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Introduction

Writing is nature's way of letting you

know how sloppy your thinking is.

Guindon

Writing a speci�cation for a system helps us understand it. It's a good idea to

understand something before you build it, so it's a good idea to specify a system

before you implement it.

Mathematics is nature's way of letting you know how sloppy your writing is.

Speci�cations written in an imprecise language like English are usually imprecise.

In engineering, imprecision is an invitation to error. Science and engineering

have adopted mathematics as a language for writing precise descriptions.

Formal mathematics is nature's way of letting you know how sloppy your

mathematics is. The mathematics written by most mathematicians and scien-

tists is still imprecise. Most mathematics texts are precise in the small, but

imprecise in the large. Each equation is a precise assertion, but you have to

read the text to understand how the equations relate to one another, and what

the theorems really mean. Logicians have developed ways of eliminating the

words and formalizing mathematics.

Most mathematicians and computer scientists think that writing mathemat-

ics formally, without words, is tiresome. They're wrong. Ordinary mathematics

can be expressed very compactly in a precise, completely formal language. For

example, Chapter 11 shows how to de�ne the solution to an arbitrary di�eren-

tial equation in a couple of dozen lines. But you're unlikely ever to need such

sophisticated mathematics. The math used in most speci�cations is very simple

and quite easy to express.

To specify systems with math, we must decide what kind of math to use. We

can specify an ordinary sequential program by describing its output as a function

of its input. So, sequential programs can be speci�ed in terms of functions.

Concurrent systems are usually described in terms of their behaviors|what

they do in the course of an execution. In 1977, Amir Pnueli introduced the use

of temporal logic for describing such behaviors.

Temporal logic is appealing because, in principle, it allows a concurrent sys-

tem to be described by a single formula. In practice, temporal logic proved to be

1
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cumbersome. Pnueli's temporal logic was ideal for describing some properties of

systems, but awkward for others. So, it was usually combined with some more

traditional way of describing systems.

In the late 1980's, I discovered TLA, the Temporal Logic of Actions. TLA

is a simple variant of Pnueli's original logic that makes it practical to write

a speci�cation as a single formula. Most of a TLA speci�cation consists of

ordinary, nontemporal mathematics. Temporal logic plays a signi�cant role only

in describing those properties that it's good at describing. TLA also provides a

nice way to formalize the style of reasoning about systems that has proved to

be most e�ective in practice|a style known as assertional reasoning. However,

this book is about speci�cation, not proof, so it says little about proofs.

TLA provides a mathematical foundation for describing concurrent systems.

To write speci�cations, we need a complete language built atop that foundation.

I initially thought that this language should be some sort of abstract program-

ming language whose semantics would be based on TLA. I didn't know what

kind of programming language constructs would be best, so I decided to start

writing speci�cations directly in TLA. I intended to introduce programming

constructs as I needed them. To my surprise, I discovered that I didn't need

them. What I needed was a robust language for writing mathematics.

Although mathematicians have developed the science of writing formulas,

they haven't turned that science into an engineering discipline. They have de-

veloped notations for mathematics in the small, but not for mathematics in the

large. The speci�cation of a real system can be dozens or even hundreds of pages

long. Mathematicians know how to write 20-line formulas, not 20-page formulas.

So, I had to introduce notations for writing long formulas. What I took from

programming languages were ideas for modularizing large speci�cations.

The language I came up with is called TLA+. I re�ned TLA+ in the course

of writing speci�cations of disparate systems. But it has changed little in the

last few years. I have found TLA+ to be quite good for specifying a wide class

of systems|from program interfaces (APIs) to distributed systems. It can be

used to write a precise, formal description of almost any sort of discrete system.

It's especially well suited to describing asynchronous systems|that is, systems

with components that do not operate in strict lock-step.

One advantage of a precise speci�cation language is that it enables us to

build tools that can help us write correct speci�cations. Part III of this book

describes two such tools: a parser and a model checker. The parser can catch

simple errors in any TLA+ speci�cation. The model checker can catch many

more errors, but it works on a restricted class of speci�cations|a class that

seems to include most of the speci�cations of interest to industry today.
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The State of this Document

This document is a preliminary draft. Here is a brief description of the individual

parts what and who should read them.

Part I

These chapters are complete and shouldn't have too many errors. They are an

introduction and should be read by everyone interested in using TLA+. They

explain how to specify the class of properties known as safety properties. These

properties, which can be speci�ed with almost no temporal logic, are all that

most engineers need to know about.

Part II

Temporal logic comes to the fore in Chapter 8, where it is used to specify the

additional class of properties known as liveness properties. This chapter is in

pretty good shape, but probably has more errors per page than the preceding

chapters. The remaining chapters in this part are rough drafts and are full of

errors. Chapter 9 describes how to specify real-time properties, and Chapter 10

describes how to write speci�cations as compositions. Chapter 11 describes some

more advanced examples.

Part III

This part describes the parser, the TLATEX typesetting program, and the TLC

model checker. If you are reading this because you want to use TLA+, then

you'll probably want to use these tools and should read these chapters. They

still have lots of errors. Before trying to use TLC be sure to read Section 14.6

on page 256; it describes limitations of the current version of the program.

Part IV

This part is a reference manual for the language. Only one person other than

me has read it carefully, so it is undoubtedly full of errors. Part I should give

you a good enough working knowledge of the language for most of your needs.

Part IV describes the �ne points of the syntax and semantics; it also describes

the standard modules. Chapter 15 gives the syntax of TLA+ and includes a

BNF grammar (written in TLA+). Chapter 16 describes the precise meanings

and the general forms of all the built-in operators of TLA+. It should answer

any questions you might have about exactly what a TLA+ operator means.

Chapter 17 describes the precise meaning of all the higher-level TLA+constructs,

such as de�nitions and module inclusion. Chapters 16 and 17 together specify the

semantics of the language. Chapter 18 describes the standard modules|except



4 LIST OF TABLES

for module RealTime, described in Chapter 9, and module TLC , described in

Chapter 14. You might want to look at this chapter if you're curious about how

standard elementary mathematics can be formalized in TLA+.

You will seldom have occasion to read any of Part IV. However, it does

have something you may want to refer to often: a mini-manual that compactly

presents lots of useful information. Pages 266{271 list all TLA+ operators, all

user-de�nable symbols, the precedence of all operators, all operators de�ned in

the standard modules, and the ascii representation of symbols like 
.

The Appendix

The speci�cations that appear in the book are typeset for easy reading by hu-

mans. To be processed by a tool, a speci�cation must be written in a machine-

readable form. The appendix includes the ascii versions of all the speci�cations

in Part I, as well as the speci�cations from Chapter 14. Comparing the ascii and

the typeset versions can teach you how to write TLA+ speci�cations in ascii.



Part I

Getting Started

5
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A system speci�cation consists of a lot of ordinary mathematics glued to-

gether with a tiny bit of temporal logic. That's why most TLA+ constructs

are for expressing ordinary mathematics. To write speci�cations, you have to

be familiar with this ordinary math. Unfortunately, the computer science de-

partments in many universities apparently believe that uency in C++ is more

important than a sound education in elementary mathematics. So, some readers

may be unfamiliar with the math needed to write speci�cations. Fortunately,

this math is quite simple. If exposure to C++ hasn't destroyed your ability to

think logically, you should have no trouble �lling any gaps in your mathematics

education. You probably learned arithmetic before learning C++, so I will as-

sume you know about numbers and arithmetic operations on them.1 I will try

to explain all other mathematical concepts that you need, starting in Chapter 1

with a review of some elementary math. I hope most readers will �nd this review

completely unnecessary.

After the brief review of simple mathematics in the �rst chapter, Chapters

2 through 5 describe TLA+ with a sequence of examples. Chapter 6 explains

some more about the math used in writing speci�cations, and Chapter 7 reviews

everything and provides some advice. By the time you �nish Chapter 7, you

should be able to handle most of the speci�cation problems that you are likely

to encounter in ordinary engineering practice.

1Some readers may need reminding that numbers are not strings of bits, and 233 � 233

equals 266, not overow error.
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Chapter 1

A Little Simple Math

1.1 Propositional Logic

Elementary algebra is the mathematics of real numbers and the operators +,

�, � (multiplication), and = (division). Propositional logic is the mathematics

of the two Boolean values true and false and the �ve operators whose names

(and common pronunciations) are:

^ conjunction (and)

_ disjunction (or)

: negation (not)

) implication (implies)

� equivalence (is equivalent to)

To learn how to compute with numbers, you had to memorize addition and

multiplication tables and algorithms for calculating with multidigit numbers.

Propositional logic is much simpler, since there are only two values, true and

false. To learn how to compute with these values, all you need to know are the

following de�nitions of the �ve Boolean operators:

^ F ^G equals true i� both F and G equal true. i� stands for if

and only if. Like

most mathemati-

cians, I use or to

mean and/or.

_ F _G equals true i� F or G equals true (or both do).

: :F equals true i� F equals false.

) F ) G equals true i� F equals false or G equals true (or both).

� F � G equals true i� F and G both equal true or both equal false.

9
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We can also describe these operators by truth tables. This truth table gives the

value of F ) G for all four combinations of truth values of F and G :

F G F ) G

true true true

true false false

false true true

false false true

The formula F ) G asserts that F implies G|that is, F ) G equals true

i� the statement \F implies G" is true. People often �nd the de�nition of

) confusing. They don't understand why false) true and false) false

should equal true. The explanation is simple. We expect that if n is greater

than 3 then it should be greater than 1, so n > 3 should imply n > 1. Therefore,

the formula (n > 3)) (n > 1) should equal true. Substituting 4, 2, and 0 for

n in this formula explains why F ) G means F implies G or, equivalently, if

F then G .

The equivalence operator � is equality for Booleans. We can replace � by

=, but not vice versa. (We can write false = :true, but not 2 + 2 � 4.) It's

a good idea to write � instead of = to make it clear that the equal expressions

are Booleans.1

Just like formulas of algebra, formulas of propositional logic are made up

of values, operators, and identi�ers like x that stand for values. However,

propositional-logic formulas use only the two values true and false and the

�ve Boolean operators ^, _, :, ), and �. In algebraic formulas, � has higher
precedence (binds more tightly) than +, so x+y�z means x+(y�z ). Similarly, :
has higher precedence than ^ and _, which have higher precedence than ) and

�, so :F ^G ) H means ((:F ) ^G)) H . Other mathematical operators like

+ and > have higher precedence than the operators of propositional logic, so

n > 0) n � 1 � 0 means (n > 0)) (n � 1 � 0). Redundant parentheses can't

hurt and often make a formula easier to read. If you have the slightest doubt

about whether parentheses are needed, use them.

The operators ^ and _ are associative, just like + and �. Associativity of +
means that x + (y + z ) equals (x + y) + z , so we can write x + y + z without

parentheses. Similarly, associativity of ^ and _ lets us write F ^ G ^ H or

F _G _H . Like + and �, the operators ^ and _ are also commutative, so F ^G
is equivalent to G ^ F , and F _G is equivalent to G _ F .

The truth of the formula (x = 2) ) (x + 1 = 3) expresses a fact about

numbers. To determine that it's true, we have to understand some elementary

properties of arithmetic. However, we can tell that (x = 2)) (x = 2)_ (y > 7)

is true even if we know nothing about numbers. This formula is true because

F ) F _ G is true, regardless of what the formulas F and G are. In other

1Section 16.1.3 explains a more subtle reason for using � instead of = for equality of

Boolean values.
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words, F ) F _ G is true for all possible truth values of its identi�ers F and

G . Such a formula is called a tautology.

In general, a tautology of propositional logic is a propositional-logic formula

that is true for all possible truth values of its identi�ers. Simple tautologies like

this should be as obvious as simple algebraic properties of numbers. It should

be as obvious that F ) F _ G is a tautology as that x � x + y is true for all

non-negative numbers x and y . One can derive complicated tautologies from

simpler ones by calculations, just as one derives more complicated properties of

numbers from simpler ones. However, this takes practice. You've spent years

learning how to manipulate number-valued expressions|for example, to deduce

that x � �x+y holds i� 2�x � y does. You probably haven't learned to deduce

that :F _G holds i� F ) G does.

If you haven't learned to manipulate Boolean-valued expressions, you will

have to do the equivalent of counting on your �ngers. You can check if a formula

is a tautology by calculating whether it equals true for each possible assignment

of Boolean values to its variables. This is best done by constructing a truth table

that lists the possible assignments of values to variables and the corresponding

values of all subformulas. For example, here is the truth table showing that

(F ) G) � (:F _G) is a tautology.

F G F ) G :F :F _G (F ) G) � :F _G
true true true false true true

true false false false false true

false true true true true true

false false true true true true

Writing truth tables is a good way to improve your understanding of proposi-

tional logic. However, computers are better than people at doing this sort of

calculation. There are a number of programs for verifying propositional logic

tautologies; some of them can be found and used on the World Wide Web.

1.2 Sets

Set theory is the foundation of ordinary mathematics. A set is often described

as a collection of elements, but saying that a set is a collection doesn't explain

very much. The concept of set is so fundamental that we don't try to de�ne

it. We take as unde�ned concepts the notion of a set and the relation 2, where
x 2 S means that x is an element of S . We often say is in instead of is an

element of.

A set can have a �nite or in�nite number of elements. The set of all natural

numbers (0, 1, 2, etc.) is an in�nite set. The set of all natural numbers less than

3 is �nite, and contains the three elements 0, 1, and 2. We can write this set

f0; 1; 2g.
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A set is completely determined by its elements. Two sets are equal i� they

have the same elements. Thus, f0; 1; 2g and f2; 1; 0g and f0; 0; 1; 2; 2g are all the
same set|the unique set containing the three elements 0, 1, and 2. The empty

set, which we write fg, is the unique set that has no elements.
The most common operations on sets are:

\ intersection [ union � subset n set di�erence

Here are their de�nitions and examples of their use:

S \ T The set of elements in both S and T .

f1; �1=2; 3g \ f1; 2; 3; 5; 7g = f1; 3g

S [ T The set of elements in S or T (or both).

f1; �1=2g [ f1; 5; 7g = f1; �1=2; 5; 7g

S � T True i� every element of S is an element of T .

f1; 3g � f3; 2; 1g

S nT The set of elements in S that are not in T .

f1;�1=2; 3g n f1; 5; 7g = f�1=2; 3g

This is all you need to know about sets before we start looking at how to specify

systems. We'll return to set theory in Section 6.1.

1.3 Predicate Logic

Once we have sets, it's natural to say that some formula is true for all the

elements of a set, or for some of the elements of a set. Predicate logic extends

propositional logic with the two quanti�ers:

8 universal quanti�cation (for all)

9 existential quanti�cation (there exists)

The formula 8 x 2 S : F asserts that formula F is true for every element x in the

set S . For example, 8n 2 Nat : n + 1 > n asserts that the formula n + 1 > n is

true for all elements n of the set Nat of natural numbers. This formula happens

to be true.

The formula 9 x 2 S : F asserts that formula F is true for at least one ele-

ment x in S . For example, 9n 2 Nat : n2 = 2 asserts that there exists a natural

number n whose square equals 2. This formula happens to be false.

Formula F is true for some x 2 S i� F is not false for all x 2 S|that is, i�

it's not the case that :F is true for all x 2 S . Hence, the formula

(9 x 2 S :F ) � :(8 x 2 S ::F )(1.1)
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is a tautology of predicate logic.2

Since there exists no element in the empty set, the formula 9 x 2 fg :F is

false for every formula F . By (1.1), this implies that 8 x 2 fg :F must be true

for every F .

The quanti�cation in the formulas 8 x 2 S :F and 9 x 2 S :F is said to be

bounded, since these formulas make an assertion only about elements in the set

S . There is also unbounded quanti�cation. The formula 8 x :F asserts that F

is true for all values x , and 9 x :F asserts that F is true for at least one value

of x|a value that is not constrained to be in any particular set. Bounded and

unbounded quanti�cation are related by the following tautologies:

(8 x 2 S :F ) � (8 x : (x 2 S )) F )

(9 x 2 S :F ) � (9 x : (x 2 S ) ^ F )

The analog of (1.1) for unbounded quanti�ers is also a tautology:

(9 x :F ) � :(8 x ::F )

Whenever possible, it is better to use bounded than unbounded quanti�cation

in a speci�cation. This makes the speci�cation easier for both people and tools

to understand.

Universal quanti�cation generalizes conjunction. If S is a �nite set, then

8 x 2 S :F is the conjunction of the formulas obtained by substituting the dif-

ferent elements of S for x in F . For example,

(8 x 2 f2; 3; 7g : x < yx ) � (2 < y2) ^ (3 < y3) ^ (7 < y7)

We sometimes informally talk about the conjunction of an in�nite number of

formulas when we formally mean a universally quanti�ed formula. For example,

the conjunction of the formulas x � yx for all natural numbers x is the formula

8 x 2 Nat : x � yx . Similarly, existential quanti�cation generalizes disjunction.

Logicians have rules for proving predicate-logic tautologies such as (1.1), but

you shouldn't need them. You should become familiar enough with predicate

logic that simple tautologies are obvious. Thinking of 8 as conjunction and 9
as disjunction can help. For example, the associativity and commutativity of

conjunction and disjunction lead to the tautologies:

(8 x 2 S : F ) ^ (8 x 2 S : G) � (8 x 2 S : F ^G)

(9 x 2 S : F ) _ (9 x 2 S : G) � (9 x 2 S : F _G)

for any set S and formulas F and G .

Mathematicians use some obvious abbreviations for nested quanti�ers. For

example:

2Strictly speaking, 2 isn't an operator of predicate logic, so this isn't really a predicate-logic

tautology.
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8 x 2 S ; y 2 T : F means 8 x 2 S : (8 y 2 T :F )

9w ; x ; y ; z 2 S : F means 9w 2 S : (9 x 2 S : (9 y 2 S : (9 z 2 S :F )))

In the expression 9 x 2 S : F , logicians say that x is a bound variable and

that occurrences of x in F are bound. For example, n is a bound variable in the

formula 9n 2 Nat : n + 1 > n, and the two occurrences of n in the subexpression

n + 1 > n are bound. A variable x that's not bound is said to be free, and

occurrences of x that are not bound are called free occurrences. This terminology

is rather misleading. A bound variable doesn't really occur in a formula because

replacing it by some new variable doesn't change the formula. The two formulas

9n 2 Nat : n + 1 > n 9 x 2 Nat : x + 1 > x

are equivalent. Calling n a variable of the �rst formula is a bit like calling

a a variable of that formula because it appears in the name Nat . Although

misleading, this terminology is common and often convenient.

1.4 Formulas and Language

When you �rst studied mathematics, formulas were statements. The formula

2 � x > x was just a compact way of writing the statement \2 times x is greater

than x ." In this book, you are entering the realm of logic, where a formula is a

noun. The formula 2�x > x is just a formula; it may be true or false, depending

on the value of x . If we want to assert that this formula is true, meaning that

2 � x really is greater than x , we should explicitly write \2 � x > x is true."

Using a formula in place of a statement can lead to confusion. On the

other hand, formulas are more compact and easier to read than prose. Reading

2 � x > x is easier than reading \2 � x is greater than x", and \2 � x > x is true"

may seem redundant. So, like most mathematicians, I will sometimes write a

sentence like:

We know that x is positive, so 2 � x > x .

If it's not obvious whether a formula is really a formula or is the statement

that the formula is true, here's an easy way to tell. Replace the formula with

a name and read the sentence. If the sentence is grammatically correct, even

though nonsensical, then the formula is a formula; otherwise, it's a statement.

The formula 2 � x > x in the sentence above is a statement because

We know that x is positive, so Mary.

is ungrammatical. It is a formula in the sentence

To prove 2 � x > x , we must prove that x is positive.

because the following silly sentence is grammatically correct:

To prove Fred, we must prove that x is positive.



Chapter 2

Specifying a Simple Clock

2.1 Behaviors

Before we try to specify a system, let's look at how scientists do it. For centuries,

they have described a system with equations that determine how its state evolves

with time, where the state consists of the values of variables. For example, the

state of the system comprising the earth and the moon might be described by

the values of the four variables e pos , m pos , e vel , and m vel , representing the

positions and velocities of the two bodies. These values are elements in a 3-

dimensional space. The earth-moon system is described by equations expressing

the variables' values as functions of time and of certain constants|namely, their

masses and initial positions and velocities.

A behavior of the earth-moon system consists of a function F from time

to states, F (t) representing the state of the system at time t . A computer

system di�ers from the systems traditionally studied by scientists because we can

pretend that its state changes in discrete steps. So, we represent the execution

of a system as a sequence of states. Formally, we de�ne a behavior to be a

sequence of states, where a state is an assignment of values to variables. We

specify a system by specifying a set of possible behaviors|the ones representing

a correct execution of the system.

2.2 An Hour Clock

Let's start with a very trivial system|a digital clock that displays only the

hour. To make the system completely trivial, we ignore the relation between the

display and the actual time. The hour clock is then just a device whose display

cycles through the values 1 through 12. Let the variable hr represent the clock's

15
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display. A typical behavior of the clock is the sequence

[hr = 11] ! [hr = 12] ! [hr = 1] ! [hr = 2] ! � � �(2.1)

of states, where [hr = 11] is a state in which the variable hr has the value 11.

A pair of successive states, such as [hr = 1]! [hr = 2], is called a step.

To specify the hour clock, we describe all its possible behaviors. We write an

initial predicate that speci�es the possible initial values of hr , and a next-state

relation that speci�es how the value of hr can change in any step.

We don't want to specify exactly what the display reads initially; any hour

will do. So, we want the initial predicate to assert that hr can have any value

from 1 through 12. Let's call the initial predicate HCini . We might informally

de�ne HCini by:

HCini
�
= hr 2 f1; : : : ; 12g

Later, we'll see how to write this de�nition formally, without the \. . . " that

stands for the informal and so on.

The next-state relation HCnxt is a formula expressing the relation between

the values of hr in the old (�rst) state and new (second) state of a step. We

let hr represent the value of hr in the old state and hr 0 represent its value in

the new state. (The 0 in hr 0 is read prime.) We want the next-state relation to

assert that hr 0 equals hr + 1 except if hr equals 12, in which case hr 0 should

equal 1. Using an if/then/else construct with the obvious meaning, we can

de�ne HCnxt to be the next-state relation by writing:

HCnxt
�
= hr 0 = if hr 6= 12 then hr + 1 else 1

HCnxt is an ordinary mathematical formula, except that it contains primed as

well as unprimed variables. Such a formula is called an action. An action is true

or false of a step. A step that satis�es the action HCnxt is called an HCnxt step.

When an HCnxt step occurs, we sometimes say that HCnxt is executed.

However, it would be a mistake to take this terminology seriously. An action is

a formula, and formulas aren't executed.

We want our speci�cation to be a single formula, not the pair of formulas

HCini and HCnxt . This formula must assert about a behavior that (i) its initial

state satis�es HCini , and (ii) each of its steps satis�es HCnxt . We express (i) as

the formula HCini , which we interpret as a statement about behaviors to mean

that the initial state satis�es HCini . To express (ii), we use the temporal-logic

operator 2 (pronounced box ). The temporal formula 2F asserts that formula

F is always true. In particular, 2HCnxt is the assertion that HCnxt is true

for every step in the behavior. So, HCini ^ 2HCnxt is true of a behavior i�

the initial state satis�es HCini and every step satis�es HCnxt . This formula

describes all behaviors like the one in (2.1) on this page; it seems to be the

speci�cation we're looking for.
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If we considered the clock only in isolation, and never tried to relate it to

another system, then this would be a �ne speci�cation. However, suppose the

clock is part of a larger system|for example, the hour display of a weather

station that displays the current hour and temperature. The state of the sta-

tion is described by two variables: hr , representing the hour display, and tmp,

representing the temperature display. Consider this behavior of the weather

station:�
hr = 11

tmp = 23:5

�
!

�
hr = 12

tmp = 23:5

�
!

�
hr = 12

tmp = 23:4

�
!

�
hr = 12

tmp = 23:3

�
!

�
hr = 1

tmp = 23:3

�
! � � �

In the second and third steps, tmp changes but hr remains the same. These steps

are not allowed by 2HCnxt , which asserts that every step must increment hr .

The formula HCini ^ 2HCnxt does not describe the hour clock in the weather

station.

A formula that describes any hour clock must allow steps that leave hr

unchanged|in other words, hr 0 = hr steps. These are called stuttering steps of

the clock. A speci�cation of the hour clock should allow both HCnxt steps and

stuttering steps. So, a step should be allowed i� it is either an HCnxt step or

a stuttering step|that is, i� it is a step satisfying HCnxt _ (hr 0 = hr). This

suggests that we adopt HCini ^ 2(HCnxt _ (hr 0 = hr)) as our speci�cation.

In TLA, we let [HCnxt ]hr stand for HCnxt _ (hr 0 = hr), so we can write the I pronounce

[HCnxt ]hr as

square HCnxt sub

hr .

formula more compactly as HCini ^ 2[HCnxt ]hr .
The formula HCini ^ 2[HCnxt ]hr does allow stuttering steps. In fact, it

allows the behavior

[hr = 11] ! [hr = 12] ! [hr = 12] ! [hr = 12] ! � � �

that ends with an in�nite sequence of stuttering steps. This behavior describes

a clock whose display attains the value 12 and then keeps that value forever|in

other words, a clock that stops at 12. In a like manner, we can represent a

terminating execution of any system by an in�nite behavior that ends with a

sequence of nothing but stuttering steps. We have no need of �nite behaviors

(�nite sequences of states), so we consider only in�nite ones.

It's natural to require that a clock does not stop, so our speci�cation should

assert that there are in�nitely many nonstuttering steps. Chapter 8 explains

how to express this requirement. For now, we content ourselves with clocks that

may stop, and we take as our speci�cation of an hour clock the formula HC

de�ned by

HC
�
= HCini ^ 2[HCnxt ]hr
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2.3 A Closer Look at the Hour-Clock Speci�ca-

tion

A state is an assignment of values to variables, but what variables? The answer

is simple: all variables. In the behavior (2.1) on page 16, [hr = 1] represents

some particular state that assigns the value 1 to hr . It might assign the value

23 to the variable tmp and the value
p
�17 to the variable m pos . We can think

of a state as representing a potential state of the entire universe. A state that

assigns 1 to hr and a particular point in 3-space to m pos describes a state of the

universe in which the hour clock reads 1 and the moon is in a particular place.

A state that assigns
p
�2 to hr doesn't correspond to any state of the universe

that we recognize, because the hour-clock can't display the value
p
�2. It might

represent the state of the universe after a bomb fell on the clock, making its

display purely imaginary.

A behavior is an in�nite sequence of states|for example:

[hr = 11] ! [hr = 77:2] ! [hr = 78:2] ! [hr =
p
�2] ! � � �(2.2)

A behavior describes a potential history of the universe. The behavior (2.2)

doesn't correspond to a history that we understand, because we don't know how

the clock's display can change from 11 to 77.2. Whatever kind of history it

represents is not one in which the clock is doing what it's supposed to.

Formula HC is a temporal formula. A temporal formula is an assertion

about behaviors. We say that a behavior satis�es HC i� HC is a true assertion

about the behavior. Behavior (2.1) satis�es formula HC . Behavior (2.2) does

not, because HC asserts that every step satis�es HCnxt , and the �rst and third

steps of (2.2) don't. (The second step, [hr = 77:2] ! [hr = 78:2], does satisfy

HCnxt .) We regard formula HC to be the speci�cation of an hour clock because

it is satis�ed by exactly those behaviors that represent histories of the universe

in which the clock functions properly.

If the clock is behaving properly, then its display should be an integer from 1

through 12. So, hr should be an integer from 1 through 12 in every state of any

behavior satisfying the clock's speci�cation, HC . Formula HCini asserts that

hr is an integer from 1 through 12, and 2HCini asserts that HCini is always

true. So, 2HCini should be true for any behavior satisfying HC . Another way

of saying this is that HC implies 2HCini , for any behavior. Thus, the formula

HC ) 2HCini should be satis�ed by every behavior. A temporal formula

satis�ed by every behavior is called a theorem, so HC ) 2HCini should be a

theorem.1 It's easy to see that it is: HC implies that HCini is true initially (in

the �rst state of the behavior), and 2[HCnxt ]hr implies that each step either

advances hr to its proper next value or else leaves hr unchanged. We can

1Logicians call a formula valid if it is satis�ed by every behavior; they reserve the term

theorem for provably valid formulas.
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formalize this reasoning using the proof rules of TLA, but I'm not going to

delve into proofs and proof rules.

2.4 The Hour-Clock Speci�cation in TLA+

Figure 2.1 on the next page shows how the hour clock speci�cation can be written

in TLA+. There are two versions: the ascii version on the bottom is the actual

TLA+ speci�cation, the way you type it; the typeset version on top is one that

the TLATEX program, described in Chapter 13, might produce. Before trying

to understand the speci�cation, observe the relation between the two syntaxes:

� Reserved words that appear in small upper-case letters (like extends) are

written in ascii with ordinary upper-case letters.

� When possible, symbols are represented pictorially in ascii|for example,

2 is typed as [ ] and 6= as #. (You can also type 6= as /=.)

� When there is no good ascii representation, TEX notation [1] is used|for

example, 2 is typed as \in. The major exception is
�
=, which is typed as

==.

A complete list of symbols and their ascii equivalents appears in Table 8 on

page 271. I will usually show the typeset version of a speci�cation; the ascii

versions of the speci�cations in Chapters 3{5 appear in the Appendix.

Now let's look at what the speci�cation says. It starts with

module HourClock

which begins a module named HourClock . TLA+ speci�cations are partitioned

into modules; the hour clock's speci�cation consists of this single module.

Arithmetic operators like + are not built into TLA+, but are themselves

de�ned in modules. (You might want to write a speci�cation in which + means

addition of matrices rather than numbers.) The usual operators on natural

numbers are de�ned in the Naturals module. Their de�nitions are incorporated

into module HourClock by the statement

extends Naturals

Every symbol that appears in a formula must either be a built-in operator of

TLA+, or else it must be declared or de�ned. The statement

variable hr

declares hr to be a variable.



20 CHAPTER 2. SPECIFYING A SIMPLE CLOCK

module HourClock

extends Naturals

variable hr

HCini
�
= hr 2 (1 : : 12)

HCnxt
�
= hr 0 = if hr 6= 12 then hr + 1 else 1

HC
�
= HCini ^ 2[HCnxt ]hr

theorem HC ) 2HCini

---------------------- MODULE HourClock ----------------------

EXTENDS Naturals

VARIABLE hr

HCini == hr \in (1 .. 12)

HCnxt == hr' = IF hr # 12 THEN hr + 1 ELSE 1

HC == HCini /\ [][HCnxt]_hr

--------------------------------------------------------------

THEOREM HC => []HCini

==============================================================

Figure 2.1: The hour clock speci�cation|typeset and ASCII versions.

To de�ne HCini , we need to express the set f1; : : : ; 12g formally, without
the ellipsis \. . . ". We can write this set out completely as

f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12g
but that's tiresome. Instead, we use the operator \ : :", de�ned in the Naturals

module, to write this set as 1 : : 12. In general i : : j is the set of integers from i

through j , for any integers i and j . (It equals the empty set if j < i .) It's now

obvious how to write the de�nition of HCini . The de�nitions of HCnxt and HC

are written just as before. (The ordinary mathematical operators of logic and

set theory, like ^ and 2, are built into TLA+.)

The line

can appear anywhere between statements; it's purely cosmetic and has no mean-

ing. Following it is the statement

theorem HC ) 2HCini
of the theorem that was discussed above. This statement asserts that the formula

HC ) 2HCini is true in the context of the statement. More precisely, it
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asserts that the formula follows logically from the de�nitions in this module, the

de�nitions in the Naturals module, and the rules of TLA+. If the formula were

not true, then the module would be incorrect.

The module is terminated by the symbol

The speci�cation of the hour clock is the de�nition of HC , including the

de�nitions of the formulas HCnxt and HCini and of the operators : : and +

that appear in the de�nition of HC . Formally, nothing in the module tells us

that HC rather than HCini is the clock's speci�cation. TLA+ is a language for

writing mathematics|in particular, for writing mathematical de�nitions and

theorems. What those de�nitions represent, and what signi�cance we attach to

those theorems, lies outside the scope of mathematics and therefore outside the

scope of TLA+. Engineering requires not just the ability to use mathematics,

but the ability to understand what, if anything, the mathematics tells us about

an actual system.

2.5 Another Way to Specify the Hour Clock

The Naturals module also de�nes the modulus operator, which we write %. The
formula i % n, which mathematicians write i mod n, is the remainder when i is

divided by n. More formally, i % n is the natural number less than n satisfying

i = q � n + (i % n) for some natural number q . Let's express this condition

mathematically. The Naturals module de�nes Nat to be the set of natural

numbers, and the assertion that there exists a q in the set Nat satisfying a

formula F is written 9 q 2 Nat : F . Thus, if i and n are elements of Nat and

n > 0, then i % n is the unique number satisfying

(i % n 2 0 : : (n � 1)) ^ (9 q 2 Nat : i = q � n + (i % n))

We can use % to simplify our hour-clock speci�cation a bit. Observing that

(11 % 12)+1 equals 12 and (12 % 12)+1 equals 1, we can de�ne a di�erent next-

state action HCnxt2 and a di�erent formula HC2 to be the clock speci�cation:

HCnxt2
�
= hr 0 = (hr % 12) + 1 HC2

�
= HCini ^ 2[HCnxt2]hr

Actions HCnxt and HCnxt2 are not equivalent. The step [hr = 24]! [hr = 25]

satis�es HCnxt but not HCnxt2, while the step [hr = 24] ! [hr = 1] satis�es

HCnxt2 but not HCnxt . However, any step starting in a state with hr in 1 : : 12

satis�es HCnxt i� it satis�es HCnxt2. It's therefore not hard to deduce that any

behavior starting in a state satisfying HCini satis�es 2[HCnxt ]hr i� it satis�es

2[HCnxt2]hr . Hence, formulas HC and HC2 are equivalent. It doesn't matter

which of them we take to be the speci�cation of an hour clock.
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Mathematics provides in�nitely many ways of expressing the same thing.

The expressions 6+ 6, 3 � 4, and 141� 129 all have the same meaning; they are

just di�erent ways of writing the number 12. We could replace either instance

of the number 12 in module HourClock by any of these expressions without

changing the meaning of any of the module's formulas.

When writing a speci�cation, you will often be faced with a choice of how

to express something. When that happens, you should �rst make sure that the

choices yield equivalent speci�cations. If they do, then you can choose the one

that you feel makes the speci�cation easiest to understand. If they don't, then

you must decide which one you mean.



Chapter 3

An Asynchronous Interface

We now specify an interface for transmitting data between asynchronous devices.

A sender and a receiver are connected as shown here:

Sender Receiver

val

rdy

-

-

ack�

Data is sent on val , and the rdy and ack lines are used for synchronization. The

sender must wait for an acknowledgment (an Ack) for one data item before it can

send the next. The interface uses the standard two-phase handshake protocol,

described by the following sample behavior.2
4val = 26

rdy = 0

ack = 0

3
5 Send 37

�!

2
4val = 37

rdy = 1

ack = 0

3
5 Ack

�!

2
4val = 37

rdy = 1

ack = 1

3
5 Send 4

�!

2
4val = 4

rdy = 0

ack = 1

3
5 Ack

�!

2
4val = 4

rdy = 0

ack = 0

3
5 Send 19

�!

2
4val = 19

rdy = 1

ack = 0

3
5 Ack

�! � � �

(It doesn't matter what value val has in the initial state.)

It's easy to see from this sample behavior what the set of all possible behav-

iors should be|once we decide what the data values are that can be sent. But,

before writing the TLA+ speci�cation that describes these behaviors, let's look

at what I've just done.

In writing this behavior, I made the decision that val and rdy should change

in a single step. The values of the variables val and rdy represent voltages

23
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on some set of wires in the physical device. Voltages on di�erent wires don't

change at precisely the same instant. I decided to ignore this aspect of the

physical system and pretend that the values of val and rdy represented by those

voltages change instantaneously. This simpli�es the speci�cation, but at the

price of ignoring what may be an important detail of the system. In an actual

implementation of the protocol, the voltage on the rdy line shouldn't change

until the voltages on the val lines have stabilized; but you won't learn that from

my speci�cation. Had I wanted the speci�cation to convey this requirement, I

would have written a behavior in which the value of val and the value of rdy

change in separate steps.

A speci�cation is an abstraction. It describes some aspects of the system and

ignores others. We want the speci�cation to be as simple as possible, so we want

to ignore as many details as we can. But, whenever we omit some aspect of the

system from the speci�cation, we admit a potential source of error. With my

speci�cation, we can verify the correctness of a system that uses this interface,

and the system could still fail because the implementer didn't know that the val

line should stabilize before the rdy line is changed.

The hardest part of writing a speci�cation is choosing the proper abstraction.

I can teach you about TLA+, so expressing an abstract view of a system as a

TLA+ speci�cation becomes a straightforward task. But I don't know how to

teach you about abstraction. A good engineer knows how to abstract the essence

of a system and suppress the unimportant details when specifying and designing

it. The art of abstraction is learned only through experience.

When writing a speci�cation, you must �rst choose the abstraction. In a

TLA+ speci�cation, this means choosing (i) the variables that represent the

system's state and (ii) the granularity of the steps that change those variables'

values. Should the rdy and ack lines be represented as separate variables or

as a single variable? Should val and rdy change in one step, two steps, or an

arbitrary number of steps? To help make these choices, I recommend that you

start by writing the �rst few steps of one or two sample behaviors, just as I did

at the beginning of this section. Chapter 7 has more to say about these choices.

3.1 The First Speci�cation

Now let's specify the interface with a module AsynchInterface. The variables

rdy and ack can assume the values 0 and 1, which are natural numbers, so

our module extends the Naturals module. We next decide what the possible

values of val should be|that is, what data values may be sent. We could write

a speci�cation that places no restriction on the data values. The speci�cation

could allow the sender to �rst send 37, then send
p
�15, and then send Nat

(the entire set of natural numbers). However, any real device can send only a

restricted set of values. We could pick some speci�c set|for example, 32-bit
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numbers. However, the protocol is the same regardless of whether it's used to

send 32-bit numbers or 128-bit numbers. So, we compromise between the two

extremes of allowing anything to be sent and allowing only 32-bit numbers to

be sent by assuming only that there is some set Data of data values that may

be sent. The constant Data is a parameter of the speci�cation. It's declared by

the statement

constant Data

Our three variables are declared by

variables val ; rdy ; ack

The keywords variable and variables are synonymous, as are constant and

constants.

The variable rdy can assume any value|for example, �1=2. That is, there
exist states that assign the value �1=2 to rdy . When discussing the speci�cation,

we usually say that rdy can assume only the values 0 and 1. What we really mean

is that the value of rdy equals 0 or 1 in every state of any behavior satisfying the

speci�cation. But a reader of the speci�cation shouldn't have to understand the

complete speci�cation to �gure this out. We can make the speci�cation easier

to understand by telling the reader what values the variables can assume in a

behavior that satis�es the speci�cation. We could do this with comments, but I

prefer to use a de�nition like this one:

TypeInvariant
�
= (val 2 Data) ^ (rdy 2 f0; 1g) ^ (ack 2 f0; 1g)

I call the set f0; 1g the type of rdy , and I call TypeInvariant a type invariant.

Let's de�ne type and some other terms more precisely:

� A state function is an ordinary expression (one with no prime or 2) that

can contain variables and constants.

� A state predicate is a Boolean-valued state function.

� An invariant Inv of a speci�cation Spec is a state predicate such that

Spec ) 2Inv is a theorem.

� A variable v has type T in a speci�cation Spec i� v 2 T is an invariant of

Spec.

We can make the de�nition of TypeInvariant easier to read by writing it as

follows.

TypeInvariant
�
= ^ val 2 Data
^ rdy 2 f0; 1g
^ ack 2 f0; 1g
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Each conjunct begins with a ^ and must lie completely to the right of that

^. (The conjunct may occupy multiple lines). We use a similar notation for

disjunctions. When using this bulleted-list notation, the ^'s or _'s must line up
precisely (even in the ascii input). Because the indentation is signi�cant, we can

eliminate parentheses, making this notation especially useful when conjunctions

and disjunctions are nested.

The formula TypeInvariant will not appear as part of the speci�cation. We

do not assume that TypeInvariant is an invariant; the speci�cation should imply

that it is. In fact, its invariance will be asserted as a theorem.

The initial predicate is straightforward. Initially, val can equal any element

of Data. We can start with rdy and ack either both 0 or both 1.

Init
�
= ^ val 2 Data

^ rdy 2 f0; 1g
^ ack = rdy

Now for the next-state action Next . A step of the protocol either sends a value

or receives a value. We de�ne separately the two actions Send and Rcv that

describe the sending and receiving of a value. A Next step (one satisfying action

Next) is either a Send step or a Rcv step, so it is a Send _Rcv step. Therefore,

Next is de�ned to equal Send _Rcv . Let's now de�ne Send and Rcv .

We say that action Send is enabled in a state from which it is possible to

take a Send step. From the sample behavior above, we see that Send is enabled

i� rdy equals ack . Usually, the �rst question we ask about an action is, when

is it enabled? So, the de�nition of an action usually begins with its enabling

condition. The �rst conjunct in the de�nition of Send is therefore rdy = ack .

The next conjuncts tell us what the new values of the variables val , rdy , and

ack are. The new value val 0 of val can be any element of Data|that is, any

value satisfying val 0 2 Data. The value of rdy changes from 0 to 1 or from 1 to

0, so rdy 0 equals 1� rdy (because 1 = 1� 0 and 0 = 1� 1). The value of ack is

left unchanged.

TLA+ de�nes unchanged v to mean that the expression v has the same

value in the old and new states. More precisely, unchanged v equals v 0 = v ,

where v 0 is the expression obtained from v by priming all variables. So, we

de�ne Send by:

Send
�
= ^ rdy = ack

^ val 0 2 Data

^ rdy 0 = 1� rdy

^ unchanged ack

(I could have written ack 0 = ack instead of unchanged ack , but I prefer to use

the unchanged construct in speci�cations.)

A Rcv step is enabled i� rdy is di�erent from ack ; it complements the value

of ack and leaves val and rdy unchanged. Both val and rdy are left unchanged i�
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module AsynchInterface

extends Naturals

constant Data

variables val ; rdy ; ack

TypeInvariant
�
= ^ val 2 Data
^ rdy 2 f0; 1g
^ ack 2 f0; 1g

Init
�
= ^ val 2 Data
^ rdy 2 f0; 1g
^ ack = rdy

Send
�
= ^ rdy = ack

^ val 0 2 Data

^ rdy 0 = 1� rdy

^ unchanged ack

Rcv
�
= ^ rdy 6= ack

^ ack 0 = 1� ack

^ unchanged hval ; rdy i
Next

�
= Send _ Rcv

Spec
�
= Init ^ 2[Next ]hval;rdy;ack i

theorem Spec ) 2TypeInvariant

Figure 3.1: Our �rst speci�cation of an asynchronous interface.

the pair of values val , rdy is left unchanged. TLA+uses angle brackets h and i to
enclose ordered tuples, so Rcv asserts that hval ; rdy i is left unchanged. (Angle
brackets are typed in ascii as << and >>.) The de�nition of Rcv is therefore:

Rcv
�
= ^ rdy 6= ack

^ ack 0 = 1� ack

^ unchanged hval ; rdy i

As in our clock example, the complete speci�cation Spec should allow stuttering

steps|in this case, ones that leave all three variables unchanged. So, Spec allows

steps that leave hval ; rdy ; ack i unchanged. Its de�nition is

Spec
�
= Init ^ 2[Next ]hval;rdy;ack i

Module AsynchInterface also asserts the invariance of TypeInvariant . It appears

in full in Figure 3.1 on this page.
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3.2 Another Speci�cation

Module AsynchInterface is a �ne description of the interface and its handshake

protocol. However, it's not easy to use it to help specify a system that uses the

interface. Let's rewrite the interface speci�cation in a form that makes it more

convenient to use as part of a larger speci�cation.

The �rst problem with the original speci�cation is that it uses three variables

to describe a single interface. A system might use several di�erent instances of

the interface. To avoid a proliferation of variables, we replace the three variables

val , rdy , ack with a single variable chan (short for channel). A mathematician

would do this by letting the value of chan be an ordered triple|for example, a

state [chan = h�1=2; 0; 1i] might replace the state with val = �1=2, rdy = 0,

and ack = 1. But programmers have learned that using tuples like this leads to

mistakes; it's easy to forget if the ack line is represented by the second or third

component. TLA+ therefore provides records in addition to more conventional

mathematical notation.

Let's represent the state of the channel as a record with val , rdy , and ack

�elds. If r is such a record, then r :val is its val �eld. The type invariant asserts

that the value of chan is an element of the set of all such records r in which

r :val is an element of the set Data and r :rdy and r :ack are elements of the set

f0; 1g. This set of records is written:

[val :Data; rdy : f0; 1g; ack : f0; 1g]

The components of a record are not ordered, so it doesn't matter in what order

we write them. This same set of records can also be written as:

[ack : f0; 1g; val :Data; rdy : f0; 1g]

Initially, chan can equal any element of this set whose ack and rdy �elds are

equal, so the initial predicate is the conjunction of the type invariant and the

condition chan:ack = chan:rdy .

A system that uses the interface may perform an operation that sends some

data value d and performs some other changes that depend on the value d .

We'd like to represent such an operation as an action that is the conjunction

of two separate actions: one that describes the sending of d and the other that

describes the other changes. Thus, instead of de�ning an action Send that sends

some unspeci�ed data value, we de�ne the action Send(d) that sends data value

d . The next-state action is satis�ed by a Send(d) step, for some d in Data, or

a Rcv step. (The value received by a Rcv step equals chan:val .) Saying that

a step is a Send(d) step for some d in Data means that there exists a d in

Data such that the step satis�es Send(d)|in other words, that the step is an

9 d 2 Data : Send(d) step. So we de�ne

Next
�
= (9 d 2 Data : Send(d)) _ Rcv
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The Send(d) action asserts that chan 0 equals the record r such that:

r :val = d r :rdy = 1� chan:rdy r :ack = chan:ack

This record is written in TLA+ as:

[val 7! d ; rdy 7! 1� chan:rdy ; ack 7! chan:ack ]

(The symbol 7! is typed in ascii as |-> .) The �elds of records are not ordered,

so this record can just as well be written:

[ack 7! chan:ack ; val 7! d ; rdy 7! 1� chan:rdy ]

The enabling condition of Send(d) is that the rdy and ack lines are equal, so we

can de�ne:

Send(d)
�
=

^ chan:rdy = chan:ack

^ chan 0 = [val 7! d ; rdy 7! 1� chan:rdy ; ack 7! chan:ack ]

This is a perfectly good de�nition of Send(d). However, I prefer a slightly

di�erent one. We can describe the value of chan 0 by saying that it is the same as

the value of chan except that its val component equals d and its rdy component

equals 1� chan:rdy . In TLA+, we can write this value as

[chan except ! :val = d ; ! :rdy = 1� chan:rdy ]

Think of the ! as standing for the new record that the except expression forms

by modifying chan. So, the expression can be read as the record ! that is

the same as chan except ! :val equals d and ! :rdy equals 1 � chan:rdy . In the

expression that ! :rdy equals, the symbol @ stands for chan:rdy , so we can write

this except expression as:

[chan except ! :val = d ; ! :rdy = 1�@]

In general, for any record r , the expression

[r except ! :c1 = e1; : : : ; ! :cn = en ]

is the record obtained from r by replacing r :ci with ei , for each i in 1 : : n. An

@ in the expression ei stands for r :ci . Using this notation, we de�ne:

Send(d)
�
= ^ chan:rdy = chan:ack

^ chan 0 = [chan except ! :val = d ; ! :rdy = 1�@]

The de�nition of Rcv is straightforward. A value can be received when chan:rdy 6=
chan:ack , and receiving the value complements chan:ack :

Rcv
�
= ^ chan:rdy 6= chan:ack

^ chan 0 = [chan except ! :ack = 1�@]
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module Channel

extends Naturals

constant Data

variable chan

TypeInvariant
�
= chan 2 [val :Data; rdy : f0; 1g; ack : f0; 1g]

Init
�
= ^ TypeInvariant

^ chan:ack = chan:rdy

Send(d)
�
= ^ chan:rdy = chan:ack

^ chan 0 = [chan except ! :val = d ; ! :rdy = 1�@]

Rcv
�
= ^ chan:rdy 6= chan:ack

^ chan 0 = [chan except ! :ack = 1�@]

Next
�
= (9 d 2 Data : Send(d)) _ Rcv

Spec
�
= Init ^ 2[Next ]chan

theorem Spec ) 2TypeInvariant

Figure 3.2: Our second speci�cation of an asynchronous interface.

The complete speci�cation appears in Figure 3.2 on this page.

We have now written two di�erent speci�cations of the asynchronous inter-

face. They are two di�erent mathematical representations of the same physical

system. In module AsynchInterface, we represented the system with the three

variables val , rdy , and ack . In module Channel , we used a single variable chan.

Since these two representations are at the same level of abstraction, they should,

in some sense, be equivalent. Section 5.8 explains one sense in which they're

equivalent.

3.3 Types: A Reminder

As de�ned in Section 3.1, a variable v has type T in speci�cation Spec i� v 2 T
is an invariant of Spec. Thus, hr has type 1 : : 12 in the speci�cation HC of

the hour clock. This assertion does not mean that the variable hr can assume

only values in the set 1 : : 12. A state is an arbitrary assignment of values to

variables, so there exist states in which the value of hr is
p
�2. The assertion

does mean that, in every behavior satisfying formula HC , the value of hr is an

element of 1 : : 12.

If you are used to types in programming languages, it may seem strange that

TLA+ allows a variable to assume any value. Why not restrict our states to

ones in which variables have the values of the right type? In other words, why
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not add a formal type system to TLA+? A complete answer would take us too

far a�eld. The question is addressed further in Section 6.2. For now, remember

that TLA+ is an untyped language. Type correctness is just a name for a certain

invariance property. Assigning the name TypeInvariant to a formula gives it no

special status.

3.4 De�nitions

Let's examine what a de�nition means. If Id is a simple identi�er like Init

or Spec, then the de�nition Id
�
= exp de�nes Id to be synonymous with the

expression exp. Replacing Id by exp, or vice-versa, in any expression e does not

change the meaning of e. This replacement must be done after the expression

is parsed, not in the \raw input". For example, the de�nition x
�
= a + b makes

x � c equal to (a + b) � c, not to a + b � c, which equals a + (b � c).
The de�nition of Send has the form Id(p)

�
= exp, where Id and p are identi-

�ers. For any expression e, this de�nes Id(e) to be the expression obtained by

substituting e for p in exp. For example, the de�nition of Send in the Channel

module de�nes Send(�5) to equal

^ chan:rdy = chan:ack

^ chan 0 = [chan except ! :val = �5; ! :rdy = 1�@]

Send(e) is an expression, for any expression e. Thus, we can write the formula

Send(�5) ^ (chan:ack = 1). The identi�er Send by itself is not an expression,

and Send ^ (chan:ack = 1) is not a grammatically well-formed string. It's non-

syntactic nonsense, like a + � b+ .

We say that Send is an operator that takes a single argument. We de�ne

operators that take more than one argument in the obvious way, the general

form being:

Id(p1; : : : ; pn )
�
= exp(3.1)

where the pi are distinct identi�ers and exp is an expression. We can consider

de�ned identi�ers like Init and Spec to be operators that take no argument, but

we generally use operator to mean an operator that takes one or more arguments.

I will use the term symbol to mean an identi�er like Send or an operator

symbol like +. Every symbol that is used in a speci�cation must either be a built-

in operator of TLA+ (like 2) or it must be declared or de�ned. Every symbol

declaration or de�nition has a scope within which the symbol may be used. The

scope of a variable or constant declaration, and of a de�nition, is the part of

the module that follows it. Thus, we can use Init in any expression that follows

its de�nition in module Channel . The statement extends Naturals extends the

scope of symbols like + de�ned in the Naturals module to the Channel module.
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The operator de�nition (3.1) implicitly includes a declaration of the identi-

�ers p1, . . . , pn whose scope is the expression exp. An expression of the form

9 v 2 S : exp

has a declaration of v whose scope is the expression exp. Thus the identi�er v

has a meaning within the expression exp (but not within the expression S ).

A symbol cannot be declared or de�ned if it already has a meaning. The

expression

(9 v 2 S : exp1) ^ (9 v 2 T : exp2)

is all right, because neither declaration of v lies within the scope of the other.

Similarly, the two declarations of the symbol d in the Channel module (in the

de�nition of Send and in the expression 9 d in the de�nition of Next) have

disjoint scopes. However, the expression

(9 v 2 S : (exp1 ^ 9 v 2 T : exp2))

is illegal because the declaration of v in the second 9 v lies inside the scope

of the its declaration in the �rst 9 v . Although conventional mathematics and

programming languages allow such redeclarations, TLA+ forbids them because

they can lead to confusion and errors.

3.5 Comments

Even simple speci�cations like the ones in modules AsynchInterface and Channel

can be hard to understand from the mathematics alone. That's why I began with

an intuitive explanation of the interface. That explanation made it easier for

you to understand formula Spec in the module, which is the actual speci�cation.

Every speci�cation should be accompanied by an informal prose explanation.

The explanation may be in an accompanying document, or it may be included

as comments in the speci�cation.

Figure 3.3 on the next page shows how the hour clock's speci�cation in

module HourClock might be explained by comments. In the typeset version,

comments are distinguished from the speci�cation itself by the use of a di�erent

font. As shown in the �gure, TLA+ provides two ways of writing comments in

the ascii version. A comment may appear anywhere enclosed between (* and

*). An end-of-line comment is preceded by \*. (Comments may be nested, so

you can \comment out" a section of a speci�cation that contains comments by

enclosing it between (* and *).)

A comment almost always appears on a line by itself or at the end of a line.

I put a comment between HCnxt and
�
= just to show that it can be done.
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module HourClock

This module speci�es a digital clock that displays the current hour. It ignores real

time, not specifying when the display can change.

extends Naturals

variable hr Variable hr represents the display.

HCini
�
= hr 2 (1 : : 12) Initially, hr can have any value from 1 through 12.

HCnxt This is a weird place for a comment.
�
=

The value of hr cycles from 1 through 12.

hr 0 = if hr 6= 12 then hr + 1 else 1

HC
�
= HCini ^ 2[HCnxt ]hr

The complete spec. It permits the clock to stop.

theorem HC ) 2HCini Type-correctness of the spec.

---------------------- MODULE HourClock ----------------------

(********************************************************)

(* This module specifies a digital clock that displays *)

(* the current hour. It ignores real time, not *)

(* specifying when the display can change. *)

(********************************************************)

EXTENDS Naturals

VARIABLE hr \* Variable hr represents the display.

HCini == hr \in (1 .. 12) \* Initially, hr can have any

\* value from 1 through 12.

HCnxt (* This is a weird place for a comment. *) ==

(*************************************************)

(* The value of hr cycles from 1 through 12. *)

(*************************************************)

hr' = IF hr # 12 THEN hr + 1 ELSE 1

HC == HCini /\ [][HCnxt]_hr

(* The complete spec. It permits the clock to stop. *)

--------------------------------------------------------------

THEOREM HC => []HCini \* Type-correctness of the spec.

==============================================================

Figure 3.3: The hour clock speci�cation with comments.
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To save space, I will write few comments in the example speci�cations. But

speci�cations should have lots of comments. Even if there is an accompany-

ing document describing the system, comments are needed to help the reader

understand how the speci�cation formalizes that description.

Comments can help solve a problem posed by the logical structure of a spec-

i�cation. A symbol has to be declared or de�ned before it can be used. In

module Channel , the de�nition of Spec has to follow the de�nition of Next ,

which has to follow the de�nitions of Send and Rcv . But it's usually easiest to

understand a top-down description of a system. We would probably �rst want

to read the declarations of Data and chan, then the de�nition of Spec, then

the de�nitions of Init and Next , and then the de�nitions of Send and Rcv . In

other words, we want to read the speci�cation more or less from bottom to top.

This is easy enough to do for a module as short as Channel ; it's inconvenient

for longer speci�cations. We can use comments to guide the reader through a

longer speci�cation. For example, we could precede the de�nition of Send in the

Channel module with the comment:

Actions Send and Rcv below are the disjuncts of the next-state action

Next .

The module structure also allows us to choose the order in which a spec-

i�cation is read. For example, we can rewrite the hour-clock speci�cation by

splitting the HourClock module into three separate modules:

HCVar A module that declares the variable hr .

HCActions A module that extends modules Naturals and HCVar and de-

�nes HCini and HCnxt .

HCSpec A module that extends module HCActions , de�nes formula

HC , and asserts the type-correctness theorem.

The extends relation implies a logical ordering of the modules: HCVar precedes

HCActions , which precedes HCSpec. But the modules don't have to be read in

that order. The reader can be told to read HCVar �rst, then HCSpec, and �nally

HCActions . The instance construct introduced below in Chapter 4 provides

another tool for modularizing speci�cations.

Splitting a tiny speci�cation like HourClock in this way would be ludicrous.

But the proper splitting of modules can help make a large speci�cation easier to

read. When writing a speci�cation, you should decide in what order it should

be read. You can then design the module structure to permit reading it in that

order, when each individual module is read from beginning to end. Finally,

you should ensure that the comments within each module make sense when the

di�erent modules are read in the appropriate order.
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A FIFO

Our next example is a FIFO bu�er, a device with which a sender process trans-

mits a sequence of values to a receiver. The sender and receiver use two channels,

in and out , to communicate with the bu�er:

Sender Bu�er Receiver
in out
- -

Values are sent over in and out using the asynchronous protocol speci�ed by the

Channel module of Figure 3.2 on page 30. The system's speci�cation will allow

behaviors with four kinds of nonstuttering steps: Send and Rcv actions on both

the in channel and the out channel.

4.1 The Inner Speci�cation

The speci�cation of the FIFO �rst extends modules Naturals and Sequences .

The Sequences module de�nes operations on �nite sequences. We represent a

�nite sequence as a tuple, so the sequence of three numbers 3, 2, 1 is the triple

h3; 2; 1i. The Sequences module de�nes the following operators on sequences.

Seq(S ) The set of all sequences of elements of the set S . For example,

h3; 7i is an element of Seq(Nat).

Head(s) The �rst element of sequence s . For example, Head(h3; 7i) equals 3.

35
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Tail(s) The tail of sequence s (all but the head of s). For example, Tail(h3; 7i)
equals h7i.

Append(s ; e) The sequence obtained by appending element e to the tail of

sequence s . For example, Append(h3; 7i; 3) equals h3; 7; 3i.

s � t The sequence obtained by concatenating the sequences s and t . For

example, h3; 7i � h3i equals h3; 7; 3i. (We type � in ascii as \o.)

Len(s) The length of sequence s . For example, Len(h3; 7i) equals 2.

The FIFO's speci�cation continues by declaring the constant Message, which

represents the set of all messages that can be sent.1 It then declares the variables.

There are three variables: in and out , representing the channels, and a third

variable q that represents the queue of bu�ered messages. The value of q is the

sequence of messages that have been sent by the sender but not yet received by

the receiver. (Section 4.3 has more to say about this additional variable q .)

We want to use the de�nitions in the Channel module to specify operations The Channel

module appears

in Figure 3.2 on

page 30.

on the channels in and out . This requires two instances of that module|one

in which the variable chan of the Channel module is replaced with the variable

in of our current module, and the other in which chan is replaced with out .

