TLA+.

A direct mathematical definition of exactly what the function mom should be is somewhat com-
plicated and cannot be efficiently evaluated by TLC . Here is the definition of a postcondition (a
condition to be satisfied when the algorithm terminates) that implies that mom has the correct

value.

PostCondition
∆
=

∀n ∈ Nodes :
∨ ∧ n = Root
∧ dist [n] = 0
∧mom[n] = n

∨ ∧ dist [n] = MaxCardinality
∧mom[n] = n
∧ ∀m ∈ Nbrs(n) : dist [m] = MaxCardinality

∨ ∧ dist [n] ∈ 1 . . (MaxCardinality − 1)
∧mom[n] ∈ Nbrs(n)
∧ dist [n] = dist [mom[n]] + 1

enabled Next is the TLA+ formula that is true of a state iff (if and only if) there is a step satis-
fying Next starting in the state. Thus, ¬enabled Next asserts that the algorithm has terminated.
The safety property that algorithm should satisfy, that it’s always true that if the algorith has
terminated then PostCondition is true, is asserted by this formula.

Safety
∆
= 2((¬enabled Next)⇒ PostCondition)

This formula asserts the liveness condition that the algorithm eventually terminates

Liveness
∆
= 3(¬enabled Next)

These properties of the spec can be checked with the model that should have come with this file.
That model has TLC check the algorithm satisfies properties Safety and Liveness for a single
simple graph with 6 nodes. You should clone that model and change it to try a few different
graphs. However, this is tedious. There are two better ways to have TLC check the spec. The
best is to try it on all graphs with a given number of nodes. The spec with root file SpanTreeTest
does this. It can very quickly check all graphs with 4 nodes. It takes about 25 minutes on my
laptop to check all graphs with 5 nodes. TLC will probably run out of space after running for a
long time if I tried it for all graphs with 6 nodes. The spec SpanTreeRandom tests the algorithm
for a randomly chosen graph with a given set of nodes. This allows you easily to repeatedly check
different graphs.

2



As a problem, you can now specify an algorithm that is a distributed implementation of this
algorithm. We can view the algorithm in the current module as one in which a node n sets its
value of dist [n] by directly reading the values of dist [m] from all its neighbors m. Your problem is
to write an algorithm in which nodes learn the values of dist [m] from a neighbor m by receiving
messages sent by m. The root r sends an initial message informing its neighbors that dist [r ] = 0.
Subsequently, each node n sends a message containing dist [n] to all its neighbors whenever its

value of dist [n] changes.

Your algorithm should have variables mom and dist that implement the variables of the same
name in the current algorithm. (Hence, it should implement the current algorithm with a trivial
refinement mapping assigning to every variable and constant the variable or constant of the same
name.) You can use TLC to check that your algorithm does indeed implement the algorithm in

the current module.

You may not know how to write a suitable liveness condition for your algorithm. (To find out
how, you would have to look through the available TLA+ documentation.) In that case, just
write a safety specification of the form Init ∧2[Next ] vars and modify formula Spec of the current

module by comment out the ∧WF vars(Next) conjunction so it too becomes a safey spec.

When writing your algorithm, you should realize why the Next action in the current module
doesn’t just set dist [n] to dist [m]+1 rather than allowing it to be set to any value in (dist [m]+1)

. . (dist [n]− 1) . If you don’t see why, use TLC to find out for you.

\ * Modification History

\ * Last modified Mon Jun 17 05:52:09 PDT 2019 by lamport

\ * Created Fri Jun 14 03:07:58 PDT 2019 by lamport

3