In both instances, the constant Data of the Channel module is replaced with

Message. We obtain the �rst of these instances with the statement:

InChan
�
= instance Channel with Data  Message; chan  in

For every symbol � de�ned in module Channel , this de�nes InChan !� to have

the same meaning in the current module as � had in module Channel , except

with Message substituted for Data and in substituted for chan. For example,

this statement de�nes InChan !TypeInvariant to equal

in 2 [val :Message; rdy : f0; 1g; ack : f0; 1g]

(The statement does not de�ne InChan !Data because Data is declared, not

de�ned, in module Channel .) We introduce our second instance of the Channel

module with the analogous statement:

OutChan
�
= instance Channel with Data  Message;

chan  out

The initial states of the in and out channels are speci�ed by InChan !Init and

OutChan !Init . Initially, no messages have been sent or received, so q should

1I like to use a singular noun like Message rather than a plural like Messages for the name

of a set. That way, the 2 in the expression m 2 Message can be read is a. This is the same

convention that most programmers use for naming types.
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equal the empty sequence. The empty sequence is the zero-tuple (there's only

one, and it's written h i), so we de�ne the initial predicate to be:

Init
�
= ^ InChan !Init

^ OutChan !Init

^ q = h i

We next de�ne the type invariant. The type invariants for in and out come from

the Channel module, and the type of q is the set of �nite sequences of messages.

The type invariant for the FIFO speci�cation is therefore:

TypeInvariant
�
= ^ InChan !TypeInvariant

^ OutChan !TypeInvariant

^ q 2 Seq(Message)

The four kinds of nonstuttering steps allowed by the next-state action are de-

scribed by four actions:

SSend(msg) The sender sends message msg on the in channel.

BufRcv The bu�er receives the message from the in channel and ap-

pends it to the tail of q .

BufSend The bu�er removes the message from the head of q and sends

it on channel out .

RRcv The receiver receives the message from the out channel.

The de�nitions of these actions, along with the rest of the speci�cation, are in

module InnerFIFO of Figure 4.1 on the next page. The reason for the adjective

Inner is explained in Section 4.3 below.

4.2 Instantiation Examined

4.2.1 Instantiation is Substitution

Consider the de�nition of Next in module Channel (page 30). We can remove

every de�ned symbol that appears in that de�nition by using the symbol's de�-

nition. For example, we can eliminate the expression Send(d) by expanding the

de�nition of Send . We can repeat this process. For example the � that appears

in the expression 1� @ (obtained by expanding the de�nition of Send) can be

eliminated by using the de�nition of � from the Naturals module. Continuing in

this way, we eventually obtain a de�nition for Next in terms of only the built-in

operators of TLA+ and the parameters Data and chan of the Channel module.



38 CHAPTER 4. A FIFO

module InnerFIFO

extends Naturals ;Sequences

constant Message

variables in; out ; q

InChan
�
= instance Channel with Data  Message; chan  in

OutChan
�
= instance Channel with Data  Message; chan  out

Init
�
= ^ InChan !Init

^ OutChan !Init

^ q = h i
TypeInvariant

�
= ^ InChan !TypeInvariant

^ OutChan !TypeInvariant

^ q 2 Seq(Message)

SSend(msg)
�
= ^ InChan !Send(msg)

^ unchanged hout ; q i
Send msg on channel in.

BufRcv
�
= ^ InChan !Rcv

^ q 0 = Append(q ; in:val)

^ unchanged out

Receive message from channel in

and append it to tail of q .

BufSend
�
= ^ q 6= h i
^ OutChan !Send(Head(q))

^ q 0 = Tail(q)

^ unchanged in

Enabled only if q is nonempty.

Send Head(q) on channel out

and remove it from q .

RRcv
�
= ^ OutChan !Rcv

^ unchanged hin; q i
Receive message from channel out.

Next
�
= _ 9msg 2 Message : SSend(msg)

_ BufRcv

_ BufSend

_ RRcv

Spec
�
= Init ^ 2[Next ]hin;out; q i

theorem Spec ) 2TypeInvariant

Figure 4.1: The speci�cation of a FIFO, with the internal variable q visible.
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We consider this to be the \real" de�nition of Next in module Channel . The

statement

InChan
�
= instance Channel with Data  Message; chan  in

in module InnerFIFO de�nes InChan !Next to be the formula obtained from

this real de�nition of Next by substituting Message for Data and in for chan.

This de�nes InChan !Next in terms of only the built-in operators of TLA+ and

the parameters Message and in of module InnerFIFO .

Let's now consider an arbitrary instance statement

IM
�
= instance M with p1  e1; : : : ; pn  en

Let � be a symbol de�ned in module M and let d be its \real" de�nition. The

instance statement de�nes IM !� to have as its real de�nition the expression

obtained from d by replacing all instances of pi by the expression ei , for each i .

The de�nition of IM !� must contain only the parameters (declared constants

and variables) of the current module, not the ones of module M . Hence, the pi
must consist of all the parameters of module M . The ei must be expressions

that are meaningful in the current module.

4.2.2 Parametrized Instantiation

The FIFO speci�cation uses two instances of module Channel|one with in

substituted for chan and the other with out substituted for chan. We could

instead use a single parametrized instance by putting the following statement in

module InnerFIFO :

Chan(ch)
�
= instance Channel with Data  Message; chan  ch

For any symbol � de�ned in module Channel and any expression exp, this de-

�nes Chan(exp)!� to equal formula � with Message substituted for Data and

exp substituted for chan. The Rcv action on channel in could then be writ-

ten Chan(in)!Rcv , and the Send(msg) action on channel out could be written

Chan(out)!Send(msg).

The instantiation above de�nes Chan !Send to be an operator with two argu-

ments. Writing Chan(out)!Send(msg) instead of Chan !Send(out ;msg) is just

an idiosyncrasy of the syntax. It is no stranger than the syntax for in�x opera-

tors, which makes us write a + b instead of +(a; b).

4.2.3 Implicit Substitutions

The use of Message as the name for the set of transmitted values in the FIFO

speci�cation is a bit strange, since we had just used the name Data for the
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analogous set in the asynchronous channel speci�cations. Suppose we had used

Data in place of Message as the constant parameter of module InnerFIFO . The

�rst instantiation statement would then have been

InChan
�
= instance Channel with Data  Data; chan  in

The substitution Data  Data indicates that the constant parameter Data of

the instantiated module Channel is replaced with the expression Data of the

current module. TLA+ allows us to drop any substitution of the form �  �,

for a symbol �. So, the statement above can be written as

InChan
�
= instance Channel with chan  in

We know there is an implied Data  Data substitution because an instance

statement must have a substitution for every parameter of the instantiated mod-

ule. If some parameter p has no explicit substitution, then there is an implicit

substitution p  p. This means that the instance statement must lie within

the scope of a declaration or de�nition of the symbol p.

It is quite common to instantiate a module with this kind of implicit substi-

tution. Often, every parameter has an implicit substitution, in which case the

list of explicit substitutions is empty. The with is then omitted.

4.2.4 Instantiation Without Renaming

So far, all the instantiations we've used have been with renaming. For exam-

ple, the �rst instantiation of module Channel renames the de�ned symbol Send

as InChan !Send . This kind of renaming is necessary if we are using multiple

instances of the module, or a single parametrized instance. The two instances

InChan !Init and OutChan !Init of Init in module InnerFIFO are di�erent for-

mulas, so they need di�erent names.

Sometimes we need only a single instance of a module. For example, suppose

we are specifying a system with only a single asynchronous channel. We then

need only one instance of Channel , so we don't have to rename the instantiated

symbols. In that case, we can write something like

instance Channel with Data  D ; chan  x

This instantiates Channel with no renaming, but with substitution. Thus, it

de�nes Rcv to be the formula of the same name from the Channel module,

except with D substituted for Data and x substituted for chan. The expressions

substituted for an instantiated module's parameters must be de�ned. So, this

instance statement must be within the scope of the de�nitions or declarations

of D and x .
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4.3 Hiding the Queue

Module InnerFIFO of Figure 4.1 de�nes Spec to be Init ^ 2[Next ]
:::
, the sort

of formula we've become accustomed to as a system speci�cation. However,

formula Spec describes the value of variable q , as well as of the variables in and

out . The picture of the FIFO system I drew on page 35 shows only channels in

and out ; it doesn't show anything inside the boxes. A speci�cation of the FIFO

should describe only the values sent and received on the channels. The variable

q , which represents what's going on inside the box labeled Bu�er , is used to

specify what values are sent and received. In the �nal speci�cation, it should be

hidden.

In TLA, we hide a variable with the existential quanti�er 999999 of temporal

logic. The formula 999999 x :F is true of a behavior i� there exists some sequence of

values|one in each state of the behavior|that can be assigned to the variable

x that will make formula F true. (The meaning of 999999 is de�ned more precisely

in Section 8.8.)

The obvious way to write a FIFO speci�cation in which q is hidden is with the

formula 999999 q : Spec. However, we can't put this de�nition in module InnerFIFO

because q is already declared there, and a formula 999999 q : : : : would redeclare it. In-
stead, we use a new module with a parametrized instantiation of the InnerFIFO

module (see Section 4.2.2 above):

module FIFO

constant Message

variables in; out

Inner(q)
�
= instance InnerFIFO

Spec
�
= 999999 q : Inner(q)!Spec

Observe that the instance statement is an abbreviation for

Inner(q)
�
= instance InnerFIFO

with q  q ; in  in; out  out ; Message  Message

The variable parameter q of module InnerFIFO is instantiated with the parame-

ter q of the de�nition of Inner . The other parameters of the InnerFIFO module

are instantiated with the parameters of module FIFO .

4.4 A Bounded FIFO

We have speci�ed an unbounded FIFO|a bu�er that can hold an unbounded

number of messages. Any real system has a �nite amount of resources, so it can
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contain only a bounded number of in-transit messages. In many situations, we

wish to abstract away the bound on resources and describe a system in terms

of unbounded FIFOs. In other situations, we may care about that bound. We

then want to strengthen our speci�cation by placing a bound N on the number

of outstanding messages.

A speci�cation of a bounded FIFO di�ers from our speci�cation of the un-

bounded FIFO only in that action BufRcv should be enabled only when there

are fewer than N messages in the bu�er|that is, only when Len(q) is less than

N . It would be easy to write a complete new speci�cation of a bounded FIFO

by copying module InnerFIFO and just adding the conjunct Len(q) < N to

the de�nition of BufRcv . But let's use module InnerFIFO as it is, rather than

copying it.

The next-state action BNext for the bounded FIFO is the same as the FIFO's

next-state action Next except that it allows a BufRcv step only if Len(q) is less

than N . In other words, BNext should allow a step only if (i) it's a Next step

and (ii) if it's a BufRcv step, then Len(q) < N is true in the �rst state. In other

words, BNext should equal

Next ^ (BufRcv ) (Len(q) < N ))

Module BoundedFIFO in Figure 4.2 on the next page contains the speci�cation.

It introduces the new constant parameter N . It also contains the statement

assume (N 2 Nat) ^ (N > 0)

which asserts that, in this module, we are assuming that N is a positive natu-

ral number. Such an assumption has no e�ect on any de�nitions made in the

module. However, it may be taken as a hypothesis when proving any theorems

asserted in the module. In other words, a module asserts that its assumptions

imply its theorems. It's a good idea to assert this kind of simple assumption

about constants.

An assume statement should only be used to assert assumptions about con-

stants. The formula being assumed should not contain any variables. It might

be tempting to assert type declarations as assumptions|for example, to add to

module InnerFIFO the assumption q 2 Seq(Message). However, that would be

wrong because it asserts that, in any state, q is a sequence of messages. As we

observed in Section 3.3, a state is a completely arbitrary assignment of values

to variables, so there are states in which q has the value
p
�17. Assuming that

such a state doesn't exist would lead to a logical contradiction.

You may wonder why module BoundedFIFO asserts that N is a positive

natural, but doesn't assert that Message is a set. Similarly, why didn't we

have to specify that the constant parameter Data in our asynchronous interface

speci�cations is a set? The answer is that, in TLA+, every value is a set.2 A

2TLA+ is based on the mathematical formalism known as Zermelo-Fr�ankel set theory, also

called ZF.
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module BoundedFIFO

extends Naturals ; Sequences

variables in; out

constant Message;N

assume (N 2 Nat) ^ (N > 0)

Inner(q)
�
= instance InnerFIFO

BNext(q)
�
= ^ Inner(q)!Next

^ Inner(q)!BufRcv ) (Len(q) < N )

Spec
�
= 999999 q : Inner(q)!Init ^ 2[BNext(q)]hin;out;q i

Figure 4.2: A speci�cation of a FIFO bu�er of length N.

value like the number 3, which we don't think of as a set, is formally a set.

We just don't know what its elements are. The formula 2 2 3 is a perfectly

reasonable one, but TLA+ does not specify whether it's true or false. So, we

don't have to assert that Message is a set because we know that it is one.

Although Message is automatically a set, it isn't necessarily a �nite set. For

example, Message could be instantiated with the set Nat of natural numbers. If

you want to assume that a constant parameter is a �nite set, then you need to

state this as an assumption. (You can do this with the IsFiniteSet operator from

the FiniteSets module, described in Section 6.1.) However, most speci�cations

make perfect sense for in�nite sets of messages or processors, so there is no

reason to require these sets to be �nite.

4.5 What We're Specifying

I wrote above, at the beginning of this section, that we were going to specify

a FIFO bu�er. Formula Spec of the FIFO module actually speci�es a set of

behaviors, each representing a sequence of sending and receiving operations on

the channels in and out . The sending operations on in are performed by the

sender, and the receiving operations on out are performed by the receiver. The

sender and receiver are not part of the FIFO bu�er; they form its environment.

Our speci�cation describes a system consisting of the FIFO bu�er and its

environment. The behaviors satisfying formula Spec of module FIFO represent

those histories of the universe in which both the system and its environment

behave correctly. It's often helpful in understanding a speci�cation to indicate

explicitly which steps are system steps and which are environment steps. We

can do this by de�ning the next-state action to be

Next
�
= SysNext _ EnvNext
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where SysNext describes system steps and EnvNext describes environment steps.

For the FIFO, we have

SysNext
�
= BufRcv _ BufSend

EnvNext
�
= (9msg 2 Message : SSend(msg)) _ RRcv

While suggestive, this way of de�ning the next-state action has no formal sig-

ni�cance. The speci�cation Spec equals Init ^ 2[Next ]
:::
; changing the way we

structure the de�nition of Next doesn't change its meaning. If a behavior fails

to satisfy Spec, nothing tells us if the system or its environment is to blame.

A formula like Spec, which describes the correct behavior of both the system

and its environment, is called a closed-system or complete-system speci�cation.

An open-system speci�cation is one that describes only the correct behavior of

the system. A behavior satis�es an open-system speci�cation if it represents a

history in which either the system operates correctly, or it failed to operate cor-

rectly only because its environment did something wrong. Section 10.7 explains

how to write open-system speci�cations.

Open-system speci�cations are philosophically more satisfying. However,

closed-system speci�cations are a little easier to write, and the mathematics

underlying them is simpler. So, we almost always write closed-system speci-

�cations. It's usually quite easy to turn a closed-system speci�cation into an

open-system speci�cation. But in practice, there's little reason to do so.



Chapter 5

A Caching Memory

A memory system consists of a set of processors connected to a memory by some

abstract interface, which we label memInt.
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Processor

-�

-�
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p

p

memInt

M
E
M
O
R
Y

In this section we specify what the memory is supposed to do, then we specify a

particular implementation of the memory using caches. We begin by specifying

the memory interface, which is common to both speci�cations.

5.1 The Memory Interface

The asynchronous interface described in Chapter 3 uses a handshake protocol.

Receipt of a data value must be acknowledged before the next data value can be

sent. In the memory interface, we abstract away this kind of detail and represent

both the sending of a data value and its receipt as a single step. We call it a

Send step if a processor is sending the value to the memory; it's a Reply step

if the memory is sending to a processor. Processors do not send values to one

another, and the memory sends to only one processor at a time.

We represent the state of the memory interface by the value of the variable

memInt . A Send step changes memInt in some way, but we don't want to

specify exactly how. The way to leave something unspeci�ed in a speci�cation

is to make it a parameter. For example, in the bounded FIFO of Section 4.4,

we left the size of the bu�er unspeci�ed by making it a parameter N . We'd

45
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therefore like to declare a parameter Send so that Send(p; d) describes how

memInt is changed by a step that represents processor p sending data value

d to the memory. However, TLA+ provides only constant and variable

parameters, not action parameters.1 So, we declare Send to be a constant

operator and write Send(p; d ;memInt ;memInt 0) instead of Send(p; d).

In TLA+, we declare Send to be a constant operator that takes four argu-

ments by writing

constant Send( ; ; ; )

This means that Send(p; d ;miOld ;miNew) is an expression, for any expressions

p, d , miOld , and miNew , but it says nothing about what the value of that

expression is. We want it to be a Boolean value that is true i� a step in which

memInt equals miOld in the �rst state and miNew in the second state represents

the sending by p of value d to the memory.2 We can assert that the value is a

Boolean by the assumption:

assume 8 p; d ; miOld ; miNew :

Send(p; d ;miOld ;miNew) 2 boolean

This asserts that the formula

Send(p; d ;miOld ;miNew) 2 boolean

is true for all values of p, d , miOld , and miNew . The built-in symbol boolean

denotes the set ftrue; falseg, whose elements are the two Boolean values true
and false.

This assume statement asserts formally that the value of

Send(p; d ;miOld ;miNew)

is a Boolean. But the only way to assert formally what that value signi�es would

be to say what it actually equals|that is, to de�ne Send rather than making

it a parameter. We don't want to do that, so we just state informally what

the value means. This statement is part of the intrinsically informal description

of the relation between our mathematical abstraction and a physical memory

system.

To allow the reader to understand the speci�cation, we have to describe

informally what Send means. The assume statement asserting that Send(: : :)

is a Boolean is then superuous as an explanation. However, it could help tools

understand the speci�cation, so it's a good idea to include it anyway.

1Even if TLA+ allowed us to declare an action parameter, we would have no way to specify

that a Send(p; d) action constrains only memInt and not other variables.
2We expect Send(p; d ;miOld ;miNew) to have this meaning only when p is a processor and

d a value that p is allowed to send, but we simplify the speci�cation a bit by requiring it to

be a Boolean for all values of p and d .
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A speci�cation that uses the memory interface can use the operators Send

and Reply to specify how the variable memInt changes. The speci�cation must

also describe memInt 's initial value. We therefore declare a constant parameter

InitMemInt that is the set of possible initial values of memInt .

We also introduce three constant parameters that are needed to describe the

interface:

Proc The set of processor identi�ers. (We usually shorten processor identi�er

to processor when referring to an element of Proc.)

Adr The set of memory addresses.

Val The set of possible memory values that can be assigned to an address.

Finally, we de�ne the values that the processors and memory send to one another

over the interface. A processor sends a request to the memory. We represent

a request as a record with an op �eld that speci�es the type of request and

additional �elds that specify its arguments. Our simple memory allows just

read and write requests. A read request has op �eld \Rd" and an adr �eld

specifying the address to be read. The set of all read requests is therefore the

set

[op : f\Rd"g; adr :Adr ]

of all records whose op �eld equals \Rd" (is an element of the set f\Rd"g whose
only element is the string \Rd") and whose adr �eld is an element of Adr . A

write request must specify the address to be written and the value to write. It is

represented by a record with op �eld equal to \Wr", and with adr and val �elds

specifying the address and value. We de�ne MReq , the set of all requests, to

equal the union of these two sets. (Set operations, including union, are described

in Section 1.2.)

The memory responds to a read request with the memory value it read.

We will also have it respond to a write request; and it seems nice to let the

response be di�erent from the response to any read request. We therefore require

the memory to respond to a write request by returning a value NoVal that is

di�erent from any memory value. We could declare NoVal to be a constant

parameter and add the assumption NoVal =2 Val . (The symbol =2 is typed in

ascii as \notin .) But it's best, when possible, to avoid introducing parameters.

Instead, we de�ne NoVal by:

NoVal
�
= choose v : v =2 Val

The expression choose x :F equals an arbitrarily chosen value x that satis�es

the formula F . (If no such x exists, the expression has a completely arbitrary

value.) This statement de�nes NoVal to be some value that is not an element of
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module MemoryInterface

variable memInt

constants Send( ; ; ; ); A Send(p; d ;memInt ;memInt 0) step represents processor p

sending value d to the memory.

Reply( ; ; ; ); A Reply(p; d ;memInt ;memInt 0) step represents the memory

sending value d to processor p.

InitMemInt ; The set of possible initial values of memInt .

Proc; The set of processor identi�ers.

Adr ; The set of memory addresses.

Val The set of memory values.

assume 8 p; d ;miOld ;miNew : ^ Send(p; d ;miOld ;miNew) 2 boolean
^ Reply(p; d ;miOld ;miNew) 2 boolean

MReq
�
= [op : f\Rd"g; adr :Adr ] [ [op : f\Wr"g; adr :Adr ; val :Val ]

The set of all requests; a read speci�es an address, a write speci�es an address and a value.

NoVal
�
= choose v : v =2 Val An arbitrary value not in Val .

Figure 5.1: The speci�cation of a memory interface.

Val . We have no idea what the value of NoVal is; we just know what it isn't|

namely, that it isn't an element of Val . The choose operator is discussed in

Section 6.6.

The complete memory interface speci�cation is module MemoryInterface in

Figure 5.1 on this page.

5.2 Functions

A memory assigns values to addresses. The state of the memory is therefore

an assignment of elements of Val (memory values) to elements of Adr (memory

addresses). In a programming language, such an assignment is called an array

of type Val indexed by Adr . In mathematics, it's called a function from Adr to

Val . Before writing the memory speci�cation, let's look at the mathematics of

functions, and how it is described in TLA+.

A function f has a domain, written domain f , and it assigns to each element

x of its domain the value f [x ]. (Mathematicians write this as f (x ), but TLA+

uses the array notation of programming languages, with square brackets.) Two

functions f and g are equal i� they have the same domain and f [x ] = g [x ] for

all x in their domain.

The range of a function f is the set of all values of the form f [x ] with x in

domain f . For any sets S and T , the set of all functions whose domain equals
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S and whose range is any subset of T is written [S ! T ].

Ordinary mathematics does not have a convenient notation for writing an ex-

pression whose value is a function. TLA+ de�nes [x 2 S 7! e] to be the function

f with domain S such that f [x ] = e for every x 2 S .3 For example,

succ
�
= [n 2 Nat 7! n + 1]

de�nes succ to be the successor function on the natural numbers|the function

with domain Nat such that succ[n] = n + 1 for all n 2 Nat .

A record is a function whose domain is a �nite set of strings. For example,

a record with val , ack , and rdy �elds is a function whose domain is the set

f\val"; \ack"; \rdy"g consisting of the three strings \val", \ack", and \rdy".
The expression r :ack , the ack �eld of a record r , is an abbreviation for r [\ack"].
The record

[val 7! 42; ack 7! 1; rdy 7! 0]

can be written

[i 2 f\val"; \ack"; \rdy"g 7!
if i = \val" then 42 else if i = \ack" then 1 else 0]

The except construct for records, explained in Section 3.2, is a special case of a

general except construct for functions, where ! :c is an abbreviation for ![\c"].

For any function f , the expression [f except ! [c] = e] is the function f̂ that is

the same as f except with f̂ [c] = e. This function can also be written:

[x 2 domain f 7! if x = c then e else f [x ] ]

assuming that the symbol x does not occur in any of the expressions f , c, and

e. For example, [succ except ! [42] = 86] is the function g that is the same as

succ except that g [42] equals 86 instead of 43.

As in the except construct for records, the expression e in

[f except ! [c] = e]

can contain the symbol @, where it means f [c]. For example,

[succ except ! [42] = 2 �@] = [succ except ! [42] = 2 � succ[42] ]

In general,

[f except ! [c1] = e1; : : : ; ! [cn ] = en ]

3The 2 in [x 2 S 7! e] is just part of the syntax; TLA+ uses that particular symbol to help

you remember what the construct means. Computer scientists write �x : S :e to represent

something similar to [x 2 S 7! e], except that their � expressions aren't quite the same as the

functions of ordinary mathematics that are used in TLA+.
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is the function f̂ that is the same as f except with f̂ [ci ] = ei for each i . More

precisely, this expression equals

[: : : [ [f except ! [c1] = e1] except ! [c2] = e2] : : : except ! [cn ] = en ]

Functions correspond to the arrays of programming languages. The domain of a

function corresponds to the index set of an array. The function [f except ! [c] = e]

corresponds to the array obtained from f by assigning e to f [c]. A function whose

range is a set of functions corresponds to an array of arrays. TLA+ de�nes

[f except ! [c][d ] = e] to be the function corresponding to the array obtained

by assigning e to f [c][d ]. It can be written as

[f except ! [c] = [@ except ! [d ] = e]]

The generalization to [f except ! [c1] : : : [cn ] = e] for any n should be obvious.

Since a record is a function, this notation can be used for records as well. TLA+

uniformly maintains the notation that �:c is an abbreviation for �[\c"]. For

example, this implies:

[f except ! [c]:d = e] = [f except ! [c] = [@ except ! :d = e]]

The TLA+ de�nition of records as functions makes it possible to manipulate

them in ways that have no counterparts in programming languages. For example,

we can de�ne an operator R such that R(r ; s) is the record obtained from r by

replacing the value of each �eld c that is also a �eld of the record s with s :c.

In other words, for every �eld c of r , if c is a �eld of s then R(r ; s):c = s :c;

otherwise R(r ; s):c = r :c. The de�nition is:

R(r ; s)
�
= [c 2 domain r 7! if c 2 domain s then s [c] else r [c] ]

So far, I have described only functions of a single argument, which are the

mathematical analog of the one-dimensional arrays of programming languages.

Mathematicians also use functions of multiple arguments, which are the analog

of multi-dimensional arrays. In TLA+, as in ordinary mathematics, a function of

multiple arguments is one whose domain is a set of tuples. For example, f [5; 3; 1]

is an abbreviation for f [h5; 3; 1i], the value of the function f applied to the triple
h5; 3; 1i.

The function constructs of TLA+ have extensions for functions of multiple

arguments. For example, [g except ! [a; b] = e] is the function bg that is the

same as g except with bg [a; b] equal to e. The expression
[n 2 Nat ; r 2 Real 7! n � r ](5.1)

equals the function f such that f [n; r ] equals n � r , for all n 2 Nat and r 2 Real .
Just as 8 i 2 S : 8 j 2 S :P can be written as 8 i ; j 2 S :P , we can write the

function [i 2 S ; j 2 S 7! e] as [i ; j 2 S 7! e].
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Section 16.1.7 on page 299 describes the general versions of the TLA+ func-

tion constructs for functions with any number of arguments. However, functions

of a single argument are all you really need. You can always replace a function

of multiple arguments with a function-valued function|for example, writing

f [a][b] instead of f [a; b].

5.3 A Linearizable Memory Speci�cation

We specify a very simple memory system in which a processor p issues a mem-

ory request and then waits for a response before issuing the next request. In

our speci�cation, the request is executed by accessing (reading or modifying) a

variable mem, which represents the current state of the memory. Because the

memory can receive requests from other processors before responding to pro-

cessor p, it matters when mem is accessed. We let the access of mem occur

any time between the request and the response. This speci�es what is called a

linearizable memory. Less restrictive, more practical memory speci�cations are

described in Section 11.2.

In addition to mem, the speci�cation has the internal variables ctl and buf ,

where ctl [p] describes the status of processor p's request and buf [p] contains

either the request or the response. Consider the request req that equals

[op 7! \Wr"; adr 7! a; val 7! v ]

It is a request to write v to memory address a, and it generates the response

NoVal . The processing of this request is represented by the following three steps:2
4ctl [p] = \rdy"
buf [p] = � � �
mem[a] = � � �

3
5 Req(p)

�!

2
4ctl [p] = \busy"
buf [p] = req

mem[a] = � � �

3
5

Do(p)

�!

2
4ctl [p] = \done"
buf [p] = NoVal

mem[a] = v

3
5 Rsp(p)

�!

2
4ctl [p] = \rdy"
buf [p] = NoVal

mem[a] = v

3
5

A Req(p) step represents the issuing of a request by processor p. It is enabled

when ctl [p] = \rdy"; it sets ctl [p] to \busy" and sets buf [p] to the request. A

Do(p) step represents the memory access; it is enabled when ctl [p] = \busy"
and it sets ctl [p] to \done" and buf [p] to the response. A Rsp(p) step represents

the memory's response to p; it is enabled when ctl [p] = \done" and it sets ctl [p]

to \rdy".
Writing the speci�cation is a straightforward exercise in representing these

changes to the variables in TLA+ notation. The internal speci�cation, with

mem, ctl , and buf visible (free variables), appears in module InternalMemory

on the following two pages. The memory speci�cation, which hides the three

internal variables, is module Memory in Figure 5.3 on page 53.
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module InternalMemory

extends MemoryInterface

variables mem; ctl ; buf

IInit
�
= The initial predicate

^ mem 2 [Adr ! Val ]

^ ctl = [p 2 Proc 7! \rdy"]
^ buf = [p 2 Proc 7! NoVal ]

^ memInt 2 InitMemInt

Initially, memory locations have any values in Val ,

each processor is ready to issue requests,

each buf [p] is arbitrarily initialized to NoVal ,

and memInt is any element of InitMemInt .

TypeInvariant
�
= The type-correctness invariant.

^ mem 2 [Adr ! Val ]

^ ctl 2 [Proc ! f\rdy"; \busy"; \done"g]
^ buf 2 [Proc ! MReq [ Val [ fNoValg]

mem is a function from Adr to Val .

ctl [p] equals \rdy", \busy", or \done".

buf [p] is a request or a response.

Req(p)
�
= Processor p issues a request.

^ ctl [p] = \rdy" Enabled i� p is ready to issue a request.

^ 9 req 2 MReq : For some request req :

^ Send(p; req ; memInt ; memInt 0)

^ buf 0 = [buf except ! [p] = req ]

^ ctl 0 = [ctl except ! [p] = \busy"]

Send req on the interface.

Set buf [p] to the request.

Set ctl [p] to \busy".

^ unchanged mem

Do(p)
�
= Perform p's request to memory.

^ ctl [p] = \busy" Enabled i� p's request is pending.

^ mem 0 = if buf [p]:op = \Wr"
then [mem except

! [buf [p]:adr ] = buf [p]:val ]

else mem Leave mem unchanged on a \Rd" request.

Write to memory on a

\Wr" request.

^ buf 0 = [buf except

! [p] = if buf [p]:op = \Wr" Set buf [p] to the response:

NoVal for a write;

the memory value for a read.

Set ctl [p] to \done".

then NoVal

else mem[buf [p]:adr ] ]

^ ctl 0 = [ctl except ! [p] = \done"]
^ unchanged memInt

Figure 5.2a: The internal memory speci�cation (beginning).
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Rsp(p)
�
= Return the response to p's request.

^ ctl [p] = \done"
^ Reply(p; buf [p]; memInt ; memInt 0)

^ ctl 0 = [ctl except ! [p] = \rdy"]
^ unchanged hmem; buf i

Enabled i� req. done but resp. not sent.

Send the response on the interface.

Set ctl [p] to \rdy".

INext
�
= 9 p 2 Proc : Req(p) _Do(p) _ Rsp(p) The next-state action.

ISpec
�
= IInit ^ 2[INext ]hmemInt;mem; ctl; buf i The speci�cation.

theorem ISpec ) 2TypeInvariant

Figure 5.2b: The internal memory speci�cation (end).

5.4 Tuples as Functions

Before writing our caching memory speci�cation, let's take a closer look at tu-

ples. Recall that ha; b; c i is the 3-tuple with components a, b, and c. In TLA+,

this 3-tuple is actually the function with domain f1; 2; 3g that maps 1 to a, 2 to
b, and 3 to c. Thus, ha; b; c i[2] equals b.

TLA+ provides the Cartesian product operator � of ordinary mathematics,

where A�B �C is the set of all 3-tuples ha; b; c i such that a 2 A, b 2 B , and
c 2 C . Note that A� B � C is di�erent from A� (B � C ), which is the set of

pairs ha; p i with a in A and p in the set of pairs B � C .

The Sequences module de�nes �nite sequences to be tuples. Hence, a se-

quence of length n is a function with domain 1 : : n. In fact, s is a sequence i�

it equals [i 2 1 : : Len(s) 7! s [i ]] . Below are a few operator de�nitions from the

Sequences module. (The meanings of the operators are described in Section 4.1.)

Head(s)
�
= s [1]

Tail(s)
�
= [i 2 1 : : (Len(s)� 1) 7! s [i + 1]]

s � t �
= [i 2 1 : : (Len(s) + Len(t)) 7!

if i � Len(s) then s [i ] else t [i � Len(s)] ]

module Memory

extends MemoryInterface

Inner(mem; ctl ; buf )
�
= instance InternalMemory

Spec
�
= 999999mem; ctl ; buf : Inner(mem; ctl ; buf )!ISpec

Figure 5.3: The memory speci�cation.
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5.5 Recursive Function De�nitions

We need one more tool to write the caching memory speci�cation: recursive

function de�nitions. Recursively de�ned functions are familiar to programmers.

The classic example is the factorial function, which I'll call fact . It's usually

de�ned by writing:

fact [n] = if n = 0 then 1 else n � fact [n � 1]

for all n 2 Nat . The TLA+ notation for writing functions suggests trying to

de�ne fact by

fact
�
= [n 2 Nat 7! if n = 0 then 1 else n � fact [n � 1]]

This de�nition is illegal because the occurrence of fact to the right of the
�
= is

unde�ned|fact is de�ned only after its de�nition.

TLA+ does allow the apparent circularity of recursive function de�nitions.

We can de�ne the factorial function fact by:

fact [n 2 Nat ] �
= if n = 0 then 1 else n � fact [n � 1]

In general, a de�nition of the form f [x 2 S ]
�
= e can be used to de�ne recursively

a function f with domain S .

The function de�nition notation has a straightforward generalization to def-

initions of functions of multiple arguments. For example,

Acker [m; n 2 Nat ]
�
= if m = 0 then n + 1

else if n = 0 then Acker [m � 1; 0]

else Acker [m � 1; Acker [m; n � 1]]

de�nes Acker [m; n; ] for all natural numbers m and n.

Section 6.3 explains exactly what recursive de�nitions mean. For now, we

will just write recursive de�nitions without worrying about their meaning.

5.6 A Write-Through Cache

We now specify a simple write-through cache that implements the memory spec-

i�cation. The system is described by the following picture:
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Each processor p communicates with a local controller, which maintains three

state components: buf [p], ctl [p], and cache[p]. The value of cache[p] represents

the processor's cache; buf [p] and ctl [p] play the same role as in the internal

memory speci�cation (module InternalMemory). (However, as we will see be-

low, ctl [p] can assume an additional value \waiting".) These local controllers

communicate with the main memory mem,4 and with one another, over a bus.

Requests from the processors to the main memory are in the queue memQ of

maximum length QLen.

A write request by processor p is performed by the action DoWr(p). This is

a write-through cache, meaning that every write request updates main memory.

So, the DoWr(p) action writes the value into cache[p] and adds the write request

to the tail of memQ . It also updates cache[q ] for any other processor q that has

a copy of the address in its cache. When the request reaches the head of memQ ,

the action MemQWr stores the value in mem.

A read request by processor p is performed by the action DoRd(p), which

obtains the value from the cache. If the value is not in the cache, the action

RdMiss(p) adds the request to the tail of memQ and sets ctl [p] to \waiting".
When the enqueued request reaches the head of memQ , the action MemQRd

reads the value and puts it in cache[p], enabling the DoRd(p) action.

We might expect theMemQRd action to read the value from mem. However,

this could cause an error if there is a write to that address enqueued in memQ

behind the read request. In that case, reading the value from memory could

lead to two processors having di�erent values for the address in their caches:

the one that issued the read request, and the one that issued the write request

that followed the read in memQ . So, the MemQRd action must read the value

4Although the write-through cache implements the linearizable memory, its main memory

does not directly implement the variable mem of the speci�cation in module InternalMemory .
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from the last write to that address in memQ , if there is such a write; otherwise,

it reads the value from mem.

Eviction of an address from processor p's cache is represented by a separate

Evict(p) action. Since all cached values have been written to memory, eviction

does nothing but remove the address from the cache. There is no reason to evict

an address until the space is needed, so in an implementation, this action would

be executed only when a request for an uncached address is received from p and

p's cache is full. But that's a performance optimization; it doesn't a�ect the

correctness of the algorithm, so it doesn't appear in the speci�cation. We allow

a cached address to be evicted from p's cache at any time|except if the address

was just put there by a MemQRd action for the current request. This is the

case when ctl [p] equals \waiting" and buf [p]:adr equals the cached address.

The actions Req(p) and Rsp(p), which represent processor p issuing a request

and the memory issuing a reply to p, are the same as the corresponding actions

of the memory speci�cation, except that they also leave the new variables cache

and memQ unchanged.

To specify all these actions, we must decide how the processor caches and

the queue of requests to memory are represented by the variables memQ and

cache. We let memQ be a sequence of pairs of the form hp; req i, where req is

a request and p is the processor that issued it. For any memory address a, we

let cache[p][a] be the value in p's cache for address a (the \copy" of a in p's

cache). If p's cache does not have a copy of a, we let cache[p][a] equal NoVal .

The speci�cation appears in module WriteThroughCache on pages 57{59.

I'll now go through this speci�cation, explaining some of the �ner points and

some notation that we haven't encountered before.

The extends, declaration statements, and assume are familiar. We can re-

use some of the de�nitions from the InternalMemory module, so an instance

statement instantiates a copy of that module. (The parameters of module

InternalMemory are instantiated by the parameters of the same name in module

WriteThroughCache.)

The initial predicate Init contains the conjunct M !IInit , which asserts that

mem, ctl , and buf have the same initial values as in the internal memory speci-

�cation. The write-through cache allows ctl [p] to have the value \waiting" that
it didn't in the internal memory speci�cation, so we can't re-use the internal

memory's type invariant M !TypeInvariant . Formula TypeInvariant therefore

explicitly describes the types of mem, ctl , and buf . The type of memQ is the

set of sequences of hprocessor; requesti pairs.
The module next de�nes the predicate Coherence, which asserts the basic

cache coherence property of the write-through cache: for any processors p and

q and any address a, if p and q both have copies of address a in their caches,

then those copies are equal. Note the trick of writing x =2 fy ; zg instead of the

equivalent but longer formula (x 6= y) ^ (x 6= z ).
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module WriteThroughCache

extends Naturals ; Sequences ; MemoryInterface

variables mem; ctl ; buf ; cache; memQ

constant QLen

assume (QLen 2 Nat) ^ (QLen > 0)

M
�
= instance InternalMemory

Init
�
= The initial predicate

^ M !IInit

^ cache =

[p 2 Proc 7! [a 2 Adr 7! NoVal ]]

^ memQ = h i

mem, buf , and ctl are initialized as in the internal memory spec.

All caches are initially empty (cache[p][a] = NoVal for all p, a).

The queue memQ is initially empty.

TypeInvariant
�
= The type invariant.

^ mem 2 [Adr ! Val ]

^ ctl 2 [Proc ! f\rdy"; \busy"; \waiting"; \done"g]
^ buf 2 [Proc ! MReq [ Val [ fNoValg]
^ cache 2 [Proc ! [Adr ! Val [ fNoValg] ]
^ memQ 2 Seq(Proc �MReq) memQ is a sequence of hproc., requesti pairs.

Coherence
�
= Asserts that if two processors' caches both have copies of an

address, then those copies have equal values.8 p; q 2 Proc; a 2 Adr :

(NoVal =2 fcache[p][a]; cache[q ][a]g) ) (cache[p][a] = cache[q ][a])

Req(p)
�
= Processor p issues a request.

M !Req(p) ^ unchanged hcache; memQ i

Rsp(p)
�
= The system issues a response to processor p.

M !Rsp(p) ^ unchanged hcache; memQ i

RdMiss(p)
�
= Enqueue a request to write value from memory to p's cache.

^ (ctl [p] = \busy") ^ (buf [p]:op = \Rd")
^ cache[p][buf [p]:adr ] = NoVal

^ Len(memQ) < QLen

^ memQ 0 = Append(memQ ; hp; buf [p]i)
^ ctl 0 = [ctl except ! [p] = \waiting"]
^ unchanged hmemInt ; mem; buf ; cache i

Enabled on a read request when

the address is not in p's cache

and memQ is not full.

Append hp; requesti to memQ.

Set ctl [p] to \waiting".

Figure 5.4a: The write-through cache speci�cation (beginning).
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DoRd(p)
�
= Perform a read by p of a value in its cache.

^ ctl [p] 2 f\busy"; \waiting"g
^ buf [p]:op = \Rd"
^ cache[p][buf [p]:adr ] 6= NoVal

^ buf 0 = [buf except ! [p] = cache[p][buf [p]:adr ] ]

^ ctl 0 = [ctl except ! [p] = \done"]
^ unchanged hmemInt ; mem; cache; memQ i

Enabled if a read

request is pending and

address is in cache.

Get result from cache.

Set ctl [p] to \done".

DoWr(p)
�
= Write to p's cache, update other caches, and enqueue memory update.

let r
�
= buf [p] Processor p's request.

in ^ (ctl [p] = \busy") ^ (r :op = \Wr") Enabled if write request pending

and memQ is not full.^ Len(memQ) < QLen

^ cache 0 = Update p's cache and any other cache that has a copy.

[q 2 Proc 7! if (p = q) _ (cache[q ][r :adr ] 6= NoVal)

then [cache[q ] except ! [r :adr ] = r :val ]

else cache[q ]]

^ memQ 0 = Append(memQ ; hp; r i) Enqueue write at tail of memQ.

Generate response.

Set ctl to indicate request is done.

^ buf 0 = [buf except ! [p] = NoVal ]

^ ctl 0 = [ctl except ! [p] = \done"]
^ unchanged hmemInt ; mem i

vmem
�
= The value mem will have after all the writes in memQ are performed.

let f [i 2 0 : : Len(memQ)]
�
= The value mem will have after the �rst

i writes in memQ are performed.if i = 0 then mem

else if memQ [i ][2]:op = \Rd"
then f [i � 1]

else [f [i � 1] except ! [memQ [i ][2]:adr ] =

memQ [i ][2]:val ]

in f [Len(memQ)]

MemQWr
�
= Perform write at head of memQ to memory.

let r
�
= Head(memQ)[2] The request at the head of memQ .

in ^ (memQ 6= h i) ^ (r :op = \Wr") Enabled if Head(memQ) a write.

Perform the write to memory.

Remove the write from memQ .

^ mem 0 =

[mem except ! [r :adr ] = r :val ]

^ memQ 0 = Tail(memQ)

^ unchanged hmemInt ; buf ; ctl ; cache i

Figure 5.4b: The write-through cache speci�cation (middle).
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MemQRd
�
= Perform an enqueued read to memory.

let p
�
= Head(memQ)[1] The requesting processor.

r
�
= Head(memQ)[2] The request at the head of memQ.

in ^ (memQ 6= h i) ^ (r :op = \Rd") Enabled if Head(memQ) is a read.

Remove the head of memQ .

Put value from memory or memQ in p's cache.

^ memQ 0 = Tail(memQ)

^ cache 0 =

[cache except ! [p][r :adr ] = vmem[r :adr ]]

^ unchanged hmemInt ; mem; buf ; ctl i

Evict(p; a)
�
= Remove address a from p's cache.

^ (ctl [p] = \waiting")) (buf [p]:adr 6= a) Can't evict a if it was just read

into cache from memory.^ cache 0 = [cache except ! [p][a] = NoVal ]

^ unchanged hmemInt ; mem; buf ; ctl ; memQ i

Next
�
= _ 9 p 2 Proc : _ Req(p) _Rsp(p)

_ RdMiss(p) _ DoRd(p) _ DoWr(p)

_ 9 a 2 Adr : Evict(p; a)

_ MemQWr _MemQRd

Spec
�
= Init ^ 2[Next ]hmemInt;mem; buf ; ctl; cache;memQ i

theorem Spec ) 2(TypeInvariant ^ Coherence)

LM
�
= instance Memory

theorem Spec ) LM !Spec

The memory spec. with internal variables hidden.

Formula Spec implements the memory spec.

Figure 5.4c: The write-through cache speci�cation (end).

The actions Req(p) and Rsp(p), which represent a processor sending a re-

quest and receiving a reply, are essentially the same as the corresponding actions

in module InternalMemory . The only di�erence is that they must specify that

the variables cache and memQ , not present in module InternalMemory , are left

unchanged.

In the de�nition of RdMiss , the expression Append(memQ ; hp; buf [p]i) is the
sequence obtained by appending the element hp; buf [p]i to the end of memQ .

The DoRd(p) action represents the performing of the read from p's cache.

If ctl [p] = \busy", then the address was originally in the cache. If ctl [p] =

\waiting", then the address was just read into the cache from memory.

The DoWr(p) action writes the value to p's cache and updates the value in

any other caches that have copies. It also enqueues a write request in memQ .

In an implementation, the request is put on the bus, which transmits it to the

other caches and to the memQ queue. In our high-level view of the system, we
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represent all this as a single step.

The de�nition of DoWr introduces the TLA+
let/in construct. The let

clause consists of a sequence of de�nitions, whose scope extends until the end of

the in clause. In the de�nition of DoWr , the let clause de�nes r to equal buf [p]

within the in clause. Observe that the de�nition of r contains the parameter p

of the de�nition of DoWr . Hence, we could not move the de�nition of r outside

the de�nition of DoWr .

A de�nition in a let is just like an ordinary de�nition in a module; in

particular, it can have parameters. These local de�nitions can be used to shorten

an expression by replacing common subexpressions with an operator. In the

de�nition of DoWr , I replaced �ve instances of buf [p] by the single symbol r .

This was a silly thing to do, because it makes almost no di�erence in the length

of the de�nition and it requires the reader to remember the de�nition of the

new symbol r . But using a let to eliminate common subexpressions can often

greatly shorten and simplify an expression.

A let can also be used to make an expression easier to read, even if the

operators it de�nes appear only once in the in expression. We write a speci�ca-

tion with a sequence of de�nitions, instead of just de�ning a single monolithic

formula, because a formula is easier to understand when presented in smaller

chunks. The let construct allows the process of splitting a formula into smaller

parts to be done hierarchically. A let can appear as a subexpression of an in

expression. Nested lets are common in large, complicated speci�cations.

Next comes the de�nition of the state function vmem, which is used in de�n-

ing action MemQRd below. It equals the value that the main memory mem

will have after all the write operations currently in memQ have been performed.

Recall that the value read by MemQRd must be the most recent one written

to that address|a value that may still be in memQ . That value is the one

in vmem. The function vmem is de�ned in terms of the recursively de�ned

function f , where f [i ] is the value mem will have after the �rst i operations in

memQ have been performed. Note that memQ [i ][2] is the second component

(the request) of memQ [i ], the ith element in the sequence memQ .

The next two actions, MemQWr and MemQRd , represent the processing of

the request at the head of the memQ queue|MemQWr for a write request,

and MemQRd for a read request. These actions also use a let to make local

de�nitions. Here, the de�nitions of p and r could be moved before the de�nition

ofMemQWr . In fact, we could save space by replacing the two local de�nitions of

r with one global (within the module) de�nition. However, making the de�nition

of r global in this way would be somewhat distracting, since r is used only in the

de�nitions of MemQWr and MemQRd . It might be better instead to combine

these two actions into one. Whether you put a de�nition into a let or make

it more global should depend on what makes the speci�cation easier to read.

Writing speci�cations is a craft whose mastery requires talent and hard work.
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The Evict(p; a) action represents the operation of removing address a from

processor p's cache. As explained above, we allow an address to be evicted at

any time|unless the address was just written to satisfy a pending read request,

which is the case i� ctl [p] = \waiting" and buf [p]:adr = a. Note the use of the

\double subscript" in the except expression of the action's second conjunct.

This conjunct \assigns NoVal to cache[p][a]". If address a is not in p's cache,

then cache[p][a] already equals NoVal and an Evict(p; a) step is a stuttering

step.

The de�nitions of the next-state action Next and of the complete speci�ca-

tion Spec are straightforward. The module closes with two theorems that are

discussed below.

5.7 Invariance

Module WriteThroughCache contains the theorem

theorem Spec ) 2(TypeInvariant ^ Coherence)

which asserts that TypeInvariant ^ Coherence is an invariant of Spec. A state

predicate P ^ Q is always true i� both P and Q are always true, so 2(P ^ Q)

is equivalent to 2P ^2Q . This implies that the theorem above is equivalent to

the two theorems:

theorem Spec ) 2TypeInvariant
theorem Spec ) 2Coherence

The �rst theorem is the usual type-invariance assertion. The second, which

asserts that Coherence is an invariant of Spec, expresses an important property

of the algorithm.

Although TypeInvariant and Coherence are both invariants of the temporal

formula Spec, they di�er in a fundamental way. If s is any state satisfying

TypeInvariant , then any state t such that s ! t is a Next step also satis�es

TypeInvariant . This property is expressed by:

theorem TypeInvariant ^ Next ) TypeInvariant 0

(Recall that TypeInvariant 0 is the formula obtained by priming all the variables

in formula TypeInvariant .) In general, when P ^ N ) P 0 holds, we say that

predicate P is an invariant of action N . Predicate TypeInvariant is an invariant An invariant of

a speci�cation

S that is also

an invariant of

its next-state ac-

tion is sometimes

called an inductive

invariant of S .

of Spec because it is an invariant of Next and it is implied by the initial predicate

Init .

Predicate Coherence is not an invariant of the next-state action Next . For

example, suppose s is a state in which

� cache[p1][a] = 1
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� cache[q ][b] = NoVal , for all hq ; b i di�erent from hp1; a i

� mem[a] = 2

� memQ contains the single element hp2; [op 7! \Rd"; adr 7! a]i

for two di�erent processors p1 and p2 and some address a. Such a state s (an

assignment of values to variables) exists, assuming that there are at least two

processors and at least one address. Then Coherence is true in state s . Let t

be the state obtained from s by taking a MemQRd step. In state t , we have

cache[p2][a] = 2 and cache[p1][a] = 1, so Coherence is false. Hence Coherence

is not an invariant of the next-state action.

Coherence is an invariant of formula Spec because states like s cannot occur

in a behavior satisfying Spec. Proving its invariance is not so easy. We must

�nd a predicate Inv that is an invariant of Next such that Inv implies Coherence

and is implied by the initial predicate Init .

Important properties of a speci�cation can often be expressed as invariants.

Proving that a state predicate P is an invariant of a speci�cation means proving

a formula of the form

Init ^ 2[Next ]v ) 2P

This is done by �nding an appropriate state predicate Inv and proving

Init ) Inv ; Inv ^ [Next ]v ) Inv 0; Inv ) P

Since our subject is speci�cation, not proof, I won't discuss how to �nd Inv .

5.8 Proving Implementation

Module WriteThroughCache ends with the theorem

theorem Spec ) LM !Spec

where LM !Spec is formula Spec of moduleMemory . By de�nition of this formula

(page 53), we can restate the theorem as

theorem Spec ) 999999mem; ctl ; buf : LM !Inner(mem; ctl ; buf )!ISpec

where LM !Inner(mem; ctl ; buf )!ISpec is formula ISpec of the InternalMemory

module. The rules of logic tell us that to prove such a theorem, we must �nd

\witnesses" for the quanti�ed variables mem, ctl , and buf . These witnesses are

state functions (ordinary expressions with no primes), which I'll call omem, octl ,

and obuf , that satisfy:

Spec ) LM !Inner(omem; octl ; obuf )!ISpec(5.2)
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The tuple homem; octl ; obuf i of witness functions is called a re�nement mapping,
and we describe (5.2) as the assertion that Spec implements formula ISpec (of

module InternalMemory) under this re�nement mapping. Intuitively, this means

Spec implies that the value of the tuple hmemInt ; omem; octl ; obuf i of state
functions changes the way ISpec asserts that the tuple hmemInt ;mem; ctl ; buf i
of variables should change.

I will now briey describe how we prove (5.2); for details, see [4]. Let

me �rst introduce a bit of non-TLA+ notation. For any formula F of module

InternalMemory , let F equal LM !Inner(omem; octl ; obuf )!F , which is formula

F with omem, octl , and obuf substituted for mem, ctl , and buf . In particular,

mem, ctl , and buf equal omem, octl , and obuf , respectively.

Replacing Spec and ISpec by their de�nitions transforms (5.2) to

Init ^ 2[Next ]hmemInt;mem; buf ; ctl; cache;memQ i

) IInit ^ 2[INext ]
hmemInt;mem; ctl; buf i

This is proved by �nding an invariant Inv of Spec such that

^ Init ) IInit

^ Inv ^ Next ) _ INext

_ unchanged hmemInt ; mem; ctl ; buf i
The second conjunct is called step simulation. It asserts that a Next step start-

ing in a state satisfying the invariant Inv is either an INext step|a step that

changes the 4-tuple hmemInt ; omem; octl ; obuf i the way an INext step changes

hmemInt ;mem; ctl ; buf i|or else it leaves that 4-tuple unchanged. For our mem-

ory speci�cations, the state functions omem, octl , and obuf are de�ned by:

omem
�
= vmem

octl
�
= [p 2 Proc 7! if ctl [p] = \waiting" then \busy" else ctl [p]]

obuf
�
= buf

The mathematics of an implementation proof is simple, so the proof is

straightforward|in theory. For speci�cations of real systems, such proofs can

be quite di�cult. Going from the theory to practice requires turning the math-

ematics of proofs into an engineering discipline|a subject that deserves a book

to itself. However, when writing speci�cations, it helps to understand re�nement

mappings and step simulation.

We now return to the question posed in Section 3.2: what is the relation be-

tween the speci�cations of the asynchronous interface in modulesAsynchInterface

and Channel? Recall that module AsynchInterface describes the interface in

terms of the three variables val , rdy , and ack , while module Channel describes

it with a single variable chan whose value is a record with val , rdy , and ack

components. In what sense are those two speci�cations of the interface equiva-

lent?
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One answer that now suggests itself is that each of the speci�cations should

implement the other under a re�nement mapping. We expect formula Spec of

module Channel to imply the formula obtained from Spec of moduleAsynchInterface

by substituting for its variables val , rdy , and ack the val , rdy , and ack com-

ponents of the variable chan of module Channel . This assertion is expressed

precisely by the theorem in the following module.

module ChannelImplAsynch

extends Channel

AInt(val ; rdy ; ack)
�
= instance AsynchInterface

theorem Spec ) AInt(chan:val ; chan:rdy ; chan:ack)!Spec

Here, the re�nement mapping is the tuple hchan:val ; chan:rdy ; chan:ack i, which
is substituted for the tuple hval ; rdy ; ack i of variables in the formula Spec of

module AsynchInterface.

Similarly, formula Spec of module AsynchInterface implies formula Spec of

module Channel with chan replaced by the record-valued expression:

[val 7! val ; rdy 7! rdy ; ack 7! ack ]

(The �rst val in val 7! val is the �eld name in the record constructor, while the

second val is the variable of module AsynchInterface.)



Chapter 6

Some More Math

Our mathematics is built on a small, simple collection of concepts. You've

already seen most of what's needed to describe almost any kind of mathematics.

All you lack are a handful of operators on sets that are described below in

Section 6.1. After learning about them, you will be able to de�ne all the data

structures and operations that occur in speci�cations.

While our mathematics is simple, its foundations are nonobvious|for exam-

ple, the meanings of recursive function de�nitions and the choose operator are

subtle. This section discusses some of those foundations. Understanding them

will help you use mathematics more e�ectively.

6.1 Sets

The simple operations on sets described in Section 1.2 are all you need to write

most system speci�cations. However, you may occasionally have to use more

sophisticated operators|especially if you need to de�ne data structures beyond

tuples, records, and simple functions.

Two powerful operators of set theory are the unary operators union and

subset, de�ned as follows.

union S The union of the elements of S . In other words, a value e is an Mathematicians

write union S asS
S .

element of union S i� it is an element of an element of S . For

example:

union ff1; 2g; f2; 3g; f3; 4gg = f1; 2; 3; 4g

subset S The set of all subsets of S . In other words, T 2 subset S i� Mathematicians

call subsetS the

power set of S

and write it P(S)

or 2S .

T � S . For example:

subset f1; 2g = ffg; f1g; f2g; f1; 2gg

65
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Mathematicians often describe a set as \the set of all . . . such that . . . ". TLA+

has two constructs that formalize such a description:

fx 2 S : Pg The subset of S consisting of all elements x satisfying property

P . For example, the set of odd natural numbers can be written

fn 2 Nat : n % 2 = 1g. The identi�er x is bound in P ; it may The modulus op-

erator % is de-

scribed in Sec-

tion 2.5.

not occur in S .

fe : x 2 Sg The set of elements of the form e, for all x in the set S . For

example, f2 � n + 1 : n 2 Natg is the set of all odd natural num-
bers. The identi�er x is bound in e; it may not occur in S .

The construct fe : x 2 Sg has the same generalizations as 9 x 2 S :F . For ex-

ample, fe : x 2 S ; y 2 Tg is the set of all elements of the form e, for x in S and

y in T . In the construct fx 2 S :Pg, we can let x be a tuple. For example,

fhy ; z i 2 S :Pg is the set of all pairs hy ; z i in the set S that satisfy P . The

grammar of TLA+ in Chapter 15 speci�es precisely what set expressions you can

write.

All the set operators we've seen so far are built-in operators of TLA+. There

is also a standard module FiniteSets that de�nes two operators:

Cardinality(S ) The number of elements in set S , if S is a �nite set.

IsFiniteSet(S ) True i� S is a �nite set.

The FiniteSets module appears on 339. The de�nition of Cardinality is discussed

on pages 70{71 below.

Careless reasoning about sets can lead to problems. The classic example of

this is Russell's paradox:

Let R be the set of all sets S such that S =2 S . The de�nition of R
implies that R 2 R is true i� R =2 R is true.

The formula R =2 R is the negation of R 2 R, and a formula and its negation

can neither both be true nor both be false. The source of the paradox is that R
isn't a set. There's no way to write it in TLA+. Intuitively, R is too big to be

a set. A collection C is too big to be a set if it is as big as the collection of all

sets|meaning that we can assign to every set a di�erent element of C. That is,
C is too big to be a set if we can de�ne an operator SMap such that:

� SMap(S ) is in C, for any set S .

� If S and T are two di�erent sets, then SMap(S ) 6= SMap(T ).

For example, the collection of all sequences of length 2 is too big to be a set; we

can de�ne the operator SMap by

SMap(S )
�
= h1;S i
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6.2 Silly Expressions

Most modern programming languages introduce some form of type checking to

prevent you from writing silly expressions like 3=\abc". TLA+ is based on the

usual formalization of mathematics, which doesn't have types. In an untyped

formalism, every syntactically well-formed expression has a meaning|even a

silly expression like 3=\abc". Mathematically, the expression 3=\abc" is no

sillier than the expression 3=0, and mathematicians implicitly write that silly

expression all the time. For example, consider the valid formula

8 x 2 Real : (x 6= 0)) (x � (3=x ) = 3)

where Real is the set of all real numbers. This asserts that (x 6= 0)) (x�(3=x ) =
3) is true for all real numbers x . Substituting 0 for x yields the valid formula

(0 6= 0) ) (0 � (3=0) = 3) that contains the silly expression 3=0. It's valid

because 0 6= 0 equals false, and false) P is true for any formula P .

A correct formula can contain silly expressions. For example, 3=0 = 3=0 is a

correct formula because any value equals itself. However, the validity of a correct

formula cannot depend on the meaning of a silly expression. If an expression is

silly, then its meaning is probably unspeci�ed. The de�nitions of = and � (which
are in the standard module Reals) don't specify the value of 0 � (3=0), so there's
no way of knowing whether that value equals 3.

No sensible syntactic rules can prevent you from writing 3=0 without also

preventing you from writing perfectly reasonable expressions. The typing rules

of programming languages introduce complexity and limitations on what you can

write that don't exist in ordinary mathematics. In a well-designed programming

language, the costs of types are balanced by bene�ts: types allow a compiler to

produce more e�cient code, and type checking catches errors. For programming

languages, the bene�ts seem to outweigh the costs. For writing speci�cations, I

have found that the costs outweigh the bene�ts.

If you're used to the constraints of programming languages, it may be a while

before you start taking advantage of the freedom a�orded by mathematics. At

�rst, you won't think of de�ning anything like the operator R de�ned on page 50

of Section 5.2, which couldn't be written in a typed programming language.

6.3 Recursion Revisited

Section 5.5 introduced recursive function de�nitions. Let's now examine what

such de�nitions mean mathematically. Mathematicians usually de�ne the fac-

torial function fact by writing:

fact [n] = if n = 0 then 1 else n � fact [n � 1]; for all n 2 Nat
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This de�nition can be justi�ed by proving that it de�nes a unique function fact

with domain Nat . In other words, fact is the unique value satisfying:

fact = [n 2 Nat 7! if n = 0 then 1 else n � fact [n � 1]](6.1)

The choose operator, introduced on pages 47{48 of Section 5.1, allows us to

express \the value x satisfying property P" as choose x : P . We can therefore

de�ne fact as follows to be the value satisfying (6.1):

fact
�
= choose fact :

fact = [n 2 Nat 7! if n = 0 then 1

else n � fact [n � 1] ]

(6.2)

(Since the symbol fact is not yet de�ned in the expression to the right of the
�
=, we can use it as the bound identi�er in the choose expression.) The TLA+

de�nition

fact [n 2 Nat ] �
= if n = 0 then 1 else n � fact [n � 1]

is simply an abbreviation for (6:2). In general, f [x 2 S ]
�
= e is an abbreviation

for:

f
�
= choose f : f = [x 2 S 7! e](6.3)

TLA+ allows you to write silly de�nitions. For example, you can write

circ[n 2 Nat ] �
= choose y : y 6= circ[n](6.4)

This appears to de�ne circ to be a function such that circ[n] 6= circ[n] for

any natural number n. There obviously is no such function, so circ can't be

de�ned to equal it. A recursive function de�nition doesn't necessarily de�ne a

function. If there is no f that equals [x 2 S 7! e], then (6.3) de�nes f to be

some unspeci�ed value. Thus, the nonsensical de�nition (6.4) de�nes circ to be

some unknown value.

Although TLA+ allows the apparent circularity of a recursive function de�-

nition, it does not allow circular de�nitions in which two or more functions are

de�ned in terms of one another. Mathematicians occasionally write such mutu-

ally recursive de�nitions. For example, they might attempt to de�ne functions

f and g , with domains equal to the set Nat , by writing:

f [n 2 Nat ]
�
= if n = 0 then 17 else f [n � 1] � g [n]

g [n 2 Nat ] �
= if n = 0 then 42 else f [n � 1] + g [n � 1]

This pair of de�nitions is

not allowed in TLA+.

TLA+ does not allow mutually recursive de�nitions. However, we can de�ne

these functions f and g in TLA+ as follows. We �rst de�ne a function mr
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such that mr [n] is a record whose f and g components equal f [n] and g [n],

respectively:

mr [n 2 Nat ]
�
= [f 7! if n = 0 then 17 else mr [n � 1]:f �mr [n]:g ;

g 7! if n = 0 then 42 else mr [n � 1]:f +mr [n � 1]:g ]

We can then de�ne f and g in terms of mr :

f [n 2 Nat ]
�
= mr [n]:f

g [n 2 Nat ] �
= mr [n]:g

This trick can be used to convert any mutually recursive de�nitions into a single

recursive de�nition of a record-valued function whose components are the desired

functions.

If we want to reason about a function f de�ned by f [x 2 S ]
�
= e , we need

to prove that there exists an f that equals [x 2 S 7! e]. The existence of f is

obvious if f does not occur in e. If it does, so this is a recursive de�nition, then

there is something to prove. Since I'm not discussing proofs, I won't describe

how to prove it. Intuitively, you have to check that, as in the case of the factorial

function, the de�nition uniquely determines the value of f [x ] for every x in S .

Recursion is a common programming technique because programs must com-

pute values using a small repertoire of simple elementary operations. It's not

used as often in mathematical de�nitions, where we needn't worry about how to

compute the value and can use the powerful operators of logic and set theory.

For example, the operators Head , Tail , and � are de�ned in Section 5.4 with-

out recursion, even though computer scientists usually de�ne them recursively.

Still, there are some things that are best de�ned inductively, using a recursive

function de�nition.

6.4 Functions versus Operators

Consider these de�nitions, which we've seen before

Tail(s)
�
= [i 2 1 : : (Len(s) � 1) 7! s [i + 1]]

fact [n 2 Nat ] �
= if n = 0 then 1 else n � fact [n � 1]

They de�ne two very di�erent kinds of objects: fact is a function, and Tail is

an operator. Functions and operators di�er in a few basic ways.

Their most obvious di�erence is that a function like fact by itself is a complete

expression that denotes a value, but an operator like Tail is not. Both fact [n] 2 S
and fact 2 S are syntactically correct expressions. But, while Tail(n) 2 S is

syntactically correct, Tail 2 S is not. It is gibberish|a meaningless string of

symbols, like x+ = 0.
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The second di�erence between functions and operators is more profound.

The de�nition of Tail de�nes Tail(s) for all values of s . For example, it de�nes

Tail(1=2) to equal

[i 2 1 : : (Len(1=2)� 1) 7! (1=2)[i + 1]](6.5)

We have no idea what this expression means, because we don't know what

Len(1=2) or (1=2)[i + 1] mean. But, whatever (6.5) means, it equals Tail(1=2).

The de�nition of fact de�nes fact [n] only for n 2 Nat . It tells us noth-

ing about the value of fact [1=2]. The expression fact [1=2] is syntactically well-

formed, so it denotes some value. But the de�nition of fact tells us nothing

about what that value is.

Unlike an operator, a function must have a domain, which is a set. We cannot

de�ne a function Tail so that Tail [s ] is the tail of any nonempty sequence s ; the

domain of such a function would have to include all nonempty sequences, and

the collection of all such sequences is too big to be a set. (The operator SMap

de�ned by SMap(S )
�
= hS i maps every set to a di�erent nonempty sequence.)

Hence, we can't de�ne Tail to be a function.

Unlike a function, an operator cannot be de�ned recursively. However, we

can usually transform an illegal recursive operator de�nition into a nonrecursive

one using a recursive function de�nition. For example, let's try to de�ne the

Cardinality operator on the set of �nite sets. (Recall that the cardinality of a

�nite set S is the number of elements in S .) The collection of all �nite sets is too

big to be a set. (The operator SMap(S )
�
= fSgmaps every set S to a di�erent set

fSg of cardinality 1.) The Cardinality operator has a simple intuitive de�nition:

� Cardinality(fg) = 0.

� If S is a nonempty �nite set, then

Cardinality(S ) = 1 + Cardinality(S n fxg)
where x is an arbitrary element of S . (The set S n fxg contains all the
elements of S except x .)

Using the choose operator to describe an arbitrary element of S , we can write

this as the more formal-looking, but still illegal, de�nition:

Cardinality(S )
�
= This is not a legal de�nition.

if S = fg then 0

else 1 + Cardinality(S n fchoose x : x 2 Sg)

This de�nition is illegal because it's circular|only in a recursive function de�-

nition can the symbol being de�ned appear to the right of the
�
= .
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To turn this into a legal de�nition, observe that, for a given �nite set S , we

can de�ne a function CS such that CS [T ] equals the cardinality of T for every

subset T of S . The de�nition is

CS [T 2 subset S ] �
=

if T = fg then 0

else 1 + CS [T n fchoose x : x 2 Tg]
Since S is a subset of itself, this de�nes CS [S ] to equal Cardinality(S ), if S is a

�nite set. (We don't know or care what CS [S ] equals if S is not �nite.) So, we

can de�ne the Cardinality operator by:

Cardinality(S )
�
=

let CS [T 2 subset S ] �
=

if T = fg then 0

else 1 + CS [T n fchoose x : x 2 Tg]
in CS [S ]

Operators also di�er from functions in that an operator can take an operator

as an argument. For example, we can de�ne an operator IsPartialOrder so that

IsPartialOrder(R;S ) equals true i� the operator R de�nes an irreexive partial

order on S . The de�nition is If you don't know

what an irreex-

ive partial or-

der is, read this

de�nition of

IsPartialOrder

to �nd out.

IsPartialOrder(R( ; ); S )
�
=

^ 8 x ; y ; z 2 S : R(x ; y) ^ R(y ; z )) R(x ; z )

^ 8 x 2 S : :R(x ; x )
We could also use an in�x-operator symbol like � instead of R as the parameter

of the de�nition, writing:

IsPartialOrder( � ; S )
�
=

^ 8 x ; y ; z 2 S : (x � y) ^ (y � z )) (x � z )

^ 8 x 2 S : :(x � x )

The �rst argument of IsPartialOrder is an operator that takes two arguments;

its second argument is an expression. Since > is an operator that takes two

arguments, the expression IsPartialOrder(>;Nat) is syntactically correct. In

fact, it equals true, if > is de�ned to be the usual operator on numbers. The

expression IsPartialOrder(+; 3) is also syntactically correct, but it's silly and we

have no idea whether or not it equals true.

The last di�erence between operators and functions has nothing to do with

mathematics and is an idiosyncrasy of TLA+: the language doesn't permit you

to de�ne in�x functions. So, if we want to de�ne =, we have no choice but to

make it an operator.

One can write equally nonsensical things using functions or operators. How-

ever, whether you use functions or operators may determine whether the non-

sense you write is nonsyntactic gibberish or syntactically correct but semanti-

cally silly. The string of symbols 2(\a") is not a syntactically correct formula
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because 2 is not an operator. However, 2[\a"], which can also be written 2:a, is

a syntactically correct expression. It's nonsensical because 2 isn't a function,1 so

we don't know what 2[\a"] means. Similarly, Tail(s ; t) is syntactically incorrect
because Tail is an operator that takes a single argument. However, as explained

in Section 16.1.7 (page 299), fact [m;n] is syntactic sugar for fact [hm;n i], so it is
a syntactically correct, semantically silly formula. Whether an error is syntactic

or semantic determines what kind of tool can catch it. In particular, the parser

described in Chapter 12 catches syntactic errors, but not semantic silliness. The

TLC model checker, described in Chapter 14, will report an error if it tries to

evaluate a semantically silly expression.

The distinction between functions and operators seems to confuse some peo-

ple. One reason is that, although this distinction exists in ordinary math, it

usually goes unnoticed by mathematicians. If you ask a mathematician whether

subset is a function, she's likely to say yes. But if you point out to her that

subset can't be a function because its domain can't be a set, she will probably

realize for the �rst time that mathematicians use operators like subset and 2
without noticing that they form a class of objects di�erent from functions. Lo-

gicians will observe that the distinction between operators and values, including

functions, arises because TLA+ is a �rst-order logic rather than a higher-order

logic.

When de�ning an object V , you may have to decide whether to make V

an operator that takes an argument or a function. The di�erences between

operators and functions will often determine the decision. For example, if a

variable may have V as its value, then V must be a function. Thus, in the

memory speci�cation of Section 5.3, we had to represent the state of the memory

by a function rather than an operator, since the variable mem couldn't equal

an operator. If these di�erences don't determine whether to use an operator or

a function, then the choice is a matter of taste. I usually prefer operators.

6.5 Using Functions

Consider the following two formulas:

f 0 = [i 2 Nat 7! i + 1](6.6)

8 i 2 Nat : f 0[i ] = i + 1(6.7)

Both formulas imply that f 0[i ] = i + 1 for every natural number i , but they

are not equivalent. Formula (6.6) uniquely determines f 0, asserting that it's a

function with domain Nat . Formula (6.7) is satis�ed by lots of di�erent values

of f 0. For example, it is satis�ed if f 0 is the function

[i 2 Real 7! if i 2 Nat then i + 1 else i2]

1More precisely, we don't know whether or not 2 is a function.
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In fact, from (6.7), we can't even deduce that f 0 is a function. Formula (6.6)

implies formula (6.7), but not vice-versa.

When writing speci�cations, we almost always want to specify the new value

of a variable f rather than the new values of f [i ] for all i in some set. We

therefore usually write (6.6) rather than (6.7).

6.6 Choose

The choose operator was introduced in the memory interface of Section 5.1 in The choose op-

erator is known

to logicians as

Hilbert's " [5].

the simple idiom choose v : v =2 S , which is an expression whose value is not

an element of S . In Section 6.3 above, we saw that it is a powerful tool that can

be used in rather subtle ways.

The most common use for the choose operator is to \name" a uniquely

speci�ed value. For example, a=b is the unique real number that satis�es the

formula a = b � (a=b), if a and b are real numbers and b 6= 0. So, the standard

module Reals de�nes division on the set Real of real numbers by

a=b
�
= choose c 2 Real : a = b � c

(The expression choose x 2 S :P means choose x : (x 2 S ) ^ P .) If a is a

nonzero real number, then there is no real number c such that a = 0 � c.
Therefore, a=0 has an unspeci�ed value. We don't know what a real number

times a string equals, so we cannot say whether or not there is a real number c

such that a equals \xyz" � c. Hence, we don't know what the value of a=\xyz"
is.

People who do a lot of programming and not much mathematics often think

that choose must be a nondeterministic operator. In mathematics, there is

no such thing as a nondeterministic operator or a nondeterministic function. If

some expression equals 42 today, then it will equal 42 tomorrow, and it will still

equal 42 a million years from tomorrow. The speci�cation

(x = choose n : n 2 Nat) ^ 2[x 0 = choose n : n 2 Nat ]x

allows only a single behavior|one in which x always equals choose n : n 2 Nat ,
which is some particular, unspeci�ed natural number. It is very di�erent from

the speci�cation

(x 2 Nat) ^ 2[x 0 2 Nat ]x
that allows all behaviors in which x is always a natural number|possibly a

di�erent number in each state. This speci�cation is highly nondeterministic,

allowing lots of di�erent behaviors.
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Chapter 7

Writing a Speci�cation:

Some Advice

You have now learned all you need to know about TLA+ to write your own

speci�cations. Here are a few additional hints to help you get started.

7.1 Why to Specify

Speci�cations are written to help eliminate errors. Writing a speci�cation re-

quires e�ort; the bene�ts it provides must be worth that e�ort. There are several

bene�ts:

� Writing a TLA+ speci�cation can help the design process. Having to de-

scribe a design precisely often reveals problems|subtle interactions and

\corner cases" that are easily overlooked. These problems are easier to cor-

rect when discovered in the design phase rather than after implementation

has begun.

� A TLA+ speci�cation can provide a clear, concise way of communicating

a design. It helps ensure that the designers agree on what they have

designed, and it provides a valuable guide to the engineers who implement

and test the system. It may also help users understand the system.

� A TLA+ speci�cation is a formal description to which tools can be applied

to help �nd errors in the design and to help in testing the system. The

most useful tool written so far is the TLC model checker, described in

Chapter 14.

Whether these bene�ts justify the e�ort of writing the speci�cation depends on

the nature of the project. Speci�cation is not an end in itself; it is just one of

75
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many tools that an engineer should be able to use when appropriate.

7.2 What to Specify

Although we talk about specifying a system, that's not what we do. A speci�-

cation is a mathematical model of a particular view of some part of a system.

When writing a speci�cation, the �rst thing you must choose is exactly what

part of the system you want to model. Sometimes the choice is obvious; often it

isn't. The cache-coherence protocol of a real multiprocessor computer may be

intimately connected with how the processors execute instructions. Finding an

abstraction that describes the coherence protocol while suppressing the details

of instruction execution may be di�cult. It may require de�ning an interface

between the processor and the memory that doesn't exist in the actual system

design.

Remember that the purpose of a speci�cation is to help avoid errors. You

should specify those parts of the system for which a speci�cation is most likely

to reveal errors. TLA+ is particularly e�ective at revealing concurrency errors|

ones that arise through the interaction of asynchronous components. So, when

writing a TLA+ speci�cation, you should concentrate your e�orts on the parts

of the system that are most likely to have such errors.

7.3 The Grain of Atomicity

After choosing what part of the system to specify, you must choose the speci�ca-

tion's level of abstraction. The most important aspect of the level of abstraction

is the grain of atomicity, the choice of what system changes are represented as

a single step of a behavior. Sending a message in an actual system involves

multiple suboperations, but we usually represent it as a single step. On the

other hand, the sending of a message and its receipt are usually represented as

separate steps when specifying a distributed system.

The same sequence of system operations is represented by a shorter sequence

of steps in a coarser-grained representation than in a �ner-grained one. This

almost always makes the coarser-grained speci�cation simpler than the �ner-

grained one. However, the �ner-grained speci�cation more accurately describes

the behavior of the actual system. A coarser-grained speci�cation may fail to

reveal important details of the system.

There is no simple rule for deciding on the grain of atomicity. However,

there is one way of thinking about granularity that can help. To describe it, we

need the TLA+ action-composition operator \�". If A and B are actions, then

the action A�B is executed by �rst executing A then B in a single step. More
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precisely, A � B is the action de�ned by letting s ! t be an A � B step i� there

exists a state u such that s ! u is an A step and u ! t is a B step.

When determining the grain of atomicity, we must decide whether to repre-

sent the execution of an operation as a single step or as a sequence of steps, each

corresponding to the execution of a suboperation. Let's consider the simple case

of an operation consisting of two suboperations that are executed sequentially,

where those suboperations are described by the two actions R and L. (Execut-

ing R enables L and disables R.) When the operation's execution is represented

by two steps, each of those steps is an R step or an L step. The operation is

then described with the action R _ L. When its execution is represented by

a single step, the operation is described with the action R�L.1 Let S2 be the

�ner-grained speci�cation in which the operation is executed in two steps, and

let S1 be the coarser-grained speci�cation in which it is executed as a single R �L
step. To choose the grain of atomicity, we must choose whether to take S1 or S2

as the speci�cation. Let's examine the relation between the two speci�cations.

We can transform any behavior � satisfying S1 into a behavior b� satisfying

S2 by replacing each step s
R�L! t with the pair of steps s

R! u
L! t , for some

state u. If we regard � as being equivalent to b�, then we can regard S1 as being

a strengthened version of S2|one that allows fewer behaviors. Speci�cation S1

requires that each R step be followed immediately by an L step, while S2 allows

behaviors in which other steps come between the R and L steps. To choose

the appropriate grain of atomicity, we must decide whether those additional

behaviors allowed by S2 are important.

The additional behaviors allowed by S2 are not important if the actual sys-

tem executions they describe are also described by behaviors allowed by S1. So,

we can ask whether each behavior � satisfying S2 has a corresponding behaviore� satisfying S1 that is, in some sense, equivalent to � . One way to construct e�
from � is to transform a sequence of steps

s
R

! u1
A1! u2

A2! u3 : : : un
An! un+1

L

! t(7.1)

into the sequence

s
A1! v1 : : : vk�2

Ak! vk�1
R

! vk
L

! vk+1

Ak+1! vk+2 : : : vn+1

An! t(7.2)

where the Ai are other system actions that can be executed between the R and

L steps. Both sequences start in state s and end in state t , but the intermediate

states may be di�erent.

When is such a transformation possible? An answer can be given in terms of

commutativity relations. We say that actions A and B commute if performing

1We actually describe the operation with an ordinary action, like the ones we've been

writing, that is equivalent to R�L. The operator \�" rarely appears in an actual speci�cation.

If you're ever tempted to use it, look for a better way to write the speci�cation; you can

probably �nd one.



78 CHAPTER 7. WRITING A SPECIFICATION: SOME ADVICE

them in either order produces the same result. Formally, A and B commute i�

A � B is equivalent to B �A. A simple su�cient condition for commutativity is

that two actions commute if (i) each one leaves unchanged any variable whose

value may be changed by the other, and (ii) neither enables or disables the other.

It's not hard to see that we can transform (7.1) to (7.2) in the following two

cases:

� R commutes with each Ai . (In this case, k = n.)

� L commutes with each Ai . (In this case, k = 0.)

In general, if an operation consists of a sequence of m subactions, we must decide

whether to choose the �ner-grained representation O1 _ O2 _ : : : _ Om or the

coarser-grained one O1 � O2 � � �Om . The generalization of the transformation

from (7.1) to (7.2) is one that transforms an arbitrary behavior satisfying the

�ner-grained speci�cation into one in which the sequence of O1, O2, . . . , Om

steps come one right after the other. Such a transformation is possible if all but

one of the actions O i commute with every other system action. Commutativity

can be replaced by weaker conditions, but it is the most common case.

By commuting actions and replacing a sequence s
O1! � � �

Om! t of steps by

a single O1 � � �Om step, you may be able to transform any behavior of a �ner-

grained speci�cation into a corresponding behavior of a coarser-grained one.

But that doesn't mean that the coarser-grained speci�cation is just as good as

the �ner-grained one. The sequences (7.1) and (7.2) are not the same, and a

sequence of O i steps is not the same as a single O1 � � �Om step. Whether you

can consider the transformed behavior to be equivalent to the original one, and

use the coarser-grained speci�cation, depends on the particular system you are

specifying and on the purpose of the speci�cation. Understanding the relation

between �ner- and coarser-grained speci�cations can help you choose between

them; it won't make the choice for you.

7.4 The Data Structures

Another aspect of a speci�cation's level of abstraction is the accuracy with which

it describes the system's data structures. For example, should the speci�cation

of a programming interface describe the actual layout of a procedure's arguments

in memory, or should the arguments be represented more abstractly?

To answer such a question, you must remember that the purpose of the spec-

i�cation is to help catch errors. A precise description of the layout of procedure

arguments will help prevent errors caused by misunderstandings about that lay-

out, but at the cost of complicating the programming interface's speci�cation.

The cost is justi�ed only if such errors are likely to be a real problem and the

TLA+ speci�cation provides the best way to avoid them.
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If the purpose of the speci�cation is to catch errors caused by the asyn-

chronous interaction of concurrently executing components, then detailed de-

scriptions of data structures will be a needless complication. So, you will proba-

bly want to use high-level, abstract descriptions of the system's data structures

in the speci�cation. For example, to specify a program interface, you might

introduce constant parameters to represent the actions of calling and return-

ing from a procedure|parameters analogous to Send and Reply of the memory

interface described in Section 5.1 (page 45).

7.5 Writing the Speci�cation

Once you've chosen the part of the system to specify and the level of abstraction,

you're ready to start writing the TLA+ speci�cation. We've already seen how

this is done; let's review the steps.

First, pick the variables and de�ne the type invariant and initial predicate.

In the course of doing this, you will determine the constant parameters and

assumptions about them that you need. You may also have to de�ne some

additional constants.

Next, write the next-state action, which forms the bulk of the speci�cation.

Sketching a few sample behaviors may help you get started. You must �rst decide

how to decompose the next-state action as the disjunction of actions describing

the di�erent kinds of system operations. You then de�ne those actions. The goal

is to make the action de�nitions as compact and easy to read as possible. This

requires carefully structuring them. One way to reduce the size of a speci�cation

is to de�ne state predicates and state functions that are used in several di�erent

action de�nitions. When writing the action de�nitions, you will determine which

of the standard modules you will need to use and add the appropriate extends

statement. You may also have to de�ne some constant operators for the data

structures that you are using.

You must now write the temporal part of the speci�cation. If you want

to specify liveness properties, you have to choose the fairness conditions, as

described below in Chapter 8. You then combine the initial predicate, next-

state action, and any fairness conditions you've chosen into the de�nition of a

single temporal formula that is the speci�cation.

Finally, you can assert theorems about the speci�cation. If nothing else, you

may want to add a type-correctness theorem.

7.6 Some Further Hints

Here are a few miscellaneous suggestions that may help you write better speci-

�cations.
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Don't be too clever.

Cleverness can make a speci�cation hard to read|and even wrong. The formula

q = hh 0 i � q 0 may look like a nice, short way of writing:

(h 0 = Head(q)) ^ (q 0 = Tail(q))(7.3)

But not only is q = hh 0 i � q 0 harder to understand than (7.3), it's also wrong.

We don't know what a � b equals if a and b are not both sequences, so we don't

know whether h 0 = Head(q) and q 0 = Tail(q) are the only values of h 0 and q 0

that satisfy q = hh 0 i � q 0. There could be other values of h 0 and q 0, which are

not sequences, that satisfy the formula.

A type invariant is not an assumption.

Type invariance is a property of a speci�cation, not an assumption. When

writing a speci�cation, we usually de�ne a type invariant. But that's just a

de�nition; a de�nition is not an assumption. Suppose you de�ne a type invariant

that asserts that a variable n is of type Nat . You may be tempted to then think

that a conjunct n 0 > 7 in an action asserts that n 0 is a natural number greater

than 7. It doesn't. The formula n 0 > 7 asserts only that n 0 > 7. It is satis�ed

if n 0 =
p
96 as well as if n 0 = 8. Since we don't know whether or not \abc" > 7

is true, it might be satis�ed if n 0 = \abc". The meaning of the formula is not

changed just because you've de�ned a type invariant that asserts n 2 Nat .
In general, you may want to describe the new value of a variable x by assert-

ing some property of x 0. However, the next-state relation should imply that x 0

is an element of some suitable set. For example, a speci�cation might de�ne:2

Action1
�
= (n 0 > 7) ^ : : :

Action2
�
= (n 0 � 6) ^ : : :

Next
�
= (n 0 2 Nat) ^ (Action1 _ Action2)

Don't be too abstract.

Suppose a user interacts with the system by typing on a keyboard. We could

describe the interaction abstractly with a variable typ and an operator parameter

KeyStroke, where the actionKeyStroke(\a"; typ; typ0) represents the user typing
an \a". This is the approach we took in describing the communication between

the processors and the memory in the MemoryInterface module (page 48).

A more concrete description would be to let kbd represent the state of the

keyboard, perhaps letting kbd = fg mean that no key is depressed, and kbd =

f\a"g mean that the a key is depressed. The typing of an a is represented by

2An alternative approach is to de�ne Next to equal Action1 _ Action2 and to let the

speci�cation be Init ^ 2[Next]::: ^ 2(n 2 Nat). But it's usually better to stick to the simple

form Init ^2[Next]::: for speci�cations.
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two steps, a [kbd = fg] ! [kbd = f\a"g] step represents the pressing of the a

key, and a [kbd = f\a"g] ! [kbd = fg] step represents its release. This is the

approach we took in the asynchronous interface speci�cations of Chapter 3.

The abstract interface is simpler; typing an a is represented by a single

KeyStroke(\a"; typ; typ0) step instead of a pair of steps. However, using the

concrete representation leads us naturally to ask: what if the user presses the a

key and, before releasing it, presses the b key? That's easy to describe with the

concrete representation. The state with both keys depressed is kbd = f\a"; \b"g.
Pressing and releasing a key are represented simply by the two actions

Press(k)
�
= kbd 0 = kbd [ fkg Release(k)

�
= kbd 0 = kbd n fkg

The possibility of having two keys depressed cannot be expressed with the sim-

ple abstract interface. To express it abstractly, we would have to replace the

parameter KeyStroke with two parameters PressKey and ReleaseKey , and we

would have to express explicitly the property that a key can't be released until it

has been depressed, and vice-versa. The more concrete representation is simpler.

We might decide that we don't want to consider the possibility of two keys

being depressed, and that we prefer the abstract representation. But that should

be a conscious decision. Our abstraction should not blind us to what can happen

in the actual system. When in doubt, it's safer to use a concrete representation

that more accurately describes the real system. That way, you are less likely to

overlook real problems.

Don't assume values that look di�erent are unequal.

The rules of TLA+ do not imply that 1 6= \a". If the system can send a message

that is either a string or a number, represent the message as a record with a

type and value �eld|for example,

[type 7! \String"; value 7! \a"] or [type 7! \Nat"; value 7! 1]

We know that these two values are di�erent because they have di�erent type

�elds.

Move quanti�cation to the outside.

Speci�cations are usually easier to read if 9 is moved outside disjunctions and

8 is moved outside conjunctions. For example, instead of:

Up
�
= 9 e 2 Elevator : : : :

Down
�
= 9 e 2 Elevator : : : :

Move
�
= Up _ Down
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it's usually better to write:

Up(e)
�
= : : :

Down(e)
�
= : : :

Move
�
= 9 e 2 Elevator : Up(e) _ Down(e)

Prime only what you mean to prime.

When writing an action, be careful where you put your primes. The expression

f [e]0 equals f 0[e 0]; it equals f 0[e] only if e 0 = e, which need not be true if the

expression e contains variables. Be especially careful when priming an operator

whose de�nition contains a variable. For example, suppose x is a variable and

op is de�ned by

op(a)
�
= x + a

Then op(y)0 equals (x+y)0, which equals x 0+y 0, while op(y 0) equals x+y 0. There

is no way to use op and 0 to write the expression x 0+y . (Writing op0(y) doesn't

work because it's illegal|you can prime only an expression, not an operator.)

Write comments as comments.

Don't put comments into the speci�cation itself. I have seen people write things

like the following action de�nition:

A
�
= _ ^ x � 0

^ : : :

_ ^ x < 0

^ false

The second disjunct is meant to indicate that the writer intended A not to be

enabled when x < 0. But that disjunct is completely redundant, since F ^false
equals false, and F _false equals F , for any formula F . So the second disjunct
of the de�nition serves only as a form of comment. It's better to write:

A
�
= ^ x � 0

^ : : :

A is not enabled if x < 0

7.7 When and How to Specify

Speci�cations are often written later than they should be. Engineers are usually

under severe time constraints, and they may feel that writing a speci�cation will

slow them down. Only after a design has become so complex that they need

help understanding it do engineers think about writing a precise speci�cation.
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Writing a speci�cation helps you think clearly. Thinking clearly is hard; we

can use all the help we can get. Making speci�cation part of the design process

can improve the design.

I have described how to write a speci�cation assuming that the system de-

sign already exists. But it's better to write the speci�cation as the system is

being designed. The speci�cation will start out being incomplete and probably

incorrect. For example, an initial speci�cation of the write-through cache of

Section 5.6 (page 54) might include the de�nition:

RdMiss(p)
�
= Enqueue a request to write value from memory to p's cache.

Some enabling condition must be conjoined here.

^ memQ 0 = Append(memQ ; buf [p])

^ ctl 0 = [ctl except ! [p] = \?"]

^ unchanged hmemInt ; mem; buf ; cache i

Append request to memQ.

Set ctl [p] to value to be determined later.

Some system functionality will at �rst be omitted; it can be included later by

adding new disjuncts to the next-state action. Tools can be applied to these

preliminary speci�cations to help �nd design errors.
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Chapter 8

Liveness and Fairness

The speci�cations we have written so far say what a system must not do. The

clock must not advance from 11 to 9; the receiver must not receive a message

if the FIFO is empty. They don't require that the system ever actually do

anything. The clock need never tick; the sender need never send any messages.

Our speci�cations have described what are called safety properties. If a safety

property is violated, it is violated at some particular point in the behavior|by

a step that advances the clock from 11 to 9, or that reads the wrong value from

memory. Therefore, we can talk about a safety property being satis�ed by a

�nite behavior, which means that it has not been violated by any step so far.

We now learn how to specify that something does happen|that the clock

keeps ticking, or that a value is eventually read frommemory. We specify liveness

properties|ones that cannot be violated at any particular instant. Only by

examining an entire in�nite behavior can we tell that the clock has stopped

ticking, or that a message is never sent.

We express liveness properties as temporal formulas. This means that, to

add liveness conditions to your speci�cations, you have to understand temporal

logic|the logic of temporal formulas. The chapter begins, in Section 8.1, with

a more rigorous look at what a temporal formula means. To understand a logic,

you have to understand what its true formulas are. Section 8.2 is about temporal

tautologies, the true formulas of temporal logic. Sections 8.4{8.7 describe how

to use temporal formulas to specify liveness properties. Section 8.8 completes

our study of temporal logic by examining the temporal quanti�er 999999 . Finally,

Section 8.9 reviews what we've done and explains why the undisciplined use of

temporal logic is dangerous.

This chapter is the only one that contains proofs. It would be nice if you

learned to write similar proofs yourself, but it doesn't matter if you don't.

The proofs are here because studying them can help you develop the intuitive

understanding of temporal formulas that you need to write speci�cations|

87
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an understanding that makes the truth of a simple temporal tautology like

22F � 2F as obvious as the truth of a simple theorem about numbers like

8n 2 Nat : 2 � n � n.

8.1 Temporal Formulas

Recall that a state assigns a value to every variable, and a behavior is an in�nite

sequence of states. A temporal formula is true or false of a behavior. Formally,

a temporal formula F assigns a Boolean value, which we write � j= F , to a

behavior �. We say that F is true of �, or that � satis�es F , i� � j= F equals

true. To de�ne the meaning of a temporal formula F , we have to explain how

to determine the value of � j= F for any behavior �. For now, we consider only

temporal formulas that don't contain the temporal existential quanti�er 999999 .
It's easy to de�ne the meaning of a Boolean combination of temporal formulas

in terms of the meanings of those formulas. The formula F ^ G is true of a

behavior � i� both F and G are true of �, and :F is true of � i� F is not true

of �. These de�nitions are written more formally as:

� j= (F ^G)
�
= (� j= F ) ^ (� j= G) � j= :F �

= : (� j= F )

These are the de�nitions of the meaning of ^ and of : as operators on temporal

formulas. The meanings of the other Boolean operators are similarly de�ned.

We can also de�ne in this way the ordinary predicate-logic quanti�ers 8 and 9
as operators on temporal formulas|for example:

� j= (9 r : F )
�
= 9 r : (� j= F )

Ordinary quanti�cation over constant sets is de�ned the same way. For example,

if S is an ordinary constant expression|that is, one containing no variables|

then:

� j= (8 r 2 S : F )
�
= 8 r 2 S : (� j= F )

Quanti�ers are discussed further in Section 8.8.

All the unquanti�ed temporal formulas that we've seen have been Boolean

combinations of three simple kinds of formulas, which have the following mean-

ings: State function

and state predi-

cate are de�ned

on page 25.

� A state predicate, viewed as a temporal formula, is true of a behavior i�

it is true in the �rst state of the behavior.

� A formula 2P , where P is a state predicate, is true of a behavior i� P is

true in every state of the behavior.

� A formula 2[N ]v , where N is an action and v is a state function, is true of

a behavior i� every successive pair of steps in the behavior is a [N ]v step.



8.1. TEMPORAL FORMULAS 89

Since a state predicate is an action that contains no primed variables, we can

both combine and generalize these three kinds of temporal formulas into the two

kinds of formulas A and 2A, where A is an action. I'll �rst explain the meanings

of these two kinds of formulas, and then de�ne the operator 2 in general. To

do this, I will use the notation that �i is the (i + 1)st state of the behavior �,

for any natural number i , so � is the behavior �0 ! �1 ! �2 ! � � � .
We interpret an arbitrary action A as a temporal formula by de�ning � j= A

to be true i� the �rst two states of � are an A step. That is, we de�ne � j= A to

be true i� �0 ! �1 is an A step. In the special case when A is a state predicate,

�0 ! �1 is an A step i� A is true in state �0, so this de�nition of � j= A

generalizes our interpretation of a state predicate as a temporal formula.

We have already seen that 2[N ]v is true of a behavior i� each step is a [N ]v
step. This leads us to de�ne � j= 2A to be true i� �n ! �n+1 is an A step, for

all natural numbers n.

We now generalize from the de�nition of � j= 2A for an action A to the

de�nition of � j= 2F for an arbitrary temporal formula F . We de�ned � j= 2A
to be true i� �n ! �n+1 is an A step for all n. This is true i� A, interpreted as

a temporal formula, is true of a behavior whose �rst step is �n ! �n+1, for all

n. Let's de�ne �+n to be the su�x of � obtained by deleting its �rst n states:

�+n
�
= �n ! �n+1 ! �n+2 ! � � �

Then �n ! �n+1 is the �rst step of �+n , so � j= 2A is true i� �+n j= A is true

for all n. In other words:

� j= 2A � 8n 2 Nat : �+n j= A

The obvious generalization is:

� j= 2F �
= 8n 2 Nat : �+n j= F

for any temporal formula F . In other words, � satis�es 2F i� every su�x �+n

of � satis�es F . This de�nes the meaning of the temporal operator 2.

We have now de�ned the meaning of any temporal formula built from ac-

tions (including state predicates), Boolean operators, and the 2 operator. For

example:

� j= 2((x = 1)) 2(y > 0))

� 8n 2 Nat : �+n j= ((x = 1)) 2(y > 0)) By the meaning of 2.

� 8n 2 Nat : (�+n j= (x = 1))) (�+n j= 2(y > 0)) By the meaning of ).

� 8n 2 Nat : (�+n j= (x = 1)))
(8m 2 Nat : (�+n )+m j= (y > 0))

By the meaning of 2.

Thus, � j= 2((x = 1)) 2(y > 0)) is true i�, for all n 2 Nat , if x = 1 is true in

state �n , then y > 0 is true in all states �n+m with m � 0.
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To understand temporal formulas intuitively, think of �n as the state of

the universe at time instant n during the behavior �.1 For any state pred-

icate P , the expression �+n j= P asserts that P is true at time n. Thus,

2((x = 1)) 2(y > 0)) asserts that, any time x = 1 is true, y > 0 is true from

then on. For an arbitrary temporal formula F , we also interpret �+n j= F as

the assertion that F is true at time instant n. The formula 2F then asserts

that F is true at all times. We can therefore read 2 as always or henceforth or

from then on.

We saw in Section 2.2 that a speci�cation should allow stuttering steps|ones

that leave unchanged all the variables appearing in the formula. A stuttering

step represents a change only to some part of the system not described by the

formula; adding it to the behavior should not a�ect the truth of the formula.

We say that a formula F is invariant under stuttering2 i� adding or deleting a

stuttering step to a behavior � does not a�ect whether � satis�es F . A sensible

formula should be invariant under stuttering. There's no point writing formulas

that aren't sensible, so TLA allows you to write only temporal formulas that are

invariant under stuttering.

A state predicate (viewed as a temporal formula) is invariant under stutter-

ing, since its truth depends only on the �rst state of a behavior, and adding a

stuttering step doesn't change the �rst state. An arbitrary action is not invari-

ant under stuttering. For example, the action [x 0 = x + 1]x is satis�ed by a

behavior � in which x is left unchanged in the �rst step and incremented by 2

in the second step; it isn't satis�ed by the behavior obtained by removing the

initial stuttering step from �. However, the formula 2[x 0 = x + 1]x is invariant

under stuttering, since it is satis�ed by a behavior i� every step that changes x

is an x 0 = x + 1 step|a condition not a�ected by adding or deleting stuttering

steps.

In general, the formula 2[A]v is invariant under stuttering, for any action

A and state function v . However, 2A is not invariant under stuttering for an

arbitrary action A. For example, 2(x 0 = x + 1) can be made false by adding a

step that does not change x . So, even though we have assigned a meaning to

2(x 0 = x + 1), it isn't a legal TLA formula.

Invariance under stuttering is preserved by 2 and by the Boolean operators|

that is, if F and G are invariant under stuttering, then so are 2F , :F , F ^G ,

8 x 2 S :F , etc. So, state predicates, formulas of the form 2[N ]v , and all for-

mulas obtainable from them by applying 2 and Boolean operators are invariant

under stuttering.

We now examine �ve especially important classes of formulas that are con-

structed from arbitrary temporal formulas F and G . We introduce new opera-

1It is because we think of �n as the state at time n, and because we usually measure time

starting from 0, that I number the states of a behavior starting with 0 rather than 1.
2This is a completely new sense of the word invariant; it has nothing to do with the concept

of invariance discussed already.
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tors for expressing the �rst three.

3F is de�ned to equal :2:F . It asserts that F is not always false, which means

that F is true at some time:

� j= 3F
� � j= :2:F By de�nition of 3.

� : (� j= 2:F ) By the meaning of :.

� : (8n 2 Nat : �+n j= :F ) By the meaning of 2.

� : (8n 2 Nat : : (�+n j= F )) By the meaning of :.

� 9n 2 Nat : �+n j= F Because :8: is equivalent to 9 .

We usually read 3 as eventually, taking eventually to include now.

F ; G is de�ned to equal 2(F ) 3G). The same kind of calculation we just

did for � j= 3F shows:

� j= (F ; G) �
8n 2 Nat : (�+n j= F )) (9m 2 Nat : (�+(n+m) j= G))

The formula F ; G asserts that whenever F is true, G is eventually

true|that is, G is true then or at some later time. We read; as leads to.

3hAiv is de�ned to equal :2[:A]v , where A is an action and v a state function.

It asserts that not every step is a (:A) _ (v 0 = v) step, so some step is a

:((:A) _ (v 0 = v)) step. Since :(P _ Q) is equivalent to (:P) ^ (:Q),

for any P and Q , action :((:A) _ (v 0 = v)) is equivalent to A ^ (v 0 6= v).

Hence, 3hAiv asserts that some step is an A ^ (v 0 6= v) step|that is, an

A step that changes v . We de�ne the action hAiv by I pronounce hAiv
as angle A sub v.

hAiv �
= A ^ (v 0 6= v)

so 3hAiv asserts that eventually an hAiv step occurs. We think of 3hAiv
as the formula obtained by applying the operator 3 to hAiv , although
technically it's not because hAiv isn't a temporal formula.

23F asserts that at all times, F is true then or at some later time. For time 0,

this implies that F is true at some time n0 � 0. For time n0+1, it implies

that F is true at some time n1 � n0 + 1. For time n1 + 1, it implies that

F is true at some time n2 � n1 + 1. Continuing the process, we see that

F is true at an in�nite sequence of time instants n0;n1;n2; : : : . So, 23F

implies that F is true at in�nitely many instants. Conversely, if F is true

at in�nitely many instants, then, at every instant, F must be true at some

later instant, so 23F is true. Therefore, 23F asserts that F is in�nitely

often true. In particular, 23hAiv asserts that in�nitely many hAiv steps

occur.
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32F asserts that eventually (at some time), F becomes true and remains true

thereafter. In other words, 32F asserts that F is eventually always true.

In particular, 32[N ]v asserts that eventually, every step is a [N ]v step.

The operators 2 and 3 have higher precedence (bind more tightly) than the

Boolean operators, so 3F _ 2G means (3F ) _ (2G). The operator ; has

lower precedence than ^ and _.

8.2 Temporal Tautologies

A temporal theorem is a temporal formula that is satis�ed by all behaviors.

In other words, F is a theorem i� � j= F equals true for all behaviors �. For

example, the HourClock module asserts that HC ) 2HCini is a theorem, where
HC and HCini are the formulas de�ned in the module. This theorem expresses

a property of the hour clock.

The formula 2HCini ) HCini is also a theorem. However, it tells us nothing

about the hour clock because it's true regardless of how HCini is de�ned. For

example, substituting x > 7 for HCini yields the theorem 2(x > 7)) (x > 7).

A formula like 2HCini ) HCini that is true when any formulas are substituted

for its identi�ers is called a tautology. To distinguish them from the tautologies

of ordinary logic, tautologies containing temporal operators are sometimes called

temporal tautologies.

Let's prove that 2HCini ) HCini is a temporal tautology. To avoid con-

fusing the arbitrary identi�er HCini in this tautology with the formula HCini

de�ned in the HourClock module, let's replace it by F , so the tautology becomes

2F ) F . There are axioms and inference rules for temporal logic from which we

can prove any temporal tautology that, like 2F ) F , contains no quanti�ers.

However, it's often easier and more instructive to prove them directly from the

meanings of the operators. We prove that 2F ) F is a tautology by proving

that � j= (2F ) F ) equals true, for any behavior � and any formula F . The

proof is simple:

� j= (2F ) F ) � (� j= 2F )) (� j= F ) By the meaning of ).

� (8n 2 Nat : �+n j= F )) (� j= F ) By de�nition of 2.

� (8n 2 Nat : �+n j= F )) (�+0 j= F ) By de�nition of �+0.

� true By predicate logic.

The temporal tautology 2F ) F asserts the obvious fact that, if F is true at

all times, then it's true at time 0. Such a simple tautology should be obvious

once you become accustomed to thinking in terms of temporal formulas. Here

are three more simple tautologies, along with their English translations.

:2F � 3:F
F is not always true i� it is eventually false.
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2(F ^G) � (2F ) ^ (2G)

F and G are both always true i� F is always true and G is always true.

Another way of saying this is that 2 distributes over ^.

3(F _G) � (3F ) _ (3G)

F or G is eventually true i� F is eventually true or G is eventually true.

Another way of saying this is that 3 distributes over _.

At the heart of the proof of each of these tautologies is a tautology of predicate

logic. For example, the proof that 2 distributes over ^ relies on the fact that 8
distributes over ^:

� j= (2(F ^G) � (2F ) ^ (2G))

� (� j= 2(F ^G)) � (� j= (2F ) ^ (2G)) By the meaning of �.

� (� j= 2(F ^G)) � (� j= 2F ) ^ (� j= 2G) By the meaning of ^.

� (8n 2 Nat : �+n j= 2(F ^G)) �
(8n 2 Nat : �+n j= 2F ) ^ (8n 2 Nat : �+n j= 2G)

By de�nition of 2.

� true By the predicate-logic tautology (8 x 2 S :P ^Q) � (8 x 2 S :P) ^ (8 x 2 S :Q).

The operator 2 doesn't distribute over _, nor does 3 distribute over ^. For
example, 2((n � 0) _ (n < 0)) is not equivalent to (2(n � 0) _ 2(n < 0));

the �rst formula is true for any behavior in which n is always a number, but

the second is false for a behavior in which n assumes both positive and negative

values. However, the following two formulas are tautologies:

(2F ) _ (2G)) 2(F _G) 3(F ^G)) (3F ) ^ (3G)

Either of these tautologies can be derived from the other by substituting :F for

F and :G for G . Making this substitution in the second tautology yields:

true � 3((:F ) ^ (:G))) (3:F ) ^ (3:G) By substitution in the second tautology.

� 3:(F _G)) (3:F ) ^ (3:G) Because (:P ^ :Q) � :(P _Q).

� :2(F _G)) (:2F ) ^ (:2G) Because 3:H � :2H .

� :2(F _G)) :((2F ) _ (2G)) Because (:P ^ :Q) � :(P _Q).

� (2F ) _ (2G)) 2(F _G) Because (:P ) :Q) � (Q ) P).

This pair of tautologies illustrates a general law: from any temporal tautology,

one can obtain a dual tautology by making the replacements

2 3 3 2 ^  _ _  ^

and reversing the direction of all implications. (Any � or : is left unchanged.)

As in the example above, the dual tautology can be proved from the original by

replacing each identi�er with its negation and applying the (dual) tautologies

3:F � :2F and :3F � 2:F along with propositional-logic reasoning.
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Another important pair of dual tautologies assert that 23 distributes over

_ and 32 distributes over ^:

23(F _G) � (23F ) _ (23G) 32(F ^G) � (32F ) ^ (32G)(8.1)

The �rst asserts that F or G is true in�nitely often i� F is true in�nitely often

or G is true in�nitely often. Its truth should be fairly obvious, but let's prove it.

To reason about 23, it helps to introduce the symbol 91, which means there

exist in�nitely many. In particular, 91i 2 Nat :P(i) means that P(i) is true
for in�nitely many natural numbers i . On page 91, we showed that 23F asserts

that F is true in�nitely often. Using 91, we can express this as:

(� j= 23F ) � (91i 2 Nat : �+i j= F )(8.2)

The same reasoning proves the following more general result, where P is any

operator.

(8n 2 Nat : 9m 2 Nat : P(n +m)) � 91i 2 Nat : P(i)(8.3)

Here is another useful tautology involving 91, where P and Q are arbitrary

operators and S is an arbitrary set.

(91i 2 S : P(i) _Q(i)) � (91i 2 S : P(i)) _ (91i 2 S : Q(i))(8.4)

Using these results, it's now easy to prove that 23 distributes over _:

� j= 23(F _G)

� 91i 2 Nat : �+i j= (F _G) By (8.2).

� (91i 2 Nat : �+i j= F ) _ (91i 2 Nat : �+i j= G) By (8.4).

� (� j= 23F ) _ (� j= 23G) By (8.2).

From this, we deduce the dual tautology, that 32 distributes over ^.
In any TLA tautology, replacing a temporal formula by an action yields a

tautology|a formula that is true for all behaviors|even if that formula isn't a

legal TLA formula. (Remember that we have de�ned the meaning of nonTLA

formulas like 2(x 0 = x +1).) We can apply the rules of logic to transform those

nonTLA tautologies into TLA tautologies. Among these rules are the following

dual equivalences, which are easy to check.

[A ^ B ]v � [A]v ^ [B ]v hA _ B iv � hAiv _ hB iv
(The second asserts that an A _ B step that changes v is either an A step that

changes v or a B step that changes v .)

As an example of substituting actions for temporal formulas in TLA tautolo-

gies, let's substitute hAiv and hB iv for F and G in the �rst tautology of (8.1)

to get

23(hAiv _ hB iv ) � (23hAiv) _ (23hB iv )(8.5)
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This isn't a TLA tautology, because 23(hAiv _ hB iv ) isn't a TLA formula.

However, a general rule of logic tells us that replacing a subformula by an equiv-

alent one yields an equivalent formula. Substituting hA _ B iv for hAiv _ hB iv
in (8.5) gives us the following TLA tautology:

23(hA _ B iv ) � (23hAiv) _ (23hB iv )

8.3 Temporal Proof Rules

A proof rule is a rule for deducing valid formulas from other valid formulas.

For example, the Modus Ponens Rule of propositional logic tells us that, for

any formulas F and G , if we have proved F and F ) G , then we can deduce

G . Since the laws of propositional logic hold for temporal logic as well, we

can apply the Modus Ponens Rule when reasoning about temporal formulas.

Temporal logic also has some proof rules of its own. One is:

Generalization Rule From F we can infer 2F , for any temporal for-

mula F .

This rule asserts that, if F is true for all behaviors, then so is 2F . To prove it,

we must show that, if � j= F is true for every behavior �, then � j= 2F is true

for every behavior � . The proof is easy:

� j= 2F � 8n 2 Nat : �+n j= F By de�nition of 2.

� 8n 2 Nat : true By the assumption that �j = F equals true, for all �.

� true By predicate logic.

The Generalization Rule states that we can deduce 2F by proving F . It does

not assert that F ) 2F is a tautology. For example, F ) 2F is not valid if F

is a state predicate other than true or false, because � j= (F ) 2F ) equals

false if F is true in the �rst state of � and is false in some other state of �.

Another temporal proof rule is:

Implies Generalization Rule From F ) G we can infer 2F ) 2G ,

for any temporal formulas F and G .

The Generalization Rule can be derived from the Implies Generalization Rule

and the tautology true = 2true by substituting true for F and F for G .

8.4 Weak Fairness

Using the temporal operators 2 and 3, it's easy to specify liveness properties.

For example, consider the hour-clock speci�cation of module HourClock in Fig-

ure 2.1 on page 20. We can require that the clock never stops by asserting that



96 CHAPTER 8. LIVENESS AND FAIRNESS

there must be in�nitely many HCnxt steps. The obvious way to write this as-

sertion is 23HCnxt , but that's not a legal TLA formula because HCnxt is an

action, not a temporal formula. However, an HCnxt step advances the value

hr of the clock, so it changes hr . Therefore, an HCnxt step is also an HCnxt

step that changes hr|that is, it's an hHCnxt ihr step. We can thus write the

liveness property that the clock never stops as 23hHCnxt ihr . So, we can take

HC ^ 23hHCnxt ihr to be the speci�cation of a clock that never stops.

Before continuing, I must make a confession and then lead you on a brief

digression about subscripts. Let me �rst confess that the argument I just gave,

that we can write 23hHCnxt ihr in place of 23HCnxt , was sloppy (a polite term
for wrong). Not every HCnxt step changes hr . Consider a state in which hr

has some value that is not a number|perhaps a value 1. An HCnxt step that

starts in such a state sets the new value of hr to 1 + 1. We don't know what

1 + 1 equals; it might or might not equal 1. If it does, then the HCnxt step

leaves hr unchanged, so it is not an hHCnxt ihr step. Fortunately, states in which
the value of hr is not a number are irrelevant. Because we are conjoining the

liveness condition to the safety speci�cation HC , we care only about behaviors

that satisfy HC . In all such behaviors, hr is always a number, and every HCnxt

step is an hHCnxt ihr step. Therefore, HC ^23hHCnxt ihr is equivalent to the

nonTLA formula HC ^ 23HCnxt .3
When writing liveness properties, the syntax of TLA often forces us to write

hAiv instead of A, for some action A. As in the case of HCnxt , the safety

speci�cation usually implies that any A step changes some variable. To avoid

having to think about which variables A actually changes, we generally take the

subscript v to be the tuple of all variables, which is changed i� any variable

changes. But what if A does allow stuttering steps? It's silly to assert that a

stuttering step eventually occurs, since such an assertion is not invariant under

stuttering. So, if A does allow stuttering steps, we want to require not that an

A step eventually occurs, but that a nonstuttering A step occurs|that is, an

hAiv step, where v is the tuple of all the speci�cation's variables. The syntax

of TLA forces us to say what we should mean.

I usually ignore the angle brackets and subscripts in informal discussions|

for example, describing 23hHCnxt ihr as the assertion that there are in�nitely

many HCnxt steps. This �nishes the digression; we now return to specifying

liveness conditions.

Let's modify speci�cation Spec of module Channel (Figure 3.2 on page 30)

to require that every value sent is eventually received. We do this by conjoining

a liveness condition to Spec. The analog of the liveness condition for the clock is

23hRcv ichan , which asserts that there are in�nitely many Rcv steps. However,

only a value that has been sent can be received, so this condition would also

require that in�nitely many values be sent|a requirement we don't want to

3Even though HC ^23HCnxt is not a TLA formula, its meaning has been de�ned, so we

can determine whether it is equivalent to a TLA formula.
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make. We want to permit behaviors in which no value is ever sent, so no value is

ever received. We require only that, if a value is ever sent, then it is eventually

received.

To assure that every value sent eventually is received, it su�ces to require

only that the next value to be received eventually is received. (When the next

value has been received, the one after it becomes the next value to be received,

which by the requirement must eventually be received, and so on.) More pre-

cisely, we need only require that it's always the case that, if there is a value to

be received, then the next value to be received eventually is received. The next

value is received by a Rcv step, so the requirement is:4

2(There is an unreceived value ) 3hRcv ichan)

There is an unreceived value i� action Rcv is enabled, meaning that it is possible

to take a Rcv step. TLA+ de�nes enabled A to be the predicate that is true

i� action A is enabled. The liveness condition can then be written:

2(enabled hRcv ichan ) 3hRcv ichan )(8.6)

In the enabled formula, it doesn't matter if we write Rcv or hRcv ichan . We

add the angle brackets so the two actions appearing in the formula are the same.

In any behavior satisfying the safety speci�cation HC , it's always possible

to take an HCnxt step that changes hr . Action hHCnxt ihr is therefore al-

ways enabled, so enabled hHCnxt ihr is true throughout such a behavior. Since
true) 3hHCnxt ihr is equivalent to 3hHCnxt ihr , we can replace the liveness

condition 23hHCnxt ihr for the hour clock with:

2(enabled hHCnxt ihr ) 3hHCnxt ihr )

This suggests the following general liveness condition for an action A:

2(enabled hAiv ) 3hAiv)

This condition asserts that, if A ever becomes enabled, then an A step will

eventually occur|even if A remains enabled for only a fraction of a nanosecond

and is never again enabled. The obvious practical di�culty of implementing

such a condition suggests that it's too strong. So, we replace it with the weaker

formula WFv (A), de�ned to equal:

2(2enabled hAiv ) 3hAiv)(8.7)

This formula asserts that if A ever becomes forever enabled, then an A step must

eventually occur. WF stands for W eak Fairness, and the condition WFv (A) is

called weak fairness on A. We'll soon see that our liveness conditions for the

4
2(F ) 3G) equals F ; G, so we could write this formula more compactly with ;.

However, it's more convenient to keep it in the form 2(F ) 3G)
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clock and the channel can be written as WF formulas. But �rst, let's examine

(8.7) and the following two formulas, which turn out to be equivalent to it:

23(:enabled hAiv ) _ 23hAiv(8.8)

32(enabled hAiv )) 23hAiv(8.9)

These three formulas can be expressed in English as:

(8.7) It's always the case that, if A is enabled forever, then an A step eventually

occurs.

(8.8) A is in�nitely often disabled, or in�nitely many A steps occur.

(8.9) If A is eventually enabled forever, then in�nitely many A steps occur.

The equivalence of these three formulas isn't obvious. Trying to deduce their

equivalence from the English expressions often leads to confusion. The best way

to avoid confusion is to use mathematics. We show that the three formulas are

equivalent by proving that (8.7) is equivalent to (8.8) and that (8.8) is equivalent

to (8.9). Instead of proving that they are equivalent for an individual behavior,

we can use tautologies that we've already seen to prove their equivalence directly.

Here's a proof that (8.7) is equivalent to (8.8). Studying it will help you learn

to write liveness conditions.

2(2enabled hAiv ) 3hAiv)
� 2(:2enabled hAiv _3hAiv) Because (F ) G) � (:F _G).

� 2(3:enabled hAiv _3hAiv) Because :2F � 3:F .

� 23(:enabled hAiv _ hAiv ) Because 3(F _G) � 3F _ 3G.

� 23(:enabled hAiv ) _ 23hAiv Because 23(F _G) � 23F _ 23G.

The equivalence of (8.8) and (8.9) is proved as follows.

23(:enabled hAiv ) _ 23hAiv
� :32(enabled hAiv ) _ 23hAiv Because 23:F � 2:2F � :32F .

� 32(enabled hAiv )) 23hAiv Because (F ) G) � (:F _G).

We now show that the liveness conditions for the hour clock and the channel

can be written as weak fairness conditions.

First, consider the hour clock. In any behavior satisfying HC , an hHCnxt ihr
step is always enabled, so 32(enabled hHCnxt ihr ) equals true. Therefore,

HC implies that WFhr (HCnxt), which equals (8.9), is equivalent to23hHCnxt ihr ,
our liveness condition for the hour clock.

Now, consider the channel. I claim that the liveness condition (8.6) can be

replaced by WFchan(Rcv). More precisely, Spec implies that these two formulas

are equivalent, so conjoining either of them to Spec yields equivalent speci�ca-

tions. The proof rests on the observation that, in any behavior satisfying Spec,
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once Rcv becomes enabled (because a value has been sent), it can be disabled

only by a Rcv step (which receives the value). In other words, it's always the

case that if Rcv is enabled, then it is enabled forever or a Rcv step eventually

occurs. Stated formally, this observation asserts that Spec implies

2(enabled hRcv ichan ) 2(enabled hRcv ichan ) _3hRcv ichan)(8.10)

We show that we can take WFchan(Rcv) as our liveness condition by showing

that (8.10) implies the equivalence of (8.6) and WFchan(Rcv).

The proof is by purely temporal reasoning; we need no other facts about the

channel speci�cation. Both for compactness and to emphasize the generality

of our reasoning, let's replace enabled hRcv ichan by E and hRcv ichan by A.

Using version (8.7) of the de�nition of WF, we must prove:

2(E ) 2E _3A) ) (2(E ) 3A) � 2(2E ) 3A))(8.11)

So far, all our proofs have been by calculation. That is, we have proved that

two formulas are equivalent, or that a formula is equivalent to true, by proving

a chain of equivalences. That's a good way to prove simple things, but it's

usually better to tackle a complicated formula like (8.11) by splitting its proof

into pieces. We have to prove that one formula implies the equivalence of two

others. The equivalence of two formulas can be proved by showing that each

implies the other. More generally, to prove that P implies Q � R, we prove that

P ^Q implies R and that P ^R implies Q . So, we prove (8.11) by proving the

two formulas:

2(E ) 2E _3A) ^ 2(E ) 3A) ) 2(2E ) 3A)(8.12)

2(E ) 2E _3A) ^ 2(2E ) 3A) ) 2(E ) 3A)(8.13)

Both (8.12) and (8.13) have the form 2F ^ 2G ) 2H . We �rst show that,

for any formulas F , G , and H , we can deduce 2F ^ 2G ) 2H by proving

F ^G ) H . We do this by assuming F ^G ) H and proving 2F ^2G ) 2H
as follows.

1. 2(F ^G)) 2H
Proof: By the assumption F ^G ) H and the Implies Generalization Rule

(page 95), substituting F ^G for F and H for G in the rule.

2. 2F ^ 2G ) 2H
Proof: By step 1 and the tautology 2(F ^G) � 2F ^2G .

This shows that we can deduce 2F ^ 2G ) 2H by proving F ^ G ) H ,

for any F , G , and H . We can therefore prove (8.12) and (8.13) by proving

(E ) 2E _3A) ^ (E ) 3A) ) (2E ) 3A)(8.14)

(E ) 2E _3A) ^ (2E ) 3A) ) (E ) 3A)(8.15)
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The proof of (8.14) is easy. In fact, we don't even need the �rst conjunct; we

can prove (E ) 3A)) (2E ) 3A) as follows.

(E ) 3A)
� (2E ) E ) ^ (E ) 3A) Because 2E ) E is a temporal tautology.

) (2E ) 3A) By the tautology (P ) Q) ^ (Q ) R)) (P ) R).

The proof of (8.15) uses only propositional logic. We deduce (8.15) by substi-

tuting E for P , 2E for Q , and 3A for R in the following propositional-logic

tautology.

(P ) Q _ R) ^ (Q ) R) ) (P ) R)

A little thought should make the validity of this tautology seem obvious. If not,

you can check it by constructing a truth table.

These proofs of (8.14) and (8.15) complete the proof that we can take

WFchan(Rcv) instead of (8.7) as our liveness condition for the channel.

8.5 The Memory Speci�cation

8.5.1 The Liveness Requirement

Let's now strengthen the memory speci�cation with the liveness requirement

that every request must receive a response. (We don't require that a request

ever be issued.) The liveness requirement is conjoined to the internal memory

speci�cation, formula ISpec of module InternalMemory (Figure 5.3 on pages

52{53).

We want to express the liveness requirement in terms of weak fairness. To

do this, we must understand when actions are enabled. The action Rsp(p) is

enabled only if the action

Reply(p; buf [p]; memInt ; memInt 0)(8.16)

is enabled. Recall that the operator Reply is a constant parameter, declared in

the MemoryInterface module (Figure 5.1 on page 48). Without knowing more

about this operator, we can't say when action (8.16) is enabled.

Let's assume that Reply actions are always enabled. That is, for any pro-

cessor p and reply r , and any old value miOld of memInt , there is a new value

miNew of memInt such that Reply(p; r ;miOld ;miNew) is true. For simplicity,

we just assume that this is true for all p and r , and add the following assumption

to the MemoryInterface module:

assume 8 p; r ; miOld : 9miNew : Reply(p; r ; miOld ; miNew)

We should also make a similar assumption for Send , but we don't need it here.
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We will subscript our weak-fairness formulas with the tuple of all variables,

so let's give that tuple a name:

vars
�
= hmemInt ; mem; ctl ; buf i

When processor p issues a request, it enables the Do(p) action, which remains

enabled until a Do(p) step occurs. The weak-fairness condition WFvars(Do(p))

implies that this Do(p) step must eventually occur. A Do(p) step enables the

Rsp(p) action, which remains enabled until a Rsp(p) step occurs. The weak-

fairness condition WFvars(Rsp(p)) implies that this Rsp(p) step, which produces

the desired response, must eventually occur. Hence, the requirement

WFvars(Do(p)) ^WFvars(Rsp(p))(8.17)

assures that every request issued by processor p must eventually receive a reply.

We want this condition to hold for every processor p, so we can take, as the

liveness condition for the memory speci�cation, the formula:

Liveness
�
= 8 p 2 Proc : WFvars(Do(p)) ^WFvars(Rsp(p))(8.18)

The internal memory speci�cation is then ISpec ^ Liveness .

8.5.2 Another Way to Write It

I �nd a single fairness condition simpler than the conjunction of fairness condi-

tions. Seeing the conjunction of the two weak fairness formulas in the de�nition

of Liveness leads me to ask if it can be replaced by a single weak fairness con-

dition on Do(p) _Rsp(p). Such a replacement isn't always possible; in general,

the formulas WFv (A)^WFv (B) and WFv (A_B) are not equivalent. However,
in this case, we can replace the two fairness conditions with one. If we de�ne

Liveness2
�
= 8 p 2 Proc : WFvars(Do(p) _ Rsp(p))

then ISpec ^ Liveness2 is equivalent to ISpec ^ Liveness . As we will see, this

equivalence holds because any behavior satisfying ISpec satis�es the following

two properties:

DR1. Whenever Do(p) is enabled, Rsp(p) can never become enabled unless

a Do(p) step eventually occurs.

DR2. Whenever Rsp(p) is enabled, Do(p) can never become enabled unless

a Rsp(p) step eventually occurs.

These properties are satis�ed because a request to p is issued by a Req(p) step,

executed by a Do(p) step, and responded to by a Rsp(p) step; and then, the

next request to p can be issued by a Req(p) step. Each of these steps becomes

possible (the action enabled) only after the preceding one occurs.
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Let's now show that DR1 and DR2 imply that the conjunction of weak

fairness of Do(p) and of Rsp(p) is equivalent to weak fairness of Do(p)_Rsp(p).
For compactness, and to emphasize the generality of what we're doing, let's

replace Do(p), Rsp(p), and vars by A, B , and v , respectively.

First, we must restate DR1 and DR2 as temporal formulas. The basic form

of DR1 and DR2 is:

Whenever F is true, G can never be true unless H is eventually true.

This is expressed in temporal logic as 2(F ) 2:G _3H ). (The assertion \P

unless Q" just means P _Q .) Adding suitable subscripts, we can therefore write

DR1 and DR2 in temporal logic as:

DR1
�
= 2 ( enabled hAiv ) 2: enabled hB iv _ 3hAiv )

DR2
�
= 2 ( enabled hB iv ) 2: enabled hAiv _ 3hB iv )

Our goal is to prove

DR1 ^ DR2 ) (WFv (A) ^WFv (B) � WFv (A _ B) )(8.19)

This is complicated, so we split the proof into pieces. As in the proof of (8.11)

in Section 8.4 above, we prove an equivalence by proving two implications. To

prove (8.19), we prove the two theorems:

DR1 ^ DR2 ^ WFv (A) ^ WFv (B) ) WFv (A _ B)
DR1 ^ DR2 ^ WFv (A _ B) ) WFv (A) ^WFv (B)

We prove them by showing that they are true for an arbitrary behavior �. In

other words, we prove:

(� j= DR1 ^ DR2 ^ WFv (A) ^ WFv (B)) ) (� j= WFv (A _ B))(8.20)

(� j= DR1 ^ DR2 ^ WFv (A _ B)) ) (� j= WFv (A) ^WFv (B))(8.21)

These formulas seem daunting. Whenever you have trouble proving something,

try a proof by contradiction; it gives you an extra hypothesis for free|namely,

the negation of what you're trying to prove. Proofs by contradiction are espe-

cially useful in temporal logic. To prove (8.20) and (8.21) by contradiction, we

need to compute :(� j= WFv (C )) for an action C . From the de�nition (8.7) of

WF, we easily get

(� j= WFv (C )) � 8n 2 Nat : (�+n j= 2 enabled hC iv ) ) (�+n j= 3hC iv )(8.22)

This and the tautology

:(8 x 2 S : P ) Q) � (9 x 2 S : P ^ :Q)

of predicate logic yields:

:(� j= WFv (C )) � 9n 2 Nat : (�+n j= 2 enabled hC iv ) ^ :(�+n j= 3hC iv )(8.23)
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We also need two further results, both of which are derived from the tautology

hA_B iv � hAiv _hB iv . Combining this tautology with the temporal tautology
3(F _G) � 3F _3G yields

3hA _ B iv � 3hAiv _3hB iv(8.24)

Combining it with the observation that an action C _D is enabled i� action C

or action D is enabled yields

enabled hA _ B iv � enabled hAiv _ enabled hB iv(8.25)

We can now prove (8.20) and (8.21). To prove (8.20), we assume that � satis�es

DR1, DR2, WFv (A), and WFv (B), but it does not satisfy WFv (A _ B), and
we obtain a contradiction. By (8.23), the assumption that � does not satisfy

WFv (A _ B) means that there exists some number n such that:

�+n j= 2 enabled hA _ B iv(8.26)

:(�+n j= 3hA _ B iv )(8.27)

We obtain a contradiction from (8.26) and (8.27) as follows.

1. :(�+n j= 3hAiv) ^ :(�+n j= 3hB iv )
Proof: By (8.27) and (8.24), using the tautology :(P _Q) � (:P ^ :Q).

2. (a) (�+n j= enabled hAiv ) ) (�+n j= 2:enabled hB iv )
(b) (�+n j= enabled hB iv ) ) (�+n j= 2: enabled hAiv )
Proof: By de�nition of DR1, the assumption � j= DR1 implies

(�+n j= enabled hAiv ) ) (�+n j= 2: enabled hB iv ) _ (�+n j= 3hAiv)
and part (a) then follows from 1. The proof of (b) is similar.

3. (a) (�+n j= enabled hAiv ) ) (�+n j= 2 enabled hAiv )
(b) (�+n j= enabled hB iv ) ) (�+n j= 2 enabled hB iv )
Proof: Part (a) follows from 2(a), (8.26), (8.25), and the temporal tautology

2(F _G) ^ 2:G ) 2F

The proof of part (b) is similar.

4. (a) (�+n j= enabled hAiv ) ) (�+n j= 3hAiv)
(b) (�+n j= enabled hB iv ) ) (�+n j= 3hB iv )
Proof: The assumption � j= WFv (A) and (8.22) imply

(�+n j= 2enabled hAiv ) ) (�+n j= 3hAiv)
Part (a) follows from this and 3(a). The proof of part (b) is similar.

5. (�+n j= 3hAiv) _ (�+n j= 3hB iv )
Proof: Since 2F implies F , for any F , (8.26) and (8.25) imply

(�+n j= enabled hAiv ) _ (�+n j= enabled hB iv )
Step 5 then follows by propositional logic from step 4.
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Steps 1 and 5 provide the required contradiction.

We can prove (8.21) by assuming that � satis�es DR1, DR2, andWFv (A_B),
and then proving that it satis�es WFv (A) and WFv (B). We prove only that it

satis�es WFv (A); the proof for WFv (B) is similar. The proof is by contradiction;

we assume that � does not satisfyWFv (A) and obtain a contradiction. By (8.23),

the assumption that � does not satisfy WFv (A) means that there exists some

number n such that:

�+n j= 2 enabled hAiv(8.28)

: (�+n j= 3hAiv)(8.29)

We obtain the contradiction as follows.

1. �+n j= 3hA _ B iv
Proof: From (8.28) and (8.25) we deduce �+n j= 2 enabled hA _ B iv . By
the assumption � j= WFv (A_B) and (8.22), this implies �+n j= 3hA_B iv .

2. �+n j= 2: enabled hB iv
Proof: From (8.28) we obtain �+n j= enabled hAiv , which by the assump-

tion � j= DR1 and the de�nition of DR1 implies

(�+n j= 2: enabled hB iv ) _ (�+n j= 3hAiv)
The assumption (8.29) then implies �+n j= 2: enabled hB iv .

3. : (�+n j= 3hB iv )
Proof: The de�nition of enabled implies : enabled hB iv ) :hB iv . (A
hB iv step can occur only when it is enabled.) From this, simple temporal

reasoning implies

(�+n j= 2: enabled hB iv ) ) : (�+n j= 3hB iv )
(A formal proof uses the Implies Generalization Rule and the tautology

2:F � :3F .) We then deduce : (�+n j= 3hB iv ) from 2.

4. : (�+n j= 3hA _ B iv )
Proof: By (8.29), 3, and (8.24), using the tautology :P ^ :Q � :(P _Q).

Steps 1 and 4 provide the necessary contradiction. This completes our proof of

(8.21), which completes our proof of (8.19).

8.5.3 A Generalization

Formula (8.19) provides a rule for replacing the conjunction of weak fairness

requirements on two actions with weak fairness of their disjunction. We now

generalize it from two actions A and B to n actions A1, . . . , An . The general-

ization of DR1 and DR2 is

DR(i ; j )
�
= 2 ( enabled hAi iv ) 2: enabled hAj iv _ 3hAi iv )
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If we substitute A1 for A and A2 for B , then DR1 becomes DR(1; 2) and DR2

becomes DR(2; 1). The generalization of (8.19) is:

(8 i ; j 2 1 : : n : (i 6= j )) DR(i ; j )) )
(WFv (A1) ^ : : : ^WFv (An) � WFv (A1 _ : : : _An ))

(8.30)

To decide if you can replace the conjunction of weak fairness conditions by a

single one in a speci�cation, you will probably �nd it easier to use the following

informal statement of (8.30).

WF Conjunction Rule If A1, . . . , An are actions such that, for any

distinct i and j , whenever hAi iv is enabled, hAj iv cannot become en-

abled unless an hAi iv step occurs, then WFv (A1) ^ : : : ^WFv (An ) is

equivalent to WFv (A1 _ : : : _ An ).

Perhaps the best way to think of this rule is as an assertion about an arbitrary

individual behavior �. Its hypothesis is then that � j= DR(i ; j ) holds for all

distinct i and j ; its conclusion is:

� j= (WFv (A1) ^ : : : ^WFv (An) � WFv (A1 _ : : : _ An))

To replace WFv (A1) ^ : : : ^WFv (An) by WFv (A1 _ : : : _An ) in a speci�cation,

you have to check that any behavior satisfying the safety part of the speci�cation

also satis�es DR(i ; j ), for all distinct i and j .

Conjunction and disjunction are special cases of quanti�cation:

F 1 _ : : : _ Fn � 9 i 2 1 : : n : F i

F 1 ^ : : : ^ Fn � 8 i 2 1 : : n : F i

We can therefore easily restate the WF Conjunction Rule as a condition on when

8 i 2 S :WFv (Ai ) and WFv (9 i 2 S :Ai) are equivalent, for a �nite set S . The

resulting rule is actually valid for any set S :

WF Quanti�er Rule If, for all i 2 S , the Ai are actions such that,

for any distinct i and j in S , whenever hAi iv is enabled, hAj iv cannot

become enabled unless an hAi iv step occurs, then 8 i 2 S :WFv (Ai ) is

equivalent to WFv (9 i 2 S :Ai ).

8.6 Strong Fairness

We de�ne SFv (A), strong fairness of action A, to be either of the following two

equivalent formulas.

32(: enabled hAiv ) _ 23hAiv(8.31)

23enabled hAiv ) 23hAiv(8.32)



106 CHAPTER 8. LIVENESS AND FAIRNESS

Intuitively, these two formulas assert:

A is eventually disabled forever, or in�nitely many A steps occur.(8.31)

If A is in�nitely often enabled, then in�nitely many A steps occur.(8.32)

The proof that (8.31) and (8.32) are equivalent is similar to the proof on page 98

that the two formulations (8:8) and (8:9) of WFv (A) are equivalent.

De�nition (8.31) of SFv (A) is obtained from de�nition (8.8) of WFv (A) re-

placing 23(: enabled hAiv ) with 32(: enabled hAiv ). Since 32F (even-

tually always F ) is stronger than (implies) 23F (in�nitely often F ) for any

formula F , strong fairness is stronger than weak fairness. We can express weak

and strong fairness as follows.

� Weak fairness of A asserts that an A step must eventually occur if A is

continuously enabled.

� Strong fairness of A asserts that an A step must eventually occur if A is

continually enabled.

Continuously means without interruption. Continually means repeatedly, pos-

sibly with interruptions.

Strong fairness need not be strictly stronger than weak fairness. Weak and

strong fairness of an action A are equivalent i� A in�nitely often disabled implies

that either A eventually becomes forever disabled, or in�nitely many A steps

occur. This is expressed formally by the tautology:

(WFv (A) � SFv (A)) �
(23(: enabled hAiv ) ) 32(: enabled hAiv ) _ 23hAiv )

In the channel example, weak and strong fairness of Rcv are equivalent because

Spec implies that, once enabled, Rcv can be disabled only by a Rcv step. Hence,

if Rcv is disabled in�nitely often, then it either eventually remains disabled

forever, or else it is disabled in�nitely often by Rcv steps.

The analogs of the WF Conjunction and WF Quanti�er Rules (page 105)

hold for strong fairness|for example:

SF Conjunction Rule If A1, . . . , An are actions such that, for any

distinct i and j , whenever action Ai is enabled, action Aj cannot be-

come enabled until an Ai step occurs, then SFv (A1) ^ : : : ^ SFv (An ) is

equivalent to SFv (A1 _ : : : _ An).

Strong fairness can be more di�cult to implement than weak fairness, and it

is a less common requirement. A strong fairness condition should be used in a

speci�cation only if it is needed. When strong and weak fairness are equivalent,

the fairness property should be written as weak fairness.

Liveness properties can be subtle. Expressing them with ad hoc temporal

formulas can lead to errors. We will specify liveness as the conjunction of weak



8.7. LIVENESS FOR THE WRITE-THROUGH CACHE 107

and/or strong fairness properties whenever possible|and it almost always is

possible. Having a uniform way of expressing liveness makes speci�cations easier

to understand. Section 8.9.2 discusses an even more compelling reason for using

fairness to specify liveness.

8.7 Liveness for the Write-Through Cache

Let's now add liveness to the write-through cache, speci�ed in Figure 5.6 on

pages 57{59. We want our speci�cation to guarantee that every request even-

tually receives a response, without requiring that any requests are issued. This

requires fairness on all the actions that make up the next-state action Next

except for the following:

� A Req(p) action, which issues a request.

� An Evict(p; a) action, which evicts an address from the cache.

� A MemQWr action, if memQ contains only write requests and is not full

(has fewer than QLen elements). Since a response to a write request can be

issued before the value is written to memory, failing to execute aMemQWr

action can prevent a response only if it prevents the dequeuing of a read

operation in memQ or the enqueuing of an operation (because memQ is

full).

For simplicity, let's require fairness for the MemQWr action too; we'll weaken

this requirement later. Our liveness condition then has to assert fairness of the

actions

MemQWr MemQRd Rsp(p) RdMiss(p) DoRd(p) DoWr(p)

for all p in Proc. We now must decide whether to assert weak or strong fairness

for these actions. Weak and strong fairness are equivalent for an action that,

once enabled, remains enabled until it is executed. This is the case for all of

these actions except DoRd(p), RdMiss(p), and DoWr(p).

The DoRd(p) action can be disabled by an Evict step that evicts the re-

quested data from the cache. In this case, fairness of other actions should imply

that the data will eventually be returned to the cache, re-enabling DoRd(p). The

data cannot be evicted until the DoRd(p) action is executed, and weak fairness

then su�ces to ensure that the necessary DoRd(p) step eventually occurs.

The RdMiss(p) and DoWr(p) actions append a request to the memQ queue.

They are disabled if that queue is full. A RdMiss(p) or DoWr(p) could be

enabled and then become disabled because a RdMiss(q) or DoWr(q), for a

di�erent processor q , appends a request to memQ . We therefore need strong

fairness for the RdMiss(p) and DoWr(p) actions. So, the fairness conditions we

need are:
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Weak Fairness for Rsp(p), DoRd(p), MemQWr , and MemQRd

Strong Fairness for RdMiss(p) and DoWr(p).

As before, let's de�ne vars to be the tuple of all variables.

vars
�
= hmemInt ; mem; buf ; ctl ; cache; memQ i

We could just write the liveness condition as

^ 8 p 2 Proc : ^ WFvars(Rsp(p)) ^ WFvars(DoRd(p))

^ SFvars(RdMiss(p)) ^ SFvars(DoWr(p))

^ WFvars(MemQWr) ^ WFvars(MemQRd)

(8.33)

However, I prefer replacing the conjunction of fairness conditions by a single

fairness condition on a disjunction, as we did in Section 8.5 for the memory

speci�cation. The WF and SF Conjunction Rules (page 105 and 106) imply

that the liveness condition (8.33) can be rewritten as

^ 8 p 2 Proc : ^ WFvars(Rsp(p) _ DoRd(p))
^ SFvars(RdMiss(p) _DoWr(p))

^ WFvars(MemQWr _MemQRd)

(8.34)

We can now try to simplify (8.34) by applying the WF Quanti�er Rule (page 105)

to replace 8 p 2 Proc :WFvars(: : :) with WFvars(9 p 2 Proc : : : :). However, that
rule doesn't apply. It's possible for bothRsp(p) _ DoRd(p) andRsp(q) _ DoRd(q)
to be enabled at the same time, for two di�erent processors p and q . In fact, the

two liveness conditions are not equivalent. Weak fairness of 9 p 2 Proc :Rsp(p) _ DoRd(p)
is satis�ed by any behavior in which in�nitely many Rsp(p) and DoRd(p) ac-

tions occur for some processor p. In such a behavior, Rsp(q) could be en-

abled for some other processor q without an Rsp(q) step ever occurring, making

WFvars(Rsp(q) _ DoRd(q)) false. Similarly, the analogous rule for strong fair-

ness doesn't apply. Formula (8.34) is as simple as we can make it.

Let's return to the observation that we don't have to execute MemQWr if

the memQ queue contains only write requests and is not full. In other words,

we have to execute MemQWr only if memQ is full or contains a read request.

Let's de�ne

QCond
�
= _ Len(memQ) = QLen

_ 9 i 2 1 : : Len(memQ) : memQ [i ][2]:op = \Rd"

so we need eventually execute a MemQWr action only when it's enabled and

QCond is true, which is the case i� the action QCond ^MemQWr is enabled.

In this case, a MemQWr step is a QCond ^MemQWr step. Hence, it su�ces

to require weak fairness of the action QCond ^ MemQWr . We can therefore

replace the second conjunct of (8.34) with

WFvars((QCond ^MemQWr) _ MemQRd)
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We would do this if we wanted the speci�cation to describe the weakest liveness

condition that implements the memory speci�cation's liveness condition. How-

ever, if the speci�cation were a description of an actual device, then that device

would probably implement weak fairness on all MemQWr actions, so we would

take (8.34) as the liveness condition.

8.8 Quanti�cation

Section 8.1 describes the meaning of ordinary quanti�cation of temporal formu-

las. For example, the meaning of the formula 8 r :F , for any temporal formula

F , is de�ned by

� j= (8 r : F )
�
= 8 r : (� j= F )

where � is any behavior.

The symbol r in 9 r :F is usually called a bound variable. But we've been

using the term variable to mean something else|something that's declared by a

variable statement in a module. The bound \variable" r is actually a constant

in these formulas|a value that is the same in every state of the behavior.5 For

example, the formula 9 r :2(x = r) asserts that x has the same value in every

state of a behavior.

Bounded quanti�cation over a constant set S is de�ned by:

� j= (8 r 2 S : F )
�
= (8 r 2 S : � j= F )

� j= (9 r 2 S : F )
�
= (9 r 2 S : � j= F )

The symbol r is declared to be a constant in formula F . The expression S lies

outside the scope of the declaration of r , so the symbol r cannot occur in S . It's

easy to de�ne the meanings of these formulas even if S is not a constant|for

example, by letting 9 r 2 S :F equal 9 r : (r 2 S ) ^ F . However, for nonconstant
S , it's better to write 9 r : (r 2 S ) ^ F explicitly.

It's also easy to de�ne the meaning of choose as a temporal operator. We

can just let � j= (choose r :F ) be an arbitrary constant value r such that

� j= F equals true, if such an r exists. However, a temporal choose operator

is not needed for writing speci�cations, so choose r :F is not a legal TLA

formula if F is a temporal formula.

We now come to the temporal existential quanti�er 999999 . In the formula 999999 x : F ,
the symbol x is declared to be a variable in F . Unlike 9 r :F , which asserts the

existence of a single value r , the formula 999999 x :F asserts the existence of a value

for x in each state of a behavior. For example, if y is a variable, then the

formula 999999 x :2(x 2 y) asserts that y always has some element x , so y is always

5Logicians use the term exible variable for a TLA variable, and the term rigid variable

for a symbol like r that represents a constant.
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a nonempty set. However, the element x could be di�erent in di�erent states,

so the values of y in di�erent states could be disjoint.

We have been using 999999 as a hiding operator, thinking of 999999 x :F as F with

variable x hidden. The precise de�nition of 999999 is a bit tricky because, as dis-

cussed in Section 8.1, the formula 999999 x :F should be invariant under stuttering.

Intuitively, 999999 x :F is satis�ed by a behavior � i� F is satis�ed by a behavior �

that is obtained from � by adding and/or deleting stuttering steps and chang-

ing the value of x . A precise de�nition appears in Section 16.2.4 (page 312).

However, for writing speci�cations, you can simply think of 999999 x :F as F with x

hidden.

TLA also has a temporal universal quanti�er 888888 , de�ned by:

888888 x : F
�
= :999999 x : :F

This operator is hardly ever used. TLA+ does not allow bounded versions of the

operators 999999 and 888888 .

8.9 Temporal Logic Examined

8.9.1 A Review

Let's look at the shapes of the speci�cations that we've written so far. We

started with the simple form

Init ^ 2[Next ]vars(8.35)

where Init is the initial predicate, Next the next-state action, and vars the tuple

of all variables. This kind of speci�cation is, in principle, quite straightforward.

We then introduced hiding, using 999999 to bind variables that should not appear in

the speci�cation. Those bound variables, also called hidden or internal variables,

serve only to help describe how the values of the free variables (also called visible

variables) change.

Hiding variables is easy enough, and it is mathematically elegant and philo-

sophically satisfying. However, in practice, it doesn't make much di�erence to

a speci�cation. A comment can also tell a reader that a variable should be re-

garded as internal. Explicit hiding allows implementation to mean implication.

A lower-level speci�cation that describes an implementation can be expected to

imply a higher-level speci�cation only if the higher-level speci�cation's internal

variables, whose values don't really matter, are explicitly hidden. Otherwise,

implementation means implementation under a re�nement mapping. (See Sec-

tion 5.8.) However, as explained in Section 10.8, implementation often involves

a re�nement of the visible variables as well.

To express liveness, the speci�cation (8.35) is strengthened to the form

Init ^ 2[Next ]vars ^ Liveness(8.36)
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where Liveness is the conjunction of formulas of the form WFvars(A) and/or

SFvars(A), for actions A. (I'm considering universal quanti�cation to be a form

of conjunction.)

8.9.2 Machine Closure

In the speci�cations of the form (8.36) we've written so far, the actions A whose

fairness properties appear in formula Liveness have one thing in common: they

are all subactions of the next-state action Next . An action A is a subaction of

Next i� every A step is a Next step. Equivalently, A is a subaction of Next i� A

implies Next .6 In almost all speci�cations of the form (8.36), formula Liveness

should be the conjunction of weak and/or strong fairness formulas for subactions

of Next . I'll now explain why.

When we look at the speci�cation (8.36), we expect Init to constrain the

initial state, Next to constrain what steps may occur, and Liveness to describe

only what must eventually happen. However, consider the following formula

(x = 0) ^ 2[x 0 = x + 1]x ^ WFx ((x > 99) ^ (x 0 = x � 1))(8.37)

The �rst two conjuncts of (8.37) assert that x is initially 0 and that any step

either increments x by 1 or leaves it unchanged. Hence, they imply that if x

ever exceeds 99, then it forever remains greater than 99. The weak fairness

property asserts that, if this happens, then x must eventually be decremented

by 1|contradicting the second conjunct. Hence, (8.37) implies that x can never

exceed 99, so it is equivalent to

(x = 0) ^ 2[(x < 99) ^ (x 0 = x + 1)]x

Conjoining the weak fairness property to the �rst two conjuncts of (8.37) forbids

an x 0 = x + 1 step when x = 99.

A speci�cation of the form (8.36) is called machine closed i� the conjunct

Liveness constrains neither the initial state nor what steps may occur. A more

general way to express this is as follows. Let a �nite behavior be a �nite sequence

of states.7 We say that a �nite behavior � satis�es a safety property S i� the

behavior obtained by adding in�nitely many stuttering steps to the end of �

satis�es S . If S is a safety property, then we de�ne the pair of formulas S , L

to be machine closed i� every �nite behavior that satis�es S can be extended

to an in�nite behavior that satis�es S ^ L. We call (8.36) machine closed if the

pair of formulas Init ^ 2[Next ]vars , Liveness is machine closed.
We seldom want to write a speci�cation that isn't machine closed. If we

do write one, it's usually by mistake. Speci�cation (8.36) is guaranteed to be

6A weaker notion of subaction is that A is a subaction of the formula (8.35) i�, in every

state of every behavior satisfying (8.35), if A is enabled then Next ^A is enabled.
7A �nite behavior therefore isn't a behavior, which is an in�nite sequence of states. Math-

ematicians often abuse language in this way.
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machine closed if Liveness is the conjunction of weak and/or strong fairness

properties for subactions of Next .8 This condition doesn't hold for speci�cation

(8.37), which is not machine closed, because (x > 99) ^ (x 0 = x � 1) is not a

subaction of x 0 = x + 1.

Liveness requirements are philosophically satisfying. A speci�cation of the

form (8.35), which speci�es only a safety property, allows behaviors in which

the system does nothing. Therefore, the speci�cation is satis�ed by a system

that does nothing. Expressing liveness requirements with fairness properties is

less satisfying. These properties are subtle and it's easy to get them wrong.

It requires some thought to determine that the liveness condition for the write-

through cache, formula (8.34) on page 108, does imply that every request receives

a reply.

It's tempting to express liveness properties more directly, without using fair-

ness properties. For example, it's easy to write a temporal formula asserting for

the write-through cache that every request receives a response. When processor

p issues a request, it sets ctl [p] to \rdy". We just have to assert that, for every

processor p, whenever a state in which ctl [p] = \rdy" is true occurs, there will

eventually be a Rsp(p) step:

8 p 2 Proc : 2((ctl [p] = \rdy")) 3hRsp(p)ivars)(8.38)

While such formulas are appealing, they are dangerous. It's very easy to make

a mistake and write a speci�cation that isn't machine closed.

Except in unusual circumstances, you should express liveness with fairness

properties for subactions of the next-state action. These are the most straight-

forward speci�cations, and hence the easiest to write and to understand. Most

system speci�cations, even if very detailed and complicated, can be written in

this straightforward manner. The exceptions are usually in the realm of subtle,

high-level speci�cations that attempt to be very general. An example of such a

speci�cation appears in Section 11.2.

8.9.3 Machine Closure and Possibility

Machine closure can be thought of as a possibility condition. For example,

machine closure of the pair S , 23hAiv asserts that for every �nite behavior �

satisfying S , it is possible to extend � to an in�nite behavior satisfying S in which

in�nitely many hAiv actions occur. If we regard S as a system speci�cation, so

a behavior that satis�es S represents a possible execution of the system, then we

can restate machine closure of S , 23hAiv as follows: in any system execution,

it is always possible for in�nitely many hAiv actions to occur.

8More precisely, this is the case for a �nite or countably in�nite conjunction of properties

of the form WFv (A) and/or SFv (A), where each hAiv is a subaction of Next . This result also

holds for the weaker de�nition of subaction in the footnote on the preceding page.
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TLA speci�cations express safety and liveness properties, not possibility

properties. A safety property asserts that something is impossible|for exam-

ple, the system cannot take a step that doesn't satisfy the next-state action. A

liveness property asserts that something must eventually happen. System re-

quirements are sometimes stated informally in terms of what is possible. Most

of the time, when examined rigorously, these requirements can be expressed with

liveness and/or safety properties. (The most notable exceptions are statistical

properties, such as assertions about the probability that something happens.)

We are never interested in specifying that something might happen. It's never

useful to know that the system might produce the right answer. We never have

to specify that the user might type an \a"; we must specify what happens if he

does.

Machine closure is a property of a pair of formulas, not of a system. Although

a possibility property is never a useful assertion about a system, it can be a useful

assertion about a speci�cation. A speci�cation S of a system with keyboard

input should always allow the user to type an \a". So, we want every �nite

behavior satisfying S to be extendable to an in�nite behavior satisfying S in

which in�nitely many \a"s are typed. If the action hAiv represents the typing

of an \a", then saying that the user should always be able to type in�nitely

many \a"s is equivalent to saying that the pair S , 23hAiv should be machine

closed. If S , 23hAiv isn't machine closed, then it could become impossible for

the user ever to type an \a". Unless the system is allowed to lock the keyboard,

this means that there is something wrong with our speci�cation.

This kind of possibility property can be proved. For example, to prove that

it's always possible for the user to type in�nitely many \a"s, we show that

conjoining suitable fairness conditions on the input actions implies that the

user must type in�nitely many \a"s. However, proofs of this kind of simple

property don't seem to be worth the e�ort. When writing a speci�cation, you

should make sure that possibilities allowed by the real system are allowed by the

speci�cation. Once you are aware of what should be possible, you will usually

have little trouble ensuring that the speci�cation makes it possible. You should

also make sure that what the system must do is implied by the speci�cation's

fairness conditions. This can be more di�cult.

8.9.4 The Unimportance of Liveness

While philosophically important, in practice the liveness property of (8.36) is

not as important as the safety part, Init ^ 2[Next ]vars . The ultimate purpose

of writing a speci�cation is to avoid errors. Experience shows that most of the

bene�t from writing and using a speci�cation comes from the safety part. On

the other hand, the liveness property is usually easy enough to write. It typically

constitutes less than �ve percent of a speci�cation. So, you might as well write

the liveness part. However, when looking for errors, most of your e�ort should
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be devoted to examining the safety part.

8.9.5 Temporal Logic Considered Confusing

The most general type of speci�cation I've discussed so far has the form

999999 v1; : : : ; vn : Init ^ 2[Next ]vars ^ Liveness(8.39)

where Liveness is the conjunction of fairness properties of subactions of Next .

This is a very restricted class of temporal-logic formulas. Temporal logic is quite

expressive, and one can combine its operators in all sorts of ways to express a

wide variety of properties. This suggests the following approach to writing a

speci�cation: express each property that the system must satisfy with a temporal

formula, and then conjoin all these formulas. For example, formula (8.38) above

expresses the property of the write-through cache that every request eventually

receives a response.

This approach is philosophically appealing. It has just one problem: it's

practical for only the very simplest of speci�cations|and even for them, it sel-

dom works well. The unbridled use of temporal logic produces formulas that are

hard to understand. Conjoining several of these formulas produces a speci�ca-

tion that is impossible to understand.

The basic form of a TLA speci�cation is (8.39). Most speci�cations should

have this form. We can also use this kind of speci�cation as a building block.

Chapters 9 and 10 describe situations in which we write a speci�cation as a

conjunction of such formulas. Section 10.7 introduces an additional temporal

operator
+�. and explains why we might want to write a speci�cation F

+�. G ,

where F and G have the form (8.36). But such speci�cations are of limited

practical use. Most engineers need only know how to write speci�cations of the

form (8.39). Indeed, they can get along quite well with speci�cations of the form

(8.35) that express only safety properties and don't hide any variables.



Chapter 9

Real Time

9.1 The Hour Clock Revisited

Let's return to our speci�cation of the simple hour clock in Chapter 2, which

asserts that the variable hr cycles through the values 1 through 12. We now add

the requirement that the clock keep correct time. For centuries, scientists have

represented the real-time behavior of a system by introducing a variable, tradi-

tionally t , whose value is a real number that represents time. A state in which Remember that a

state is an assign-

ment of values to

all variables.

t = �17:51 represents a state of the system at time �17:51, perhaps measured
in seconds elapsed since 00:00 UT on 1 January 2000. In TLA+ speci�cations, I

prefer to use the variable now rather than t . For linguistic convenience, I will

usually assume that the unit of time is the second, though we could just as well

choose any other unit.

Unlike sciences such as physics and chemistry, computer science studies sys-

tems whose behavior can be described by a sequence of discrete states, rather

than by states that vary continuously with time. We consider the hour clock's

display to change directly from reading 12 to reading 1, and ignore the contin-

uum of intermediate states that occur in the physical display. This means that

we pretend that the change is instantaneous. So, a real-time speci�cation of the

clock might allow the step�
hr = 12

now =
p
2:47

�
!

�
hr = 1

now =
p
2:47

�

The value of now advances between changes to hr . If we wanted to specify how

long it takes the display to change from 12 to 1, we would have to introduce

an intermediate state that represents a changing display|perhaps by letting hr

assume some intermediate value such as 12:5, or by adding a Boolean-valued

variable chg whose value indicates whether the display is changing. We won't

115
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do this, but will be content to specify an hour clock in which we consider the

display to change instantaneously.

The value of now changes between changes to hr . Just as we represent a

continuously varying clock display by a variable whose value changes in discrete

steps, we let the value of now change in discrete steps. A behavior in which now

increases in femtosecond increments would be an accurate enough description of

continuously changing time for our speci�cation of the hour clock. In fact, there's

no need to specify any particular granularity of time; we can let now advance

by arbitrary amounts between clock ticks. (Since the value of hr is unchanged

by steps that change now , the requirement that the clock keep correct time will

rule out behaviors in which now changes by too much in a single step.)

What real-time condition should our hour clock satisfy? We might require

that it always display the correct time. A more realistic requirement would be

that it display the time correctly to within � seconds, for some real number �.

However, this is not typical of the real-time requirements that arise in actual

systems. Instead, we require that the clock tick approximately once per hour.

More precisely, we require that the interval between ticks be one hour plus or

minus � seconds, for some positive number �. Of course, this requirement allows

the time displayed by the clock eventually to drift away from the actual time.

But that's what real clocks do if they are not reset.

We could start our speci�cation of the real-time clock from scratch. How-

ever, we still want the hour clock to satisfy the speci�cation HC of module

HourClock (Figure 2.1 on page 20). We just want to add an additional real-time

requirement. So, we will write the speci�cation as the conjunction of HC and a

formula requiring that the clock tick every hour, plus or minus � seconds. This

requirement is the conjunction of two separate conditions: that the clock tick at

most once every 3600� � seconds, and at least once every 3600 + � seconds.

To specify these requirements, we must introduce a variable that records how

much time has elapsed since the last clock tick. Let's call it t for timer . The

value of t is set to 0 by a step that represents a clock tick|namely, by an HCnxt

step. Any step that represents the passing of s seconds should advance t by s . A

step represents the passing of time i� it changes now , and such a step represents

the passage of now 0 � now seconds. So, the change to the timer t is described

by the action:

TNext
�
= t 0 = if HCnxt then 0 else t + (now 0 � now)

We let t initially equal 0, so we consider the starting state to be one in which

the clock has just ticked. The speci�cation of how t changes is then a formula

asserting that t initially equals 0, and that every step is a TNext step or else

leaves unchanged all relevant variables|namely, t , hr , and now . This formula

is:

Timer
�
= (t = 0) ^ 2[TNext ]ht; hr;now i
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The requirement that the clock tick at least once every 3600+ � seconds means

that it's always the case that at most 3600 + � seconds have elapsed since the

last HCnxt step. Since t always equals the elapsed time since the last HCnxt

step, this requirement is expressed by the formula:

MaxTime
�
= 2(t � 3600 + �)

(Since we can't measure time with perfect accuracy, it doesn't matter whether

we use < or � in this formula. When we generalize from this example, it is a

bit more convenient to use �.)
The requirement that the clock tick at most once every 3600 � � seconds

means that, whenever an HCnxt step occurs, at least 3600 � � seconds have

elapsed since the previous HCnxt step. This suggests the condition In the general-

ization, � will be

more convenient

than >.
2(HCnxt ) (t � 3600� �))(9.1)

However, (9.1) isn't a legal TLA formula because HCnxt ) : : : is an action

(a formula containing primes), and a TLA formula asserting that an action is

always true must have the form 2[A]v . We don't care about steps that leave hr

unchanged, so we can replace (9.1) by the TLA formula:

MinTime
�
= 2[HCnxt ) (t � 3600� �)]hr

The desired real-time constraint on the clock is expressed by the conjunction of

these three formulas:

HCTime
�
= Timer ^ MaxTime ^ MinTime

However, formula HCTime contains the variable t , and the speci�cation of the

real-time clock should describe only the changes to hr (the clock display) and

now (the time). So, we have to hide t . Hiding is expressed in TLA+ by the

temporal existential quanti�er 999999 , introduced in Section 4.3 (page 41). However,
as explained in that section, we can't simply write 999999 t :HCTime . We must de�ne

HCTime in a module that declares t , and then use a parametrized instantiation

of that module. This is done in Figure 9.1 on page 119. Instead of de�ning

HCTime in a completely separate module, I have de�ned it in a submodule

named Inner of the module RealTimeHourClock containing the speci�cation of

the real-time hour clock. Note that all the symbols declared and de�ned in the

main module up to that point can be used in the submodule. Submodule Inner

is instantiated in the main module with the statement

I (t)
�
= instance Inner

The t in HCTime can then be hidden by writing 999999 t : I (t)!HCTime .
The formula HC ^ (999999 t : I (t)!HCTime) describes the possible changes to the

value of hr , and relates those changes to the value of now . But it says very little
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about how the value of now can change. For example, it allows the following

behavior:�
hr = 11

now = 23:5

�
!

�
hr = 11

now = 23:4

�
!

�
hr = 11

now = 23:5

�
!

�
hr = 11

now = 23:4

�
! � � �

Because time can't go backwards, such a behavior doesn't represent a physical

possibility. Everyone knows that time only increases, so there's no need to forbid

this behavior if the only purpose of our speci�cation is to describe the hour clock.

However, a speci�cation should also allow us to reason about a system. If the

clock ticks approximately once per hour, then it can't stop. However, as the

behavior above shows, the formula HC ^ (999999 t : I (t)!HCTime) by itself allows

the clock to stop. To infer that it can't, we also need to state how now changes.

We de�ne a formula RTnow that speci�es the possible changes to now . This

formula does not specify the granularity of the changes to now ; it allows a step to

advance now by a microsecond or by a century. However, we have decided that

a step that changes hr should leave now unchanged, which implies that a step

that changes now should leave hr unchanged. Therefore, steps that change now

are described by the following action, where Real is the set of all real numbers.

NowNext
�
= ^ now 0 2 fr 2 Real : r > nowg now

0 can equal any real number > now .

^ unchanged hr

Formula RTnow should also allow steps that leave now unchanged. The initial

value of now is an arbitrary real number (we can start the system at any time),

so the safety part of RTnow is:

(now 2 Real) ^ 2[NowNext ]now
The liveness condition we want is that now should increase without bound.

Simple weak fairness of the NowNext action isn't good enough, because it allows Fairness is dis-

cussed in Chap-

ter 8.
\Zeno" behaviors such as:

[now = :9] ! [now = :99] ! [now = :999] ! [now = :9999] ! � � �
in which the value of now remains bounded. Weak fairness of the action

NowNext ^ (now 0 > r) implies that eventually a NowNext step will occur in

which the new value of now is greater than r . (This action is always enabled, so

weak fairness implies that in�nitely many such actions must occur.) Asserting

this for all real numbers r implies that now grows without bound, so we take as

the fairness condition:1

8 r 2 Real : WFnow (NowNext ^ (now 0 > r))

The complete speci�cation of the real-time hour clock, including the de�nition

of formula RTnow , is in the RealTimeHourClock module of Figure 9.1 on the

next page. That module extends the standard Reals module, which de�nes the

set Real of real numbers.
1An equivalent condition is 8 r 2 Real : 3(now > r), but I like to express fairness with

WF and SF formulas.
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module RealTimeHourClock

extends Reals, HourClock

variable now The current time, measured in seconds.

constant Rho A positive real number.

assume (Rho 2 Real) ^ (Rho > 0)

module Inner

variable t

TNext
�
= t 0 = if HCnxt then 0 else t + (now 0 � now)

Timer
�
= (t = 0) ^ 2[TNext ]ht;hr; now i

MaxTime
�
= 2(t � 3600+Rho)

MinTime
�
= 2[HCnxt ) t � 3600�Rho]hr

HCTime
�
= Timer ^ MaxTime ^ MinTime

t is the elapsed time since the last HCnxt step.

t is always at most 3600 + Rho.

An HCnxt step can occur only if t � 3600 � Rho.

I (t)
�
= instance Inner

NowNext
�
= ^ now 0 2 fr 2 Real : r > nowg
^ unchanged hr

A NowNext step can advance now by any amount

while leaving hr unchanged.

RTnow
�
= ^ now 2 Real

^ 2[NowNext ]now
^ 8 r 2 Real : WFnow (NowNext ^ (now 0 > r))

RTnow speci�es how time may change.

RTHC
�
= HC ^ RTnow ^ (999999 t : I (t)!HCTime) The complete speci�cation.

Figure 9.1: The real-time speci�cation of an hour clock that ticks every hour, plus or minus Rho

seconds.

9.2 Real-Time Speci�cations in General

In Section 8.4 (page 95), we saw that the appropriate generalization of the live-

ness requirement that the hour clock tick in�nitely often is weak fairness of the

clock-tick action. There is a similar generalization for real-time speci�cations.

Weak fairness of an action A asserts that if A is continuously enabled, then an

A step must eventually occur. The real-time analog is that if A is continuously

enabled for � seconds, then an A step must occur. Since an HCnxt action is

always enabled, the requirement that the clock tick at least once every 3600+ �

seconds can be expressed in this way by letting A be HCnxt and � be 3600+ �.

The requirement that an HCnxt action occur at most once every 3600 � �

seconds can be similarly generalized to the condition that an action A must be

continuously enabled for at least � seconds before an A step can occur.
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The �rst condition, the upper bound � on how long A can be enabled without

an A step occurring, is vacuously satis�ed if � equals In�nity|a value de�ned

in the Reals module to be greater than any real number. The second condition,

the lower bound � on how long A must be enabled before an A step can occur, is

vacuously satis�ed if � equals 0. So, nothing is lost by combining both of these

conditions into a single formula containing � and � as parameters. I now de�ne

such a formula, which I call a real-time bound condition.

The weak-fairness formula WFv (A) actually asserts weak fairness of the ac-

tion hAiv , which equals A ^ (v 0 6= v). The subscript v is needed to rule out stut-

tering steps. Since the truth of a meaningful formula can't depend on whether or

not there are stuttering steps, it makes no sense to say that an A step did or did

not occur if that step could be a stuttering step. For this reason, the correspond-

ing real-time condition must also be a condition on an action hAiv , not on an

arbitrary action A. In most cases of interest, v is the tuple of all variables that

occur in A. I therefore de�ne the real-time bound formula RTBound(A; v ; �; �)

to assert that:

� An hAiv step cannot occur until hAiv has been continuously enabled for

at least � time units since the last hAiv step|or since the beginning of

the behavior.

� hAiv can be continuously enabled for at most � time units before an hAiv
step occurs.

RTBound(A; v ; �; �) generalizes the formula 999999 t : I (t)!HCTime of the real-time

hour clock speci�cation, and it can be de�ned in the same way, using a submod-

ule. However, the de�nition can be structured a little more compactly as: For the TLA+

speci�cation, I

have replaced

� and � by D

and E .

RTBound(A; v ; D ; E )
�
= let Timer(t)

�
= : : :

: : :

in 999999 t : Timer(t) ^ : : :

We �rst de�ne Timer(t) to be a temporal formula asserting that t always equals

the length of time that hAiv has been continuously enabled since the last hAiv
step. The value of t should be set to 0 by an hAiv step or a step that disables

hAiv . A step that advances now should increment t by now 0 � now i� hAiv is

enabled. Changes to t are therefore described by the action:

TNext(t)
�
= t 0 = if hAiv _ :(enabled hAiv )0 then 0

else t + (now 0 � now)

We are interested in the meaning of Timer(t) only when v is a tuple whose

components include all the variables that may appear in A. In this case, a

step that leaves v unchanged cannot enable or disable hAiv . So, the formula

Timer(t) should allow steps that leave t , v , and now unchanged. Letting the

initial value of t be 0, we de�ne:

Timer(t)
�
= (t = 0) ^ 2[TNext(t)]ht; v;now i
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FormulasMaxTime andMinTime of the real-time hour clock's speci�cation have

the obvious generalizations:

� MaxTime(t) asserts that t is always less than or equal to E :

MaxTime(t)
�
= 2(t � E )

� MinTime(t) asserts that an hAiv step can occur only if t � D :

MinTime(t)
�
= 2[A) (t � D)]v

(An equally plausible de�nition of MinTime(t) is 2[hAiv ) (t � D)]v ,

but this formula is in fact equivalent to [A) (t � D)]v .)

We then de�ne RTBound(A; v ; D ; E ) to equal

999999 t : Timer(t) ^ MaxTime(t) ^ MinTime(t)

We must also generalize formula RTnow of the real-time hour clock's speci�ca-

tion. That formula describes how now changes, and it asserts that hr remains

unchanged when now changes. The generalization is the formula RTnow(v),

which replaces hr with an arbitrary state function v that will usually be the tu-

ple of all variables, other than now , appearing in the speci�cation. Using these

de�nitions, the speci�cation RTHC of the real-time hour clock can be written:

HC ^ RTnow(hr) ^ RTBound(HCnxt ; hr ; 3600�Rho; 3600 +Rho)

The RealTime module, with its de�nitions of RTBound and RTnow , appears in

Figure 9.2 on the next page.

Strong fairness strengthens weak fairness by requiring an A step to occur not

just if action A is continuously enabled, but if it is repeatedly enabled. Being

repeatedly enabled includes the possibility that it is also repeatedly disabled. We

can similarly strengthen our real-time bound conditions by de�ning a stronger

formula SRTBound(A; v ; �; �) to assert that:

� An hAiv step cannot occur until hAiv has been enabled for a total of at

least D time units since the last hAiv step|or since the beginning of the

behavior.

� hAiv can be enabled for a total of at most � time units before an hAiv
step occurs.

If � < In�nity , then RTBound(A; v ; �; �) implies that an hAiv step must occur

if hAiv is continuously enabled for � seconds. Hence, if hAiv is ever enabled

forever, in�nitely many hAiv steps must occur. Thus, RTBound(A; v ; �; �)

implies weak fairness of A. More precisely, RTBound(A; v ; �; �) and RTnow(v)

together imply WFv (A). However, SRTBound(A; v ; �; �) does not similarly

imply strong fairness of A. It allows behaviors in which hAiv is enabled in�nitely
often but never executed|for example, A can be enabled for �=2 seconds, then

for �=4 seconds, then for �=8 seconds, and so on. For this reason, SRTBound

does not seem to be of much practical use, so I won't bother de�ning it formally.
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module RealTime

This module declares the variable now , which represents real time, and de�nes operators for writing real-time

speci�cations. Real-time constraints are added to a speci�cation by conjoining it with RTnow(v) and for-

mulas of the form RTBound(A; v ; �; �) for actions A, where v is the tuple of all speci�cation variables and

0 � � � � � In�nity.

extends Reals

variable now The value of now is a real number that represents the current time, in unspeci�ed units.

RTBound(A; v ; �; �) asserts that an hAiv step can occur only after hAiv has been continuously enabled for �

time units since the last hAiv step (or the beginning of the behavior), and it must occur before hAiv has been

continuously enabled for more than � time units since the last hAiv step (or the beginning of the behavior).

RTBound(A; v ; D ; E )
�
=

let TNext(t)
�
= t 0 = if hAiv _ :(enabled hAiv )0

then 0

else t + (now 0 � now)

Timer(t) asserts that t is the length

of time hAiv has been continuously

enabled without an hAiv step occur-

ring.

Timer(t)
�
= (t = 0) ^ 2[TNext(t)]ht; v;now i

MaxTime(t)
�
= 2(t � E ) Asserts that t is always � E .

MinTime(t)
�
= 2[A) (t � D)]v Asserts that an hAiv step can occur only if t � D.

in 999999 t : Timer(t) ^ MaxTime(t) ^ MinTime(t)

RTnow(v) asserts that now is a real number that is increased without bound, in arbitrary increments, by steps

that leave v unchanged.

RTnow(v)
�
= let NowNext

�
= ^ now 0 2 fr 2 Real : r > nowg
^ unchanged v

in ^ now 2 Real
^ 2[NowNext ]now
^ 8 r 2 Real : WFnow (NowNext ^ (now 0 > r))

Figure 9.2: The RealTime module for writing real-time speci�cations.

9.3 The Real-Time Write-Through Cache

Let's now use the RealTime module to write a real-time versions of the lineariz-

able memory speci�cation of Section 5.3 (page 51) and the write-through cache

speci�cation of Section 5.6 (page 54). We obtain the real-time memory spec-

i�cation by strengthening the speci�cation in module Memory (Figure 5.3 on

page 53) to require that the memory responds to a processor's requests within

Rho seconds. The complete memory speci�cation Spec of module Memory was

obtained by hiding the variables mem, ctl , and buf in the internal speci�ca-

tion ISpec of module InternalMemory . It's generally easier to add a real-time
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module RTMemory

A speci�cation that strengthens the linearizable memory speci�cation of Section 5.3 by requiring that a response

be sent to every processor request within Rho seconds.

extends MemoryInterface; RealTime

constant Rho

assume (Rho 2 Real) ^ (Rho > 0)
module Inner

We introduce a submodule so we can hide the variables mem, ctl , and buf .

extends InternalMemory

Respond(p)
�
=

(ctl [p] 6= \rdy") ^ (ctl 0[p] = \rdy")
Respond(p) is enabled when a request is received from p; it is

disabled when a Respond(p) step issues the response.

RTISpec
�
= ^ ISpec

^ 8 p 2 Proc : RTBound(Respond(p); ctl ; 0; Rho)

^ RTnow(hmemInt ; mem; ctl ; buf i)

We assert an upper-bound delay

of Rho on Respond(p), for all

processors p.

Inner(mem; ctl ; buf )
�
= instance Inner

RTSpec
�
= 999999mem; ctl ; buf : Inner(mem; ctl ; buf )!RTISpec

Figure 9.3: A real-time version of the linearizable memory speci�cation.

constraint to an internal speci�cation, where the constraints can mention the

internal (hidden) variables. So, we �rst add the timing constraint to ISpec and

then hide the internal variables.

To specify that the system must respond to a processor request within Rho

seconds, we add an upper-bound timing constraint for an action that becomes

enabled when a request is issued, and that becomes disabled (possibly by be-

ing executed) only when the processor responds to the request. In speci�cation

ISpec, responding to a request requires two actions|Do(p) to perform the op-

eration internally, and Rsp(p) to issue the response. Neither of these actions is

the one we want; we have to de�ne a new action for the purpose. There is a

pending request for processor p i� ctl [p] equals \rdy". So, we assert that the

following action cannot be enabled for more than Rho seconds without being

executed:

Respond(p)
�
= (ctl [p] 6= \rdy") ^ (ctl 0[p] = \rdy")

The complete speci�cation is formula RTSpec of module RTMemory in Fig-

ure 9.3 on this page. To permit the hiding of variables mem, ctl , and buf , mod-

ule RTMemory contains a submodule Inner that extends module InternalMemory .

Having added a real-time constraint to the speci�cation of a linearizable

memory, let's strengthen the speci�cation of the write-through cache so it sat-
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is�es that constraint. The object is not just to add any real-time constraint

that does the job|that's easy to do by using the same constraint that we added

to the memory speci�cation. We want to write a speci�cation of a real-time

algorithm|a speci�cation that tells an implementer how to meet the real-time

constraints. This is generally done by placing real-time bounds on the actual

actions of the untimed speci�cation, not by adding time bounds on a new ac-

tion, as we did for the memory speci�cation. An upper-bound constraint on the

response time should be achieved by enforcing upper-bound constraints on the

system's actions.

If we try to achieve a bound on response time by adding real-time bounds to

the write-through cache speci�cation's actions, we encounter the following prob-

lem. Operations by di�erent processors \compete" with one another to enqueue

operations on the �nite queue memQ . For example, when servicing a write re-

quest for processor p, the system must execute a DoWr(p) action to enqueue the

operation to the tail of memQ . That action is not enabled if memQ is full. The

DoWr(p) action can be continually disabled by the system performing DoWr

or RdMiss actions for other processors. That's why, to guarantee liveness|that

each request eventually receives a response|in Section 8.7 (page 107) we had

to assert strong fairness of DoWr and RdMiss actions. The only way to ensure

that a DoWr(p) action is executed within some length of time is to use lower-

bound constraints on the actions of other processors to ensure that they cannot

perform DoWr or RdMiss actions too frequently. Although such a speci�cation

is possible, it is not the kind of approach anyone is likely to take in practice.

The usual method of enforcing real-time bounds on accesses to a shared

resource is to schedule the use of the resource by di�erent processors. So, let's

modify the write-through cache to add a scheduling discipline to actions that

enqueue operations onmemQ . We use round robin scheduling, which is probably

the easiest one to implement. Suppose processors are numbered from 0 through

N � 1. Round-robin scheduling means that an operation for processor p is the

next one to be enqueued after an operation for processor q i� there is not an

operation for any of the processors (q +1) % N , (q +2) % N , . . . , (p � 1) % N

waiting to be put on memQ .

To express this formally, we �rst let the set Proc of processors equal the

set 0 : : (N � 1) of integers. Normally, this is done by de�ning Proc to equal

0 : : (N �1). However, we want to reuse the parameters and de�nitions from the

write-through cache speci�cation. The easiest way to do this is by extending

module WriteThroughCache. Since Proc is a parameter in that module, we

can't de�ne it. We therefore let N be a new constant parameter and let Proc =

0 : : (N � 1) be an assumption.2

To implement round-robin scheduling, we use a variable lastP that equals the

2We could also instantiate module WriteThroughCache with 0 : : (N � 1) substituted for

Proc; but that requires declaring the other parameters of WriteThroughCache, including the

ones from the MemoryInterface module.
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last processor whose operation was enqueued to memQ . We de�ne the operator

position so that p is the position(p)th processor after lastP in the round-robin

order:

position(p)
�
= choose i 2 1 : : N : p = (lastP + i) % N

An operation for processor p can be the next to access memQ i� there is no

operation for a processor q with position(q) < position(p) ready to access it|

that is, i� canGoNext(p) is true, where

canGoNext(p)
�
=

8 q 2 Proc : (position(q) < position(p)) ) : enabled (RdMiss(q) _ DoWr(q))

We then de�ne RTRdMiss(p) and RTDoWr(p) to be the same as RdMiss(p) and

DoWr(p), respectively, except that they have the additional enabling condition

canGoNext(p), and they set lastP to p. The other subactions of the next-state

action are the same as before, except that they must also leave lastP unchanged.

For simplicity, we assume a single upper bound of Epsilon on the length

of time any of the actions of processor p can remain enabled without being

executed|except for the Evict(p; a) action, which we never require to happen.

In general, suppose A1, . . . , Ak are actions such that (i) no two of them are

ever simultaneously enabled, and (ii) once any Ai becomes enabled, it must

be executed before another Aj can be enabled. In this case, a single real-time

constraint on A1 _ : : : _ Ak is equivalent to separate constraints on all the Ai .

We can therefore place a single constraint on the disjunction of all the actions of

processor p, except that we can't use the same constraint for both DoRd(p) and

RTRdMiss(p) because an Evict(p; a) step could disable DoRd(p) and enable

RTRdMiss(p). We therefore use a separate constraint for RTRdMiss(p).

We assume an upper bound of Delta on the time MemQWr or MemQRd can

be enabled without dequeuing an operation from memQ . The variable memQ

represents a physical queue between the bus and the main memory, and Delta

must be large enough so an operation inserted into an empty queue will reach

the memory and be dequeued within Delta seconds.

We want the real-time write-through cache to implement the real-time mem-

ory speci�cation. This requires an assumption relating Delta, Epsilon, and Rho

to assure that the memory speci�cation's timing constraint is satis�ed|namely,

that the delay between when the memory receives a request from processor p

and when it responds is at most Rho. Determining this assumption requires

computing an upper bound on that delay. Finding the smallest upper bound is

complicated, but it isn't too hard to show that

2 � (N + 1) � Epsilon + (N +QLen) �Delta
is an upper bound. So we assume that this value is less than or equal to Rho.

The complete speci�cation appears in Figure 9.3 on the following two pages.

The module also asserts as a theorem that the speci�cation RTSpec of the real-
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module RTWriteThroughCache

extends WriteThroughCache; RealTime

constant N

assume (N 2 Nat) ^ (Proc = 0 : : N � 1)

We assume that the set Proc of processors

equals 0 : : N � 1.

constants Delta; Epsilon; Rho Some real-time bounds on actions.

assume ^ (Delta 2 Real) ^ (Delta > 0)

^ (Epsilon 2 Real) ^ (Epsilon > 0)

^ (Rho 2 Real) ^ (Rho > 0)

^ 2 � (N + 1) � Epsilon + (N +QLen) �Delta � Rho

We modify the write-through cache speci�cation to require that operations for di�erent processors are enqueued

on memQ in round-robin order.

variable lastP The last processor to enqueue an operation on memQ.

RTInit
�
= Init ^ (lastP 2 Proc) Initially, lastP can equal any processor.

position(p)
�
= p is the position(p)th processor after lastP in the round-robin order.

choose i 2 1 : : N : p = (lastP + i) % N

canGoNext(p)
�
= True if processor p can be the next to enqueue an operation on memQ .

8 q 2 Proc : (position(q) < position(p)) ) : enabled (RdMiss(q) _DoWr(q))

RTRdMiss(p)
�
= ^ canGoNext(p)

^ RdMiss(p)

^ lastP 0 = p

Actions RTRdMiss(p) and RTDoWr(p) are the same as RdMiss(p)

and DoWr(p) except that they are enabled only if p is the next

processor in the round-robin order ready to enqueue an operation

on memQ, and they set lastP to p.

RTDoWr(p)
�
= ^ canGoNext(p)

^ DoWr(p)

^ lastP 0 = p

RTNext
�
= _ 9 p 2 Proc : RTRdMiss(p) _ RTDoWr(p)

_ ^ _ 9 p 2 Proc : _ Req(p) _ Rsp(p) _ DoRd(p)

_ 9 a 2 Adr : Evict(p; a)

_ MemQWr _MemQRd

^ unchanged lastP

The next-state action RTNext

is the same as Next except with

RTRdMiss(p) and RTDoWr(p)

replaced by RdMiss(p) and

DoWr(p), and with other ac-

tions modi�ed to leave lastP un-

changed.

vars
�
= hmemInt ; mem; buf ; ctl ; cache; memQ ; lastP i

Figure 9.4a: A real-time version of the write-through cache (beginning).
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RTSpec
�
=

^ RTInit ^2[RTNext ]vars
^ RTBound(MemQWr _MemQRd ; vars ; 0; Delta)

^ 8 p 2 Proc : ^ RTBound(RTDoWr(p) _ DoRd(p) _ Rsp(p);
vars ; 0; Epsilon)

^ RTBound(RTRdMiss(p); vars ; 0; Epsilon)

^ RTnow(vars)

We put an upper-bound de-

lay of Delta on MemQWr and

MemQRd actions (which dequeue

operations from memQ), and an

upper-bound delay of Epsilon on

other actions.

RTM
�
= instance RTMemory

theorem RTSpec ) RTM !RTSpec

Figure 9.4b: A real-time version of the write-through cache (end).

time write-through cache implements (implies) the real-time memory speci�ca-

tion, formula RTSpec of module RTMemory .

9.4 Zeno Speci�cations

I have described the formula RTBound(HCnxt ; hr ; �; �) as asserting that an

HCnxt step must occur within � seconds of the previous HCnxt step. However,

implicit in this description is a notion of causality that is not present in the

formula. It would be just as accurate to describe the formula as asserting that

now cannot advance by more than � seconds before the next HCnxt step occurs.

The formula doesn't tell us whether this condition is met by causing the clock

to tick or by preventing time from advancing. Indeed, the formula is satis�ed

by a \Zeno" behavior3�
hr = 11

now = 0

�
!

�
hr = 11

now = �=2

�
!

�
hr = 11

now = 3�=4

�
!

�
hr = 11

now = 7�=8

�
! � � �

in which � seconds never pass. We rule out such Zeno behaviors by conjoining

to our speci�cation the formula RTnow(hr)|more precisely by conjoining its

liveness conjunct

8 r 2 Real : WFnow (Next ^ (now 0 > r))

which implies that time advances without bound. Let's call this formula NZ

(for NonZeno).

3The Greek philosopher Zeno posed the paradox that an arrow �rst had to travel half the

distance to its target, then the next quarter of the distance, then the next eighth, and so on;

thus it should not be able to land within a �nite length of time.
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Zeno behaviors pose no problem; they are trivially forbidden by conjoining

NZ . A problem does exist if a speci�cation allows only Zeno behaviors. For

example, suppose we conjoined to the untimed hour-clock's speci�cation the

condition RTBound(HCnxt ; hr ; �; �) for some � and � with � > �. This would

assert that the clock must wait at least � seconds before ticking, but must tick

within a shorter length of time. In other words, the clock could never tick. Only

a Zeno behavior, in which � seconds never elapsed, can satisfy this speci�cation.

Conjoining NZ to this speci�cation yields a formula that allows no behaviors|

that is, a formula equivalent to false.

This example is an extreme case of what is called a Zeno speci�cation. A

Zeno speci�cation is one for which there exists a �nite behavior � that satis�es

the safety part but cannot be extended to an in�nite behavior that satis�es both

the safety part and NZ .4 In other words, the only complete behaviors satisfying

the safety part that extend � are Zeno behaviors. A speci�cation that is not

Zeno is, naturally enough, said to be nonZeno. By the de�nition of machine

closure (in Section 8.9.2 on page 111), a speci�cation is nonZeno i� it is machine

closed. More precisely, it is nonZeno i� the pair of properties consisting of the

safety part of the speci�cation (the conjunction of the untimed speci�cation, the

real-time bound conditions, and the safety part of the RTnow formula) and NZ

is machine closed.

A Zeno speci�cation is one in which the requirement that time increases

without bound rules out some �nite behaviors that would otherwise be allowed.

Such a speci�cation is likely to be incorrect because the real-time bound condi-

tions are probably constraining the system in unintended ways. In this respect,

Zeno speci�cations are much like other non-machine closed speci�cations.

Section 8.9.2 mentions that the conjunction of fairness conditions on subac-

tions of the next-state relation produces a machine closed speci�cation. There

is an analogous result for RTBound conditions and nonZeno speci�cations. A

speci�cation is nonZeno if it is the conjunction of (i) a formula of the form

Init ^ 2[Next ]vars , (ii) the formula RTnow(vars), and (iii) a �nite number of

formulas of the form RTBound(Ai ; vars ; �i ; �i), where for each i :

� 0 � �i � �i � In�nity

� Ai is a subaction of the next-state action Next . The de�nition of a

subaction appears

on page 111.� No step is both an Ai and an Aj step, for any Aj with j 6= i .

In particular, this implies that the speci�cation RTSpec of the real-time write-

through cache in module RTWriteThroughCache is nonZeno.

This result does not apply to the speci�cation of the real-time memory in

module RTMemory (Figure 9.3 on page 123) because the action Respond(p) is

not a subaction of the next-state action INext of formula ISpec. The speci�- INext is de�ned

on page 53
4Recall that, on page 111, a �nite behavior � was de�ned to satisfy a safety property P i�

adding in�nitely many stuttering steps to the end of � produces a behavior that satis�es P .
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cation is nonetheless nonZeno, because any �nite behavior � that satis�es the

speci�cation can be extended to one in which time advances without bound. For

example, we can �rst extend � to respond to all pending requests immediately

(in 0 time), and then extend it to an in�nite behavior by adding steps that just

increase now .

It's easy to construct an example in which conjoining an RTBound formula

for an action that is not a subaction of the next-state action produces a Zeno

speci�cation. For example, consider the formula

HC ^ RTBound(hr 0 = hr � 1; hr ; 0; 3600) ^ RTnow(hr)(9.2)

where HC is the speci�cation of the hour clock. The next-state action HCnxt

of HC asserts that hr is either incremented by 1 or changes from 12 to 1. The

RTBound formula asserts that now cannot advance for 3600 or more seconds

without an hr 0 = hr � 1 step occurring. Since HC asserts that every step

that changes hr is an HCnxt step, the safety part of (9.2) is satis�ed only by

behaviors in which now increases by less than 3600 seconds. Since the complete

speci�cation (9.2) contains the conjunct NZ , which asserts that now increases

without bound, it is equivalent to false, and is thus a Zeno speci�cation.

When a speci�cation describes how a system is implemented, the real-time

constraints are likely to be expressed as RTBound formulas for subactions of

the next-state action. These are the kinds of formulas that correspond fairly

directly to an implementation. For example, module RTWriteThroughCache

describes an algorithm for implementing a memory, and it has real-time bounds

on subactions of the next-state action. On the other hand, more abstract, higher-

level speci�cations|ones describing what a system is supposed to do rather than

how to do it|are less likely to have real-time constraints expressed in this way.

Thus, the high-level speci�cation of the real-time memory in module RTMemory

contains an RTBound formula for an action that is not a subaction of the next-

state action.

9.5 Hybrid System Speci�cations

A system described by a TLA+ speci�cation is a physical entity. The speci�ca-

tion's variables represent some part of the physical state|the display of a clock,

or the distribution of charge in a piece of silicon that implements a memory cell.

In a real-time speci�cation, the variable now is di�erent from the others because

we are not abstracting away the continuous nature of time. The speci�cation

allows now to assume any of a continuum of values. The discrete states in a

behavior mean that we are observing the state of the system, and hence the

value of now , at a sequence of discrete instants.

There may be physical quantities other than time whose continuous nature

we want to represent in a speci�cation. For an air tra�c control system, we



130 CHAPTER 9. REAL TIME

might want to represent the positions and velocities of the aircraft. For a system

controlling a nuclear reactor, we might want to represent the physical parameters

of the reactor itself. A speci�cation that represents such continuously varying

quantities is called a hybrid system speci�cation.

As an example, consider a system that, among other things, controls a switch

that inuences the one-dimensional motion of some object. Suppose the object's

position p obeys one of the following laws, depending on whether the switch is

o� or on:

d2p=dt2 + c � dp=dt + f [t ] = 0 d2p=dt2 + c � dp=dt + f [t ] + k � p = 0(9.3)

where c and k are constants, f is some function, and t represents time. At

any instant, the future position of the object is determined by the object's

current position and velocity. So, the state of the object is described by two

variables|namely, its position p and its velocity w . These variables are related

by w = dp=dt .

We describe this system with a TLA+ speci�cation in which the variables p

and w are changed only by steps that change now|that is, steps representing

the passage of time. We specify the changes to the discrete system state and any

real-time constraints as before. However, we replace RTnow(v) with a formula

having the following next-state action, where Integrate and D are explained

below:

^ now 0 2 fr 2 Real : r > nowg
^ hp0;w 0 i = Integrate(D ;now ;now 0; hp;w i)
^ unchanged v v is the tuple of all discrete variables, which change instantaneously.

The second conjunct asserts that p0 and w 0 equal the expressions obtained by

solving the appropriate di�erential equation for the object's position and veloc-

ity at time now 0, assuming that their values at time now are p and w . The

di�erential equation is speci�ed by D , while Integrate is a general operator for

solving (integrating) an arbitrary di�erential equation.

To specify the di�erential equation satis�ed by the object, let's suppose that

switchOn is a Boolean-valued state variable that describes the position of the

switch. We can then rewrite the pair of equations (9.3) as

d2p=dt2 + c � dp=dt + f [t ] + (if switchOn then k � p else 0) = 0

We then de�ne the function D so this equation can be written as

D [t ; p; dp=dt ; d2p=dt2] = 0

Using the TLA+ notation for de�ning functions of multiple arguments, which is

explained in Section 16.1.7 on page 299, the de�nition is:

D [t ; p0; p1; p2 2 Real ] �
= p2 + c � p1 + f [t ] + (if switchOn then k � p else 0)
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We obtain the desired speci�cation if the operator Integrate is de�ned so that

Integrate(D ; t0; t1; hx 0; : : : ; xn�1 i) is the value at time t1 of the n-tuple

hx ; dx=dt ; : : : ; dn�1=dtn�1 i

where x is a solution to the di�erential equation

D [t ; x ; dx=dt ; : : : ; dnx=ctn ] = 0

whose 0th through (n�1)st derivatives at time t0 are x 0, . . . , xn�1. The de�ni-
tion of Integrate appears in the Di�erentialEquations module of Section 11.1.3

(page 11.1.3).

In general, a hybrid-system speci�cation is similar to a real-time speci�ca-

tion, except that the formula RTnow(v) is replaced by one that describes the

changes to all variables that represent continuously changing physical quanti-

ties. The Integrate operator will allow you to specify those changes for many

hybrid systems. Some systems will require di�erent operators. For example,

describing the evolution of some physical quantities might require an operator

for describing the solution to a partial di�erential equation. However, if you can

describe the evolution mathematically, then it can be speci�ed in TLA+.

Hybrid system speci�cations still seem to be of only academic interest, so I

won't say any more about them. If you do have occasion to write one, this brief

discussion should indicate how you can do it.

9.6 Remarks on Real Time

Real-time constraints are used most often to place an upper bound on how long

it can take the system to do something. In this capacity, they can be considered

a strong form of liveness, specifying not just that something must eventually

happen, but when it must happen. In very simple speci�cations, such as the

hour clock and the write-through cache, real-time constraints usually replace

liveness conditions. More complicated speci�cations can assert both real-time

constraints and liveness properties.

The real-time speci�cations I have seen have not required very complicated

timing constraints. They have been speci�cations either of fairly simple algo-

rithms in which timing constraints are crucial to correctness, or of more compli-

cated systems in which real time appears only through the use of simple timeouts

to ensure liveness. I suspect that people don't build systems with complicated

real-time constraints because it's too hard to get them right.

I've described how to write a real-time speci�cation by conjoining RTnow

and RTBound formulas to an untimed speci�cation. One can prove that all

real-time speci�cations can be written in this form. In fact, it su�ces to use

RTBound formulas only for subactions of the next-state action. However, this

result is of theoretical interest only because the resulting speci�cation can be
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incredibly complicated. The operators RTnow and RTBound solve all the real-

time speci�cation problems that I have encountered; but I haven't encountered

enough to say with con�dence that they're all you will ever need. Still, I am

quite con�dent that whatever real-time properties you have to specify, it will

not be hard to express them in TLA+.



Chapter 10

Composing Speci�cations

Systems are usually described in terms of their components. In the speci�cations

we've written so far, the components have been represented as separate disjuncts

of the next-state action. For example, the FIFO system pictured on page 35 is

speci�ed in module InnerFIFO on page 38 by representing the three components

with the following disjuncts of the next-state action:

Sender: 9msg 2 Message : SSend(msg)

Bu�er: BufRcv _ BufSend

Receiver: RRcv

In this chapter, we learn how to specify the components separately and compose

their speci�cations to form a single system speci�cation. Most of the time,

there's no point to doing this. The two ways of writing the speci�cation di�er by

only a few lines|a trivial di�erence in a speci�cation of hundreds or thousands

of lines. Still, you may encounter a situation in which it's better to specify a

system as a composition.

First, we must understand what it means to compose speci�cations. We usu-

ally say that a TLA formula speci�es the correct behavior of a system. However,

as explained in Section 2.3 (page 18), a behavior actually represents a possible

history of the entire universe, not just of the system. So, it would be more

accurate to say that a TLA formula speci�es a universe in which the system

behaves correctly. Building a system that implements a speci�cation F means

constructing the universe so it satis�es F . (Fortunately, correctness of the sys-

tem depends on the behavior of only a tiny part of the universe, so it's just

that part that we must build.) Composing two systems whose speci�cations are

F and G means making the universe satisfy both F and G , which is the same

as making it satisfy F ^ G . Thus, the speci�cation of the composition of two

systems is the conjunction of their speci�cations.

133
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Writing a speci�cation as the composition of its components therefore means

writing the speci�cation as a conjunction, each conjunct of which can be viewed

as the speci�cation of a component. While the basic idea is simple, the details

are not always obvious. To simplify the exposition, I begin by considering only

safety properties, ignoring liveness and largely ignoring hiding. Liveness and

hiding are discussed in Section 10.6.

10.1 Composing Two Speci�cations

Let's return once again to the simple hour clock, with no liveness or real-time

requirement. In Chapter 2, we speci�ed such a clock whose display is represented

by the variable hr . We can write that speci�cation as

(hr 2 1 : : 12) ^ 2[HCN (hr)]hr

where HCN is de�ned by:

HCN (h)
�
= h 0 = (h % 12) + 1

Now let's write a speci�cation TwoClocks of a system composed of two separate

hour clocks, whose displays are represented by the variables x and y . (The two

clocks are not synchronized and are completely independent of one another.) We

can just de�ne TwoClocks to be the conjunction of the two clock speci�cations:

TwoClocks
�
= ^ (x 2 1 : : 12) ^ 2[HCN (x )]x

^ (y 2 1 : : 12) ^ 2[HCN (y)]y

The following calculation shows how we can rewrite TwoClocks in the usual form

as a \monolithic" speci�cation with a single next-state action:1

TwoClocks

� ^ (x 2 1 : : 12) ^ (y 2 1 : : 12)
^ 2[HCN (x )]x ^ 2[HCN (y)]y

� ^ (x 2 1 : : 12) ^ (y 2 1 : : 12)
^ 2 ( [HCN (x )]x ^ [HCN (y)]y )

Because 2(F ^G) � (2F ) ^ (2G).

� ^ (x 2 1 : : 12) ^ (y 2 1 : : 12)
^ 2 (^ HCN (x ) _ x 0 = x

^ HCN (y) _ y 0 = y )

By de�nition of [: : :]x and [: : :]y .

1This calculation is informal because it contains formulas that are not legal TLA|namely,

ones of the form 2A where A is an action that doesn't have the syntactic form [B ]v . However,

it can be done rigorously.
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� ^ (x 2 1 : : 12) ^ (y 2 1 : : 12)
^ 2 (_ HCN (x ) ^ HCN (y)

_ HCN (x ) ^ (y 0 = y)

_ HCN (y) ^ (x 0 = x )

_ (x 0 = x ) ^ (y 0 = y) )

Because:0
@^ _ A1

_ A2

^ _ B1

_ B2

1
A �

0
@_ A1 ^B1

_ A1 ^B2

_ A2 ^B1

_ A2 ^B2

1
A

� ^ (x 2 1 : : 12) ^ (y 2 1 : : 12)
^ 2 [_ HCN (x ) ^ HCN (y)

_ HCN (x ) ^ (y 0 = y)

_ HCN (y) ^ (x 0 = x ) ]hx ; y i

By de�nition of [: : :]hx ; y i.

Thus, TwoClocks is equivalent to Init ^ 2[TCNxt ]hx ; y i where the next-state

action TCNxt is:

TCnxt
�
= _ HCN (x ) ^HCN (y)

_ HCN (x ) ^ (y 0 = y)

_ HCN (y) ^ (x 0 = x )

This next-state action di�ers from the ones we are used to writing because of the

disjunct HCN (x ) ^ HCN (y), which represents the simultaneous advance of the

two displays. In the speci�cations we have written so far, di�erent components

never act simultaneously.

Up until now, we have been writing what are called interleaving speci�ca-

tions. In an interleaving speci�cation, each step represents an operation of only

one component. For example, in our FIFO speci�cation, a (nonstuttering) step

represents an action of either the sender, the bu�er, or the receiver. For want of a

better term, we describe as noninterleaving a speci�cation that, like TwoClocks ,

does permit simultaneous actions by two components.

Suppose we want to write an interleaving speci�cation of the two-clock sys-

tem as the conjunction of two component speci�cations. One way is to replace

the next-state actions HCN (x ) and HCN (y) of the two components by two ac-

tions HCNx and HCNy so that, when we perform the analogous calculation to

the one above, we get

�^ (x 2 1 : : 12) ^ 2[HCNx ]x
^ (y 2 1 : : 12) ^ 2[HCNy ]y

�
�

0
@^ (x 2 1 : : 12) ^ (y 2 1 : : 12)
^ 2 [_ HCNx ^ (y 0 = y)

_ HCNy ^ (x 0 = x ) ]hx ; y i

1
A

From the calculation above, we see that this equivalence holds if the following

three conditions are satis�ed: (i) HCNx implies HCN (x ), (ii) HCNy implies

HCN (y), and (iii) HCNx ^ HCNy implies x 0 = x or y 0 = y . (Condition (iii)

implies that the disjunct HCNx ^ HCNy of the next-state relation is subsumed

by one of the disjuncts HCNx ^ (y 0 = y) and HCNy ^ (x 0 = x ).) The common
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way of satisfying these conditions is to let the next-state relation of each clock

assert that the other clock's display is unchanged. We do this by de�ning:

HCNx
�
= HCN (x ) ^ (y 0 = y) HCNy

�
= HCN (y) ^ (x 0 = x )

Another way to write an interleaving speci�cation is simply to disallow si-

multaneous changes to both clock displays. We can do this by taking as our

speci�cation the formula:

TwoClocks ^ 2[(x 0 = x ) _ (y 0 = y)]hx ; y i

The second conjunct asserts that any step must leave x or y (or both) unchanged.

Everything we have done for the two-clock system generalizes to any system

comprising two components. The same calculation as above shows that if

(v1
0 = v1) ^ (v2

0 = v2) � (v 0 = v) This asserts that v is unchanged i� both v1 and v2 are.

then

�
^ I1 ^ 2[N1]v1
^ I2 ^ 2[N2]v2

�
�

0
BB@
^ I1 ^ I2
^ 2 [_ N1 ^N2

_ N1 ^ (v20 = v2)

_ N2 ^ (v10 = v1) ]v

1
CCA(10.1)

for any state predicates I1 and I2 and any actions N1 and N2. The left-hand side

of this equivalence represents the composition of two component speci�cations

if v
k
is a tuple containing the variables that describe the k th component, for

k = 1; 2, and v is the tuple of all the variables.

The equivalent formulas in (10.1) represent an interleaving speci�cation if

the �rst disjunct in the next-state action of the right-hand side is redundant, so

it can be removed. This is the case if N1^N2 implies that v1 or v2 is unchanged.

The usual way to ensure that this condition is satis�ed is by de�ning each N
k
so

it implies that the other component's tuple is left unchanged. Another way to

obtain an interleaving speci�cation is by conjoining the formula 2[(v1
0 = v1) _

(v2
0 = v2)]v .

10.2 Composing Many Speci�cations

We can generalize (10.1) to the composition of any set C of components. Be-

cause universal quanti�cation generalizes conjunction, the following rule is a

generalization of (10.1):

Composition Rule For any set C , if

(8 k 2 C : v
k

0 = v
k
) � (v 0 = v) This asserts that v is unchanged i� all the v

k
are.
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then

(8 k 2 C : I
k
^ 2[N

k
]
vk
) �

^ 8 k 2 C : I
k

^ 2
�
_ 9 k 2 C : N

k
^ (8 i 2 C n fkg : v

i

0 = v
i
)

_ 9 i ; j 2 C : (i 6= j ) ^N
i
^N

j
^ F

ij

�
v

for some action F
ij
.

The disjunct containing F
ij

is redundant, and we have an interleaving speci-

�cation, if N
i
^ N

j
implies that v

i
or v

j
is unchanged, for all i and j in C

with i 6= j . Typically, this is made true by letting each N
k
imply that v

j
is un-

changed for all j in C other than k . However, that means that N
k
must mention

v
j
for components j other than k . You might object to this approach|either on

philosophical grounds, because you feel that the speci�cation of one component

should not mention the state of another component, or because mentioning other

component's variables complicates the component's speci�cation. An alterna-

tive approach is simply to assert interleaving. You can do this by conjoining the

following formula, which states that no step changes both v
i
and v

j
, for any i

and j with i 6= j :

2 [ 9 k 2 C : 8 i 2 C n fkg : v
i

0 = v
i
]v

This conjunct can be viewed as a global condition, not attached to any compo-

nent's speci�cation.

For the left-hand side of the conclusion of the Composition Rule to represent

the composition of separate components, the v
k
need not be composed of sep-

arate variables. They could contain di�erent \parts" of the same variable that

describe di�erent components. For example, our system might consist of a set

Clock of separate, independent clocks, where clock k 's display is described by

the value of hr [k ]. Then v
k
would equal hr [k ]. It's easy to specify such an array

of clocks as a composition. Using the de�nition of HCN on page 134 above, we

can write the speci�cation as:

ClockArray
�
= 8 k 2 Clock : (hr [k ] 2 1 : : 12) ^ 2[HCN (hr [k ])]hr [k ](10.2)

This is a noninterleaving speci�cation, since it allows simultaneous steps by

di�erent clocks.

Suppose we wanted to use the Composition Rule to express ClockArray as

a monolithic speci�cation. What would we substitute for v? Our �rst thought

is to substitute hr for v . However, the hypothesis of the rule requires that v

must be left unchanged i� hr [k ] is left unchanged, for all k 2 Clock . However,

as explained in Section 6.5 on page 72, specifying the values of hr [k ]0 for all
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k 2 Clock does not specify the value of hr . It doesn't even imply that hr is a

function. We must substitute for v the function hrfcn de�ned by

hrfcn
�
= [k 2 Clock 7! hr [k ]](10.3)

The function hrfcn equals hr i� hr is a function with domain Clock . Formula

ClockArray does not imply that hr is always a function. It speci�es the possible

values of hr [k ], for all k 2 Clock , but it doesn't specify the value of hr . Even if we
changed the initial condition to imply that hr is initially a function with domain

Clock , formula ClockArray would not imply that hr is always a function. For

example, it would still allow \stuttering" steps that leave each hr [k ] unchanged,

but can change hr in unknown ways.

We might prefer to write a speci�cation in which hr is a function with domain

Clock . (For example, some tool might require that the value of hr be completely

speci�ed.) One way of doing this is to conjoin to the speci�cation the formula

2IsFcnOn(hr ; Clock), where IsFcnOn(hr ; Clock) asserts that hr is an arbitrary

function with domain Clock . The operator IsFcnOn is de�ned by

IsFcnOn(f ; S )
�
= f = [x 2 S 7! f [x ]]

We can view the formula 2IsFcnOn(hr ; Clock) as a global constraint on hr ,

while the value of hr [k ] for each component k is described by that component's

speci�cation.

Now suppose we want to write an interleaving speci�cation of the array

of clocks, again as the composition of speci�cations of the individual clocks.

In general, for the conjunction in the Composition Rule to be an interleaving

speci�cation, N
i
^N

j
should imply that v

i
or v

j
is unchanged. We can do this

by letting the next-state relation N
k
of clock k imply that hr [i ] is unchanged

for every clock i other than k . The most obvious way to do this is to de�ne N
k

to equal:

^ hr 0[k ] = (hr [k ] % 12) + 1

^ 8 i 2 Clock n fkg : hr 0[i ] = hr [i ]

We can express this formula more compactly using the except construct. This The except con-

struct is explained

in Section 5.2 on

page 48.

construct applies only to functions, so we must choose whether or not to require

hr to be a function. If hr is a function, then we can let N
k
equal

hr 0 = [hr except ! [k ] = (hr [k ] % 12) + 1](10.4)

As noted above, we can ensure that hr is a function by conjoining the formula

2IsFcnOn(hr ; Clock) to the speci�cation. Another way is to de�ne the state

function hrfcn by (10.3) on this page and let N (k) equal

hrfcn 0 = [hrfcn except ! [k ] = (hr [k ] % 12) + 1]

A speci�cation is just a mathematical formula; and, as we've seen before, there

are often many equivalent ways of writing a formula. Which one you choose is

usually a matter of taste.
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10.3 The FIFO

Let's now specify the FIFO, described in Chapter 4, as the composition of its

three components|the Sender, the Bu�er, and the Receiver. We start with the

internal speci�cation, in which the variable q occurs|that is, q is not hidden.

First, we decide what part of the state describes each component. The variables

in and out are channels. Recall that the Channel module (page 30) speci�es

a channel chan to be a record with val , rdy , and ack components. The Send

action, which sends a value, modi�es the val and rdy components; the Rcv

action, which receives a value, modi�es the ack component. So, the components'

states are described by the following state functions:

Sender: hin:val ; in:rdy i

Bu�er: hin:ack ; q ; out :val ; out :rdy i

Receiver: out :ack

Unfortunately, we can't reuse the de�nitions from the InnerFIFO module on

page 38 for the following reason. The variable q , which is hidden in the �nal

speci�cation, is part of the Bu�er component's internal state. Therefore, it

should not appear in the speci�cations of the Sender or Receiver component.

The Sender and Receiver actions de�ned in the InnerFIFO module all mention q ,

so we can't use them. We therefore won't bother reusing that module. However,

instead of starting completely from scratch, we can make use of the Send and

Rcv actions from the Channel module on page 30 to describe the changes to in

and out .

Let's write a noninterleaving speci�cation. The next-state actions of the

components are then the same as the corresponding disjuncts of the Next ac-

tion in module InnerFIFO , except that they do not mention the parts of the

states belonging to the other components. These contain Send and Rcv actions,

instantiated from the Channel module, which use the except construct. As

noted above, we can apply except only to functions|and to records, which are Section 5.2 on

page 48 explains

why records are

functions.

functions. We therefore add to our speci�cation the conjunct

2(IsChannel(in) ^ IsChannel(out))

where IsChannel(c) asserts that c is a channel|that is a record with val ,

ack , and rdy �elds. Since a record with val , ack , and rdy �elds is a func-

tion whose domain is f\val"; \ack"; \rdy"g, we can de�ne IsChannel(c) to equal
IsFcnOn(c; f\val"; \ack"; \rdy"g). However, it's just as easy to de�ne IsChannel(c)
directly by

IsChannel(c)
�
= c = [ack 7! c:ack ; val 7! c:val ; rdy 7! c:rdy ]

In writing this speci�cation, we face the same problem as in our original FIFO

speci�cation of introducing the variable q and then hiding it. In Chapter 4, we
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solved this problem by introducing q in a separate InnerFIFO module, which

is instantiated by the FIFO module that de�nes the �nal speci�cation. We

do essentially the same thing here, except that we introduce q in a submodule

instead of in a completely separate module. All the symbols declared and de�ned

at the point where the submodule appears can be used within it. The submodule

itself can be instantiated in the containing module anywhere after it appears.

(Submodules are used in the RealTimeHourClock and RTMemory speci�cations

on pages 119 and 123 of Chapter 9.)

There is one small problem to be solved before we can write a composite

speci�cation of the FIFO|how to specify the initial predicates. It makes sense

for the initial predicate of each component's speci�cation to specify the initial

values of its part of the state. However the initial condition includes the require-

ments in:ack = in:rdy and out :ack = out :rdy , each of which relates the initial

states of two di�erent components. (These requirements are stated in module

InnerFIFO by the conjuncts InChan !Init and OutChan !Init of the initial pred-

icate Init .) There are three ways of expressing a requirement that relates the

initial states of multiple components:

� Assert it in the initial conditions of all the components. Although sym-

metric, this seems needlessly redundant.

� Arbitrarily assign the requirement to one of the components. This intu-

itively suggests that we are assigning to that component the responsibility

of ensuring that the requirement is met.

� Assert the requirement as a conjunct separate from either of the component

speci�cations. This intuitively suggests that it is an assumption about

how the components are put together, rather than a requirement of either

component.

When we write an open-system speci�cation, as described in Section 10.7 below,

the intuitive suggestions of the last two approaches can be turned into formal

requirements. I've taken the last approach and added

(in:ack = in:rdy) ^ (out :ack = out :rdy)

as a separate condition. The complete speci�cation is in module CompositeFIFO

of Figure 10.1 on the next page. Formula Spec of this module is a noninterleaving

speci�cation; for example, it allows a single step that is both an InChan !Send

step (the sender sends a value) and an OutChan !Rcv step (the receiver acknowl-

edges a value). Hence, it is not equivalent to the interleaving speci�cation Spec

of the FIFO module on page 41, which does not allow such a step.
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module CompositeFIFO

extends Naturals, Sequences

constant Message

variables in, out

InChan
�
= instance Channel with Data  Message; chan  in

OutChan
�
= instance Channel with Data  Message; chan  out

SenderInit
�
= (in:rdy 2 boolean) ^ (in:val 2 Message)

Sender
�
= SenderInit ^ 2 [ 9msg 2 Message : InChan !Send(msg) ]hin:val; in:rdy i

The Sender's

speci�cation.

module InnerBuf

variable q

Bu�erInit
�
= ^ in:ack 2 boolean
^ q = h i
^ (out :rdy 2 boolean) ^ (out :val 2 Message)

The Bu�er's internal

speci�cation, with q

visible.

BufRcv
�
= ^ InChan !Rcv

^ q 0 = Append(q ; in:val)

^ unchanged hout :val ; out :rdy i
BufSend

�
= ^ q 6= h i
^ OutChan !Send(Head(q))

^ q 0 = Tail(q)

^ unchanged in:ack

InnerBu�er
�
= Bu�erInit ^ 2[BufRcv _ BufSend ]hin:ack; q; out:val; out:rdy i

Buf (q)
�
= instance InnerBuf

Bu�er
�
= 999999 q : Buf (q)!InnerBu�er

The Bu�er's external speci�cation

with q hidden.

ReceiverInit
�
= out :ack 2 boolean

Receiver
�
= ReceiverInit ^ 2[OutChan !Rcv ]out:ack

The Receiver's

speci�cation.

IsChannel(c)
�
= c = [ack 7! c:ack ; val 7! c:val ; rdy 7! c:rdy ]

Spec
�
= ^ 2(IsChannel(in) ^ IsChannel(out))

^ (in:ack = in:rdy) ^ (out :ack = out :rdy)

^ Sender ^ Bu�er ^ Receiver

Asserts that in and out are always records.

Relates di�erent components' initial states.

Conjoins the three speci�cations.

Figure 10.1: A noninterleaving composite speci�cation of the FIFO.
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10.4 Composition with Shared State

Thus far, we have been considering disjoint-state compositions|ones in which

the components are represented by disjoint parts of the state, and a compo-

nent's next-state action describes changes only to its part of the state.2 We now

consider the case when this may not be possible.

10.4.1 Explicit State Changes

We �rst examine the situation in which some part of the state cannot be parti-

tioned among the di�erent components, but the state change that each compo-

nent performs is completely described by the speci�cation. As an example, let's

again consider a Sender and a Receiver that communicate with a FIFO bu�er.

In the system we studied in Chapter 4, sending or receiving a value required two

steps. For example, the Sender executes a Send step to send a value, and it must

then wait until the bu�er executes a Rcv step before it can send another value.

We simplify the system by replacing the Bu�er component with a variable buf

whose value is the sequence of values sent by the Sender but not yet received

by the Receiver. This replaces the three-component system pictured on page 35

with this two-component one:

Sender Receiver
buf
-

The Sender sends a value by appending it to the end of buf ; the Receiver receives

a value by removing it from the head of buf .

In general, the Sender performs some computation to produce the values

that it sends, and the Receiver does some computation on the values that it

receives. The system state consists of buf and two tuples s and r of variables

that describe the Sender and Receiver states. In a monolithic speci�cation, the

system's next-state action is a disjunction Sndr _ Rcvr , where Sndr and Rcvr

describe steps taken by the Sender and Receiver, respectively. These actions are

2In an interleaving composition, a component speci�cation may assert that the state of

other components is not changed.
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de�ned by

Sndr
�
= _ ^ buf 0 = Append(buf ; : : :)

^ SComm

^ unchanged r

_ ^ SCompute

^ unchanged hbuf ; r i

Rcvr
�
= _ ^ buf 6= h i

^ buf 0 = Tail(buf )

^ RComm

^ unchanged s

_ ^ RCompute

^ unchanged hbuf ; s i

for some actions SComm, SCompute, RComm, and RCompute. For simplicity,

we assume that neither Sndr nor Rcvr allows stuttering actions, so SCompute

changes s and RCompute changes r . We now write the speci�cation as the

composition of separate speci�cations of the Sender and Receiver.

Splitting the initial predicate is straightforward. The initial conditions on

s belong to the Sender's initial predicate; those on r belong to the Receiver's

initial predicate; and the initial condition buf = h i can be assigned arbitrarily

to either of them.

Now let's consider the next-state actions NS and NR of the Sender and

Receiver components. The trick is to de�ne them by

NS
�
= Sndr _ (� ^ (s 0 = s)) NR

�
= Rcvr _ (� ^ (r 0 = r))

where � and � are actions containing only the variable buf . Think of � as

describing possible changes to buf that are not caused by the Sender, and � as

describing possible changes to buf that are not caused by the Receiver. Thus,

NS permits any step that is either a Sndr step or one that leaves s unchanged

and is a change to buf that can't be \blamed" on the Sender.

Suppose � and � satisfy the following three conditions:

� 8 d : (buf 0 = Append(buf ; d))) �

A step that appends a value to buf is not caused by the Receiver.

� (buf 6= h i) ^ (buf 0 = Tail(buf ))) �

A step that removes a value from the head of buf is not caused by the

Sender.

� (� ^ �)) (buf 0 = buf )

A step that is caused by neither the Sender nor the Receiver cannot change

buf .

Using the relation3

(buf 0 = Append(buf ; : : :)) ^ (buf 6= h i) ^ (buf 0 = Tail(buf )) � false

3This relation is valid only if buf is a sequence. A rigorous calculation requires the use of

an invariant to assert that buf is indeed a sequence.
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a computation like the one by which we derived (10.1) shows

2[NS ]hbuf ; s i ^ 2[NR]hbuf ; r i � 2[Sndr _ Rcvr ]hbuf ; s; r i
Thus, NS and NR are suitable next-state relations for the components, if we

choose � and � to satisfy the three conditions above. There is considerable

freedom in that choice. The strongest possible choices of � and � are ones that

describe exactly the changes permitted by the other component:

�
�
= (buf 6= h i) ^ (buf 0 = Tail(buf ))

�
�
= 9 d : buf 0 = Append(buf ; d)

We can weaken these de�nitions any way we want, so long as we maintain the

condition that � ^ � implies that buf is unchanged. For example, we can de�ne

� as above and let � equal :�. The choice is a matter of taste.
I've been describing an interleaving speci�cation of the Sender/Receiver sys-

tem. Now let's consider a noninterleaving speci�cation|one that allows steps

in which both the Sender and the Receiver are computing. In other words, we

want the speci�cation to allow SCompute ^RCompute steps that leave buf un-

changed. Let SSndr be the action that is the same as Sndr except it doesn't

mention r , and let RRcvr be de�ned analogously. Then we have:

Sndr � SSndr ^ (r 0 = r) Rcvr � RRcvr ^ (s 0 = s)

A monolithic noninterleaving speci�cation has the next-state relation

Sndr _ Rcvr _ (SSndr ^ RRcvr ^ (buf 0 = buf ))

It is the conjunction of component speci�cations having the next-state relations

NS and NR de�ned by

NS
�
= SSndr _ (� ^ (s 0 = s)) NR

�
= RRcvr _ (� ^ (r 0 = r))

where � and � are as above.

This two-process situation generalizes to the composition of any set C of

components that share a variable or tuple of variables w . The interleaving

case generalizes to the following rule, in which N
k
is the next-state action of

component k , the action �
k
describes all changes to w that are attributed to

some component other than k , the tuple v
k
describes the private state of k , and

v is the tuple formed by all the v
k
.

Shared-State Composition Rule The four conditions

1. (8 k 2 C : v
k

0 = v
k
) � (v 0 = v)

v is unchanged i� the private state v
k
of every component is unchanged.

2. 8 i ; k 2 C : N
k
^ (i 6= k)) (v

i

0 = v
i
)

The next-state action of any component k leaves the private state v
i
of all

other components i unchanged.
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3. 8 i ; k 2 C : N
k
^ (w 0 6= w) ^ (i 6= k)) �

i

A step of any component k that changes w is a �
i
step, for any other compo-

nent i.

4. (8 k 2 C : �
k
)) (w 0 = w)

A step that is caused by no component does not change w .

imply

(8 k 2 C : I
k
^ 2[N

k
_ (�k ^ (vk 0 = v

k
))]hw ;vk i

)

� (8 k 2 C : I
k
) ^ 2 [9 k 2 C : N

k
]hw; v i

Assumption 2 asserts that we have an interleaving speci�cation. If we drop that

assumption, then the right-hand side of the conclusion may not be a sensible

speci�cation, since a disjunct N
k
may allow steps in which a variable of some

other component assumes arbitrary values. However, if each N
k
correctly deter-

mines the new values of component k 's private state v
k
, then the left-hand side

will be a reasonable speci�cation, though possibly a noninterleaving one (and

not necessarily equivalent to the right-hand side).

10.4.2 Composition with Joint Actions

Consider the linearizable memory of Chapter 5. As shown in the picture on

page 45, it is a system consisting of a collection of processors, a memory, and an

interface represented by the variable memInt . We take it to be a two-component

system, where the set of processors forms one component, called the environ-

ment, and the memory is the other component. Let's neglect hiding for now and

consider only the internal speci�cation, with all variables visible. We want to

write the speci�cation in the form

(IE ^ 2[NE ]vE ) ^ (IM ^ 2[NM ]vM )(10.5)

where E refers to the environment component (the processors) and M to the

memory component. The tuple vE of variables includes memInt and the vari-

ables of the environment component; the tuple vM includes memInt and the

variables of the memory component. We must choose the formulas IE , NE ,

etc. so that (10.5), with internal variables hidden, is equivalent to the memory

speci�cation Spec of module Memory on page 53.

In the memory speci�cation, communication between the environment and

the memory is described by an action of the form

Send(p; d ; memInt ; memInt 0) or Reply(p; d ; memInt ; memInt 0)

where Send andReply are unspeci�ed operators declared in theMemoryInterface

module (page 48). The speci�cation says nothing about the actual value of
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memInt . So, not only do we not know how to split memInt into two parts that

are each changed by only one of the components, we don't even know exactly

how memInt changes.

The trick to writing the speci�cation as a composition is to put the Send and

Reply actions in the next-state relations of both components. We represent the

sending of a value over memInt as a joint action performed by both the memory

and the environment. The next-state relations have the following form:

NM
�
= 9 p 2 Proc : MRqst(p) _ MRsp(p) _ MInternal(p)

NE
�
= 9 p 2 Proc : ERqst(p) _ ERsp(p)

where anMRqst(p)^ERqst(p) step represents the sending of a request by proces-
sor p (part of the environment) to the memory, anMRsp(p)^ERsp(p) step repre-
sents the sending of a reply by the memory to processor p, and an MInternal(p)

step is an internal step of the memory component that performs the request.

(There are no internal steps of the environment.)

The sending of a reply is controlled by the memory, which chooses what

value is sent and when it is sent. The enabling condition and the value sent are

therefore speci�ed by the MRsp(p) action. Let's take the internal variables of

the memory component to be the same variables mem, ctl , and buf as in the

internal monolithic memory speci�cation of module InternalMemory on pages

52 and 53. We can then let MRsp(p) be the same as the action Rsp(p) de�ned

in that module. The ERsp(p) action should always be enabled, and it should

allow any legal response to be sent. A legal response is an element of Val or the

special value NoVal , so we can de�ne ERsp(p) to equal:4

^ 9 rsp 2 Val [ fNoValg : Reply(p; rsp; memInt ; memInt 0)
^ : : :

where the \: : :" describes the new values of the environment's internal variables.

The sending of a request is controlled by the environment, which chooses

what value is sent and when it is sent. Hence, the enabling condition should

be part of the ERqst(p) action. In the monolithic speci�cation of the Internal -

Memory module, that enabling condition was ctl [p] = \rdy". However, if ctl

is an internal variable of the memory, it can't also appear in the environment

speci�cation. We therefore have to add a new variable whose value indicates

whether a processor is allowed to send a new request. Let's use a Boolean

variable rdy , where rdy [p] is true i� processor p can send a request. The value

of rdy [p] is set false when p sends a request and is set true again when the

corresponding response to p is sent. We can therefore de�ne ERqst(p), and

4The bound on the 9 isn't necessary. We can let the processor accept any value, not just

a legal one, by taking 9 rsp : Reply(p; rsp; memInt ; memInt 0) as the �rst conjunct. However,

it's generally better to use bounded quanti�ers when possible.
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complete the de�nition of ERsp(p), as follows:

ERqst(p)
�
= ^ rdy [p]

^ 9 req 2 MReq : Send(p; req ; memInt ; memInt 0)

^ rdy 0 = [rdy except ! [p] = false]

ERsp(p)
�
= ^ 9 rsp 2 Val [ fNoValg : Reply(p; rsp; memInt ; memInt 0)
^ rdy 0 = [rdy except ! [p] = true]

The memory'sMRqst(p) action is the same as the Req(p) action of the Internal -

Memory module, except without the enabling condition ctl [p] = \rdy".
Finally, the memory's internal action MInternal(p) is the same as the Do(p)

action of the InternalMemory module.

The rest of the speci�cation is easy. The tuples vE and vM are hmemInt ; rdy i
and hmemInt ; mem; ctl ; buf i, respectively. De�ning the initial predicates IE

and IM is straightforward, except for the decision of where to put the initial

condition memInt 2 InitMemInt . We can put it in either IE or IM , in both,

or else in a separate conjunct that belongs to neither component's speci�ca-

tion. Let's put it in IM , which then equals the initial predicate IInit from the

InternalMemory module. The �nal environment speci�cation is obtained by hid-

ing rdy in its internal speci�cation; the �nal memory component speci�cation

is obtained by hiding mem, ctl , and buf in its internal speci�cation. The com-

plete speci�cation appears in Figure 10.2 on the next page. I have not bothered

to de�ne IM , MRsp(p), or MInternal(p), since they equal IInit , Rsp(p), and

Do(p) from the InternalMemory module, respectively.

What we've just done for the environment-memory system generalizes nat-

urally to joint-action speci�cations of any two-component system in which part

of the state cannot be considered to belong to either component. It also gen-

eralizes to systems in which any number of components share some part of the

state. For example, suppose we want to write a composite speci�cation of the

linearizable memory system in which each processor is a separate component.

The speci�cation of the memory component would be the same as before. The

next-state relation of processor p would now be

ERqst(p) _ ERsp(p) _ OtherProc(p)

where ERqst(p) and ERsp(p) are the same as above, and an OtherProc(p) step

represents the sending of a request by, or a response to, some processor other

than p. Action OtherProc(p) represents p's participation in the joint action by

which another processor q communicates with the memory component. It is

de�ned to equal:

9 q 2 Proc n fpg : _ 9 req 2 MReq : Send(q ; req ; memInt ; memInt 0)

_ 9 rsp 2 Val [ fNoValg : Reply(q ; rsp; memInt ; memInt 0)
This example is rather silly because each processor must participate in com-

munication actions that concern only other components. It would be better to
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module JointActionMemory

extends MemoryInterface

module InnerEnvironmentComponent

variable rdy

IE
�
= rdy = [p 2 Proc 7! true]

ERqst(p)
�
= ^ rdy [p]

^ 9 req 2 MReq : Send(p; req ; memInt ; memInt 0)

^ rdy 0 = [rdy except ! [p] = false]

ERsp(p)
�
= ^ 9 rsp 2 Val [ fNoValg : Reply(p; rsp; memInt ; memInt 0)
^ rdy 0 = [rdy except ! [p] = true]

NE
�
= 9 p 2 Proc : ERqst(p) _ ERsp(p)

IESpec
�
= IE ^2[NE ]hmemInt; rdy i

module InnerMemoryComponent

extends InternalMemory

MRqst(p)
�
= ^ 9 req 2 MReq : ^ Send(p; req ; memInt ; memInt 0)

^ buf 0 = [buf except ! [p] = req ]

^ ctl 0 = [ctl except ! [p] = \busy"]
^ unchanged mem

NM
�
= 9 p 2 Proc : MRqst(p) _ Do(p) _Rsp(p)

IMSpec
�
= IInit ^ 2[NM ]hmemInt;mem;ctl; buf i

IEnv(rdy)
�
= instance InnerEnvironmentComponent

IMem(mem; ctl ; buf )
�
= instance InnerMemoryComponent

Spec
�
= ^ 999999 rdy : IEnv(rdy)!IESpec

^ 999999mem; ctl ; buf : IMem(mem; ctl ; buf )!IMSpec

Figure 10.2: A joint-action compositional speci�cation of the linearizable mem-

ory.

change the interface to make memInt an array, with communication between

processor p and the memory represented by a change to memInt [p]. A sensible

example would require that a joint action represent a true interaction between

all the components|for example, a barrier synchronization operation in which

the components wait until they are all ready and then perform a synchronization

step together.
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10.5 A Brief Review

The basic idea of composing speci�cations is simple: a composite speci�cation

is the conjunction of formulas, each of which can be considered to be the speci�-

cation of a separate component. I have presented several techniques for writing

a speci�cation as a composition. Before going further, let's put these techniques

in perspective.

10.5.1 A Taxonomy of Composition

I have introduced three di�erent ways of categorizing composite speci�cations:

Interleaving versus noninterleaving. An interleaving speci�cation is one in

which each (nonstuttering) step can be attributed to exactly one compo-

nent. A noninterleaving speci�cation allows steps that represent simulta-

neous operations of two or more di�erent components.

Disjoint-state versus shared-state. A disjoint-state speci�cation is one in

which the state can be partitioned, with each part belonging to a separate

component. A part of the state can be a variable v , or a \piece" of that

variable such as v :c or v [c] for some �xed c. Any change to a component's

part of the state is attributed to that component. In a shared-state speci-

�cation, some part of the state can be changed by steps attributed to more

than one component.

Joint-action versus separate-action. A joint-action speci�cation is a nonin-

terleaving one in which some step attributed to one component must occur

simultaneously with a step attributed to another component. A separate-

action speci�cation is simply one that is not a joint-action speci�cation.

These categories are orthogonal, except that a joint-action speci�cation must be

noninterleaving.

10.5.2 Interleaving Reconsidered

Should we write interleaving or noninterleaving speci�cations? We might try to

answer this question by asking, can di�erent components really take simultane-

ous steps? However, this question makes no sense. A step is a mathematical

abstraction; real components perform operations that take a �nite amount of

time. Operations performed by two di�erent components could overlap in time.

We are free to represent this physical situation either with a single simultaneous

step of the two components, or with two separate steps. In the latter case, the

speci�cation usually allows the two steps to occur in either order. (If the two
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operations must occur simultaneously, then we have written a joint-action spec-

i�cation.) It's up to you whether to write an interleaving or a noninterleaving

speci�cation. You should choose whichever is more convenient.

The choice is not completely arbitrary if you want one speci�cation to imple-

ment another. A noninterleaving speci�cation will not, in general, implement an

interleaving one because the noninterleaving speci�cation will allow simultane-

ous actions that the interleaving speci�cation prohibits. So, if you want to write

a low-level speci�cation that implements a high-level interleaving speci�cation,

then you'll have to use an interleaving speci�cation. As we've seen, it's easy to

turn a noninterleaving speci�cation into an interleaving one by conjoining an

interleaving assumption.

10.5.3 Joint Actions Reconsidered

The reason for writing a composite speci�cation is to separate the speci�cations

of the di�erent components. The mixing of actions from di�erent components

in a joint-action speci�cation destroys this separation. So, why should we write

such a speci�cation?

Joint-action speci�cations arise most often in highly abstract descriptions of

inter-component communication. In writing a composite speci�cation of the lin-

earizable memory, we were led to use joint actions because of the abstract nature

of the interface. In real systems, communication occurs when one component

changes the state and another component later observes that change. The inter-

face described by the MemoryInterface module abstracts away those two steps,

replacing them with a single one that represents instantaneous communication|

a �ction that does not exist in the real world. Since each component must re-

member that the communication has occurred, the single communication step

has to change the private state of both components. That's why we couldn't

use the approach of Section 10.4.1, which requires that any change to the shared

interface change the nonshared state of just one component.

The abstract memory interface simpli�es the speci�cation, allowing commu-

nication to be represented as one step instead of two. But this simpli�cation

comes at the cost of blurring the distinction between the two components. If we

blur this distinction, it may not make sense to write the speci�cation as the con-

junction of separate component speci�cations. As the memory system example

illustrates, decomposing the system into separate components communicating

with joint actions may require the introduction of extra variables. There may

occasionally be a good reason for adding this kind of complexity to a speci�ca-

tion, but it should not be done as a matter of course.
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10.6 Liveness and Hiding

10.6.1 Liveness and Machine Closure

Thus far, the discussion of composition has neglected liveness. In composite

speci�cations, it is usually easy to specifying liveness by placing fairness con-

ditions on the actions of individual components. For example, to specify an

array of clocks that all keep ticking forever, we would modify the speci�cation

ClockArray of (10.2) on page 137 to equal:

8 k 2 Clock : (hr [k ] 2 1 : : 12) ^ 2[HCN (hr [k ])]hr [k ] ^ WFhr [k ](HCN (hr [k ]))

When writing a weak or strong fairness formula for an action A of component

c, there arises the question of what the subscript should be. The obvious choices

are (i) the tuple v describing the entire speci�cation state, and (ii) the tuple vc
describing that component's state.5 The choice matters only if the safety part

of the speci�cation allows the system to reach some state in which an A step

could leave vc unchanged while changing v . In practice, this is seldom the case.

If it is, we probably don't want the fairness condition to be satis�ed by a step

that leaves the component's state unchanged, so we would use the subscript vc .

Fairness conditions for composite speci�cations do raise one important ques-

tion: if each component speci�cation is machine closed, is the composite spec- Machine clo-

sure is de�ned

in Section 8.9.2 on

page 111.

i�cation necessarily machine closed? Suppose we write the speci�cation as

8 k 2 C : S k ^ Lk , where each pair S k ; Lk is machine closed. Let S be the con-

junction of the S k and L the conjunction of the Lk , so the speci�cation equals

S ^L. The conjunction of safety properties is a safety property,6 so S is a safety

property. Hence, we can ask if the pair S ; L is machine closed.

In general, S ; L need not be machine closed. But, for an interleaving compo-

sition, it usually is. Liveness properties are usually expressed as the conjunction

of weak and strong fairness properties of actions. As stated on pages 111{112,

a speci�cation is machine closed if its liveness property is the conjunction of

fairness properties for subactions of the next-state action. In an interleaving

composition, each S k usually has the form I k ^2[Nk
]vk where the vk satisfy the

hypothesis of the Composition Rule (page 136), and each N
k
implies v

i

0 = v
i
,

for all i in C n fkg. In this case, the Composition Rule implies that a subaction

of N
k
is also a subaction of the next-state relation of S . Hence, if we write an

interleaving composition in the usual way, and we write machine-closed compo-

nent speci�cations in the usual way, then the composite speci�cation is machine

closed.

5For a shared-state composition, the tuples vc for di�erent components need not be disjoint.
6Recall that a safety property is one that is violated by a behavior i� it is violated at some

particular point in the behavior. A behavior violates a conjunction of safety properties Sk i�

it violates some particular Sk , and that Sk is violated at some speci�c point.
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It is not so easy to obtain a machine-closed noninterleaving composition|

especially with a joint-action composition. We have actually seen an example

of a joint-action speci�cation in which each component is machine closed but

the composition is not. In Chapter 9, we wrote a real-time speci�cation by

conjoining one or more RTBound formulas and an RTnow formula to an untimed

speci�cation. A pathological example was the following, which is formula (9.2)

on page 129: HC is the hour-

clock speci�cation

from Chapter 2HC ^ RTBound(hr 0 = hr � 1; hr ; 0; 3600) ^ RTnow(hr)

We can view this formula as the conjunction of three component speci�cations:

1. HC speci�es a clock, represented by the variable hr .

2. RTBound(hr 0 = hr � 1; hr ; 0; 3600) speci�es a timer, represented by the

hidden (existentially quanti�ed) timer variable.

3. RTnow(hr) speci�es the behavior of time, represented by the variable now .

It's a joint-action composition, with two kinds of joint actions:

� Joint actions of the �rst and second components that change both hr and

the timer.

� Joint actions of the second and third components that change both the

timer and now .

The �rst two speci�cations are trivially machine closed because they assert no

liveness condition, so their liveness property is true. The third speci�cation's

safety property asserts that now is a real number that is changed only by steps

that increment it and leave hr unchanged; its liveness property NZ asserts that

now increases without bound. Any �nite behavior satisfying the safety property

can easily be extended to an in�nite behavior satisfying the entire speci�cation,

so the third speci�cation is also machine closed. However, as we observed in

Section 9.4, the composite speci�cation is Zeno, meaning that it's not machine

closed.

10.6.2 Hiding

Suppose we can write a speci�cation S as the composition of two component

speci�cations S 1 and S 2. Can we write 999999 h : S , the speci�cation S with variable h

hidden, as a composition|that is, as the conjunction of two separate component

speci�cations? If h represents state that is accessed by both components, then

the answer is no. If the two components communicate through some part of

the state, then that part of the state cannot be made internal to the separate

components.
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The simplest situation in which h doesn't represent shared state is when it

occurs in only one of the component speci�cations|say, S 2. If h doesn't occur

in S 1, then the equivalence

(999999 h : S 1 ^ S 2) � S 1 ^ (999999 h : S 2)

provides the desired decomposition.

Now suppose that h occurs in both component speci�cations, but does not

represent state accessed by both components. This can be the case only if

di�erent \parts" of h occur in the two component speci�cations. For example,

h might be a record with components h:c1 and h:c2, where S 1 mentions only

h:c1 and S 2 mentions only h:c2. In this case, we have

(999999 h : S 1 ^ S 2) � (999999 h1 : T 1) ^ (999999 h2 : T 2)

where T 1 is obtained from S 1 by substituting the variable h1 for the expression

h:c1, and T 2 is de�ned similarly. Of course we can use any variables in place of

h1 and h2; in particular, we can replace them both by the same variable.

We can generalize this result as follows to the composition of any �nite

number7 of components:

Compositional Hiding Rule If the variable h does not occur in the

formula T i , and S i is obtained from T i by substituting h[i ] for q , then

(999999 h : 8 i 2 C : S i ) � (8 i 2 C : 999999 q : T i )

for any �nite set C .

The assumption that h does not occur in T i means that the variable h occurs in

formula S i only in the expression h[i ]. This in turn implies that the composition

8 i 2 C : S i does not determine the value of h, just of its components h[i ] for See the discussion

in Section 10.2

(page 136).
i 2 C . As noted in Section 10.2, we can make the composite speci�cation

determine the value of h by conjoining the formula 2IsFcnOn(h;C ) to it, where

IsFcnOn is de�ned on page 138. After h is hidden, it makes no di�erence

whether or not its value is determined. The hypotheses of the Compositional

Hiding Rule imply:

(999999 h : 2IsFcnOn(h;C ) ^ 8 i 2 C : S i) � (8 i 2 C : 999999 q : T i )

Now consider the common case in which 8 i 2 C : S i is an interleaving com-

position, where each speci�cation S i describes changes to h[i ] and asserts that

steps of component i leave h[j ] unchanged for j 6= i . We cannot apply the Com-

positional Hiding Rule because S i must mention other components of h besides

h[i ]. For example, it probably contains an expression of the form

h 0 = [h except ! [i ] = exp](10.6)

7The Compositional Hiding Rule is not true in general if C is an in�nite set; but the

examples in which it doesn't hold are pathological and don't arise in practice.



154 CHAPTER 10. COMPOSING SPECIFICATIONS

which mentions all of h. However, we can transform S i into a speci�cation cS i
that describes only the changes to h[i ] and makes no assertions about other

components. For example, we can replace (10.6) with h 0[i ] = exp, and we can

replace an assertion that h is unchanged by the assertion that h[i ] is unchanged.

The composition 8 i 2 C :cS i will not be equivalent to 8 i 2 C : S i . In particu-

lar, it need not be an interleaving composition, since it might allow steps that

change two di�erent components h[i ] and h[j ], while leaving all other variables

unchanged. However, it can be shown that the two speci�cations are equivalent

when h is hidden (assuming C is a �nite set). So, we can apply the Composi-

tional Hiding Rule with S i replaced by cS i .
10.7 Open-System Speci�cations

A speci�cation describes the interaction between a system and its environment.

For example, the FIFO bu�er speci�cation of Chapter 4 speci�es the interaction

between the bu�er (the system) and an environment consisting of the sender and

receiver. So far, all the speci�cations we have written have been complete-system

speci�cations, meaning that they are satis�ed by a behavior that represents the

correct operation of both the system and its environment. When we write such a

speci�cation as the composition of an environment speci�cation E and a system

speci�cation M , it has the form E ^M .

An open-system speci�cation is one that can serve as a contract between a Open-system

speci�cations are

sometimes called

rely-guarantee or

assume-guarantee

speci�cations.

user of the system and its implementer. A behavior satis�es an open-system

speci�cation i� the system acts correctly, even if the environment misbehaves.

An obvious choice of such a speci�cation is the formula M that describes the

correct behavior of the system component by itself. However, such a speci�cation

would be unimplementable. A system cannot behave as expected in the face of

arbitrary behavior of its environment. It would be impossible to build a bu�er

that satis�es the bu�er component's speci�cation regardless of what the sender

and receiver did. For example, if the sender sends a value before the previous

value has been acknowledged, then the bu�er could read the value while it is

changing, causing unpredictable results.

A contract between a user and an implementer should require the system to

act correctly only if the environment does. IfM describes correct behavior of the

system and E describes correct behavior of the environment, such a speci�cation

should require that M be true if E is. This suggests that we take as our open-

system speci�cation the formula E ) M , which is true if the system behaves

correctly or the environment behaves incorrectly. However, E ) M is too weak

a speci�cation for the following reason. Consider again the example of a FIFO

bu�er, where M describes the bu�er and E the sender and receiver. Suppose

now that the bu�er sends a new value before the receiver has acknowledged the

previous one. This could cause the receiver to act incorrectly, possibly modifying
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the output channel in some way not allowed by the receiver's speci�cation. This

situation is described by a behavior in which both E andM are false|a behavior

that satis�es the speci�cation E ) M . However, the bu�er should not be

considered to act correctly in this case, since it was the bu�er's error that caused

the receiver to act incorrectly. Hence, this behavior should not satisfy the bu�er's

speci�cation.

An open-system speci�cations should assert that the system behaves cor-

rectly at least as long as the environment does. To express this, we introduce a

new temporal operator
+�., where E +�.M asserts that M remains true at least

one step longer than E does, remaining true forever if E does. Somewhat more

precisely, E
+�.M asserts that:

� E implies M .

� If the safety property of E is not violated by the �rst n states of a behavior,

then the safety property ofM is not violated by the �rst n+1 states, for any

natural number n. (Recall that a safety property is one that, if violated,

is violated at some de�nite point in the behavior.)

A more precise de�nition of
+�. appears in Section 16.2.4 (page 312). If E

describes the desired behavior of the environment and M describes the desired

behavior of the system, then we take as our open-system speci�cation the formula

E
+�.M .

Once we write separate speci�cations of the components, we can usually

transform a complete-system speci�cation into an open-system one by simply

replacing a ^ with a +�.. This requires �rst deciding whether each conjunct of the
complete-system speci�cation belongs to the speci�cation of the environment, of

the system, or of neither. As an example, consider the composite speci�cation of

the FIFO bu�er in module CompositeFIFO on page 141. We take the system to

consist of just the bu�er, with the sender and receiver forming the environment.

The closed-system speci�cation Spec has three main conjuncts. We consider

them separately.

Sender ^ Bu�er ^ Receiver
The conjuncts Sender and Receiver are obviously part of the environment

speci�cation and the conjunct Bu�er is part of the system speci�cation.

(in:ack = in:rdy) ^ (out :ack = out :rdy)

These two initial conjuncts can be assigned to either, depending on which

component we want to blame if they are violated. Let's assign to the

component sending on a channel c the responsibility for establishing that

c:ack = c:rdy holds initially. We then assign in:ack = in:rdy to the

environment and out :ack = out :rdy to the system.

2(IsChannel(in) ^ IsChannel(out))
This formula is not naturally attributed to either the system or the en-

vironment. We regard it as a property inherent in our way of modeling
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the system, which assumes that in and out are records with ack , val , and

rdy components. We therefore take the formula to be a separate conjunct

of the complete speci�cation, not belonging to either the system or the

environment.

We then have the following open-system speci�cation for the FIFO bu�er:

^ 2(IsChannel(in) ^ IsChannel(out))
^ ((in:ack = in:rdy) ^ Sender ^ Receiver) +�. ((out :ack = out :rdy) ^ Bu�er)

As this example suggests, there is little di�erence between writing a composite

complete-system speci�cation and an open-system speci�cation. Most of the

speci�cation doesn't depend on which we choose. The two di�er only at the

very end, when we put the pieces together.

10.8 Interface Re�nement

An interface re�nement is a method of obtaining a lower-level speci�cation by

re�ning the variables of a higher-level speci�cation. I start with two examples

and then discuss interface re�nement in general.

10.8.1 A Binary Hour Clock

In specifying an hour clock, we described its display with a variable hr whose

value (in a behavior satisfying the speci�cation) is an integer from 1 to 12.

Suppose we want to specify a binary hour clock. This is an hour clock for use

in a computer, where the display consists of a four-bit register that displays the

hour as one of the twelve values 0001, 0010, . . . , 1100. We can easily specify

such a clock from scratch. But suppose we want to describe it informally to

someone who already knows what an hour clock is. We would simply say that

a binary clock is the same as an hour clock, except that the value of the display

is represented in binary. We now formalize that description.

We begin by describing what it means for a four-bit value to represent a

number. There are several reasonable ways to represent a four-bit value math-

ematically. We could use a four-element sequence, which in TLA+ is a function

whose domain is 1 : : 4. However, a mathematician would �nd it more natural to

represent an (n +1)-bit number as a function from 0 : : n to f0; 1g, the function We can also write

f0; 1g as 0 : : 1.b representing the number b[0] � 20+ b[1] � 21+ : : :+ b[n] � 2n . In TLA+, we can
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de�ne BitArrayVal(b) to be the numerical value of such a function b by:

BitArrayVal(b)
�
= let n

�
= choose i 2 Nat : domain b = 0 : : i

val [i 2 0 : : n] �
= De�nes val [i] to equal b[0] � 20 + : : :+ b[i] � 2i .

if i = 0 then b[0] � 20 else b[i ] � 2i + val [i � 1]

in val [n]

To specify a binary hour clock whose display is described by the variable bits ,

we would simply say that BitArrayVal(bits) changes the same way that the

speci�cation HC of the hour clock allows hr to change. Mathematically, this

means that we obtain the speci�cation of the binary hour clock by substituting

BitArrayVal(bits) for the variable hr in HC . In TLA+, substitution is expressed

with the instance statement. Writing

B
�
= instance HourClock with hr  BitArrayVal(bits)

de�nes (among other things) B !HC to be the formula obtained from HC by

substituting BitArrayVal(bits) for hr .

Unfortunately, this speci�cation is wrong. The value of BitArrayVal(b) is

speci�ed only if b is a function with domain 0 : : n for some natural number n.

We don't know what BitArrayVal(f\abc"g) equals. It might equal 7. If it did,
then B !HC would allow a behavior in which the initial value of bits is f\abc"g.
We must rule out this possibility by substituting for hr not BitArrayVal(bits),

but some expression HourVal(bits) whose value is an element of 1 : : 12 only if

b is a function in [(0 : : 3)! f0; 1g]. For example, we can write

HourVal(b)
�
= if b 2 [(0 : : 3)! f0; 1g] then BitArrayVal(b)

else 99

B
�
= instance HourClock with hr  HourVal(bits)

This de�nes B !HC to be the desired speci�cation of the binary hour clock.

Because HC is not satis�ed by a behavior in which hr ever assumes the value

99, B !HC is not satis�ed by any behavior in which bits ever assumes a value

not in the set [(0 : : 3)! f0; 1g].
There is another way to use the speci�cation HC of the hour clock to specify

the binary hour clock. Instead of substituting for hr in the hour-clock speci�-

cation, we �rst specify a system consisting of both an hour clock and a binary

hour clock that keep the same time, and we then hide the hour clock. This

speci�cation has the form

999999 hr : IR ^ HC(10.7)

where IR is a temporal formula that is true i� bits is always the four-bit value

representing the value of hr . This formula asserts that bits is the representation

of hr as a four-bit array, for some choice of values for hr that satis�es HC .
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module BinaryHourClock

extends Naturals

variable bits

H (hr)
�
= instance HourClock

BitArrayVal(b)
�
= let n

�
= choose i 2 Nat : domain b = 0 : : (i � 1)

val [i 2 0 : : n � 1]
�
= De�nes val [i] to equal b[0] � 20 + : : :+ b[i] � 2i .

if i = 0 then b[0] � 20 else (b[i ] � 2i ) + val [i � 1]

in val [n � 1]

HourVal(b)
�
= if b 2 [(0 : : 3)! f0; 1g] then BitArrayVal(b)

else 99

IR(b; h)
�
= 2(h = HourVal(b))

BHC
�
= 999999 hr : IR(bits ; hr) ^ H (hr)!HC

Figure 10.3: A speci�cation of a binary hour clock.

Using the de�nition of HourVal given above, we can de�ne IR simply to equal

2(h = HourVal(b)).

If HC is de�ned as in module HourClock , then (10.7) can't appear in a TLA+

speci�cation. For HC to be de�ned in the context of the formula, the variable

hr must be declared in that context. If hr is already declared, then it can't be

used as the bound variable of the quanti�er 999999 . As usual, this problem is solved

with parametrized instantiation. The complete TLA+ speci�cation BHC of the

binary hour clock appears in module BinaryHourClock of Figure 10.3 on this

page.

10.8.2 Re�ning a Channel

As our second example of interface re�nement, consider a system that interacts

with its environment by sending numbers from 1 through 12 over a channel.

We re�ne it to a lower-level system that is the same, except it sends a number

as a sequence of four bits. Each bit is sent separately, starting with the left-

most (most signi�cant) one. For example, to send the number 5, the lower-level

system sends the sequence of bits 0, 1, 0, 1. We specify both channels with the

Channel module of Figure 3.2 on page 30, so each value that is sent must be

acknowledged before the next one can be sent.

Suppose HSpec is the higher-level system's speci�cation, and its channel is

represented by the variable h. Let l be the variable representing the lower-level

channel. We write the lower-level system's speci�cation as

999999 h : IR ^ HSpec(10.8)
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where IR speci�es the sequence of values sent over h as a function of the values

sent over l . The sending of the fourth bit on l is interpreted as the sending of

the complete number on h; the next acknowledgment on l is interpreted as the

sending of the acknowledgment on h; and any other step is interpreted as a step

that doesn't change h.

To de�ne IR, we instantiate module Channel for each of the channels: Data is the set of

values that can

be sent over the

channel.
H

�
= instance Channel with chan  h; Data  1 : : 12

L
�
= instance Channel with chan  l ; Data  f0; 1g

Sending a value d over channel l is thus represented by an L !Send(d) step, and

acknowledging receipt of a value on channel h is represented by an H !Rcv step.

The following behavior represents sending and acknowledging a 5, where I have

omitted all steps that don't change l :

s0
L !Send(0)

�! s1
L !Rcv

�! s2
L !Send(1)

�! s3
L !Rcv

�! s4
L !Send(0)

�!

s5
L !Rcv

�! s6
L !Send(1)

�! s7
L !Rcv

�! s8 �! � � �

This behavior will satisfy IR i� s6 ! s7 is an H !Send(5) step, s7 ! s8 is an

H !Rcv step, and all the other steps leave h unchanged.

We want to make sure that (10.8) is not satis�ed unless l represents a correct

lower-level channel|for example, (10.8) should be false if l is set to some bizarre

value. We will therefore de�ne IR so that, if the sequence of values assumed by

l does not represent a channel over which bits are sent and acknowledged, then

the sequence of values of h does not represent a correct behavior of a channel

over which numbers from 1 to 12 are sent. Formula HSpec, and hence (10.8),

will then be false for such a behavior.

Formula IR will have the standard form for a TLA speci�cation, with an

initial condition and a next-state relation. However, it speci�es h as a function

of l ; it does not constrain l . Therefore, the initial condition does not specify

the initial value of l , and the next-state relation does not specify the value of l 0.

(The value of l is constrained implicitly by IR, which asserts a relation between

the values of h and l , and the conjunct HSpec in (10.8), which constrains the

value of h.) For the next-state relation to specify the value sent on h, we need an

internal variable that remembers what has been sent on l since the last complete

number. We let the variable bitsSent contain the sequence of bits sent so far for

the current number. For convenience, bitsSent contains the sequence of bits in

\reverse order", with the most recently-sent bit at the head. This means that

the high-order bit of the number, which is sent �rst, is at the tail of bitsSent .

The de�nition of IR appears in module ChannelRe�nement of Figure 10.4 on

the next page. The module �rst de�nes ErrorVal to be an arbitrary value that is

not a legal value of h. Next comes the de�nition of the function BitSeqToNat . If

s is a sequence of bits, then BitSeqToNat [s ] is its numeric value interpreted
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module ChannelRe�nement

This module de�nes an interface re�nement from a higher-level channel h, over which numbers in 1 : : 12 are

sent, to a lower-level channel l in which a number is sent as a sequence of four bits, each separately acknowl-

edged. (See the Channel module in Figure 3.2 on page 30.) Formula IR is true i� the sequence of values as-

sumed by h represents the higher-level view of the sequence of values sent on l . If the sequence of values as-

sumed by l doesn't represent the sending and acknowledging of bits, then h assumes an illegal value.

extends Naturals ;Sequences

variables h; l

ErrorVal
�
= choose v : v =2 [val : 1 : : 12; rdy : f0; 1g; ack : f0; 1g]

BitSeqToNat [s 2 Seq(f0; 1g)] �
= BitSeqToNat [hb0; b1; b2; b3 i] = b0 + 2 � (b1 + 2 � (b2 + 2 � b3))

if s = h i then 0 else Head(s) + 2 � BitSeqToNat [Tail(s)]
H

�
= instance Channel with chan  h; Data  1 : : 12

L
�
= instance Channel with chan  l ; Data  f0; 1g

H is a channel for sending numbers

in 1 : : 12; L is a channel for sending

bits.

module Inner

variable bitsSent The sequence of the bits sent so far for the current number.

Init
�
= ^ bitsSent = h i
^ if L !Init then H !Init

else h = ErrorVal

De�nes the initial value of h as a function of l .

SendBit
�
= 9 b 2 f0; 1g :

^ L !Send(b)

^ if Len(bitsSent) < 3

then ^ bitsSent 0 = hb i � bitsSent
^ unchanged h

else ^ bitsSent 0 = h i
^ H !Send(BitSeqToNat [hb i � bitsSent ])

Sending one of the �rst three bits

on l prepends it to the front of

bitsSent and leaves h unchanged;

sending the fourth bit resets

bitsSent and sends the complete

number on h.

BitsRcv
�
= ^ L !Rcv

^ if bitsSent = h i then H !Rcv

else unchanged h

^ unchanged bitsSent

A Rcv action on l causes a Rcv

action on h i� it follows the

sending of the fourth bit.

Error
�
= ^ l 0 6= l

^ :((9 b 2 f0; 1g : L !Send(b)) _ L !Rcv)
^ h 0 = ErrorVal

An illegal action on l sets h to ErrorVal .

Next
�
= SendBit _ BitsRcv _ Error

InnerIR
�
= Init ^ 2[Next ]h l;h; bitsSent i

I (bitsSent)
�
= instance Inner

IR
�
= 999999 bitsSent : I (bitsSent)!InnerIR

Figure 10.4: Re�ning a channel.
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as a binary number whose low-order bit is at the head of s . For example

BitSeqToNat [h0; 1; 1i] equals 6. Then come the two instantiations of the Channel
module.

There follows a submodule that de�nes the internal speci�cation|the one The use of a sub-

module to de�ne

an internal spec-

i�cation was in-

troduced in the

real-time hour

clock speci�cation

of Section 9.1.

with the internal variable bitsSent visible. The internal speci�cation's initial

predicate Init asserts that if l has a legal initial value, then h can have any legal

initial value; otherwise h has an illegal value. Initially bitsSent is the empty

sequence h i. The internal speci�cation's next-state action is the disjunction of

three actions:

SendBit A SendBit step is one in which a bit is sent on l . If bitsSent has

fewer than three elements, so fewer than three bits have already

been sent, then the bit is prepended to the head of bitsSent and h

is left unchanged. Otherwise, the value represented by the four bits

sent so far, including the current bit, is sent on h and bitsSent is

reset to h i.

BitsRcv A BitsRcv step is one in which an acknowledgment is sent on l .

It represents the sending of an acknowledgment on h i� this is an

acknowledgment of the fourth bit, which is true i� bitsSent is the

empty sequence.

Error An Error step is one in which an illegal change to l occurs. It sets

h to an illegal value.

The inner speci�cation InnerIR has the usual form. (There is no liveness require-

ment.) The outer module then instantiates the inner submodule with bitsSent

as a parameter, and it de�nes IR to equal InnerIR with bitsSent hidden.

Now suppose we have a module HigherSpec that de�nes a speci�cation HSpec

of a system that communicates by sending numbers from 1 through 12 over a

channel hchan. We obtain, as follows, a lower-level speci�cation LowerSpec in

which the numbers are sent as sequences of bits on a channel lchan. We �rst

declare lchan and all the variables and constants of the HigherSpec module

except hchan. We then write:

HS (hchan)
�
= instance HigherSpec

CR(h)
�
= instance ChannelRe�nement with l  lchan

LowerSpec
�
= 999999 h : CR(h)!IR ^ HS (h)!HSpec

10.8.3 Interface Re�nement in General

In the examples of the binary clock and of channel re�nement, we de�ned a

lower-level speci�cation LSpec in terms of a higher-level one HSpec as:

LSpec
�
= 999999 h : IR ^ HSpec(10.9)
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where h is a free variable of HSpec and IR is a relation between the h and the

lower-level variable l of LSpec. We can view the internal speci�cation IR^HSpec
as the composition of two components, as shown here:

l - IR HSpec
h -

We can regard IR as the speci�cation of a component that transforms the lower-

level behavior of l into the higher-level behavior of h. Formula IR is called an

interface re�nement.

In both examples, the interface re�nement was independent of the system

speci�cation. It depended only on the representation of the interface|that is,

on how the interaction between the system and its environment was represented.

In general, for an interface re�nement IR to be independent of the system using

the interface, it should ascribe a behavior of the higher-level interface variable

h to any behavior of the lower-level variable l . In other words, for any sequence

of values for l , there should be some sequence of values for h that satisfy IR.

This is expressed mathematically by the requirement that the formula 999999 h : IR
should be valid|that is, true for all behaviors.

So far, I have discussed re�nement of a single interface variable h by a single

variable l . This generalizes in the obvious way to the re�nement of a collection

of higher-level variables h1; : : : ; hn by the variables l1; : : : ; lm . The interface

re�nement IR speci�es the values of the hi in terms of the values of the l j and

perhaps of other variables as well. Formula (10.9) is replaced by

LSpec
�
= 999999 h1; : : : ; hn : IR ^ HSpec

A particularly simple type of interface re�nement is a data re�nement, in

which IR has the form 2P , where P is a state predicate that expresses the

values of the higher-level variables h1; : : : ; hn as functions of the values of the

lower-level variables l1; : : : ; lm . The interface re�nement in our binary clock

speci�cation is a data re�nement, where P is the predicate hr = HourVal(bits).

As another example, the two speci�cations of an asynchronous channel inter-

face in Chapter 3 can each be obtained from the other by an interface re�ne-

ment. The speci�cation Spec of the Channel module (page 30) is equivalent to

the speci�cation obtained as a data re�nement of the speci�cation Spec of the

AsynchInterface module (page 27) by letting P equal:

chan = [val 7! val ; rdy 7! rdy ; ack 7! ack ](10.10)

This formula asserts that chan is a record whose val component is the value of the

variable val , whose rdy component is the value of the variable rdy , and whose ack

component is the value of the variable ack . Conversely, speci�cation Spec of the

AsynchInterface module is equivalent to a data re�nement of the speci�cation
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Spec of the Channel module. In this case, de�ning the state predicate P is a

little tricky. The obvious choice is to let P be the formula GoodVals de�ned by:

GoodVals
�
= ^ val = chan:val

^ rdy = chan:rdy

^ ack = chan:ack

However, this can assert that val , rdy , and ack have good values even if chan has

an illegal value|for example, if it is a record with more than three components.

Instead, we let P equal

if chan 2 [val :Data; rdy : f0; 1g; ack : f0; 1g] then GoodVals

else BadVals

where BadVals asserts that val , rdy , and ack have some illegal values|that

is, values that are impossible in a behavior satisfying formula Spec of module

AsynchInterface. (We don't need such a trick when de�ning chan as a function

of val , rdy , and ack because our de�nition (10.10) assures that the value of chan

is legal i� the values of all three variables val , rdy , and ack are legal.)

Data re�nement is the simplest form of interface re�nement. In a more

complicated interface re�nement, the value of the higher-level variables cannot

be expressed as a function of the current values of the lower-level variables. In

the channel re�nement example of Section 10.8.2, the number being sent on the

higher-level channel depends on the values of bits that were previously sent on

the lower-level channel, not just on the lower-level channel's current state.

We often re�ne both a system and its interface at the same time. For ex-

ample, we may implement a speci�cation H of a system that communicates by

sending numbers over a channel with a lower-level speci�cation LImpl of a sys-

tem that sends individual bits. In this case, LImpl is not itself obtained from

HSpec by an interface re�nement. Rather, LImpl implements some speci�cation

LSpec that is obtained from HSpec by an interface re�nement IR. In that case,

we say that LImpl implements HSpec under the interface re�nement IR.

10.8.4 Open-System Speci�cations

So far, I have been discussing interface re�nement for complete-system speci�-

cations. Let's now consider what happens if the higher-level speci�cation HSpec

is the kind of open-system speci�cation discussed in Section 10.7 above. For

simplicity, we consider the re�nement of a single higher-level interface variable

h by a single lower-level variable l . The generalization to more variables will be

obvious.

Let's suppose �rst that HSpec is a safety property, with no liveness condition.

As explained in Section 10.7, the speci�cation attributes each change to h either

to the system or to the environment. Any change to a lower-level interface



164 CHAPTER 10. COMPOSING SPECIFICATIONS

variable l that produces a change to h is therefore attributed to the system or

the environment. A bad change to h that is attributed to the environment makes

HSpec true; a bad change that is attributed to the system makes HSpec false.

Thus, (10.9) de�nes LSpec to be an open-system speci�cation. For this to be

a sensible speci�cation, the interface re�nement IR must ensure that the way

changes to l are attributed to the system or environment is sensible.

If HSpec contains liveness conditions, then interface re�nement can be more

subtle. Suppose IR is the interface re�nement de�ned in the ChannelRe�nement

module of Figure 10.4 on page 160, and suppose that HSpec requires that the

system eventually send some number on h. Consider a behavior in which the

system sends the �rst bit of a number on l , but the environment never acknowl-

edges it. Under the interface re�nement IR, this behavior is interpreted as one

in which h never changes. Such a behavior fails to satisfy the liveness condition

of HSpec. Thus, if LSpec is de�ned by (10.9), then failure of the environment to

do something can cause LSpec to be violated, through no fault of the system.

In this example, we want the environment to be at fault if it causes the

system to halt by failing to acknowledge any of the �rst three bits of a number

sent by the system. (The acknowledgment of the fourth bit is interpreted by IR

as the acknowledgment of a value sent on h, so blame for its absence is properly

assigned to the environment.) Putting the environment at fault means making

LSpec true. We can achieve this by modifying (10.9) to de�ne LSpec as follows:

LSpec
�
= Liveness ) 999999 h : IR ^ HSpec(10.11)

where Liveness is a formula requiring that any bit sent on l , other than the last

bit of a number, must eventually be acknowledged. However, if illegal values are

sent on l , then we want the safety part of the speci�cation to determine who is

responsible. So, we want Liveness to be true in this case.

Here's one way to de�ne Liveness . We use the de�nitions from the Inner

submodule of module ChannelRe�nement , where l , h, and bitsSent are visible.

The action that acknowledges receipt of one of the �rst three bits of the number is

BitsRcv ^ (bitsSent 6= h i). Weak fairness of this action asserts that the required

acknowledgments must eventually be sent. For the case of bad values, recall

that InnerIR implies that sending a bad value on l causes h to equal ErrorVal .

We want Liveness to be true if this ever happens, which means if it eventually

happens. We therefore add the following de�nition to the submodule Inner of

the ChannelRe�nement module:

InnerLiveness
�
= _ ^ InnerIR

^ WFh l; h; bitsSent i(BitsRcv ^ (bitsSent 6= h i))
_ 3(h = ErrorVal)

To de�ne Liveness , we just have to hide h and bitsSent in InnerLiveness . We
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can do this, in a context in which l is declared, as follows:

ICR(h)
�
= instance ChannelRe�nement

Liveness
�
= 999999 h; bitsSent : ICR(h)!I (bitsSent)!InnerLiveness

Now, suppose it is the environment that sends numbers over h and the system

is supposed to acknowledge their receipt and then process them in some way. In

this case, we want failure to acknowledge a bit to be a system error. So, LSpec

should be false if Liveness is. The speci�cation should then be

LSpec
�
= Liveness ^ (999999 h : IR ^ HSpec)

Since h does not occur free in Liveness , this de�nition is equivalent to

LSpec
�
= 999999 h : Liveness ^ IR ^ HSpec

which has the form (10.9) if the interface re�nement IR of (10.9) is taken to be

Liveness ^ IR. In other words, in this case, we make the liveness condition part

of the interface re�nement.

In general, if HSpec is an open-system speci�cation that describes liveness as

well as safety, then an interface re�nement may have to take the form (10.11).

Both Liveness and the liveness condition of IR may depend on which changes

to the lower-level interface variable l are attributed to the system and which to

the environment. For the channel re�nement, this means that they will depend

on whether the system or the environment is sending values on the channel.

10.9 Should You Compose?

When specifying a system, should we write a monolithic speci�cation with a

single next-state action, a closed-system composition that is the conjunction of

speci�cations of individual components, or an open-system speci�cation? The

answer is that it usually makes little di�erence. For a real system, the de�nitions

of the components' actions will take hundreds or thousands of lines. The di�erent

forms of speci�cation di�er only in the few lines where we assemble the initial

predicates and next-state actions into the �nal formula.

If you are writing a speci�cation from scratch, it's probably better to write

a monolithic speci�cation. It is usually easier to understand. Of course, there

are exceptions. We write a real-time speci�cation as the conjunction of an un-

timed speci�cation and timing constraints; describing the changes to the system

variables and the timers with a single next-state action usually makes the spec-

i�cation harder to understand.

Writing a composite speci�cation may be sensible when you are starting from

an existing speci�cation. If you already have a speci�cation of one component,

you may want to write a separate speci�cation of the other component and
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compose the two speci�cations. If you have a higher-level speci�cation, you may

want to write a lower-level version as an interface re�nement. However, these

are rather rare situations. Moreover, it's likely to be just as easy to modify

the original speci�cation or re-use it in another way. For example, instead of

conjoining a new component to the speci�cation of an existing one, you can

simply include the de�nition of the existing component's next-state action, with

an extends or instance statement, as part of the new speci�cation.

Composition provides a new way of writing a complete-system speci�cation;

it doesn't change the speci�cation. The choice between a composite speci�cation

and a monolithic one is therefore ultimately a matter of taste. Disjoint-state

compositions are generally straightforward and present no problems. Shared-

state compositions can be tricky and require care.

Open-system speci�cations introduce a mathematically di�erent form of spec-

i�cation. A closed-system speci�cation E ^M and its open-system counterpart

E
+�. M are not equivalent. If we really want a speci�cation to serve as a legal

contract between a user and an implementer, then we have to write an open-

system speci�cation. We also need open-system speci�cations if we want to

specify and reason about systems built by composing o�-the-shelf components

with pre-existing speci�cations. All we can assume about such a component is

that it satis�es a contract between the system builder and the supplier, and such

a contract can be formalized only as an open-system speci�cation. However, you

are unlikely to encounter o�-the-shelf component speci�cations during the early

part of the twenty-�rst century. In the near future, open-system speci�cations

are likely to be of theoretical interest only.
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Advanced Examples

It would be nice to provide an assortment of typical examples that cover most

of the speci�cation problems that arise in practice. However, there is no such

thing as a typical speci�cation. Every real speci�cation seems to pose its own

problems. But we can partition all speci�cations into two classes, depending on

whether or not they contain variable declarations.

A speci�cation with no variables de�nes data structures and operations on

those structures. For example, the Sequences module de�nes various operations

on sequences. When specifying a system, you may need some kind of data

structure other than the ones provided by the standard modules like Sequences

and Bags , described in Chapter 18. Section 11.1 gives some examples of data

structure speci�cations.

A system speci�cation contains variables that represent the system's state.

We can further divide system speci�cations into two classes|high-level speci�-

cations that describe what it means for a system to be correct, and lower-level

speci�cations that describe what the system actually does. In the memory ex-

ample of Chapter 5, the linearizable memory speci�cation of Section 5.3 is a

high-level speci�cation of correctness, while the write-through cache speci�ca-

tion of Section 5.6 describes how a particular algorithm works. This distinction

is not precise; whether a speci�cation is high- or low-level is a matter of per-

spective. But it can be a useful way of categorizing system speci�cations.

Lower-level system speci�cations tend to be relatively straightforward. Once

the level of abstraction has been chosen, writing the speci�cation is usually just a

matter of getting the details right when describing what the system does. Spec-

ifying high-level correctness can be much more subtle. Section 11.2 considers a

high level speci�cation problem|formally specifying a multiprocessor memory.

167
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11.1 Specifying Data Structures

Most of the data structures required for writing speci�cations are mathemati-

cally very simple and are easy to de�ne in terms of sets, functions, and records.

Section 11.1.2 describes the speci�cation of one such structure|a graph. On

rare occasions, a speci�cation will require sophisticated mathematical concepts.

The only examples I know of are hybrid system speci�cations, discussed in Sec-

tion 9.5. There, we used a module for describing the solutions to di�erential

equations. That module is speci�ed in Section 11.1.3 below. Section 11.1.4

considers the tricky problem of de�ning operators for specifying BNF gram-

mars. Although not the kind of data structure you're likely to need for a system

speci�cation, specifying BNF grammars provides a nice little exercise in \math-

ematization". The module developed in that section is used in Chapter 15 for

specifying the grammar of TLA+. But, before specifying data structures, you

should know how to make local de�nitions.

11.1.1 Local De�nitions

In the course of specifying a system, we write lots of auxiliary de�nitions. A

system speci�cation may consist of a single formula Spec, but we de�ne dozens

of other identi�ers in terms of which we de�ne Spec. These other identi�ers often

have fairly common names|for example, the identi�er Next is de�ned in many

speci�cations. The di�erent de�nitions of Next don't conict with one another

because, if a module that de�nes Next is used as part of another speci�cation,

it is usually instantiated with renaming. For example, the Channel module is

used in module InnerFIFO on page 38 with the statement:

InChan
�
= instance Channel with : : :

The action Next of the Channel module is then instantiated as InChan !Next ,

so its de�nition doesn't conict with the de�nition of Next in the InnerFIFO

module.

A module that de�nes operations on a data structure is likely to be used

in an extends statement, which does no renaming. The module might de�ne

some auxiliary operators that are used only to de�ne the operators in which

we're interested. For example, we need the Di�erentialEquations module only

to de�ne the single operator Integrate. However, Integrate is de�ned in terms

of other de�ned operators with names like Nbhd and IsDeriv . We don't want

these de�nitions to conict with other uses of those identi�ers in a module that

extends Di�erentialEquations . So, we want the de�nitions of Nbhd and IsDeriv

to be local to the Di�erentialEquations module.1

1We could use the let construct to put these auxiliary de�nitions inside the de�nition of

Integrate, but that trick wouldn't work if the Di�erentialEquations module exported other

operators besides Integrate that were de�ned in terms of Nbhd and IsDeriv .



11.1. SPECIFYING DATA STRUCTURES 169

TLA+ provides a local modi�er for making de�nitions local to a module.

If a module M contains the de�nition

local Foo(x )
�
= : : :

then Foo can be used inside module M just like any ordinary de�ned identi�er.

However, a module that extends or instantiatesM does not obtain the de�nition

of Foo. That is, the statement extends M in another module does not de�ne

Foo in that module. Similarly, the statement

N
�
= instance M

does not de�ne N !Foo. The local modi�er can also be applied to an instanti-

ation. The statement

local instance Sequences

in module M incorporates into M the de�nitions from the Sequences module.

However, another module that extends or instantiates M does not obtain those

de�nitions. Similarly, a statement like

local P(x )
�
= instance N

makes all the instantiated de�nitions local to the current module.

The local modi�er can be applied only to de�nitions and instance state-

ments. It cannot be applied to a declaration or to an extends statement, so

you cannot write either of the following:

local constant N These are not legal

statements.
local extends Sequences

If a module has no constant or variable declarations and no submodules,

then extending it and instantiating it are equivalent. Thus, the two statements

extends Sequences instance Sequences

are equivalent.

In a module that de�nes general mathematical operators, I like to make all

de�nitions local except for the ones that users of the module would expect. For

example, users expect the Sequences module to de�ne operators on sequences,

such as Append . They don't expect it to de�ne operators on numbers, such

as +. The Sequences module uses + and other operators de�ned in the Naturals

module. But instead of extending Naturals , it de�nes those operators with the

statement

local instance Naturals

The de�nitions of the operators from Naturals are therefore local to Sequences .

A module that extends the Sequences module could then de�ne + to mean

something other than addition of numbers.
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11.1.2 Graphs

A graph is an example of the kind of simple data structure often used in speci�ca-

tions. Let's now write a Graphs module for use in writing system speci�cations.

We must �rst decide how to represent a graph in terms of data structures

that are already de�ned|either built-in TLA+ data structures like functions,

or ones de�ned in existing modules. Our decision depends on what kind of

graphs we want to represent. Are we interested in directed graphs or undirected

graphs? Finite or in�nite graphs? Graphs with or without self-loops (edges

from a node to itself)? If we are specifying graphs for a particular speci�cation,

the speci�cation will tell us how to answer these questions. In the absence of

such guidance, let's handle arbitrary graphs. My favorite way of representing

both directed and undirected graphs is to specify arbitrary directed graphs,

and to de�ne an undirected graph as a directed graph that contains an edge i�

it contains the opposite-pointing edge. Directed graphs have a pretty obvious

representation: a directed graph consists of a set of nodes and a set of edges,

where an edge from node m to node n is represented by the ordered pair hm; n i.
In addition to deciding how to represent graphs, we must decide how to

structure the Graphs module. The decision depends on how we expect the

module to be used. For a speci�cation that uses a single graph, it is most

convenient to de�ne operations on that speci�c graph. So, we want the Graphs

module to have (constant) parameters Node and Edge that represent the sets of

nodes and edges of a particular graph. A speci�cation could use such a module

with a statement

instance Graphs with Node  : : : ; Edge  : : :

where the \. . . "s are the sets of nodes and edges of the particular graph ap-

pearing in the speci�cation. On the other hand, a speci�cation might use many

di�erent graphs. For example, it might include a formula that asserts the exis-

tence of a subgraph, satisfying certain properties, of some given graph G . Such

a speci�cation needs operators that take any graph as an argument|for exam-

ple, a Subgraph operator de�ned so Subgraph(G) is the set of all subgraphs of a

graph G . In this case, the Graphs module would have no parameters; speci�ca-

tions would incorporate it with an extends statement. Let's write this kind of

module.

An operator like Subgraph takes a graph as an argument, so we have to decide

how to represent a graph as a single value. A graph G consists of a set N of

nodes and a set E of edges. A mathematician would represent G as the ordered

pair hN ; E i. However, G :node is more perspicuous than G [1], so we represent

G as a record with node �eld N and edge �eld E .

Having made these decisions, it's easy to de�ne any standard operator on

graphs. We just have to decide what we should de�ne. Here are some generally

useful operators:
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IsDirectedGraph(G)

True i� G is an arbitrary directed graph|that is, a record with node

component N and edge component E such that E is a subset of N � N .

This operator is useful because a speci�cation might want to assert that

something is a directed graph. (To understand how to assert that G is

a record with node and edge �elds, see the de�nition of IsChannel in

Section 10.3 on page 139.)

DirectedSubgraph(G)

The set of all subgraphs of a directed graph G . Alternatively, we could

de�ne IsDirectedSubgraph(H ; G) to be true i� H is a subgraph of G . How-

ever, it's easy to express IsDirectedSubgraph in terms of DirectedSubgraph:

IsDirectedSubgraph(H ; G) � H 2 DirectedSubgraph(G)

On the other hand, it's awkward to express DirectedSubgraph in terms of

IsDirectedSubgraph:

DirectedSubgraph(G) = choose S : 8H : (H 2 S ) � IsDirectedSubgraph(H ; G)

Section 6.1 explains why we can't de�ne a set of all directed graphs, so we

had to de�ne the IsDirectedGraph operator.

IsUndirectedGraph(G)

UndirectedSubgraph(G)
These are analogous to the operators for directed graphs. As mentioned

above, an undirected graph is a directed graph G such that for every

edge hm; n i in G :edge, the inverse edge hn; m i is also in G :edge. Note

that DirectedSubgraph(G) contains directed graphs that are not undirected

graphs|except for certain \degenerate" graphs G , such as graphs with no

edges.

Path(G)

The set of all paths in G , where a path is any sequence of nodes that can

be obtained by following edges in the direction they point. This de�nition

is useful because many properties of a graph can be expressed in terms of

its set of paths. It is convenient to consider the one-element sequence hn i
to be a path, for any node n.

AreConnectedIn(m; n; G)

True i� there is a path from node m to node n in G . The utility of this

operator becomes evident when you try de�ning various common graph

properties, like connectivity.

There are any number of other graph properties and classes of graphs that we

might de�ne. Let's de�ne these two:

IsStronglyConnected(G)

True i� G is strongly connected, meaning that there is a path from any
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node to any other node. For an undirected graph, strongly connected is

equivalent to the ordinary de�nition of connected.

IsTreeWithRoot(G ; r)

True i� G is a tree with root r , where we represent a tree as a graph

with an edge from each nonroot node to its parent. Thus, the parent of a

nonroot node n equals:

choose m 2 G :node : hn; m i 2 G :edge

The Graphs module appears on the next page. By now, you should be able to

work out for yourself the meanings of all the de�nitions.

11.1.3 Solving Di�erential Equations

Section 9.5 on page 129 describes how to specify a hybrid system whose state in-

cludes a physical variable satisfying an ordinary di�erential equation. The speci-

�cation uses an operator Integrate such that Integrate(D ; t0; t1; hx 0; : : : ; xn�1 i)
is the value at time t1 of the n-tuple

hx ; dx=dt ; : : : ; dn�1x=dtn�1 i

where x is a solution to the di�erential equation

D [t ; x ; dx=dt ; : : : ; dnx=dtn ] = 0

whose 0th through (n�1)st derivatives at time t0 are x 0, . . . , xn�1. We assume

that there is such a solution, and it is unique. De�ning Integrate illustrates how

sophisticated mathematics can be expressed in TLA+.

We start by de�ning some mathematical notation that we will use to de�ne

the derivative. As usual, we obtain from the Reals module the de�nitions of the

set Real of real numbers and of the ordinary arithmetic operators. Let PosReal

be the set of all positive reals:

PosReal
�
= fr 2 Real : r > 0g

and let OpenInterval(a; b) be the open interval from a to b (the set of numbers

greater than a and less than b):

OpenInterval(a; b)
�
= fs 2 Real : (a < s) ^ (s < b)g

(Mathematicians usually write this set as (a; b).) Let's also de�ne Nbhd(r ; e)

to be the open interval of width 2e centered at r , for e > 0:

Nbhd(r ; e)
�
= OpenInterval(r � e; r + e)

To explain the de�nitions, we need some notation for the derivative of a function.

It's rather di�cult to make mathematical sense of the usual notation df =dt for
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module Graphs

A module that de�nes operators on graphs. A directed graph is represented as a record

whose node component is the set of nodes and whose edge component is the set of edges,

where an edge is an ordered pair of nodes.

local instance Naturals

local instance Sequences

IsDirectedGraph(G)
�
= True i� G is a directed graph.

^ G = [node 7! G :node; edge 7! G :edge]

^ G :edge � (G :node �G :node)

DirectedSubgraph(G)
�
= The set of all (directed) subgraphs of a directed graph.

fH 2 [node : subsetG :node; edge : subset (G :node �G :node)] :

IsDirectedGraph(H ) ^ H :edge � G :edgeg

IsUndirectedGraph(G)
�
= An undirected graph is a directed graph in which every

edge has an oppositely-directed one.^ IsDirectedGraph(G)

^ 8 e 2 G :edge : he[2]; e[1]i 2 G :edge

UndirectedSubgraph(G)
�
= The set of (undirected) subgraphs of an undirected graph.

fH 2 DirectedSubgraph(G) : IsUndirectedGraph(H )g

Path(G)
�
= The set of paths in G, where a path is represented as a sequence of nodes.

fp 2 Seq(G :node) : ^ p 6= h i
^ 8 i 2 1 : : (Len(p) � 1) : hp[i ]; p[i + 1]i 2 G :edgeg

AreConnectedIn(m; n; G)
�
= True i� there is a path from m to n in graph G.

9 p 2 Path(G) : (p[1] = m) ^ (p[Len(p)] = n)

IsStronglyConnected(G)
�
= True i� graph G is strongly connected.

8m; n 2 G :node : AreConnectedIn(m; n; G)

IsTreeWithRoot(G ; r)
�
= True if G is a tree with root r , where edges point

from child to parent.^ IsDirectedGraph(G)

^ 8 e 2 G :edge : ^ e[1] 6= r

^ 8 f 2 G :edge : (e[1] = f [1]) ) (e = f )

^ 8n 2 G :node : AreConnectedIn(n; r ; G)

Figure 11.1: A module for specifying operators on graphs.
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the derivative of f . (What exactly is t?) So, let's use a mathematically simpler

notation and write the nth derivative of the function f as f (n). (We don't have

to use TLA+ notation because di�erentiation does not appear explicitly in the

speci�cation.) Recall that f (0), the 0th derivative of f , equals f .

We can now start to de�ne Integrate. If a and b are numbers, InitVals is

an n-tuple of numbers, and D is a function from (n + 2)-tuples of numbers to

numbers, then

Integrate(D ; a; b; InitVals) = hf (0)[b]; : : : ; f (n�1)[b]i

where f is the function satisfying the following two conditions:

� D [r ; f (0)[r ]; f (1)[r ]; : : : ; f (n)[r ]] = 0, for all r in some open interval con-

taining a and b.

� hf (0)[a]; : : : ; f (n�1)[a]i = InitVals

We want to de�ne Integrate(D ; a; b; InitVals) in terms of this function f , which

we can specify using the choose operator. It's easiest to choose not just f , but

its �rst n derivatives as well. So, we choose a function g such that g [i ] = f (i) for

i 2 0 : :n. The function g maps numbers in 0 : :n into functions. More precisely,

g is an element of

[0 : : n ! [OpenInterval(a � e; b + e)! Real ] ]

for some positive e. It is the function in this set that satis�es the following

conditions:

1. g [i ] is the i th derivative of g [0], for all i 2 0 : : n.

2. D [r ; g [0][r ]; : : : ; g [n][r ] ] = 0, for all r in OpenInterval(a � e; b + e).

3. hg [0][a]; : : : ; g [n � 1][a]i = InitVals

We now have to express these conditions formally.

To express the �rst condition, we will de�ne IsDeriv so that IsDeriv(i ; df ; f )

is true i� df is the i th derivative of f . More precisely, this will be the case if f is

a real-valued function on an open interval; we don't care what IsDeriv(i ; df ; f )

equals for other values of f . Condition 1 is then:

8 i 2 1 : : n : IsDeriv(i ; g [i ]; g [0])

To express the second condition formally, without the \. . . ", we reason as follows:

D [r ; g [0][r ]; : : : ; g [n][r ] ]

= D [ hr ; g [0][r ]; : : : ; g [n][r ]i ] See Section 16.1.7 on page 299.

= D [ hr i � hg [0][r ]; : : : ; g [n][r ]i ] Tuples are sequences

= D [ hr i � [i 2 1 : : (n + 1) 7! g [i � 1][r ]] ] An (n+1)-tuple is a function with domain 1 : : n+1.
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The third condition is simply:

8 i 2 1 : : n : g [i � 1][a] = InitVals [i ]

We can therefore write the formula specifying g as:

9 e 2 PosReal : ^ g 2 [0 : : n ! [OpenInterval(a � e; b + e)! Real ] ]

^ 8 i 2 1 : : n : ^ IsDeriv(i ; g [i ]; g [0])

^ g [i � 1][a] = InitVals [i ]

^ 8 r 2 OpenInterval(a � e; b + e) :

D [ hr i � [i 2 1 : : (n + 1) 7! g [i � 1][r ]] ] = 0

where n is the length of InitVals . The value of Integrate(D ; a; b; InitVals) is

the tuple hg [0][b]; : : : ; g [n � 1][b]i, which can be written formally as

[i 2 1 : : n 7! g [i � 1][b]]

To complete the de�nition of Integrate, we now de�ne the operator IsDeriv .

It's easy to de�ne the i th derivative inductively in terms of the �rst derivative.

So, we de�ne IsFirstDeriv(df ; f ) to be true i� df is the �rst derivative of f ,

assuming that f is a real-valued function whose domain is an open interval.

Our de�nition actually works if the domain of f is any open set.2 Elementary

calculus tells us that df [r ] is the derivative of f at r i�

df [r ] = lim
s!r

f [s]� f [r]

s� r

The classical \�-�" de�nition of the limit states that this is true i�, for every

� > 0, there is a � > 0 such that 0 < js � r j < � implies:����df [r]� f [s]� f [r]

s� r

���� < �

Stated formally, this condition is:

8 � 2 PosReal :
9 � 2 PosReal :

8 s 2 Nbhd(r ; �) n frg :
�
df [r]� f [s]� f [r]

s� r

�
2 Nbhd(df [r]; �)

We de�ne IsFirstDeriv(df ; f ) to be true i� the domains of df and f are equal,

and this condition holds for all r in their domain.

The de�nitions of Integrate and all the other operators introduced above

appear in the Di�erentialEquations module of Figure 11.2 on the next page.

The local construct described in Section 11.1.1 above is used to make all these

de�nitions local to the module, except for the de�nition of Integrate.

2A set S is open i� for every r 2 S there exists an � > 0 such that the interval from r � �

to r + � is contained in S .
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module Di�erentialEquations

This module de�nes the operator Integrate for specifying the solution to a di�erential equation. If a and b are

reals with a � b; InitVals is an n�tuple of reals; and D is a function from (n + 1)�tuples of reals to reals; then

this is the n�tuple of values

hf [b];
df

dt
[b]; : : : ;

dn�1f

dtn�1
[b]i

where f is the solution to the di�erential equation

D[t; f ;
df

dt
; : : : ;

dn f

dtn
] = 0

such that

hf [a];
df

dt
[a]; : : : ;

dn�1f

dtn�1
[a]i = InitVals

local instance Reals

local instance Sequences

local PosReal
�
= fr 2 Real : r > 0g

local OpenInterval(a; b)
�
= fs 2 Real : (a < s) ^ (s < b)g

local Nbhd(r ; e)
�
= OpenInterval(r � e; r + e)

The instance statement and

these de�nitions are local, so a

module that extends this one

obtains only the de�nition of

Integrate.

local IsFirstDeriv(df ; f )
�
= Assuming domain f is an open subset of Real , this is true i�

f is di�erentiable and df is its �rst derivative. Recall that the

derivative of f at r is the number df [r ] satisfying the following

condition: for every � there exists a � such that 0 < js � r j < �

implies jdf [r ]� (f [s]� f [r ])=(s � r)j < �.

^ df 2 [domain f ! Real ]

^ 8 r 2 domain f :

8 e 2 PosReal :

9 d 2 PosReal :
8 s 2 Nbhd(r ; d) n frg : (f [s ]� f [r ])=(s � r) 2 Nbhd(df [r ]; e)

local IsDeriv(n; df ; f )
�
= True i� f is n times di�erentiable and df is its nth derivative.

let IsD [k 2 0 : : n; g 2 [domain f ! Real ] ]
�
= IsD[k ; g] = IsDeriv(k ; g; f )

if k = 0 then g = f

else 9 gg 2 [domain f ! Real ] : ^ IsFirstDeriv(g ; gg)

^ IsD [k � 1; gg ]

in IsD [n; df ]

Integrate(D ; a; b; InitVals)
�
=

let n
�
= Len(InitVals)

gg
�
= choose g : 9 e 2 PosReal : ^ g 2 [0 : : n ! [OpenInterval(a � e; b + e)! Real ] ]

^ 8 i 2 1 : : n : ^ IsDeriv(i ; g [i ]; g [0])

^ g [i � 1][a] = InitVals [i ]

^ 8 r 2 OpenInterval(a � e; b + e) :

D [ hr i � [i 2 1 : : (n + 1) 7! g [i � 1][r ]] ] = 0

in [i 2 1 : : n 7! gg [i � 1][b]]

Figure 11.2: A module for specifying the solution to a di�erential equation.
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11.1.4 BNF Grammars

BNF, which stands for Backus-Naur Form, is a standard way of describing the

syntax of computer languages. This section develops the BNFGrammars mod-

ule, which de�nes operators for writing BNF grammars. A BNF grammar isn't

the kind of data structure that arises in system speci�cation, and TLA+ is not

particularly well suited to specifying one. Its syntax doesn't allow us to write

BNF grammars exactly the way we'd like, but we can come reasonably close.

Moreover, I think it's fun to use TLA+ to specify its own syntax. So, module

BNFGrammars is used in Chapter 15 to specify part of the syntax of TLA+, as

well as in Chapter 14 to specify the syntax of the TLC model checker's con�g-

uration �le.

Let's start by reviewing BNF grammars. Consider the little language SE of

simple expressions described by the BNF grammar

expr ::= ident j expr op expr j ( expr ) j let def in expr

def ::= ident == expr

where op is some class of in�x operators like +, and ident is some class of

identi�ers such as abc and x . The language SE contains expressions like

abc + (let x == y + abc in x � x )

Let's represent this expression as the sequence

h \abc"; \+"; \("; \LET"; \x"; \=="; \y"; \+"; \abc"; \IN"; \x"; \�"; \x"; \)" i

of strings. The strings such as \abc" and \+" appearing in this sequence are

usually called lexemes. In general, a sequence of lexemes is called a sentence;

and a set of sentences is called a language. So, we want to de�ne the language

SE to consist of the set of all such sentences described by the BNF grammar.3

To represent a BNF grammar in TLA+, we must assign a mathematical

meaning to nonterminal symbols like def , to terminal symbols like op, and to

the grammar's two productions. The method that I �nd simplest is to let the

meaning of a nonterminal symbol be the language that it generates. Thus, the

meaning of expr is the language SE itself. I de�ne a grammar to be a function G

such that, for any string \str", the value of G [\str"] is the language generated by
the nonterminal str . Thus, ifG is the BNF grammar above, then G [\expr"] is the
complete language SE, and G [\def"] is the language de�ned by the production

for def , which contains sentences like

h \y"; \=="; \qq"; \�"; \wxyz" i
3BNF grammars are also used to specify how an expression is parsed|for example that

a + b � c is parsed as a+(b � c) rather than (a + b) � c. By considering the grammar to specify

only a set of sentences, we are deliberately not capturing that use in our TLA+ representation

of BNF grammars.
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Instead of letting the domain of G consist of just the two strings \expr" and

\def", it turns out to be more convenient to let its domain be the entire set

string of strings, and to let G [s ] be the empty language (the empty set) for all

strings s other than \expr" and \def". So, a grammar is a function from the set

of all strings to the set of sequences of strings. We can therefore de�ne the set

Grammar of all grammars by

Grammar
�
= [string! subset Seq(string)]

In describing the mathematical meaning of records, Section 5.2 explained

that r :ack is an abbreviation for r [\ack"]. This is the case even if r isn't a

record. So, we can write G :op instead of G [\op"]. (A grammar isn't a record

because its domain is the set of all strings rather than a �nite set of strings.)

A terminal like ident can appear anywhere to the right of a \::=" that a

nonterminal like expr can, so a terminal should also be a set of sentences. Let's

represent a terminal as a set of sentences, each of which is a sequence consisting

of a single lexeme. Let a token be a sentence consisting of a single lexeme, so a

terminal is a set of tokens. For example, the terminal ident is a set containing

tokens such as h\abc"i, h\x"i, and h\qq"i. Any terminal appearing in the BNF

grammar must be represented by a set of tokens, so the == in the grammar for

SE is the set fh\=="ig. Let's de�ne the operator tok by tok is short for

token.

tok(s)
�
= fhs ig

so we can write this set of tokens as tok(\==").

A production expresses a relation between the values of G :str for some gram-

mar G and some strings \str". For example, the production

def ::= ident == expr

asserts that a sentence s is in G :def i� it has the form i � h\=="i � e for some

token i in ident and some sentence e in G :expr . In mathematics, a formula

about G must mention G (perhaps indirectly by using a symbol de�ned in terms

of G). So, we can try writing this production in TLA+ as

G :def ::= ident tok(\==") G :expr

In the expression to the right of the ::=, adjacency is expressing some operation.

Just as we have to make multiplication explicit by writing 2 � x instead of 2x ,

we must express this operation by an explicit operator. Let's use &, so we can

write the production as

G :def ::= ident & tok(\==") & G :expr(11.1)

This expresses the desired relation between the sets G :def and G :expr of sen-

tences if ::= is de�ned to be equality and & is de�ned so that L & M is the
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set of all sentences obtained by concatenating a sentence in L with a sentence

in M :

L & M
�
= fs � t : s 2 L; t 2 M g

The production

expr ::= ident j expr op expr j ( expr ) j let def in expr

can similarly be expressed as The precedence

rules of TLA+ im-

ply that a j b & c

is interpreted as

a j (b & c).

G :expr ::= ident

j G :expr & op & G :expr

j tok(\(") & G :exp & tok(\)")
j tok(\LET") & G :def & tok(\IN") & G :expr

(11.2)

This expresses the desired relation if j (which means or in the BNF grammar)

is de�ned to be set union ([).
We can also de�ne the following operators that are sometimes used in BNF

grammars:

� Nil is de�ned so that Nil & S equals S for any set S of sentences:

Nil
�
= fh ig

� L+ equals L j L & L j L & L & L j : : : : L+ is typed L^+

and L� is typed

L^*.L+ �
= let LL[n 2 Nat ]

�
= LL[n] = L j : : : j

n+1 copiesz }| {
L & : : :L .

if n = 0 then L

else LL[n � 1] j LL[n � 1] & L

in union fLL[n] : n 2 Natg

� L� equals Nil j L j L & L j L & L & L j : : : :
L�

�
= Nil j L+

The BNF grammar for SE consists of two productions, expressed by the TLA+

formulas (11.1) and (11.2). The entire grammar is the single formula that is the

conjunction of these two formulas. We must turn this formula into a mathemat-

ical de�nition of a grammar GSE , which is a function from strings to languages.

The formula is an assertion about a grammarG . We de�ne GSE to be the small-

est grammar G satisfying the conjunction of (11.1) and (11.2), where grammar

G1 smaller than G2 means that G1[s ] � G2[s ] for every string s . To express

this in TLA+, we de�ne an operator LeastGrammar so that LeastGrammar(P)

is the smallest grammar G satisfying P(G):

LeastGrammar(P( ))
�
=

choose G 2 Grammar : ^ P(G)

^ 8H 2 Grammar : P(H ) ) (8 s 2 string : G [s ] � H [s ])
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Letting P(G) be the conjunction of (11.1) and (11.2), we can de�ne the grammar

GSE to be LeastGrammar(P). We can then de�ne the language SE to equal

GSE :expr . The smallest grammar G satisfying a formula P must have G [s ]

equal to the empty language for any string s that doesn't appear in P . Thus,

GSE [s ] equals the empty language fg for any string s other than \expr" and

\def".
To complete our speci�cation of GSE , we must de�ne the sets ident and

op of tokens. We can de�ne the set op of operators by enumerating them|for

example:

op
�
= tok(\+") j tok(\�") j tok(\ * ") j tok(\/")

To express this a little more compactly, let's de�ne Tok(S ) to be the set of all

tokens formed from elements in the set S of lexemes:

Tok(S )
�
= fhs i : s 2 Sg

We can then write

op
�
= Tok( f\+"; \�"; \ * "; \/"g )

Let's de�ne ident to be the set of tokens whose lexemes are words made

entirely of lower-case letters, such as \abc", \qq", and \x". To learn how to do

that, we must �rst understand what strings in TLA+ really are. In TLA+, a

string is a sequence of characters. (We don't care, and the semantics of TLA+
See Section

16.1.10 on page

305 for more

about strings. Re-

member that we

take sequence and

tuple to be syn-

onymous.

doesn't specify, what a character is.) We can therefore apply the usual sequence

operators on them. For example, Tail(\abc") equals \bc", and \abc" � \de"
equals \abcde".

The operators like & that we just de�ned for expressing BNF were applied

to sets of sentences, where a sentence is a sequence of lexemes. These operators

can be applied just as well to sets of sequences of any kind|including sets

of strings. For example, f\one"; \two"g & f\s"g equals f\ones"; \twos"g, and
f\ab"g+ is the set consisting of all the strings \ab", \abab", \ababab", etc. So,
we can de�ne ident to equal Tok(Letter+), where Letter is the set of all lexemes

consisting of a single lower-case letter:

Letter
�
= f\a"; \b"; : : : ; \z"g

Writing this de�nition out in full (without the \. . . ") is tedious. We can make

this a little easier as follows. We �rst de�ne the operator OneOf (s) to be the

set of all one-character strings made from the characters of the string s :

OneOf (s)
�
= fhs [i ]i : i 2 domain sg

We can then de�ne

Letter
�
= OneOf (\abcdefghijklmnopqrstuvwxyz")
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GSE
�
= let op

�
= Tok( f\+"; \�"; \�"; \/"g )

ident
�
= Tok(OneOf (\abcdefghijklmnopqrstuvwxyz")+ )

P(G)
�
= ^ G :expr ::= ident

j G :expr & op & G :expr

j tok(\(") & G :expr & tok(\)")
j tok(\LET") & G :def & tok(\IN") & G :expr

^ G :def ::= ident & tok(\==") & G :expr

in LeastGrammar(P)

Figure 11.3: The de�nition of the grammar GSE for the language SE.

The complete de�nition of the grammar GSE appears in Figure 11.3 on this

page.

All the operators we've de�ned here for specifying grammars are grouped

into module BNFGrammars , which appears in Figure 11.4 on the next page.

Using TLA+ to write ordinary BNF grammars is a bit silly. However, or-

dinary BNF grammars are not very convenient for describing the syntax of a

complicated language like TLA+. In fact, they can't describe the alignment rules

for its bulleted lists of conjuncts and disjuncts. Using TLA+ to specify such a

language is not so silly. In fact, a TLA+ speci�cation of the complete syntax of

TLA+was written as part of the development of the Java Front End, described

in Chapter 12. Although valuable when writing a TLA+ parser, this speci�ca-

tion isn't very helpful to an ordinary user of TLA+, so it does not appear in this

book.

11.2 Other Memory Speci�cations

Section 5.3 speci�es a multiprocessor memory. The speci�cation is unrealistically

simple for three reasons: a processor can have only one outstanding request at a

time, the basic correctness condition is too restrictive, and only simple read and

write operations are provided. (Real memories provide many other operations,

such as partial-word writes and cache prefetches.) I will specify a memory

that allows multiple outstanding requests and has a realistic, weaker correctness

condition. To keep the speci�cation short, I will still consider only the simple

operations of reading and writing one word of memory.

11.2.1 The Interface

A modern processor performs multiple instructions concurrently. It can begin

new memory operations before previous ones have been completed. The memory
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module BNFGrammars

A sentence is a sequence of strings. (In standard terminology, the term \lexeme" is used

instead of \string".) A token is a sentence of length one|that is, a one-element sequence

whose single element is a string. A language is a set of sentences.

local instance Naturals

local instance Sequences

OPERATORS FOR DEFINING SETS OF TOKENS

OneOf (s)
�
= fhs [i ]i : i 2 domain sg

If s is a string, then OneOf (s) is the set of strings formed from the individual characters

of s. For example, OneOf (\abc") = f\a"; \b"; \c"g.

tok(s)
�
= fhs ig

Tok(S )
�
= fhs i : s 2 Sg

If s is a string, then tok(s) is the set containing only the

token made from s. If S is a set of strings, then Tok(S) is

the set of tokens made from elements of S .

OPERATORS FOR DEFINING LANGUAGES

Nil
�
= fh ig The language containing only the \empty" sentence.

L & M
�
= fs � t : s 2 L; t 2 M g All concatenations of sentences in L and M .

L j M �
= L [M

L+ �
= L j L & L j L & L & L j : : :

let LL[n 2 Nat ]
�
= if n = 0 then L

else LL[n � 1] j LL[n � 1] & L

in union fLL[n] : n 2 Natg
L�

�
= Nil j L+

L ::= M
�
= L = M

Grammar
�
= [string! subset Seq(string)]

LeastGrammar(P( ))
�
= The smallest grammar G such that P(G) is true.

choose G 2 Grammar :

^ P(G)

^ 8H 2 Grammar : P(H )) 8 s 2 string : G [s ] � H [s ]

Figure 11.4: The module BNFGrammars.
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responds to a request as soon as it can; it need not respond to di�erent requests

in the order that they were issued.

The �rst thing we must do to specifying a memory is determine the interface.

The interface we choose depends on the purpose of the speci�cation. There are

many di�erent reasons why we might be specifying a multiprocessor memory.

We could be specifying a computer architecture, or the semantics of a program-

ming language. I will suppose that we are specifying the memory of an actual

computer.

A processor issues a request to a memory system by setting some register. I

assume that each processor has a set of registers through which it communicates

with the memory. Each register has three �elds: an adr �eld that holds an

address, a val �eld that holds a word of memory, and an op �eld that indicates

what kind of operation, if any, is in progress. The processor can issue a command

using a register whose op �eld equals \Free". It sets the op �eld to \Rd" or \Wr"
to indicate the operation; it sets the adr �eld to the address of the memory word;

and, for a write, it sets the val �eld to the value being written. (On a read, the

processor can set the val �eld to any value.) The memory responds by setting

the op �eld back to \Free" and, for a read, setting the val �eld to the value read.
(The memory does not change the val �eld when responding to a write.)

Module RegisterInterface in Figure 11.5 on the next page contains some

declarations and de�nitions for specifying the interface. It declares the constants

Adr , Val , and Proc, which are the same as in the memory interface of Section 5.1,

and the constant Reg , which is the set of registers. (More precisely, Reg is a

set of register identi�ers.) A processor has a separate register corresponding to

each element of Reg . The variable regFile represents the processors' registers,

regFile[p][r ] being register r of processor p. The module also de�nes the sets of

requests and register values, as well as a type invariant for regFile.

11.2.2 The Correctness Condition

Section 5.3 speci�es what is called a linearizable memory. In a linearizable mem-

ory, a processor never has more than one outstanding request. The correctness

condition for the memory can be stated as:

The result of any execution is the same as if the operations of all the

processors were executed in some sequential order, and each opera-

tion is executed between the request and the response.

The second clause, which requires the system to act as if each operation were

executed between its request and its response, is both too weak and too strong

for our speci�cation. It's too weak because it says nothing about the execution

order of two operations from the same processor unless one is issued after the

other's response. For example, suppose a processor p issues a write and then a

read to the same address. We want the read to obtain either the value p just
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module RegisterInterface

constant Adr ; The set of memory addresses.

Val ; The set of memory-word values.

Proc; The set of processors.

Reg The set of registers used by a processor.

variable regFile regFile[p][r ] represents the contents of register r of processor p.

RdRequest
�
= [adr :Adr ; val :Val ; op : f\Rd"g]

WrRequest
�
= [adr :Adr ; val :Val ; op : f\Wr"g]

FreeRegValue
�
= [adr :Adr ; val :Val ; op : f\Free"g]

Request
�
= RdRequest [WrRequest The set of all possible requests.

RegValue
�
= Request [ FreeRegValue The set of all possible register values.

RegFileTypeInvariant
�
= The type correctness invariant for regFile.

regFile 2 [Proc ! [Reg ! RegValue]]

Figure 11.5: A module for specifying a register interface to a memory.

wrote, or a value written by another processor|even if p issues the read before

receiving the response for the write. This isn't guaranteed by the condition. The

second clause is too strong because it places unnecessary ordering constraints

on operations issued by di�erent processors. If operations A and B are issued

by two di�erent processors, then we don't need to require that A precedes B in

the execution order just because B was requested after A's response.

We modify the second clause to require that the system act as if operations

of each individual processor were executed in the order that they were issued,

obtaining the condition:

The result of any execution is the same as if the operations of all

the processors were executed in some sequential order, and the op-

erations of each individual processor appear in this sequence in the

order in which the requests were issued.

In other words, we require that the values returned by the reads can be explained

by some total ordering of the operation executions that is consistent with the

order in which each processor issued its requests. There are a number of di�erent

ways of formalizing this condition; they di�er in how bizarre the explanation

may be. The di�erences can be described in terms of whether or not certain

scenarios are permitted. In the scenario descriptions, Wrp(a; v) represents a

write operation of value v to address a by processor p, and Rdp(a; v) represents

a read of a by p that returns the value v .
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The �rst decision we must make is whether all operations in an in�nite

behavior must be ordered, or if the ordering must exist only at each �nite point

during the behavior. Consider a scenario in which each of two processors writes

its own value to the same address and then keeps reading that value forever: In these scenar-

ios, values and

addresses with dif-

ferent names are

assumed to be dif-

ferent.

Processor p : Wr
p
(a; v1); Rd

p
(a; v1); Rd

p
(a; v1); Rd

p
(a; v1); : : :

Processor q : Wr
q
(a; v2); Rd

q
(a; v2); Rd

q
(a; v2); Rd

q
(a; v2); : : :

At each point in the execution, we can explain the values returned by the reads

with a total order in which all the operations of either processor precede all the

operations of the other. However, there is no way to explain the entire in�nite

scenario with a single total order. In this scenario, neither processor ever sees

the value written by the other. Since a multiprocessor memory is supposed to

allow processors to communicate, we disallow this scenario.

The second decision we must make is whether the memory is allowed to

predict the future. Consider this scenario:

Processor p : Wr
p
(a; v1); Rd

p
(a; v2)

Processor q : Wr
q
(a; v2)

Here, q issues its write of v2 after p has obtained the result of its read. The

scenario is explained by the orderingWrp(a; v1), Wrq(a; v2), Rdp(a; v2). How-

ever, this is a bizarre explanation because, to return the value v2 for p's read,

the memory had to predict that another processor would write v2 some time in

the future. Since a real memory can't predict what requests will be issued in

the future, such a behavior cannot be produced by a correct implementation.

We can therefore rule out the scenario as unreasonable. Alternatively, since no

correct implementation can produce it, there's no need to outlaw the scenario.

If we don't allow the memory to predict the future, then it must always be

able to explain the values read in terms of the writes that have been issued so

far. In this case, we have to decide whether the explanations must be stable.

For example, suppose a scenario begins as follows:

Processor p : Wr
p
(a1; v1); Rd

p
(a1; v3)

Processor q : Wr
q
(a2; v2); Wr

q
(a1; v3)

At this point, the only explanation for p's read Rdp(a1; v3) is that q 's write

Wrq(a1; v3) preceded it, which implies that q 's other write Wrq(a2; v2) also

preceded the read. Hence, if p now reads a2, it must obtain the value v2. But

suppose the scenario continues as follows, with another processor r joining in:

Processor p : Wr
p
(a1; v1); Rd

p
(a1; v3); Rd

p
(a2; v0)

Processor q : Wr
q
(a2; v2); Wr

q
(a1; v3)

Processor r : Wr
r
(a1; v3)
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We can explain this scenario with the following ordering of the operations:

Wrp(a1; v1); Wr r (a1; v3); Rdp(a1; v3); Rdp(a2; v0); Wrq(a2; v2); Wrq(a1; v3)

In this explanation, processor r provided the value of a1 read by p, and p read

the initial value v0 of memory address a2. The explanation is bizarre because the

write that provided the value of a1 to p was actually issued after the completion

of p's read operation. But, because the explanation of that value changed in

mid-execution, the system never predicted the existence of a write that had not

yet occurred. When writing a speci�cation, we must decide whether or not to

allow such changes of the explanation.

11.2.3 A Serial Memory

We �rst specify a memory that cannot predict the future and cannot change its

explanations. There seems to be no standard name for such a memory; I'll call

it a serial memory.

Our informal correctness condition is in terms of the sequence of all opera-

tions that have ever been issued. There is a general method of formalizing such

a condition that works for specifying many di�erent kinds of systems. We add

an internal variable opQ that records the history of the execution. For each

processor p, the value of opQ [p] is a sequence whose i th element, opQ [p][i ], de-

scribes the i th request issued by p, the response to that request (if it has been

issued), and any other information about the operation needed to express the

correctness condition. If necessary, we can also add other internal variables to

record additional information not readily associated with individual requests.

For a system with the kind of register interface we are using, the next-state

relation has the form

_ 9 proc 2 Proc; reg 2 Reg : _ 9 req 2 Request : IssueRequest(proc; req ; reg)

_ RespondToRequest(proc; reg)

_ Internal

(11.3)

where the component actions do the following:

IssueRequest(proc; req ; reg)

The action with which processor proc issues a request req in register reg .

RespondToRequest(proc; reg)

The action with which the system responds to a request in processor proc's

register reg .

Internal

An action that changes only the internal state.
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Liveness properties are asserted by fairness conditions on the RespondToRequest

and Internal actions.

A general trick for writing the speci�cation is to choose the internal state so

the safety part of the correctness condition can be expressed by the formula 2P

for some state predicate P . We guarantee that P is always true by letting P 0

be a conjunct of each action. I'll use this approach to specify the serial memory,

taking for P a state predicate Serializable.

We want to require that the value returned by each read is explainable as

the value written by some operation already issued, or as the initial value of the

memory. Moreover, we don't want this explanation to change. We therefore add

to the opQ entry for each completed read a source �eld that indicates where the

value came from. This �eld is set by the RespondToRequest action.

We want all operations in an in�nite behavior eventually to be ordered. This

means that, for any two operations, the memory must eventually decide which

one precedes the other|and it must stick to that decision. We introduce an

internal variable opOrder that describes the ordering of operations to which the

memory has already committed itself. An Internal step changes only opOrder ,

and it can only enlarge the ordering.

The predicate Serializable used to specify the safety part of the correctness

condition describes what it means for opOrder to be a correct explanation. It

asserts that there is some consistent total ordering of the operations that satis�es

the following conditions:

� It extends opOrder .

� It orders all operations from the same processor in the order that they

were issued.

� It orders operations so that the source of any read is the latest write to

the same address that precedes the read, and is the initial value i� there

is no such write.

We now translate this informal sketch of the speci�cation into TLA+. We

�rst choose the types of the variables opQ and opOrder . To describe the source

�eld of a read and an order on operations, we de�ne a set opId of values that

identify the operations that have been issued. An operation is identi�ed by a

pair hp; i i where p is a processor and i is a position in the sequence opQ [p].

(The set of all such positions i is domain opQ [p].) We let the corresponding

element of opId be the record with proc �eld p and idx �eld i . Writing the set of

all such records is a bit tricky because the possible values of the idx �eld depend

on the proc �eld. The simplest way to de�ne it is �rst to de�ne OpId to be the

larger set of records whose idx �eld can be any value, and then to de�ne opId

to be a subset of OpId :

OpId
�
= [proc : Proc; idx : Nat ]

opId
�
= foiv 2 OpId : oiv :idx 2 domain opQ [oiv :proc]g
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For convenience, we de�ne opIdQ(oi) to be the value of the opQ entry identi�ed

by an element oi of opId :

opIdQ(oi)
�
= opQ [oi :proc][oi :idx ]

The source of a value need not be an operation; it can also be the initial contents

of the memory. The latter possibility is represented by letting the source �eld

of the opQ entry have the special value InitWr . We then let opQ be an element

of [Proc ! Seq(opVal)], where opVal is the union of three sets: WrRequest,

RdRequest, and

Request are de-

�ned in module

RegisterInterface

on page 184.

[req : Request ; reg : Reg ]

Represents an active request in the register of the requesting processor

indicated by the reg �eld.

[req : WrRequest ; reg : fDoneg]
Represents a completed write request, where Done is a special value that

is not a register.

[req : RdRequest ; reg : fDoneg; source : opId [ fInitWrg]
Represents a completed read request whose value came from the operation

indicated by the source �eld, or from the initial value of the memory

location if the source �eld equals InitWr .

Observe that opId and opVal are state functions whose values depend upon the

value of the variable opQ .

We need to specify the initial contents of memory. A program generally

cannot assume anything about the memory's initial contents, except that every

address does contain a value in Val . So, the initial contents of memory can be

any element of [Adr ! Val ]. We declare an \internal" constant InitMem, whose

value is the memory's initial contents. In the �nal speci�cation, InitMem will be

hidden along with the internal variables opQ and opOrder . We hide a constant

with ordinary existential quanti�cation 9 . The requirement that InitMem is a

function from addresses to values could be made part of the initial predicate,

but it's more natural to express it in the quanti�er. The �nal speci�cation will

therefore have the form:

9 InitMem 2 [Adr ! Val ] : 999999 opQ ; opOrder : : : :

For later use, we de�ne goodSource(oi) to be the set of plausible values for

the source of a read operation oi in opId . By a plausible value, I mean either

InitWr or a write to the same address that oi reads. It will be an invariant

of the speci�cation that the source of any completed read operation oi is an

element of goodSource(oi). Moreover, the value returned by a completed read

operation must come from its source. If the source is InitWr , then the value

must come from InitMem; otherwise, it must come from the source request's val

�eld. To express this formally, observe that the opQ entries only of completed
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reads have a source �eld. Since a record has a source �eld i� the string \source"
is in its domain, we can write this invariant as:

Section 5.2 on

page 48 explains

that a record is

a function whose

domain is a set of

strings.

8 oi 2 opId :

(\source" 2 domain opIdQ(oi)) )
^ opIdQ(oi):source 2 goodSource(oi)

^ opIdQ(oi):req :val = if opIdQ(oi):source = InitWr

then InitMem[opIdQ(oi):req :adr ]

else opIdQ(opIdQ(oi):source):req :val

(11.4)

We now choose the type of opOrder . We usually denote an ordering relation by

an operator such as �, writing A � B to mean that A precedes B . However, the

value of a variable cannot be an operator. So, we must represent an ordering The di�erence

between oper-

ators and func-

tions is discussed

in Section 6.4 on

page 69.

relation as a set or a function. Mathematicians usually describe a relation � on

a set S as a set R of ordered pairs of elements in S , with hA; B i in R i� A � B .

So, we let opOrder be a subset of opId � opId , where hoi ; oj i 2 opOrder means

that oi precedes oj .

Our internal state is redundant because, if register r of processor p contains

an uncompleted operation, then there is an opQ entry that points to the regis-

ter and contains the same request. This redundancy means that the following

relations among the variables are invariants of the speci�cation:

� If an opQ entry's reg �eld is not equal to Done, then it denotes a register

whose contents is the entry's req �eld.

� The number of opQ entries pointing to a register equals 1 if the register

contains an active operation, otherwise it equals 0.

In the speci�cation, we combine this condition, formula (11.4), and the type

invariant into a single state predicate DataInvariant .

Having chosen the types of the variables, we can now de�ne the initial predi-

cate Init and the predicate Serializable. The de�nition of Init is easy. We de�ne

Serializable in terms of totalOpOrder , the set of all total orderings of opId . A

relation � is a total ordering of opId i� it satis�es the following three conditions,

for any oi , oj , and ok in opId .

Totality: Either oi = oj , oi � oj , or oj � oi .

Transitivity: oi � oj and oj � ok imply oi � ok .

Irreexivity: oi 6� oi .

The predicate Serializable asserts that there is a total ordering of opId satisfying

the three conditions on page 187. We can express this formally as the assertion

that there exists an R in totalOpOrder satisfying:

^ opOrder � R R extends opOrder
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^ 8 oi ; oj 2 opId : R correctly orders operations from the same processor.

(oi :proc = oj :proc) ^ (oi :idx < oj :idx ) ) (hoi ; oj i 2 R)
^ 8 oi 2 opId : For every completed read oi in opId , there is no write

oj to the same address that (i) precedes oi and

(ii) follows the source if that source is not InitWr .
(\source" 2 domain opIdQ(oi))

) : ( 9 oj 2 goodSource(oi) :

^ hoj ; oi i 2 R
^ (opIdQ(oi):source 6= InitWr) ) (hopIdQ(oi):source; oj i 2 R) )

We allow each step to extend opOrder to any relation on opId that satis�es

Serializable. We do this by letting every subaction of the next-state action

specify opOrder 0 with the conjunct UpdateOpOrder , de�ned by:

UpdateOpOrder
�
= ^ opOrder 0 � (opId 0 � opId 0)

^ opOrder � opOrder 0

^ Serializable 0

The next-state action has the generic form of formula (11.3) on page 186. We

split the RespondToRequest action into the disjunction of separateRespondToWr

and RespondToRd actions that represent responding to writes and reads, respec-

tively. RespondToRd is the most complicated of the next-state action's subac-

tions, so let's examine its de�nition. The de�nition has the form:

RespondToRd(proc; reg)
�
=

let req
�
= regFile[proc][reg ]

idx
�
= choose i 2 domain opQ [proc] : opQ [proc][i ]:reg = reg

in : : :

This de�nes req to be the request in the register and idx to be an element in

the domain of opQ [proc] such that opQ [proc][idx ]:reg equals reg . If the register

is not free, then there is exactly one such value idx ; and opQ [proc][idx ]:req , the

idx th request issued by proc, equals req . (We don't care what idx equals if the

register is free.) The in expression begins with the enabling condition:

^ req :op = \Rd"

which asserts that the register is not free and it contains a read request. The

next conjunct of the in expression is:

^ 9 src 2 goodSource([proc 7! proc; idx 7! idx ]) :

let val
�
= if src = InitWr then InitMem[req :adr ]

else opIdQ(src):req :val

in : : :

It asserts the existence of a value src, which will be the source of the value

returned by the read; and it de�nes val to be that value. If the source is the
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initial contents of memory, then the value is obtained from InitMem; otherwise,

it is obtained from the source request's val �eld. The inner in expression has

two conjuncts that specify the values of regFile 0 and opQ 0. The �rst conjunct

asserts that the register's val �eld is set to val and its op �eld is set to \Free",
indicating that the register is made free.

^ regFile 0 = [regFile except ! [proc][reg ]:val = val ;

! [proc][reg ]:op = \Free"]

The second conjunct of the inner in expression describes the new value of opQ .

Only the idx th element of opQ [proc] is changed. It is set to a record whose req

�eld is the same as the original request req , except that its val �eld is equal to

val ; whose reg �eld equals Done; and whose source �eld equals src.

^ opQ 0 = [opQ except ! [proc][idx ] = [req 7! [req except ! :val = val ];

reg 7! Done;

source 7! src] ]

Finally, the outer in clause ends with the conjunct

^ UpdateOpOrder

that determines the value of opOrder 0. It also implicitly determines the possible

choices of the source of the read|that is, the value of opQ 0[proc][idx ]:source.

For some choices of this value allowed by the second outer conjunct, there will be

no value of opOrder 0 satisfying UpdateOpOrder . The conjunct UpdateOpOrder

rules out those choices for the source.

The de�nitions of the other subactions of the next-state action|IssueRequest ,

RespondToWr , and Internal|are simpler and I won't explain them.

Having �nished the initial predicate and the next-state action, we must deter-

mine the liveness conditions. The �rst condition is that the memory must eventu-

ally respond to every operation. The response to a request in register reg of pro-

cessor proc is produced by aRespondToWr(proc; reg) orRespondToRd(proc; reg)

action. So, the obvious way to express this condition is:

8 proc 2 Proc; reg 2 Reg :

WFh:::i(RespondToWr(proc; reg) _ RespondToRd(proc; reg))

For this fairness condition to imply that the response is eventually issued,

a RespondToWr(proc; reg) or RespondToRd(proc; reg) step must be enabled

whenever there is an uncompleted operation in proc's register reg . It isn't com-

pletely obvious that a RespondToRd(proc; reg) step is enabled when there is a

read operation in the register, since the step is enabled only if there exist a

source for the read and a value of opOrder 0 that satisfy Serializable 0 . The re-

quired source and value do exist because Serializable, which holds in the �rst
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state of the step, implies the existence of a correct total ordering of all the op-

erations; this ordering can be used to choose a source and a relation opOrder 0

that satisfy Serializability 0 .

The second liveness condition asserts that the memory must eventually com-

mit to an ordering for every pair of operations. It is expressed as a fairness

condition, for every pair of distinct operations oi and oj in opId , on an Internal

action that makes oi either precede or follow oj in the ordering opOrder 0. A

�rst attempt at this condition is

8 oi ; oj 2 opId : (oi 6= oj ) ) WFh:::i(^ Internal

^ (hoi ; oj i 2 opOrder 0) _ (hoj ; oi i 2 opOrder 0))

(11.5)

However, this isn't correct. In general, a formula 8 x 2 S :F is equivalent to

8 x : (x 2 S )) F . Hence, (11.5) is equivalent to the assertion that the following

formula holds, for all constant values oi and oj :

(oi 2 opId) ^ (oj 2 opId) )0
@(oi 6= oj ) ) WFh:::i(^ Internal

^ (hoi ; oj i 2 opOrder 0) _ (hoj ; oi i 2 opOrder 0))

1
A

In a temporal formula, a predicate with no temporal operators is an assertion

about the initial state. Hence, (11.5) asserts that the fairness condition is true

for all pairs of distinct values oi and oj in the initial value of opId . But opId

is initially empty, so this condition is vacuously true. Hence, (11.5) is trivially

implied by the initial predicate. We must instead assert fairness for the action

^ (oi 2 opId) ^ (oj 2 opId)
^ Internal

^ (hoi ; oj i 2 opOrder 0) _ (hoj ; oi i 2 opOrder 0))

(11.6)

for all distinct values oi and oj . It su�ces to assert this only for oi and oj of

the right type. Since its best to use bounded quanti�ers whenever possible, let's

write this condition as:

8 oi ; oj 2 [proc :Proc; idx :Nat ] : All operations are eventually ordered.

(oi 6= oj ) ) WFh:::i(^ (oi 2 opId) ^ (oj 2 opId)
^ Internal

^ (hoi ; oj i 2 opOrder 0) _ (hoj ; oi i 2 opOrder 0))

For this formula to imply that any two operations are eventually ordered by

opOrder , action (11.6) must be enabled if oi and oj are unordered operations

in opId . It is, because Serializable is always enabled, so it is always possible to

extend opOrder to a total ordering of all issued operations.

The complete inner speci�cation, with InitMem, opQ , and opOrder visible, is

in module InnerSerial on pages 194{196. I have made two minor modi�cations
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to allow the speci�cation to be checked by the TLC model checker. (Chap-

ter 14 describes TLC and explains why these changes are needed.) Instead of

the de�nition of opId given on page 187, the speci�cation uses the equivalent

de�nition:

opId
�
= union f [proc : p; idx : domain opQ [p] ] : p 2 Procg

In the de�nition of UpdateOpOrder , the �rst conjunct is changed from

opOrder 0 � opId 0 � opId 0

to the equivalent

opOrder 0 2 subset (opId 0 � opId 0)

For TLC's bene�t, I also ordered the conjuncts of all actions so UpdateOpOrder

follows the \assignment of a value to" opQ 0. This resulted in the unchanged

conjunct not being the last one in action Internal .

The complete speci�cation is obtained by the customary use of a parametrized

instantiation of InnerSerial to hide the constant InitMem and the variables opQ

and opOrder :

module SerialMemory

extends RegisterInterface

Inner(InitMem; opQ ; opOrder)
�
= instance InnerSerial

Spec
�
= 9 InitMem 2 [Adr ! Val ] :

999999 opQ ; opOrder : Inner(InitMem; opQ ; opOrder)!Spec

11.2.4 A Sequentially Consistent Memory

The serial memory speci�cation does not allow the memory to predict future

requests. We now remove this restriction and specify what is called a sequentially

consistent memory. The freedom to predict the future can't be used by any real

implementation,4 so there's little practical di�erence between a serial and a

sequentially consistent memory. However, the sequentially consistent memory

has a simpler speci�cation. This speci�cation is surprising and instructive.

The next-state action of the sequential memory speci�cation has the same

structure as that of the serial memory speci�cation, with actions IssueRequest ,

RespondToRd , RespondToWr , and Internal . Like the serial memory speci�-

cation, it has an internal variable opQ to which the IssueRequest operation

4The freedom to change explanations, which a sequentially consistent memory allows, could

conceivably be used to permit a more e�cient implementation, but it's not easy to see how.
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module InnerSerial

extends RegisterInterface; Naturals ; Sequences ; FiniteSets

constant InitMem The initial contents of memory, which will be an element of [Proc ! Adr ].

variable opQ ; opQ[p][i ] is the ith operation issued by processor p.

opOrder The ordering of operations, which is a subset of opId � opId . (opId is de�ned below).

opId
�
= union f [proc : fpg; idx : domain opQ [p] ] : p 2 Procg

opIdQ(oi)
�
= opQ [oi :proc][oi :idx ]

[proc 7! p; idx 7! i] identi�es

operation i of processor p.

InitWr
�
= choose v : v =2 [proc : Proc; idx : Nat ] The source for an initial memory value.

Done
�
= choose v : v =2 Reg The reg �eld value for a completed operation.

opVal
�
= Possible values of opQ[p][i].

[req : Request ; reg : Reg ]

[ [req : WrRequest ; reg : Done]

[ [req : RdRequest ; reg : Done; source : opId [ fInitWrg]

An active request using register reg.

A completed write.

A completed read of value from source.

goodSource(oi)
�
=

fInitWrg [ fo 2 opId : ^ opIdQ(o):req :op = \Wr"
^ opIdQ(o):req :adr = opIdQ(oi):req :adrg

DataInvariant
�
=

^ RegFileTypeInvariant Simple type invariants for regFile,

opQ, and

opOrder .

^ opQ 2 [Proc ! Seq(opVal)]

^ opOrder � (opId � opId)

^ 8 oi 2 opId :

^ (\source" 2 domain opIdQ(oi)) ) The source of any completed read is either InitWr

or a write operation to the same address.^ opIdQ(oi):source 2 goodSource(oi)
^ opIdQ(oi):req :val = if opIdQ(oi):source = InitWr

then InitMem[opIdQ(oi):req :adr ]

else opIdQ(opIdQ(oi):source):req :val

A read's value comes

from its source.

^ (opIdQ(oi):reg 6= Done) ) opQ correctly describes the register contents.

(opIdQ(oi):req = regFile[oi :proc][opIdQ(oi):reg ])

^ 8 p 2 Proc; r 2 Reg : Only nonfree registers have corresponding opQ entries.

Cardinality(fi 2 domain opQ [p] : opQ [p][i ]:reg = rg) =

if regFile[p][r ]:op = \Free" then 0 else 1

Figure 11.6a: Module InnerSerial (beginning).
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Init
�
= The initial predicate.

^ regFile 2 [Proc ! [Reg ! FreeRegValue]]

^ opQ = [p 2 Proc 7! h i]
^ opOrder = fg

Every register is free.

There are no operations in opQ.

The ordering relation opOrder is empty.

totalOpOrder
�
= The set of all total orderings on the set opId .

fR 2 subset (opId � opId) :

^ 8 oi ; oj 2 opId : (oi = oj ) _ (hoi ; oj i 2 R) _ (hoj ; oi i 2 R)

^ 8 oi ; oj ; ok 2 opId : (hoi ; oj i 2 R) ^ (hoj ; ok i 2 R) ) (hoi ; ok i 2 R)
^ 8 oi 2 opId : hoi ; oi i =2 R g

Serializable
�
= Asserts that there exists a total ordering R of all operations that extends

opOrder , orders the operations of each processor correctly, and makes the

source of each read the most recent write to the address.
9R 2 totalOpOrder :

^ opOrder � R

^ 8 oi ; oj 2 opId : (oi :proc = oj :proc) ^ (oi :idx < oj :idx ) ) (hoi ; oj i 2 R)

^ 8 oi 2 opId : (\source" 2 domain opIdQ(oi)) )
: ( 9 oj 2 goodSource(oi) :

^ hoj ; oi i 2 R
^ (opIdQ(oi):source 6= InitWr) ) (hopIdQ(oi):source; oj i 2 R) )

UpdateOpOrder
�
=

^ opOrder 0 2 subset (opId 0 � opId 0)

^ opOrder � opOrder 0

^ Serializable 0

An action that chooses the new value of opOrder , allowing

it to be any relation that equals or extends the current value

of opOrder and satis�es Serializable. This action is used in

de�ning the subactions of the next-state action.

IssueRequest(proc; req ; reg)
�
= Processor proc issues request req in register reg.

^ regFile[proc][reg ]:op = \Free" The register must be free.

^ regFile 0 = [regFile except ! [proc][reg ] = req ] Put the request in the register.

^ opQ 0 = [opQ except ! [proc] = Append(@; [req 7! req ; reg 7! reg ])] Add request to opQ[proc].

^ UpdateOpOrder

RespondToWr(proc; reg)
�
= The memory responds to a write request in processor proc's register reg.

^ regFile[proc][reg ]:op = \Wr" The register must contain an active write request.

^ regFile 0 = [regFile except ! [proc][reg ]:op = \Free"] The register is freed.

^ let idx
�
= choose i 2 domain opQ [proc] : opQ [proc][i ]:reg = reg The appropriate opQ

entry is updated.in opQ 0 = [opQ except ! [proc][idx ]:reg = Done]

^ UpdateOpOrder opOrder is updated.

Figure 11.6b: Module InnerSerial (middle).
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RespondToRd(proc; reg)
�
= The memory responds to a read request in processor proc's register reg.

let req
�
= regFile[proc][reg ] proc's register reg contains the request req, which is in opQ[proc][idx ].

idx
�
= choose i 2 domain opQ [proc] : opQ [proc][i ]:reg = reg

in ^ req :op = \Rd" The register must contain an active read request.

^ 9 src 2 goodSource([proc 7! proc; idx 7! idx ]) : The read obtains its value from a source src.

let val
�
= if src = InitWr then InitMem[req :adr ]

else opIdQ(src):req :val

The value returned by

the read.

in ^ regFile 0 = [regFile except ! [proc][reg ]:val = val ;

! [proc][reg ]:op = \Free"]
The register's val �eld

is set, and it is freed.

^ opQ 0 = [opQ except opQ[proc][idx ] is updated appropriately.

! [proc][idx ] = [req 7! [req except ! :val = val ];

reg 7! Done;

source 7! src] ]

^ UpdateOpOrder opOrder is updated.

Internal
�
= ^ unchanged hregFile; opQ i
^ UpdateOpOrder

Next
�
= The next-state action.

_ 9 proc 2 Proc; reg 2 Reg : _ 9 req 2 Request : IssueRequest(proc; req ; reg)

_ RespondToRd(proc; reg)

_ RespondToWr(proc; reg)

_ Internal

Spec
�
= The complete internal speci�cation.

^ Init

^ 2[Next ]hregFile;opQ; opOrder i

^ 8 proc 2 Proc; reg 2 Reg : The memory eventually responds to every request.

WFhregFile;opQ; opOrder i(RespondToWr(proc; reg) _ RespondToRd(proc; reg))

^ 8 oi ; oj 2 [proc :Proc; idx :Nat ] : All operations are eventually ordered.

(oi 6= oj ) ) WFhregFile;opQ;opOrder i(^ (oi 2 opId) ^ (oj 2 opId)

^ Internal

^ (hoi ; oj i 2 opOrder 0) _ (hoj ; oi i 2 opOrder 0))

theorem Spec ) 2(DataInvariant ^ Serializable)

Figure 11.6c: Module InnerSerial (end).
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appends an entry with req (request) and reg (register) �elds. However, an op-

eration does not remain forever in opQ . Instead, an Internal step removes it

after it has been completed.5 The speci�cation has a second internal variable

mem that represents the contents of a memory|that is, the value of mem is a

function from Adr to Val . The value of mem is changed only by an Internal

action that removes a write from opQ .

Recall that the correctness condition has two requirements:

1. There is a sequential execution order of all the operations that explains

the values returned by reads.

2. This execution order is consistent with the order in which operations are

issued by each individual processor.

The order in which operations are removed from opQ is an explanatory execution

order that satis�es requirement 1 if the Internal action satis�es these properties:

� When a write of value val to address adr is removed from opQ , the value

of mem[adr ] is set to val .

� A read of address adr that returned a value val can be removed from opQ

only if mem[adr ] = val .

Requirement 2 is satis�ed if operations issued by processor p are appended by

the IssueRequest action to the tail of opQ [p], and are removed by the Internal

action only from the head of opQ [p].

We have now determined what the IssueRequest and Internal actions should

do. The RespondToWr action is obvious; it's essentially the same as in the serial

memory speci�cation. The problem is the RespondToRd action. How can we

de�ne it so that the value returned by a read is one that mem will contain when

the Internal action has to remove the read from opQ? The answer is surprisingly

simple: we allow the read to return any value. If the read were to return a bad

value|for example, one that is never written|then the Internal action would

never be able to remove the read from opQ . We rule out that possibility with a

liveness condition requiring that every operation in opQ eventually be removed.

This makes it easy to write the Internal action. The only remaining problem is

expressing the liveness condition.

To guarantee that every operation is eventually removed from opQ , it suf-

�ces to guarantee that, for every processor proc, the operation at the head of

opQ [proc] is eventually removed. The desired liveness condition can therefore

be expressed as:

8 proc 2 Proc : WFh:::i(RemoveOp(proc))

5We could allow uncompleted writes to be removed, but that would complicate the speci-

�cation.
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where RemoveOp(proc) is an action that unconditionally removes the operation

from the head of opQ [proc]. For convenience, we let the RemoveOp(proc) action

also update mem. We then de�ne a separate action Internal(proc) for each

processor proc. It conjoins to RemoveOp(proc) the following enabling condition,

which asserts that if the operation being removed is a read, then it has returned

the correct value.

(Head(opQ [proc]):req :op = \Rd"))
(mem[Head(opQ [proc]):req :adr ] = Head(opQ [proc]):req :val)

The complete internal speci�cation, with the variables opQ and mem visible,

appears in module InnerSequential on the following two pages. At this point, you

should have no trouble understanding it. You should also have no trouble writing

a module that instantiates InnerSequential and hides the internal variables opQ

and mem to produce the �nal speci�cation, so I won't bother doing it for you.

11.2.5 The Memory Speci�cations Considered

Almost every speci�cation we write admits a direct implementation, based on

the initial predicate and next-state action. Such an implementation may be

completely impractical, but it is theoretically possible. It's easy to implement

the linearizable memory with a single central memory. A direct implementation

of the serial memory would require maintaining queues of all operations issued

thus far, and a computationally infeasible search for possible total orderings.

But, in theory, it's easy.

Our speci�cation of a sequentially consistent memory cannot be directly im-

plemented. A direct implementation would have to guess the correct value to

return on a read, which is impossible. The speci�cation is not directly imple-

mentable because it is not machine closed. As explained in Section 8.9.2 on

page 111, a non-machine closed speci�cation is one in which a direct implemen-

tation can \paint itself into a corner," reaching a point at which it is no longer

possible to satisfy the speci�cation. Any �nite scenario of memory operations

can be produced by a behavior satisfying the sequentially consistent memory's

initial predicate and next-state action|namely, a behavior that contains no

Internal steps. However, not every �nite scenario can be extended to one that

is explainable by a sequential execution. For example, no scenario that begins

as follows is possible in a two-processor system: This notation for

describing scenar-

ios was introduced

on page 184.
Processor p : Wr

p
(a1; v1); Rd

p
(a1; v2); Wr

p
(a2; v2)

Processor q : Wr
q
(a2; v1); Rd

q
(a2; v2); Wr

q
(a1; v2)

Here's why:
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module InnerSequential

extends RegisterInterface; Naturals ; Sequences ; FiniteSets

variable opQ ; opQ[p][i] is the ith operation issued by processor p.

mem An internal memory.

Done
�
= choose v : v =2 Reg The reg �eld value for a completed operation.

DataInvariant
�
=

^ RegFileTypeInvariant

^ opQ 2 [Proc ! Seq( [req : Request ; reg : Reg [ fDoneg] ) ]
^ mem 2 [Adr ! Val ]

^ 8 p 2 Proc; r 2 Reg : Only nonfree registers have corresponding opQ entries.

Cardinality(fi 2 domain opQ [p] : opQ [p][i ]:reg = rg) =

if regFile[p][r ]:op = \Free" then 0 else 1

Simple type invariants for regFile,

opQ, and

mem.

Init
�
= The initial predicate.

^ regFile 2 [Proc ! [Reg ! FreeRegValue]]

^ opQ = [p 2 Proc 7! h i]
^ mem 2 [Adr ! Val ]

Every register is free.

There are no operations in opQ.

The internal memory can have any initial contents.

IssueRequest(proc; req ; reg)
�
= Processor proc issues request req in register reg.

^ regFile[proc][reg ]:op = \Free"
^ regFile 0 = [regFile except ! [proc][reg ] = req ]

^ opQ 0 = [opQ except ! [proc] = Append(@; [req 7! req ; reg 7! reg ])]

^ unchanged mem

The register must be free.

Put request in register.

Add request to opQ[proc].

RespondToRd(proc; reg)
�
= The memory responds to a read request in processor proc's register reg.

^ regFile[proc][reg ]:op = \Rd" The register must contain an active read request.

^ 9 val 2 Val : val is the value returned.

^ regFile 0 = [regFile except ! [proc][reg ]:val = val ;

! [proc][reg ]:op = \Free"]
Set the register's val �eld,

and free the register.

^ opQ 0 = let idx
�
= opQ[proc][idx ] contains the request in register reg .

choose i 2 domain opQ [proc] : opQ [proc][i ]:reg = reg

in [opQ except ! [proc][idx ]:req :val = val ;

! [proc][idx ]:reg = Done]

Set opQ[proc][idx ]'s val �eld to

val and its reg �eld to Done.

^ unchanged mem

Figure 11.7a: Module InnerSequential (beginning).
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RespondToWr(proc; reg)
�
= The memory responds to a write request in processor proc's register reg.

^ regFile[proc][reg ]:op = \Wr" The register must contain an active write request.

^ regFile 0 = [regFile except ! [proc][reg ]:op = \Free"] The register is freed.

^ let idx
�
= choose i 2 domain opQ [proc] : opQ [proc][i ]:reg = reg The appropriate opQ

entry is updated.in opQ 0 = [opQ except ! [proc][idx ]:reg = Done]

^ unchanged mem

RemoveOp(proc)
�
= Unconditionally remove the operation at the head of opQ[proc] and update mem.

^ opQ [proc] 6= h i opQ[p] must be nonempty.

^ Head(opQ [proc]):reg = Done The operation must have been completed.

^ mem 0 = if Head(opQ [proc]):req :op = \Rd"
then mem

else [mem except ! [Head(opQ [proc]):req :adr ] =

Head(opQ [proc]):req :val ]

Leave mem unchanged for a

read operation, update it for

write operation.

^ opQ 0 = [opQ except ! [proc] = Tail(@)] Remove the operation from opQ [proc].

^ unchanged regFile No register is changed.

Internal(proc)
�
= Remove the operation at the head of opQ[proc]. But if it's a read,

only do so if it returned the value now in mem.^ RemoveOp(proc)

^ (Head(opQ [proc]):req :op = \Rd"))
(mem[Head(opQ [proc]):req :adr ] = Head(opQ [proc]):req :val)

Next
�
= The next-state action.

9 proc 2 Proc : _ 9 reg 2 Reg : _ 9 req 2 Request : IssueRequest(proc; req ; reg)

_ RespondToRd(proc; reg)

_ RespondToWr(proc; reg)

_ Internal(proc)

Spec
�
= ^ Init

^ 2[Next ]hregFile;opQ;mem i

^ 8 proc 2 Proc; reg 2 Reg : The memory eventually responds to every request.

WFhregFile;opQ;mem i(RespondToWr(proc; reg) _ RespondToRd(proc; reg))

^ 8 proc 2 Proc : Every operation is eventually removed from opQ .

WFhregFile;opQ;mem i(RemoveOp(proc))

theorem Spec ) 2(DataInvariant)

Figure 11.7b: Module InnerSequential (end).
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Wrq(a1; v2)

precedes Rdp(a1; v2) This is the only explanation of the value read by p.

precedes Wrp(a2; v2) By the order in which operations are issued.

precedes Rdq(a2; v2) This is the only explanation of the value read by q.

precedes Wrq(a1; v2) By the order in which operations are issued.

Hence q 's write of a1 must precede itself, which is impossible.

As mentioned in Section 8.9.2, a speci�cation is machine closed if the liveness

property is the conjunction of fairness properties for actions that imply the

next-state action. The sequential memory speci�cation asserts weak fairness of

RemoveOp(proc), for processors proc, and RemoveOp(proc) does not imply the

next-state action. (The next-state action does not allow a RemoveOp(proc) step

that removes from opQ [proc] a read that has returned the wrong value.)

Very high-level system speci�cations, such as our memory speci�cations are

subtle. It's easy to get them wrong. The approach we used in the serial mem-

ory speci�cation|namely, writing conditions on the history of all operations|is

dangerous. It's easy to forget some conditions. A non-machine closed speci�ca-

tion can occasionally be the simplest way to express what you want so say.



202 CHAPTER 11. ADVANCED EXAMPLES



Part III

The Tools

203





Chapter 12

The Java Front End

The Java Front End is a parser for TLA+ written in Java by Jean-Charles

Gr�egoire. It provides a front end for other tools, such as TLC (see Chapter 14).

It can also be run by itself to �nd syntax errors in a speci�cation. You should

obtain directions for running the Java Front End's parser on your particular

system when you obtain the software.

12.1 Finding an Error

When the parser reports an error, �nding what caused it can be tricky. The

errors that the parser detects fall into two separate classes, which are usually

called syntactic and semantic errors. A syntax error is one that makes the spec-

i�cation grammatically incorrect, meaning that it violates the BNF grammar,

or the precedence and alignment rules, described in Chapter 15. A semantic

error is one that violates the legality conditions mentioned in Chapter 17. The

term semantic error is misleading, because it suggests an error that makes a

speci�cation have the wrong meaning. All errors found by the parser are ones

that make the speci�cation illegal|that is, not syntactically well-formed|and

hence make it have no meaning at all.

The parser reads the �le sequentially, starting from the beginning, and it

reports a syntax error if and when it reaches a point at which it becomes impos-

sible for any continuation to produce a grammatically correct speci�cation. For

example, if you leave out a colon and type \A x P(x) instead of \A x : P(x),

the parser will print something like:

Encountered "P" at line 7, column 11.

Was expecting one of:

"," ...

<OpSymbol> ...
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":" ...

The \was expecting" list describes every possible symbol that could lead to a

grammatically correct speci�cation. Knowing what the parser was expecting

can sometimes help �nd the error.

The parser may detect a grammatical error far from the actual mistake. For

example, suppose you type [ instead of { to produce [x 2 : : : :P(x )g, where \: : :"
is a very long expression. The parser will discover the error only when it sees

the colon, well past the erroneous [. If you can't �nd the source of an error, try

the \divide and conquer" method: keep removing di�erent parts of the module

until you isolate the source of the problem.

A typical semantic error is an unde�ned symbol that arises because you

mistype an identi�er. For example, if you de�ne an operator Cat but spell it

cat somewhere by mistake, the parser may report

unresolved identifier cat at [line: 87, col: 6] to [87,8].

The source of a semantic error is usually easy to �nd.

The parser stops when it encounters the �rst syntactic error. It can detect

multiple semantic errors in a single run.

The current version of the parser has the following limitations, which should

be corrected in future versions:

� It does not detect certain semantic errors. In particular, it does not do

any level checking. (See Section 17.2 on page 319.)

� It does not properly handle strings with \escape sequences" such as \".

(See Section 16.1.10.)

� It does not properly handle parametrized instantiation. (See Section 4.2.2

on page 39.)

� It does not handle the symbol (\X). You must type \otimes to represent
.

� It produces meaningless warnings of the form

numbers are used but NUMERAL isn't defined

This warning is a remnant of a minor change to TLA+.

� It does not allow the nesting of comments delimited by (* and *).

� It does not handle numbers written in binary, octal, or hexadecimal nota-

tion. (See Section 16.1.11.)



Chapter 13

The TLATEX Typesetter

13.1 Introduction

TLATEX is a Java program for typesetting TLA+modules. It is based on ideas

by Dmitri Samborski. The TLATEX web page, accessible from the TLA web

page [2], tells you how to obtain a copy of the program.

TLATEX calls the LATEX program [3] to do the actual typesetting. LATEX is a

document-production system based on the TEX typesetting program [1]. LATEX

normally produces as its output a dvi �le|a �le with extension dvi containing

a device-independent description of the typeset output. TLATEX has options

that allow it to call another program to translate the dvi �le into a Postscript

or pdf �le. Some versions of LATEX produce a pdf �le directly.

You must have LATEX installed on your computer to run TLATEX. LATEX

is public-domain software that can be downloaded from the World Wide Web;

proprietary versions are also available. The TLATEX Web page contains infor-

mation about obtaining LATEX and a Postscript or pdf converter.

You will probably run TLATEX by typing

java tlatex.TLA [options ] �leName

where �leName is the name of the input �le, and [options ] is an optional sequence

of options, each option name preceded by \-". Some options are followed by

an argument.1 If �leName does not contain an extension, then the input �le is

�leName.tla. For example, the command

java tlatex.TLA -ptSize 12 -shade MySpec

typesets the module in the �leMySpec:tla using the ptSize option with argument

12 and the shade option. The input �le must contain a complete TLA+module.

1A multi-word argument is enclosed in double-quotes.
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Running TLATEX with the help option produces a list of all options. Running it

with the info option produces most of the information contained in this chapter.

(The �leName argument can be omitted when using the help or info option.)

All you probably need to know about using TLATEX is:

� TLATEX can shade Comments, as explained in the next section.

� The next section also explains how to get TLATEX to produce a Postscript

or pdf �le.

� The number option causes TLATEX to print line numbers in the left mar-

gin.

� You should use the latexCommand option if you run LATEX on your system

by typing something other than latex. For example, if you run LATEX on

�le f.tex by typing

locallatex f.tex

then you should run TLATEX by typing something like

java tlatex.TLA -latexCommand locallatex �leName

� If you happen to use any of these three two-character sequences in a com-

ment:

`~ `^ `.

then you'd better read Section 13.4 on page 210 to learn about how

TLATEX formats comments.

TLATEX's output should be good enough for most users. The following sections

describe how you can get TLATEX to do a better job, and what to do in the

unlikely case that it produces weird output.

13.2 Comment Shading

The shade option causes TLATEX to typeset comments in shaded boxes. A

speci�cation generally looks best when comments are shaded. However, shading

is not supported by some programs for viewing and printing dvi �les. Hence, it

may be necessary to create a Postscript or pdf �le from the dvi �le to view a

speci�cation with shaded comments. Here are all the options relevant to shading.

-grayLevel num

Determines the darkness of the shading, where num is a number between

0 and 1. The value 0 means completely black, and 1 means white; the

default value is .85. The actual degree of shading depends on the output
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device and can vary from printer to printer and from screen to screen. You

will have to experiment to �nd the right value for your system.

-ps

-nops
These options tell TLATEX to create or not to create a Postscript or pdf

output �le. The default is to create one if the shade option is speci�ed,

and otherwise not to.

-psCommand cmd

This is the command run by TLATEX to produce the Postscript or pdf

output �le. Its default value is dvips. TLATEX calls the operating system

with the command

cmd dviFile

where dviFile is the name of the dvi �le produced by running LATEX. If

a more sophisticated command is needed, you may want to use the nops

option and run a separate program to create the Postscript or pdf �le.

13.3 How TLATEX Typesets the Speci�cation

TLATEX should typeset the speci�cation itself pretty much the way you would

want it to. It preserves most of the meaningful alignments in the speci�cation|

for example:

Input

Action == /\ x' = x - y

/\ yy' = 123

/\ zzz' = zzz

Output

Action
�
= ^ x 0 = x � y

^ yy 0 = 123

^ zzz 0 = zzz

Observe how the ^ and = symbols are aligned in the output. Extra spaces in

the input will be reected in the output. However, TLATEX treats no space and

one space between symbols the same:

Input

x+y

x + y

x + y

Output

x + y

x + y

x + y

TLATEX typesets the single TLA+ module that must appear in the input

�le. It will also typeset any material that precedes and follows the module as if

it were a comment. (However, that text won't be shaded.) The noProlog and

noEpilog options suppress typesetting of material that precedes and follows the

module, respectively.
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TLATEX does not check that the speci�cation is syntactically correct TLA+

input. However, it will report an error if the speci�cation contains an illegal

lexeme, such as \;".

13.4 How TLATEX Typesets Comments

TLATEX distinguishes between one-line and multi-line comments. A one-line

comment is any comment that is not a multi-line comment. Multi-line comments

can be typed in any of the following three styles:

(********************) \****************** (* This is a multi-

(* This is a multi- *) \* This is a multi- line comment. *)

(* line comment. *) \* line comment.

(********************) \*******************

In the �rst two styles, the (* or \* characters on the left must all be aligned,

and the last line (containing the comment *. . .*) is optional. In the �rst style,

nothing may appear to the right of the comment|otherwise, the input is con-

sidered to be a sequence of separate one-line comments. The third style works

best when nothing appears on the same line to the left of the (* or to the right

of the *).

TLATEX tries to do a sensible job of typesetting comments. In a multi-

line comment, it usually considers a sequence of non-blank lines to be a single

paragraph, in which case it typesets them as one paragraph and ignores line

breaks in the input. But it does try to recognize tables and other kinds of

multi-line formatting when deciding where to break lines. You can help it as

follows:

� End each sentence with a period (\.").

� Add blank lines to indicate the logical separation of items.

� Left-align the lines of each paragraph.

Below are some common ways in which TLATEX can mess up the typesetting

of comments, and what you can do about it.

TLATEX can confuse parts of a speci�cation with ordinary text. For example,

identi�ers should be italicized, and the minus in the expression x � y should be

typeset di�erently from the dash in x-ray. TLATEX gets this right most of the

time, but it does make mistakes. You can tell TLATEX to treat something as

part of a speci�cation by putting single quotes (` and ') around it. You can

tell it to treat something as ordinary text by putting `^ and ^' around it. For

example:
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Input

\*****************************

\* To find the value of `bar'

\* see `^http://foo/bar^'.

\*****************************

Output

To �nd the latest value of bar see

http://foo/bar.

But, this is seldom necessary. TLATEX usually does the right thing.

Warning: Do not put any character between `^ and ^' except letters,

numbers, and ordinary punctuation|unless you know what you're doing. In

particular, the following characters have special meaning to LATEX and can have

unexpected e�ects if used between `^ and ^':

_ ~ # $ % ^ & < > \ " | { }

See Section 13.8 on page 215 for further information about what can go between

`^ and ^'.

TLATEX isn't very good at copying the way paragraphs are formatted in a

comment. For example, note how it fails to align the two As in:

Input

\***********************

\* gnat: A tiny insect.

\*

\* gnu: A short word.

\***********************

Output

gnat: A tiny insect.

gnu: A short word.

You can tell TLATEX to typeset a sequence of lines precisely the way they appear

in the input, using a �xed-width font, by enclosing the lines with `. and .' , as

in:

Input

\************************

\* This explains it all:

\*

\* `. --- ---

\* | P |--->| M |

\* --- --- .'

\************************

Output

This explains it all:

--- ---

| P |--->| M |

--- ---

Using `. and .' is the only reasonable thing to do for a diagram. However, if you

know (or want to learn) LATEX, Section 13.8 below on using LATEX commands in

comments will explain how you can get TLATEX to do a good job of formatting

things like lists and tables.

TLATEX will occasionally typeset a paragraph very \loosely", with one or

more lines containing lots of space between the words. This happens if there is

no good way to typeset the paragraph. If this bothers you, the easiest solution



212 CHAPTER 13. THE TLATEX TYPESETTER

is to rewrite the paragraph. You can also try to �x the problem with LATEX

commands. (See Section 13.8 below.)

TLATEX usually handles pairs of double-quote characters (") the way it

should:

Input

\********************

\* The string "ok" is

\* a "good" value.

\********************

Output

The string \ok" is a \good"

value.

However, if it gets confused, you can use single quotes to identify string values

and `` and '' to produce the left and right double-quotes of ordinary text:

Input

\***********************

\* He asks ``Is `"good"'

\* bad?''

\***********************

Output

He asks \Is \good" bad?"

TLATEX ignores any (* . . . *) comment that appears within another com-

ment. So, you can get it not to typeset part of a comment by enclosing that part

between (* and *). But a better way to omit part of a comment is to enclose it

between `~ and ~':

Input

\********************

\* x+y is always `~I

\* hope~' positive.

\********************

Output

x + y is always positive.

13.5 Adjusting the Format of the Output

The following options allow you to adjust the font size, the dimensions of the

printed area, and the position of the text on the page.

-ptSize num

Speci�es the size of the font. Legal values of num are 10, 11, or 12, which

cause the speci�cation to be typeset in a 10-, 11-, or 12-point font. The

default value is 10.

-textwidth num

-textheight num

The value of num speci�es the width and height of the typeset output, in

points. A point is 1/72 of an inch, or about 1/3 mm.
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-hoffset num

-voffset num
The value of num speci�es the distance, in points, by which the text should

be moved horizontally or vertically on the page. Exactly where on a page

the text appears depends on the printer or screen-display program. You

may have to adjust this value to get the output to appear centered on the

printed page, or for the entire output to be visible when viewed on the

screen.

13.6 Output Files

TLATEX itself writes either two or three �les, depending on the options. The

names of these �les are normally determined from the name of the input �le.

However, options allow you to specify the name of each of these �les. TLATEX

also runs the separate LATEX program and possibly a program to produce a

Postscript or pdf �le. These programs produce additional �les. In the following

option description, the root of a �le name is the name with any extension or

path speci�er removed; for example, the root of c:\foo\bar.tla is bar. All �le

names are interpreted relative to the directory in which TLATEX is run.

-out �leName

If f is the root of �leName, then f.tex is the name of the LATEX input

�le that TLATEX writes to produce the �nal output. TLATEX then runs

LATEX with f.tex as input, producing the following �les:

f.dvi The dvi output �le.

f.log A log �le, containing LATEX's messages. In this �le, an overfull hbox

warning means that a speci�cation line is too wide and extends into

the right margin, and an underfull hbox warning means that LATEX

could �nd no good line breaks in a comment paragraph. Unfor-

tunately, the line numbers in the �le refer to the f.tex �le, not to

the speci�cation. But by examining the f.tex �le, you can probably

�gure out where the corresponding part of the speci�cation is.

f.aux A LATEX auxiliary �le that is of no interest.

The default out �le name is the root of the input �le name.

-alignOut �leName

This speci�es the root name of the LATEX alignment �le written by TLATEX,

which is described in Section 13.7 below on trouble-shooting. If f is the

root of �leName, then the alignment �le is named f.tex, and running LATEX

on it produces the �les f.dvi, f.log, and f.aux. Only the f.log �le is of inter-

est. If the alignOut option is not speci�ed, the alignment �le is given the
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same name as the out �le. This option is used only for trouble-shooting,

as described in the section below.

-tlaOut �leName

This option cause TLATEX to write to �leName a �le that is almost the

same as the input �le. (The extension tla is added to �leName if it has no

extension.) The tlaOut �le di�ers from the input in that any portion of a

comment enclosed by `^ and ^' is removed, and every occurrence of the

following two-character strings:

`~ ~' `. .'

is replaced by two blanks. As explained in Section 13.8 below, the tlaOut

option can be used to maintain a version of the speci�cation that is read-

able in ascii, while using LATEX commands to provide high-quality type-

setting of comments. The default is not to write a tlaOut �le.

-style �leName

This option is of interest only to LATEX users. Normally, TLATEX inserts

a copy of the tlatex package �le in the LATEX input �les that it writes.

The style option causes it instead to insert a \usepackage command to

read the LATEX package named �leName. (LATEX package �les have the

extension sty. That extension is added to �leName if it's not already

there.) The TLATEX style de�nes a number of special commands that are

written by TLATEX in its LATEX input �les. The package �le speci�ed by

the style option must also de�ne those commands. Any package �le should

therefore be created by modifying the standard tlatex package, which is the

�le tlatex.sty in the same directory as TLATEX's Java program �les. You

might want to create a new package to change the way TLATEX formats

the speci�cation, or to de�ne additional commands for use in `^. . . ^' text

in comments.

13.7 Trouble-Shooting

TLATEX's error messages should be self-explanatory. However, it calls upon the

operating system up to three time to execute other programs:

� It runs LATEX on the alignOut �le that it wrote.

� It runs LATEX on the out �le that it wrote.

� It may execute the psCommand to create the Postscript or pdf output �le.

After each of the last two executions, TLATEX writes a message asserting that

the appropriate output �le was written. It might lie. Any of those executions
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might fail, possibly causing no output �le to be written. Such a failure can even

cause the operating system never to return control to TLATEX, so TLATEX

never terminates. This type of failure is the likely problem if TLATEX does not

produce a dvi �le or a Postscript/pdf �le, or if it never terminates. In that case,

you should try rerunning TLATEX using the alignOut option to write a separate

alignment �le. Reading the two log �les that LATEX produces, or any error �le

produced by executing psCommand, may shed light on the problem.

Normally, the LATEX input �les written by TLATEX should not produce any

LATEX errors. However, incorrect LATEX commands introduced in `^. . . ^' regions

can cause LATEX to fail.

13.8 Using LATEX Commands to Format Comments

TLATEX puts any text enclosed between `^ and ^' in a comment into the LATEX

input �le exactly as it appears. This allows you to insert LATEX formatting

commands in comments. There are two ways to use this.

� You can enclose between `^ and ^' a short phrase appearing on a single line

of input. LATEX typesets that phrase as part of the enclosing paragraph.

� You can enclose one or more complete lines of a multi-line comment be-

tween `^ and ^'. That text is typeset as one or more separate paragraphs

whose prevailing left margin is determined by the position of the `^, as

show here:

Input

\**********************

\* The first paragraph.

\*

\* The 2nd paragraph.

\*

\* `^ Text formatted

\* by \LaTeX. ^'

\********************

Output

The �rst paragraph.

The 2nd paragraph.

Text formatted by LATEX.

LATEX typesets the text between `^ and ^' in LR mode for a one-line com-

ment and in paragraph mode for a multi-line comment. The LATEX �le produced

by TLATEX de�nes a describe environment that is useful for formatting text in

a multi-line `^. . . ^' region. This environment is the same as the standard LATEX

description environment, except that it takes an argument, which should be

the widest item label in the environment:
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Input

\****************************

\* `^\begin{describe}{gnat:}

\* \item[gnat:] Tiny insect.

\* \item[gnu:] Short word.

\* \end{describe} ^'

\***************************

Output

gnat: Tiny insect.

gnu: Short word.

As this example shows, putting LATEX commands in comments makes the com-

ments in the input �le rather unreadable. You can maintain both a typeset

and an ascii-readable version of the speci�cation by enclosing text that should

appear only in the ascii version between `~ and ~'. You can then accompany

each `^. . . ^' region with its ascii version enclosed by `~ and ~'. For example,

the input �le could contain:

\*************************************

\* `^ \begin{describe}{gnat:}

\* \item[gnat:] A tiny insect.

\* \item[gnu:] A short word.

\* \end{describe} ^'

\* `~ gnat: A tiny insect.

\*

\* gnu: A short word. ~'

\*************************************

The tlaOut option causes TLATEX to write a version of the original speci�cation

with `^. . . ^' regions deleted, and with `~ and ~' strings replaced by spaces.

(The strings `. and .' are also replaced by spaces.) In the example above, the

tlaOut �le would contain the comment:

\*************************************

\*

\* gnat: A tiny insect.

\*

\* gnu: A short word.

\*************************************

The blank line at the top was produced by the end-of-line character that follows

the ^'.

Warning: An error in a LATEX command inside `^. . . ^' text can cause

TLATEX not to produce any output. See Section 13.7 above on trouble-shooting.
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The TLC Model Checker

This is a description of how we expect Version 2.0 of TLC to behave. Version 1.0

of TLC does not completely implement this description; Section 14.6 on page 256

describes its limitations. Section 14.7 on page 258 describes improvements that

we may make to later versions.

14.1 Introduction to TLC

TLC is a program for �nding errors in TLA+ speci�cations. It was designed and

implemented by Yuan Yu, with help from Leslie Lamport, Mark Hayden, and

Mark Tuttle.

A syntactically correct speci�cation can have two kinds of errors:

� It may contain \silliness". As explained in Section 6.2, a silly expression

is one like 3 + h1; 2i. whose meaning is not determined by the semantics

of TLA+. A speci�cation is incorrect if whether or not some particular

behavior satis�es it depends on the meaning of a silly expression.

� It may not capture the intention of its author. Intention isn't a well-de�ned

concept, and there may be a �ne line between errors and unintended fea-

tures.

TLC handles speci�cations that have the standard form

Init ^ 2[Next ]vars ^ Temporal(14.1)

where Init is the initial predicate, Next is the next-state relation, vars is the

tuple of all variables, and Temporal is a temporal formula that usually speci�es a

liveness condition. (Liveness and temporal formulas are explained in Chapter 8.

If your speci�cation contains no liveness condition, you can ignore the discussion

217
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of temporal checking.) TLC does not handle the hiding operator 999999 (temporal

existential quanti�cation). You can check a speci�cation with hidden variables

by checking the internal speci�cation, in which those variables are visible.

The most e�ective way to �nd errors in a speci�cation is by trying to verify

that it satis�es properties that it should. TLC can check that the speci�cation

satis�es (implies) any TLA formulas that do not contain 999999 . You can also run

TLC without checking any of these properties, in which case it will just look for

\silliness" errors and for deadlock.

The absence of deadlock is a particular property that we often want a speci�-

cation to satisfy; it is expressed by the formula 2(enabled Next). A counterex-

ample to this invariance property is a behavior exhibiting deadlock|that is,

reaching a state in which Next is not enabled, so no further (nonstuttering) step

is possible. TLC normally checks for deadlock, but this checking can be disabled

since, for some systems, deadlock may just indicate successful termination.

I will illustrate the use of TLC with a simple example: a speci�cation of the

alternating bit protocol for sending data over a lossy FIFO transmission line.

An algorithm designer might describe the protocol as a system that looks like

this:

Sender

sent

sBit

sAck

Receiver

rcvd

rBit

msgQ
-

ackQ
�

The sender can send a value when the one-bit values sBit and sAck are equal.

It sets the variables sent to the value it is sending and complements sBit . This

value is eventually delivered to the receiver by setting the variable rcvd and

complementing the one-bit value rBit . Some time later, the sender's sAck value

is complemented, permitting the next value to be sent. The protocol uses two

lossy FIFO transmission lines: the sender sends data and control information

on msgQ , and the receiver sends acknowledgments on ackQ .

The complete protocol speci�cation appears in module AlternatingBit in

Figure 14.1 on the following two pages. It is fairly straightforward, except for

the liveness condition. Because messages can be repeatedly lost from the queues,

strong fairness of the actions that receive messages is required to ensure that a

message that keeps getting resent is eventually received. However, don't worry

about the details of the speci�cation. For now, all you need to know are the

declarations:

constant Data The set of data values that can be sent.

variables msgQ ; ackQ ; sBit ; sAck ; rBit ; sent ; rcvd
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module AlternatingBit

This speci�cation describes a protocol for using lossy FIFO transmission lines to transmit a sequence

of values from a sender to a receiver. The sender sends a data value d by sending a sequence of hb; d i

messages on msgQ, where b is a control bit. It knows that the message has been received when it re-

ceives the ack b from the receiver on ackQ . It sends the next value with a di�erent control bit. The

receiver knows that a message on msgQ contains a new value when its control bit di�ers from the last

one it has received. The receiver keeps sending the last control bit it received on ackQ.

extends Naturals, Sequences

constants Data The set of data values that can be sent.

variables msgQ; The sequence of hcontrol bit, data valuei messages in transit to the receiver.

ackQ; The sequence of one-bit acknowledgments in transit to the sender.

sBit; The last control bit sent by sender; it is complemented when sending a new data value.

sAck; The last acknowledgment bit received by the sender.

rBit; The last control bit received by the receiver.

sent; The last value sent by the sender.

rcvd The last value received by the receiver.

ABInit
�
= ^ msgQ = h i
^ ackQ = h i
^ sBit 2 f0; 1g
^ sAck = sBit

^ rBit = sBit

^ sent 2 Data

^ rcvd 2 Data

The initial condition:

Both message queues are empty.

All the bits equal 0 or 1

and are equal to each other.

The initial values of sent and rcvd

are aribtrary data values.

ABTypeInv
�
= ^ msgQ 2 Seq(f0; 1g �Data)

^ ackQ 2 Seq(f0; 1g)
^ sBit 2 f0; 1g
^ sAck 2 f0; 1g
^ rBit 2 f0; 1g
^ sent 2 Data

^ rcvd 2 Data

The type-correctness invariant.

SndNewValue(d)
�
= The action in which the sender sends a new data value d .

^ sAck = sBit

^ sent 0 = d

^ sBit 0 = 1� sBit

^ msgQ 0 = Append(msgQ ; hsBit 0; d i)
^ unchanged hackQ ; sAck ; rBit ; rcvd i

Enabled i� sAck equals sBit.

Set sent to d .

Complement control bit sBit

Send value on msgQ with new control bit.

Figure 14.1a: The alternating bit protocol (beginning).
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ReSndMsg
�
= The sender resends the last message it sent on msgQ .

^ sAck 6= sBit

^ msgQ 0 = Append(msgQ ; hsBit ; sent i)
^ unchanged hackQ ; sBit ; sAck ; rBit ; sent ; rcvd i

Enabled i� sAck doesn't equal sBit.

Resend the last value in send .

RcvMsg
�
= The receiver receives the message at the head of msgQ.

^ msgQ 6= h i
^ msgQ 0 = Tail(msgQ)

^ rBit 0 = Head(msgQ)[1]

^ rcvd 0 = Head(msgQ)[2]

Enabled i� msgQ not empty.

Remove message from head of msgQ .

Set rBit to message's control bit.

Set rcvd to message's data value.

^ unchanged hackQ ; sBit ; sAck ; sent i
SndAck

�
= ^ ackQ 0 = Append(ackQ ; rBit) The receiver sends rBit on ackQ at any time.

^ unchanged hmsgQ ; sBit ; sAck ; rBit ; sent ; rcvd i
RcvAck

�
= ^ ackQ 6= h i The sender receives an ack on ackQ.

It removes the ack and sets sAck to its

value.
^ ackQ 0 = Tail(ackQ)

^ sAck 0 = Head(ackQ)

^ unchanged hmsgQ ; sBit ; rBit ; sent ; rcvd i
Lose(q)

�
= The action of losing a message from queue q.

^ q 6= h i
^ 9 i 2 1 : : Len(q) :

q 0 = [j 2 1 : : (Len(q) � 1) 7! if j < i then q [j ]

else q [j + 1]]

^ unchanged hsBit ; sAck ; rBit ; sent ; rcvd i

Enabled i� q is not empty.

For some i,

remove the ith message from q.

Leave every variable unchanged

except msgQ and ackQ.

LoseMsg
�
= Lose(msgQ) ^ unchanged ackQ Lose a message from msgQ.

LoseAck
�
= Lose(ackQ) ^ unchanged msgQ Lose a message from ackQ.

ABNext
�
= _ 9 d 2 Data : SndNewValue(d)

_ ReSndMsg _ RcvMsg _ SndAck _ RcvAck

_ LoseMsg _ LoseAck

The next-state relation.

abvars
�
= hmsgQ ; ackQ ; sBit ; sAck ; rBit ; sent ; rcvd i The tuple of all variables.

ABFairness
�
= ^ WFabvars(ReSndMsg) ^ WFabvars(SndAck)

^ SFabvars(RcvMsg) ^ SFabvars(RcvAck)

The liveness condition.

ABSpec
�
= ABInit ^ 2[ABNext ]abvars ^ ABFairness The complete speci�cation.

theorem ABSpec ) 2ABTypeInv

Figure 14.1b: The alternating bit protocol (end).
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and the types of the variables:

� msgQ is a sequence of elements in f0; 1g �Data.

� ackQ is a sequence of elements in f0; 1g.

� sBit , sAck , and rBit are elements of f0; 1g.

� sent and rcvd are elements of Data.

The input to TLC consists of a TLA+ module and a con�guration �le. Recall

that TLC assumes the speci�cation has the form of formula (14.1) on page

217. The con�guration �le tells TLC the names of the speci�cation and of the

properties to be checked. For example, the con�guration �le for the alternating

bit protocol will contain the declaration

SPECIFICATION ABSpec

telling TLC to take ABSpec as the speci�cation. If your speci�cation has the

form Init ^ 2[Next ]vars , with no liveness condition, then instead of using a

SPECIFICATION statement, you can declare the initial predicate and next-state

relation by putting the following two statements in the con�guration �le:

INIT Init

NEXT Next

The property or properties to be checked are speci�ed with a PROPERTY state-

ment. For example, to check that ABTypeInv is actually an invariant, we could

have TLC check that the speci�cation implies 2ABTypeInv by adding the de�-

nition

InvProperty
�
= 2ABTypeInv

to module AlternatingBit and putting the statement

PROPERTY InvProperty

in the con�guration �le. Invariance checking is so common that TLC allows you

instead to put the following statement in the con�guration �le:

INVARIANT ABTypeInv

The INVARIANT statement must specify a state predicate. To check invariance

with a PROPERTY statement, the speci�ed property has to be of the form 2P .

Specifying a state predicate P in a PROPERTY statement tells TLC to check that

the speci�cation implies P , meaning that P is true in the initial state of every

behavior satisfying the speci�cation.

TLC works by generating behaviors that satisfy the speci�cation. To do

this, it must be given what we call a model of the speci�cation. To de�ne a
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model, we must assign values to the speci�cation's constant parameters. The

only constant parameter of the alternating bit protocol speci�cation is the set

Data of data values. We can tell TLC to let Data equal the set containing two

arbitrary elements, named d1 and d2, by putting the following declaration in

the con�guration �le. The keywords

CONSTANT and

CONSTANTS are

equivalent.
CONSTANT Data = {d1, d2}

(We can use any sequence of letters and digits containing at least one letter as

the name of an element.)

There are two ways to use TLC. The default method is model checking, in

which it tries to �nd all reachable states|that is, all states1 that can occur in

behaviors satisfying the formula Init ^ 2[Next ]vars . You can also run TLC in

simulation mode, in which it randomly generates behaviors, without trying to

check all reachable states. We now consider model checking; simulation mode is

described in Section 14.3.2 on page 239.

Exhaustively checking all reachable states is impossible for the alternating

bit protocol because the sequences of messages can get arbitrarily long, so there

are in�nitely many reachable states. We must further constrain the model to

make it �nite|that is, so it allows only a �nite number of possible states. We

do this by de�ning a state predicate called the constraint that asserts bounds Section 14.3 be-

low describes how

actions as well as

state predicates

can be used as

constraints.

on the lengths of the sequences. For example, the following constraint asserts

that msgQ and ackQ have length at most 2:

^ Len(msgQ) � 2

^ Len(ackQ) � 2

Instead of specifying the bounds on the lengths of sequences in this way, I prefer

to make them parameters and to assign them values in the con�guration �le. We

don't want to put into the speci�cation itself declarations and de�nitions that

are just for TLC's bene�t. So, we write a new module, calledMCAlternatingBit ,

that extends the AlternatingBit module and can be used as input to TLC. This

module appears in Figure 14.2 on the next page. A possible con�guration �le

for the module appears in Figure 14.3 on the next page. Observe that the

con�guration �le must specify values for all the constant parameters of the

speci�cation|in this case, the parameter Data from the AlternatingBit mod-

ule and the two parameters declared in module MCAlternatingBit itself. You

can put comments in the con�guration �le, using the TLA+ comment syntax

described in Section 3.5 (page 32).

When a constraintConstr is speci�ed, TLC checks every state that appears in

a behavior satisfying Init ^ 2[Next ]vars ^ 2Constr . (Remember that any �nite

1As explained in Section 2.3 (page 18), a state is an assignment of values to all possible

variables. However, when discussing a particular speci�cation, we usually consider a state to

be an assignment of values to that speci�cation's variables. That's what I'm doing in this

chapter.
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module MCAlternatingBit

extends AlternatingBit

constants msgQLen, ackQLen

SeqConstraint
�
= ^ Len(msgQ) � msgQLen

^ Len(ackQ) � ackQLen

A constraint on the lengths of

sequences for use by TLC.

Figure 14.2: Module MCAlternatingBit.

behavior satisfying this formula can be extended to an in�nite one that also

satis�es it by adding stuttering steps at the end.) In the rest of this chapter, I

will call these states the reachable ones.

Having TLC check the type invariant will catch many simple mistakes. When

we've corrected all the errors we can �nd that way, we then want to look for

less obvious ones. A common error is for an action not to be enabled when it

should be, preventing some states from being reached. You can discover if an

action is never enabled by using the coverage option, described on page 247. To

discover if an action is just sometimes incorrectly disabled, try checking liveness

properties. An obvious liveness property for the alternating bit protocol is that

every message sent is eventually delivered. A message d has been sent when

sent = d and sBit 6= sAck . So, a naive way to state this property is

The temporal op-

erator ; is de-

�ned on page 91.

SentLeadsToRcvd
�
= 8 d 2 Data : (sent = d) ^ (sBit 6= sAck); (rcvd = d)

Formula SentLeadsToRcvd asserts that, for any data value d , if sent ever equals d

when sBit does not equal sAck , then rcvd must eventually equal d . This doesn't

assert that every message sent is eventually delivered. For example, it is satis�ed

by a behavior in which a particular value d is sent twice, but received only once.

However, the formula is good enough for our purposes because the protocol

doesn't depend on the actual values being sent. If it were possible for the same

value to be sent twice but received only once, then it would be possible for two

di�erent values to be sent and only one received, violating SentLeadsToRcvd . We

therefore add the de�nition of SentLeadsToRcvd to module MCAlternatingBit

and add the following statement to the con�guration �le.

PROPERTY SentLeadsToRcvd

CONSTANTS Data = {d1, d2} (* Is this big enough? *)

msgQLen = 2

ackQLen = 2 \* Try 3 next.

SPECIFICATION ABSpec

INVARIANT ABTypeInv

CONSTRAINT SeqConstraint

Figure 14.3: A con�guration �le for module MCAlternatingBit.
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Checking liveness properties is a lot slower than other kinds of checking, so you

should do it only after you've found all the errors you can by checking invariance

properties.

Checking type correctness and property SentLeadsToRcvd is a good way to

start looking for errors. But ultimately, we would like to see if the protocol

meets its speci�cation. However, we don't have its speci�cation. In fact, it is

typical in practice that we are called upon to check the correctness of a system

design without any formal speci�cation of what the system is supposed to do.

In that case, we can write an ex post facto speci�cation. Module ABCorrectness

in Figure 14.4 on the next page is such a speci�cation of correctness for the

alternating bit protocol. It is actually a simpli�ed version of the protocol's

speci�cation in which, instead of being read from messages, the variables rcvd ,

rBit , and sAck are obtained directly from the variables of the other process.

We want to check that the speci�cation ABSpec of module AlternatingBit

implies formula ABCSpec of module ABCorrectness . To do this, we modify

module MCAlternatingBit by changing its extends statement to

extends AlternatingBit ;ABCorrectness

and we modify the PROPERTY statement of the con�guration �le to The keywords

PROPERTY and

PROPERTIES are

equivalent.

PROPERTIES ABCSpec SentLeadsToRcvd

This example is atypical because the correctness speci�cation ABCSpec does

not involve variable hiding (temporal existential quanti�cation). Let's now sup-

pose module ABCorrectness did declare another variable h that appeared in

ABCSpec, and that the correctness condition for the alternating bit protocol

was ABCSpec with h hidden. This correctness condition is expressed formally

in TLA+ as follows: This use of

instance is ex-

plained in Sec-

tion 4.3 (page 41).

extends AlternatingBit

AB(h)
�
= instance ABCorrectness

theorem ABSpec ) 999999 h : AB(h)!ABCSpec

TLC cannot check this theorem directly because it cannot handle the temporal

existential quanti�er 999999 . We check this theorem with TLC the same way we

would try to prove it|namely, by using a re�nement mapping. As explained in

Section 5.8 on page 62, we de�ne a state function oh in terms of the variables

of module AlternatingBit and we prove

ABSpec ) AB(oh)!ABCSpec(14.2)

To get TLC to check this theorem, we add the de�nition

ABCSpecBar
�
= AB(h)!ABCSpec

and have TLC check the property ABCSpecBar .
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module ABCorrectness

extends Naturals

constants Data

variables sBit ; sAck ; rBit ; sent ; rcvd

ABCInit
�
= ^ sBit 2 f0; 1g
^ sAck = sBit

^ rBit = sBit

^ sent 2 Data

^ rcvd 2 Data

CSndNewValue(d)
�
= ^ sAck = sBit

^ sent 0 = d

^ sBit 0 = 1� sBit

^ unchanged hsAck ; rBit ; rcvd i
CRcvMsg

�
= ^ rBit 6= sBit

^ rBit 0 = sBit

^ rcvd 0 = sent

^ unchanged hsBit ; sAck ; sent i
CRcvAck

�
= ^ rBit 6= sAck

^ ackQ 0 = rBit

^ unchanged hsBit ; rBit ; sent ; rcvd i
ABCNext

�
= _ 9 d 2 Data : CSndNewValue(d)

_ CRcvMsg _ CRcvAck

cvars
�
= hsBit ; sAck ; rBit ; sent ; rcvd i

ABCFairness
�
= WFcvars(CRcvMsg) ^ WFcvars(CRcvAck)

ABCSpec
�
= ABCInit ^ 2[ABCNext ]cvars ^ ABCFairness

Figure 14.4: A speci�cation of correctness of the alternating bit protocol.

When TLC checks a property, it does not actually verify that the speci�cation

implies the property. Instead, it checks that (i) the safety part of the speci�cation

implies the safety part of the property and (ii) the speci�cation implies the

liveness part of the property. For example, suppose that the speci�cation Spec

and the property Prop are:

Spec
�
= Init ^ 2[Next ]vars ^ Temporal

Prop
�
= ImpliedInit ^ 2[ImpliedAction]pvars ^ ImpliedTemporal

where Temporal and ImpliedTemporal are liveness properties. In this case, TLC
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checks the two formulas

Init ^ 2[Next ]vars ) ImpliedInit ^ 2[ImpliedAction]pvars
Spec ) ImpliedTemporal

This means that you cannot use TLC to check that a non-machine closed speci-

�cation satis�es a safety property. (Machine closure is discussed in Section 8.9.2

on page 111.) Section 14.3 below more precisely describes how TLC checks

properties.

14.2 What TLC Can Cope With

No model checker can handle all the speci�cations that we can write in a lan-

guage as expressive as TLA+. However, TLC seems able to handle most TLA+

speci�cations that people actually write. Getting TLC to handle a speci�cation

may require a bit of trickery, but it can usually be done without having to make

any changes to the speci�cation itself.

This section explains what TLC can and cannot cope with, and gives some

ways to make it cope. The best way to understand TLC's limitations is to

understand how it works. So, this section describes how TLC \executes" a

speci�cation.

14.2.1 TLC Values

A state is an assignment of values to variables. TLA+ allows you to describe a

wide variety of values|for example, the set of all sequences of prime numbers.

TLC can compute only a restricted class of values, called TLC values. Those

values are built from the following four types of primitive values:

Booleans The values true and false.

Integers Values like 3 and �1.

Strings Values like \ab3".

Model Values These are values introduced in the CONSTANT statement of the

con�guration �le. For example, the con�guration �le shown

in Figure 14.3 on page 223 introduces the model values d1

and d2. Model values with di�erent names are assumed to be

di�erent.

A TLC value is de�ned inductively to be either

1. a primitive value, or
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2. a �nite set of comparable TLC values (comparable is de�ned below), or

3. a function f whose domain is a TLC value such that f [x ] is a TLC value,

for all x in domain f .

For example, the �rst two rules imply that

ff\a"; \b"g; f\b"; \c"g; f\c"; \d"gg(14.3)

is a TLC value because rules 1 and 2 imply that f\a"; \b"g, f\b"; \c"g, and
f\c"; \d"g are TLC values, and the second rule then implies that (14.3) is a TLC

value. Since tuples and records are functions, rule 3 implies that a record or tuple

whose components are TLC values is a TLC value. For example, h1; \a"; 2; \b"i
is a TLC value.

To complete the de�nition of what a TLC value is, I must explain what

comparable means in rule 2. The basic idea is that two values should be com-

parable i� the semantics of TLA+ determines whether or not they are equal.

For example, strings and numbers are not comparable because the semantics of

TLA+ doesn't tell us whether or not \abc" equals 42. The set f\abc"; 42g is
therefore not a TLC value; rule 2 doesn't apply because \abc" and 42 are not

comparable. On the other hand, f\abc"g and f4; 2g are comparable because sets
having di�erent numbers of elements must be unequal. Hence, the two-element

set ff\abc"g; f4; 2gg is a TLC value. TLC considers a model value to be com-

parable to, and unequal to, any other value. The precise rules for comparability

are given in Section 14.8.2.

14.2.2 How TLC Evaluates Expressions

Checking a speci�cation requires evaluating expressions. For example, TLC does

invariance checking by evaluating the invariant in each reachable state|that is,

computing its TLC value, which should be true. To understand what TLC can

and cannot do, you have to know how it evaluates expressions.

TLC evaluates expressions in a straightforward way, generally evaluating

subexpressions \from left to right". In particular:

� It evaluates p ^ q by �rst evaluating p and, if it equals true, then evalu-

ating q .

� It evaluates p _ q by �rst evaluating p and, if it equals false, then evalu-

ating q . It evaluates p ) q as :p _ q .

� It evaluates if p then e1 else e2 by �rst evaluating p, then evaluating

either e1 or e2.

To understand the signi�cance of these rules, let's consider a simple example.

TLC cannot evaluate the expression x [1] if x equals h i, since h i[1] is silly. (The
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empty sequence h i is a function whose domain is the empty set and hence does

not contain 1.) The �rst rule implies that, if x equals h i, then TLC can evaluate

the formula

(x 6= h i) ^ (x [1] = 0)

but not the (logically equivalent) formula

(x [1] = 0) ^ (x 6= h i)
(When evaluating the latter formula, TLC �rst tries to compute h i[1] = 0,

reporting an error because it can't.) Fortunately, we naturally write the �rst

formula rather than the second because it's easier to understand. People under-

stand a formula by \mentally evaluating" it from left to right, much the way

TLC does.

TLC evaluates 9 x 2 S : p by enumerating the elements s1; : : : ; sn of S in

some order and then evaluating p with s i substituted for x , successively for

i = 1; : : : ;n. It enumerates the elements of a set S in a very straightforward

way, and it gives up and declares an error if the set is not obviously �nite.

For example, it can obviously enumerate the elements of f0; 1; 2; 3g and 0 : : 3.

It enumerates a set of the form fx 2 S : pg by �rst enumerating S , so it can

enumerate fi 2 0 : : 5 : i < 4g but not fi 2 Nat : i < 4g.
TLC evaluates the expressions 8 x 2 S : p and choose x 2 S : p by �rst

enumerating the elements of S , much the same way as it evaluates 9 x 2 S : p.

The semantics of TLA+ states that choose x 2 S : p is an arbitrary value if

there is no x in S for which p is true. However, this case almost always arises

because of a mistake, so TLC treats it as an error. Note that evaluating the

expression

if n > 5 then choose i 2 1 : : n : i > 5 else 42

will not produce an error because TLC will not evaluate the choose expression if

n � 5. (TLC would report an error if it tried to evaluate the choose expression

when n � 5.)

TLC cannot evaluate \unbounded" quanti�ers or choose expressions|that

is, expressions having one of the forms:

9 x : p 8 x : p choose x : p

TLC cannot evaluate any expression whose value is not a TLC value, as de�ned

in Section 14.2.1 above. In particular, TLC can evaluate a set-valued expression

only if that expression equals a �nite set, and it can evaluate a function-valued

expression only if that expression equals a function whose domain is a �nite set.

TLC will evaluate expressions of the following forms only if it can enumerate

the set S :

9 x 2 S : p 8 x 2 S : p choose x 2 S : p

fx 2 S : pg fe : x 2 Sg [x 2 S 7! e]

subset S union S
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TLC can often evaluate an expression even when it can't evaluate all subexpres-

sions. For example, it can evaluate

[n 2 Nat 7! n � (n + 1)][3]

which equals the TLC value 12, even though it can't evaluate

[n 2 Nat 7! n � (n + 1)]

which equals a function whose domain is the set Nat . (A function can be a TLC

value only if its domain is a �nite set.)

TLC evaluates recursively de�ned functions with a simple recursive proce-

dure. If f is de�ned by f [x 2 S ]
�
= e, then TLC evaluates f [c] by evaluating e

with c substituted for x . This means that it can't handle some legal function

de�nitions. For example, consider the de�nition of the function mr on page 69.

It has the form mr [n 2 Nat ]
�
= e, where the expression mr [n] appears in e. To

evaluate mr [3], TLC substitutes 3 for n and starts evaluating e. To do this,

it must evaluate the subexpression mr [3], which it does by substituting 3 for n

and starting to evaluate e. And so on. TLC eventually detects that it's in an

in�nite loop and reports an error.

Legal recursive de�nitions that cause TLC to loop like this are rare, and they

can be rewritten so TLC can handle them. Recall that we de�ned mr to express

the mutual recursion:

f [n] = if n = 0 then 17 else f [n � 1] � g [n]
g [n] = if n = 0 then 42 else f [n � 1] + g [n � 1]

The subexpressionmr [n] appeared in the expression de�ning mr [n] because f [n]

depends on g [n]. To eliminate it, we have to rewrite the mutual recursion so f [n]

depends only on f [n � 1] and g [n � 1]. We do this by expanding the de�nition

of g [n] in the expression for f [n]. Since the else clause applies only to the case

n 6= 0, we can rewrite the expression for f [n] as

f [n] = if n = 0 then 17 else f [n � 1] � (f [n � 1] + g [n � 1])

This leads to the following equivalent de�nition of mr .

mr [n 2 Nat ]
�
= [f 7! if n = 0 then 17

else mr [n � 1]:f � (mr [n � 1]:f +mr [n � 1]:g) ;

g 7! if n = 0 then 42 else mr [n � 1]:f +mr [n � 1]:g ]

With this de�nition, TLC has no trouble evaluating mr [3].

The evaluation of enabled predicates and the action-composition operator

\�" are described on page 235 in Section 14.2.6 below. Section 14.3 below explains

how TLC evaluates temporal-logic formulas for temporal checking.
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14.2.3 Assignment and Replacement

As we saw in the alternating bit example, the con�guration �le must determine

the value of each constant parameter. To assign a TLC value v to a constant pa-

rameter c of the speci�cation, we write c = v in the con�guration �le's CONSTANT

statement. The value v may be a primitive TLC value or a �nite set of primitive

TLC values written in the form fv1; : : : ; vng|for example, {1, -3, 2}. In v ,

any sequence of characters like a1 or foo that is not a number, a quoted string,

or TRUE or FALSE is taken to be a model value.

In the assignment c = v , the symbol c need not be a constant parameter; it

can also be a de�ned symbol. This assignment causes TLC to ignore the actual

de�nition of c and to take v to be its value. Such an assignment is often used

when TLC cannot compute the value of c from its de�nition. In particular, TLC

cannot compute the value of NotAnS from the de�nition:

NotAnS
�
= choose n : n =2 S

because it cannot evaluate the unbounded choose expression. You can override

this de�nition by assigning NotAnS a value in the CONSTANT statement of the

con�guration �le. For example, the assignment

NotAnS = NS

causes TLC to assign to NotAnS the model value NS . TLC ignores the actual

de�nition of NotAnS . If you used the name NotAnS in the speci�cation, you'd

probably want TLC's error messages to call it NotAnS rather than NS. So, you'd

probably use the assignment

NotAnS = NotAnS

which assigns to the symbol NotAnS the model value NotAnS. Remember that,

in the assignment c = v , the symbol c must be de�ned or declared in the TLA+

module, and v must be a primitive TLC value or a �nite set of such values.

The CONSTANT statement of the con�guration �le can also contain replace-

ments of the form c <- d , where c and d are symbols de�ned in the TLA+
Note that d is a

de�ned symbol in

the replacement

c <- d , while v is

a TLC value in

the substitution

c = v .

module. This causes TLC to replace c by d when performing its calculations.

One use of replacement is to give a value to an operator parameter. For exam-

ple, suppose we wanted to use TLC to check the write-through cache speci�-

cation of Section 5.6 (page 54). The WriteThroughCache module extends the

MemoryInterface module, which contains the declaration

constants Send( ; ; ; ); Reply( ; ; ; ); : : :

We have to tell TLC how to evaluate the operators Send and Reply . We

do this by �rst writing a module MCWriteThroughCache that extends the

WriteThroughCache module and de�nes two operators

MCSend(p; d ; old ;new)
�
= : : :

MCReply(p; d ; old ;new)
�
= : : :
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We then add to the con�guration �le's CONSTANT statement the replacements:

Send <- MCSend

Reply <- MCReply

A replacement can also replace one de�ned symbol by another. In a speci�cation,

we usually write the simplest possible de�nitions. A simple de�nition is not

always the easiest one for TLC to use. For example, suppose our speci�cation

requires an operator Sort such that Sort(S ) is a sequence containing the elements

of S in increasing order, if S is a �nite set of numbers. Our speci�cation in

module SpecMod might use the simple de�nition:

Sort(S )
�
= choose s 2 [1 : : Cardinality(S ) ! S ] :

8 i ; j 2 domain s : (i < j )) (s [i ] < s [j ])

To evaluate Sort(S ) for a set S containing n elements, TLC has to enumerate

the nn elements in the set [1 : : n ! S ] of functions. This may be unacceptably

slow. We can write a module MCSpecMod that extends SpecMod and de�nes

FastSort so it equals Sort , when applied to �nite sets of numbers, but can be

evaluated more e�ciently by TLC. We can then run TLC with a con�guration

�le containing the replacement

Sort <- FastSort

One possible de�nition of FastSort is given in Section 14.4, on page 246 below.

14.2.4 Evaluating TLA Formulas

Section 14.2.2 above (page 227) explains what kind of ordinary expressions TLC

can evaluate. The speci�cation and properties that TLC checks are TLA for-

mulas; this section describes the class of TLA formulas TLC can handle.

TLC can evaluate a TLA formula i� (i) the formula is nice|a term de�ned

below|and (ii) TLC can evaluate all the ordinary expressions of which the

formula is composed. For example, a formula of the form P ; Q is nice, so

TLC can evaluate it i� it can evaluate P and Q . (Section 14.3 below explains

on what states and pairs of states TLC evaluates the component expressions of

a TLA formula.)

A TLA formula is nice i� it is the conjunction of formulas that belong to one

of the following four classes:

State Predicate

Invariance Formula A formula of the form 2P , where P is a state predicate.

Box-Action Formula A formula of the form 2[A]v , where A is an action and

v is a state function.
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Simple Temporal Formula To de�ne this class, we �rst make the following

de�nitions. The terminology

used here is not

standard.� The simple Boolean operators consist of the operators

^ _ : ) � true false

of propositional logic together with quanti�cation over �nite, constant

sets.

� A temporal state formula is one obtained from state predicates by

applying simple Boolean operators and the temporal operators 2, 3,

and ;. For example, if N is a constant, then

8 i 2 1 : : N : 2((x = i)) 9 j 2 1 : : i : 3(y = j ))

is a temporal state formula.

� A simple action formula is one of the following, where A is an action

and v a state function:

WFv (A) SFv (A) 23hAiv 32[A]v

The component expressions of WFv (A) and SFv (A) are hAiv and

enabled hAiv . (The evaluation of enabled formulas is described

on page 235.)

A simple temporal formula is then de�ned to be one constructed from

temporal state formulas and simple action formulas by applying simple

Boolean operators.

For convenience, we exclude invariance formulas from the class of simple tem-

poral formulas, so these four classes of nice TLA formulas are disjoint.

TLC can therefore evaluate the temporal formula

8 i 2 1 : : N : 3(y = i))WFy((y
0 = y + 1) ^ (y � i))

if N is a constant, because this is a simple temporal formula (and hence nice)

and TLC can evaluate all of its component expressions. TLC cannot evaluate

3hx 0 = 1ix , since this is not a nice formula. It cannot evaluate the formula

WFx (x
0[1] = 0) if it must evaluate the action hx 0[1] = 0ix on a step s ! t in

which x = h i in state t .

A PROPERTY statement can specify any formulas that TLC can evaluate. The

formula of a SPECIFICATION statement must contain exactly one conjunct that

is a box-action formula. (That conjunct speci�es the next-state action.)

14.2.5 Overriding Modules

TLC cannot compute 2 + 2 from the de�nition of + contained in the standard

Naturals module. Even if we did use a de�nition of + from which TLC could

compute sums, it would not do so very quickly. Arithmetic operators like + are
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implemented directly in Java, the language in which TLC is written. This is

achieved by a general mechanism of TLC that allows a module to be overridden

by a Java class that implements the operators de�ned in the module. When

TLC encounters an extends Naturals statement, it loads the Java class that

overrides the Naturals module rather than reading the module itself. There

are Java classes to override the following standard modules: Naturals , Integers ,

Sequences , FiniteSets , and Bags . (The TLC module described below in Sec-

tion 14.4 is also overridden by a Java class.) Intrepid Java programmers will

�nd that writing a Java class to override a module is not too hard.

14.2.6 How TLC Computes States

When TLC evaluates an invariant, it is calculating the invariant's value, which

is either true or false. When TLC evaluates the initial predicate or the next-

state action, it is computing a set of states|for the initial predicate, the set

of all initial states, and for the next-state action, the set of possible successor

states (primed states) for a given starting (unprimed) state. I will describe how

TLC does this for the next-state relation; the evaluation of the initial predicate

is analogous.

Recall that a state is an assignment of values to variables. TLC computes the

successors of a given state s by assigning to all unprimed variables their values in

state s , assigning no values to the primed variables, and then evaluating the next-

state action. TLC evaluates the next-state action as described in Section 14.2.2

(page 227), except for two di�erences, which I now describe. This description

assumes that TLC has already performed all the assignments and replacements

speci�ed by the CONSTANT statement of the con�guration �le and has expanded

all de�nitions. Thus, the next-state action is a formula containing only variables,

primed variables, model values, and built-in TLA+ operators and constants.

The �rst di�erence in evaluating the next-state action is that TLC does not

evaluate disjunctions from left to right. Instead, when it evaluates a subformula

A1 _ : : : _An , it splits the computation into n separate evaluations, each taking

the subformula to be one of the Ai . Similarly, when it evaluates 9 x 2 S : p,

it splits the computation into separate evaluations for each element of S . An

implication P ) Q is treated as the disjunction (:P) _ Q . For example, TLC

splits the evaluation of

(A) B) _ (C ^ (9 i 2 S : D(i)) ^ E )

into separate evaluations of the three disjuncts :A, B , and

C ^ (9 i 2 S : D(i)) ^ E

To evaluate the latter disjunct, it �rst evaluates C . If it obtains the value true,

then it splits this evaluation into the separate evaluations of D(i) ^ E , for each
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i in S . It evaluates D(i) ^ E by �rst evaluating D(i) and, if it obtains the value

true, then evaluating E .

The second di�erence in the way TLC evaluates the next-state relation is

that, for any variable x , if it evaluates an expression of the form x 0 = e when

x 0 has not yet been assigned a value, then the evaluation yields the value true

and TLC assigns to x 0 the value obtained by evaluating the expression e. TLC

evaluates an expression of the form x 0 2 S as if it were 9 v 2 S : x 0 = v . It evalu-

ates unchanged x as x 0 = x for any variable x , and unchanged he1; : : : ; en i
as

(unchanged e1) ^ : : : ^ (unchanged en )

for any expressions ei . Hence, TLC evaluates unchanged hx ; hy ; z ii as if it
were

(x 0 = x ) ^ (y 0 = y) ^ (z 0 = z )

Except when evaluating an expression of the form x 0 = e, TLC reports an

error if it encounters a primed variable that has not yet been assigned a value.

An evaluation stops, �nding no states, if a conjunct evaluates to false. An

evaluation that completes and obtains the value true �nds the state determined

by the values assigned to the primed variables. In the latter case, TLC reports

an error if some primed variable has not been assigned a value.

To illustrate how this works, let us consider how TLC evaluates the next-

state relation:

_ ^ x 0 2 1 : : Len(y)
^ y 0 = Append(Tail(y); x 0)

_ ^ x 0 = x + 1

^ y 0 = Append(y ; x 0)

(14.4)

We �rst consider the starting state with x = 1 and y = h2; 3i. TLC splits the

computation into evaluating the two disjuncts separately. It begins evaluating

the �rst disjunct of (14.4) by evaluating its �rst conjunct, which it treats as

9 i 2 1 : : Len(y) : x 0 = i . Since Len(y) = 2, the evaluation splits into separate

evaluations of:

^ x 0 = 1

^ y 0 = Append(Tail(y); x 0)

^ x 0 = 2

^ y 0 = Append(Tail(y); x 0)

(14.5)

TLC evaluates the �rst of these actions as follows. It evaluates the �rst con-

junct, obtaining the value true and assigning to x 0 the value 1; it then eval-

uates the second conjunct, obtaining the value true and assigning to y 0 the

value Append(Tail(h2; 3i); 1). So, evaluating the �rst action of (14.5) �nds the

successor state with x = 1 and y = h3; 1i. Similarly, evaluating the second

action of (14.5) �nds the successor state with x = 2 and y = h3; 2i. In a similar
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way, TLC evaluates the second disjunct of (14.4) to �nd the successor state with

x = 2 and y = h2; 3; 2i. Hence, the evaluation of (14.4) �nds three successor

states.

Next, consider how TLC evaluates the next-state action (14.4) in a state

with x = 1 and y equal to the empty sequence h i. Since Len(y) = 0 and 1 : : 0

is the empty set f g, TLC evaluates the �rst disjunct as

^ 9 i 2 f g : x 0 = i

^ y 0 = Append(Tail(y); x 0)

Evaluating the �rst conjunct yields false, so the evaluation of the �rst disjunct

of (14.4) stops, �nding no successor states. Evaluating the second disjunct yields

the successor state with x = 2 and y = h2i.
Since TLC evaluates conjuncts from left to right, their order can a�ect

whether or not TLC can evaluate the next-state action. For example, suppose

the two conjuncts in the �rst disjunct of (14.4) were reversed, like this:

^ y 0 = Append(Tail(y); x 0)

^ x 0 2 1 : : Len(y)
When TLC evaluates the �rst conjunct of this action, it encounters the expres-

sion Append(Tail(y); x 0) before it has assigned a value to x 0, so it reports an

error. Moreover, even if we were to change that x 0 to an x , TLC could still not

evaluate the action starting in a state with y = h i, since it would encounter the

silly expression Tail(h i) when evaluating the �rst conjunct.

The description given above of how TLC evaluates an arbitrary next-state

action is good enough to explain how it works in almost all cases that arise

in practice. However, it is not completely accurate. For example, interpreted

literally, it would imply that TLC can cope with the following two next-state

actions, which are both logically equivalent to (x 0 = true) ^ (y 0 = 1):

(x 0 = (y 0 = 1)) ^ (x 0 = true) if x 0 = true then y 0 = 1 else false(14.6)

In fact, TLC will produce error messages when presented with either of these

bizarre next-state actions.

Remember that TLC computes initial states by using a similar procedure

to evaluate the initial predicate. Instead of starting from given values of the

unprimed variables and assigning values to the primed variables, it assigns values

to unprimed variables.

TLC evaluates enabled formulas essentially the same way it evaluates a

next-state action. More precisely, to evaluate a formula enabledA, TLC com-

putes successor states as if A were the next-state action. The formula evaluates

to true i� there exists a successor state. To check if a step s ! t satis�es the

composition A �B of actions A and B , TLC �rst computes all states u such that Action composi-

tion is explained

in Section 16.2.3.
s ! u is an A step and then checks if u ! t is a B step for some such u. (TLC

Version 1 does not handle action composition.)
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TLC may also have to evaluate an action when checking a property. In that

case, it evaluates the action as it would any expression, and it has no trouble

evaluating even the bizarre actions (14.6).

14.3 How TLC Checks Properties

Section 14.2 above explains how TLC evaluates expressions and computes initial

states and successor states. This section describes how TLC uses evaluation

to check properties|�rst for model-checking mode (its default), and then for

simulation mode.

First, I de�ne some formulas that are obtained from the con�guration �le. In

these de�nitions, a speci�cation conjunct is a conjunct of the formula named by

the SPECIFICATION statement (if there is one), a property conjunct is a conjunct

of a formula named by a PROPERTY statement, and the conjunction of an empty

set of formulas is de�ned to be true. The de�nitions use the four classes of nice

TLA formulas de�ned in Section 14.2.4 on page 231 above.

Init The speci�cation's initial state predicate. It is speci�ed by an INIT or

SPECIFICATION statement. In the latter case, it is the conjunction of all

speci�cation conjuncts that are state predicates.

Next The speci�cation's next-state predicate. It is speci�ed by a NEXT statement

or a SPECIFICATION statement. In the latter case, it is the action N such

that there is a speci�cation conjunct of the form 2[N ]v . There must not

be more than one such conjunct.

Temporal The conjunction of every speci�cation conjunct that is not a state

predicate or a box-action formula. It is usually the speci�cation's liveness

condition.

Invariant The conjunction of every state predicate I that is either named by

an INVARIANT or for which some property conjunct equals 2I .

ImpliedInit The conjunction of every property conjunct that is a state predicate.

ImpliedAction The conjunction of every action [A]v such that some property

conjunct equals 2[A]v .

ImpliedTemporal The conjunction of every property conjunct that is a simple

temporal formula.

Constraint The conjunction of all state predicates named by CONSTRAINT state-

ments.
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ActionConstraint The conjunction of all actions named by ACTION-CONSTRAINT

statements. An action constraint is similar to an ordinary constraint,

except it eliminates possible transitions rather than states. An ordinary

constraint P is equivalent to the action constraint P 0.

14.3.1 Model-Checking Mode

TLC keeps two data structures: a directed graph G whose nodes are states, and

a queue (a sequence) U of states. By a state in G, I mean a state that is a node

of the graph G. The graph G is the part of the state reachability graph that

TLC has found so far, and U contains all states in G whose successors TLC has

not yet computed. TLC's computation maintains the following invariants:

� The states of G satisfy the Constraint predicate.

� For every state s in G, the edge from s to s is in G.

� If there is an edge in G from state s to a di�erent state t , then t is a

successor state of s that satis�es the action constraint. In other words,

the step s ! t satis�es Next ^ActionConstraint .

� Each state s of G is reachable from an initial state (one that satis�es the

Init predicate) by a path in G.

� U is a sequence of distinct states that are nodes in G.

� For every state s in G that is not in U , and for every state t satisfying

Constraint such that the step s ! t satis�es Next ^ActionConstraint , the
state t and the edge from s to t are in G.

TLC executes the following algorithm, starting with G and U empty.

1. Check that every assume in the speci�cation is satis�ed by the values

assigned to the constant parameters.

2. Compute the set of initial states by evaluating the initial predicate Init ,

as described above in Section 14.2.6. For each initial state s found:

(a) Evaluate the predicates Invariant and ImpliedInit in state s ; and

report an error and stop if either is false.

(b) If the predicate Constraint is true in state s , then add s to the

queue U , add node s and edge s ! s to the graph G.

3. While U is nonempty, do the following:

(a) Remove the �rst state from U and let s be that state.
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(b) Find the set T of all successor states of s by evaluating the next-state

action starting from s , as described above in Section 14.2.6.

(c) If T is empty and the deadlock option is not selected, then report a

deadlock error and stop.

(d) For each state t in T , do the following.

i. If Invariant is false in state t or ImpliedAction is false for the

step s ! t , then report an error and stop.

ii. If the predicate Constraint is true in state t and the step s ! t

satis�es ActionConstraint , then:

A. If t is not in G, then add it to the tail of U and add the node

t and the edge t ! t to G.
B. Add the edge s ! t to G.

TLC can use multiple threads, and steps 3(b){(d) may be performed concur-

rently by di�erent threads for di�erent states s . See the description of the

workers option on page 248 below.

If formula ImpliedTemporal is not equal to true, then whenever it adds an

edge s ! t in the procedure above, TLC evaluates all the predicates and actions

that appear in formulas Temporal and ImpliedTemporal for the step s ! t . (It

does this when adding any edge, including the self-loops s ! s and t ! t in

steps 2(b) and 3(d)ii.A.)

Periodically during the computation of G, and when it has �nished computing
G, TLC checks the ImpliedTemporal property as follows. Let T be the set

consisting of every behavior � that is the sequence of states in an in�nite path

in G starting with an initial state. (For example, T contains the path s ! s !
s ! : : : for every initial state s in G.) Note that every behavior in T satis�es

Init^2[Next ]vars . TLC checks that every behavior in T also satis�es the formula

Temporal ) ImpliedTemporal . (This is conceptually what happens; TLC does

not actually check each behavior separately.) See Section 14.3.5 on page 242

below for a discussion of why TLC's checking of the ImpliedTemporal property

may not do what you expect.

The computation of G terminates only if the set of reachable states is �nite. See pages 222{223

for the de�nition

of reachable state.
Otherwise, TLC will run forever|that is, until it runs out of resources or is

stopped.

TLC does not always perform all three of the steps described above. It does

step 2 only for a non-constant module, in which case the con�guration �le must

specify an Init formula. TLC does step 3 only if the con�guration �le speci�es

a Next formula, which it must do if it speci�es an Invariant , ImpliedAction, or

ImpliedTemporal formula.
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14.3.2 Simulation Mode

In simulation mode, TLC repeatedly constructs and checks individual behaviors

of a �xed maximum length. The maximum length can be speci�ed with the

depth option, as described on page 247 below. (Its default value is 100 states.)

In simulation mode, TLC runs until you stop it.

To create and check a behavior, TLC uses the procedure described above

for constructing the graph G|except with the following di�erence. After com-

puting the set of initial states, and after computing the set T of successors for

a state s , TLC randomly chooses an element of that set. If the element does

not satisfy the constraint, then the computation of G stops. Otherwise, TLC

puts only that state in G and U , and checks the Invariant and the ImpliedInit

or the ImpliedAction formula for it. (The queue U isn't actually maintained,

since it would never contain more than a single element.) The construction of

G stops, and the formula Temporal ) ImpliedTemporal is checked, when the

speci�ed maximum number of states have been generated. TLC then repeats

the procedure, starting with G and U empty.

TLC's choices are not strictly random, but are generated using a pseudo-

random number generator from a randomly chosen key. The key and another

value called the aril are printed if TLC �nds an error. As described in Sec-

tion 14.5.1 below, using the key and aril options, you can get TLC to generate

the behavior that displayed the error.

14.3.3 Views and Fingerprints

In the description above of how TLC checks properties, I wrote that the nodes

of the graph G are states. That is not quite correct. The nodes of G are values of
a state function called the view. TLC's default view is the tuple of all declared

variables, whose value determines the state. However, you can specify that the Remember that

we are using the

term state infor-

mally to mean an

assignment of val-

ues to declared

variables, rather

than to all vari-

ables.

view should be some other state function myview by putting the statement

VIEW myview

in the con�guration �le, where myview is an identi�er that is either de�ned or

else declared to be a variable.

When TLC computes initial states, it puts their views rather than the states

themselves in G. (The view of a state s is the value of the VIEW state function in

state s .) If there are multiple initial states with the same view, only one of them

is put in the queue U . Instead of inserting an edge from a state s to a state t ,

TLC inserts the edge from the view of s to the view of t . In step 3(d)ii.A in the

algorithm above, TLC checks if the view of t is in G.
When using a view other than the default one, TLC may stop before it has

found all reachable states. For the states it does �nd, it correctly performs

safety checks|that is, the Invariant , ImpliedInit , and ImpliedAction checks.
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Moreover, it prints out a correct counterexample (a �nite sequence of states) if

it �nds an error in one of those properties. However, it may incorrectly check

the ImpliedTemporal property. Because the graph G that TLC is constructing is

not the actual reachability graph, it may report an error in the ImpliedTemporal

property when none exists, printing out a bogus counterexample.

Specifying a nonstandard view can cause TLC not to check many states. You

should do it when there is no need to check di�erent states that have the same

view. The most likely alternate view is a tuple consisting of some, but not all,

declared variables. For example, you may have added one or more variables to

help debug the speci�cation. Using the tuple of the original variables as the view

lets you add debugging variables without increasing the number of states that

TLC must explore. If the properties being checked do not mention the debugging

variables, then TLC will �nd all reachable states of the original speci�cation and

will correctly check all properties.

In the actual implementation, the nodes of the graph G are not the views of

states, but �ngerprints of those views. A TLC �ngerprint is a 64-bit number

generated by a \hashing" function. Ideally, the probability that two di�erent

views have the same �ngerprint is 2�64, which is a very small number. However,

it is possible for a collision to occur, meaning that TLC mistakenly thinks that

two di�erent views are the same because they have the same �ngerprint. If this

happens, TLC will not explore all the states that it should. In particular, with

the default view, TLC will report that it has checked all reachable states when

it hasn't.

When it terminates, TLC prints out two estimates of the probability that

a �ngerprint collision occurred. The �rst is based on the assumption that the

probability of two di�erent views having the same �ngerprint is 2�64. (Under

this assumption, if TLC generated n views with m distinct �ngerprints, then

the probability of a collision is about m � (n �m) � 2�64.) However, the process
of generating states is highly nonrandom, and no known �ngerprinting scheme

can guarantee that the probability of any two distinct states generated by TLC

having the same �ngerprint is actually 2�64. So, TLC also prints an empirical

estimate of the probability that a collision occurred. It is based on the obser-

vation that, if there was a collision, then it is likely that there was also a \near

miss". The estimate is the maximum value of 1=jf 1�f 2j over all pairs hf 1; f 2 i of
distinct �ngerprints generated by TLC. In practice, the probability of collision

turns out to be very small unless TLC is generating billions of distinct states.

Views and �ngerprinting apply only to model-checking mode. In simulation

mode, TLC ignores any VIEW statement.

14.3.4 Taking Advantage of Symmetry

The memory speci�cations of Chapter 5 are symmetric in the set Proc of pro-

cessors. Intuitively, this means that permuting the processors doesn't change
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whether or not a behavior satis�es a speci�cation. To de�ne symmetry more

precisely, we �rst need some de�nitions.

A permutation of a �nite set S is a function whose domain and range both

equal S . In other words, � is a permutation of S i�:

(S = domain �) ^ (8w 2 S : 9 v 2 S : �[v ] = w)

A permutation is a function that is a permutation of its (�nite) domain. If � is

a permutation of a set S of values and s is a state, let s� be the state obtained

from s by replacing each value v in S with �[v ]. To see what s� means, let's

take as an example the permutation � of f\a"; \b"; \c"g such that �[\a"] = \b",
�[\b"] = \c", and �[\c"] = \a". Suppose that, in state s , the values of the

variables x and y are:

x = h\b"; \c"; \d"i
y = [i 2 f\a"; \b"g 7! if i = \a" then 7 else 42]

Then in state s�, the values of the variables x and y are:

x = h\c"; \a"; \d"i
y = [i 2 f\b"; \c"g 7! if i = \b" then 7 else 42]

This example should give you an intuitive idea of what s� means; I won't try to

de�ne it rigorously. If � is a behavior s1; s2; : : : , we de�ne �
� to be the behavior

s�1 ; s
�

2 ; : : : .

We can now de�ne what symmetry means. A speci�cation Spec is symmetric

with respect to a permutation � i� the following condition holds: for any behavior

�, formula Spec is satis�ed by � i� it is satis�ed by �� .

The memory speci�cations of Chapter 5 are symmetric with respect to any

permutation of Proc. This means that there is no need for TLC to check a

behavior � if it has already checked the behavior �� for some permutation � of

Proc. (Any error revealed by � would also be revealed by ��.) We can tell TLC

to take advantage of this symmetry by putting the following statement in the

con�guration �le:

SYMMETRY Perms

where Perms is de�ned in the module to equal Permutations(Proc), the set of

all permutations of Proc. (The Permutations operator is de�ned in the TLC

module, described in Section 14.4 below.) This SYMMETRY statement causes TLC

to modify the algorithm described on pages 237{238 so it never adds a state s to

its queue U of unexamined states and to its state graph G if G already contains

the state s�, for some permutation � of Proc. If there are n processes, this

reduces the number of states that TLC examines by a factor of n ! .

The memory speci�cations of Chapter 5 are also symmetric with respect to

any permutation of the set Adr of memory addresses. To take advantage of this
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symmetry as well as the symmetry with respect to permutations of processors,

we de�ne the symmetry set (the set speci�ed by the SYMMETRY statement) to

equal

Permutations(Proc) [ Permutations(Adr)

In general, the SYMMETRY statement can specify an arbitrary symmetry set �,

each element of which is a permutation of a set of model values. More pre-

cisely, each element � in � must be a permutation such that all the elements of

domain � are assigned model values by the con�guration �le's CONSTANT state-

ment. (If the con�guration has no SYMMETRY statement, we take the symmetry

set � to be the empty set.)

To explain what TLC does when given an arbitrary symmetry set �, I must

make a few more de�nitions. If � is a sequence h�1; : : : ; �n i of permutations
in �, let s� equal (: : : ((s�1)�2) : : :)�n . (If � is the empty sequence, then s� is

de�ned to equal s .) De�ne the equivalence class bs of a state s to be the set of

states s� for all sequences � of permutations in �. For any state s , TLC keeps

only a single element of bs in U and G. This is accomplished by the following

modi�cations to the algorithm on pages 237{238. In step 2(b), TLC adds the

state s to U and G only if U and G do not already contain a state in bs . Step 3(d)ii
is changed to:

A. If no element in bt is in G, then add t to the tail of U and add the node t

and the edge t ! t to G.

B. Add the edge s ! tt to G, where tt is the (unique) element of bt that is
(now) in G.

When a VIEW statement appears in the con�guration �le, these changes are

modi�ed as described in Section 14.3.3 above so that views rather than states

are put in G.
If a speci�cation is, indeed, symmetric with respect to all permutations in the

symmetry set, then TLC's Invariant , ImpliedInit , and ImpliedAction checking

will �nd any error that it would have had the SYMMETRY statement been omitted.

However, TLC may perform ImpliedTemporal checking incorrectly|it may miss

errors, report an error that doesn't exist, or report a real error with an incorrect

counterexample. So, you should do ImpliedTemporal checking when using a

SYMMETRY statement only if you understand exactly what TLC is doing.

The symmetry set is used only in model-checking mode. TLC ignores it in

simulation mode.

14.3.5 Limitations of Liveness Checking

If a speci�cation violates a safety property, then there is a �nite behavior that Safety properties

were de�ned on

page 87.
displays the violation. That behavior can be generated with a �nite model.
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Therefore, if a speci�cation violates a safety property, it is in principle possible

to discover the violation with TLC. I will now explain why it may be impossible

to discover a violation of a liveness property with any �nite model.

As an example, consider the following simple speci�cation EvenSpec that

starts with x equal to zero and repeatedly increments it by 2.

EvenSpec
�
= (x = 0) ^ 2[x 0 = x + 2]x ^WFx (x

0 = x + 2)

Obviously, x never equals 1 in any behavior satisfying EvenSpec. So, EvenSpec

does not satisfy the liveness property 3(x = 1). Suppose we run TLC with

EvenSpec as the speci�cation and 3(x = 1) as the property to check. For TLC

to terminate, we must use a constraint to make it generate only a �nite number

of reachable states. All the in�nite behaviors satisfying (x = 0)^2[x 0 = x +2]x
that TLC generates will then end in an in�nite number of stuttering steps. In

these behaviors, action x 0 = x + 2 is always enabled, but only a �nite number

of x 0 = x + 2 steps occur. Therefore, WFx (x
0 = x + 2) is false for all these

behaviors. TLC will not report an error because the formula

WFx (x
0 = x + 2) ) 3(x = 1)

is satis�ed by all the in�nite behaviors it generates.

When using TLC to do temporal checking, you should make sure that your

model will permit in�nite behaviors that satisfy the speci�cation's liveness con-

dition. For example, consider the �nite model of the alternating bit protocol

speci�cation de�ned by the con�guration �le of Figure 14.3 on page 223. You

should convince yourself that it allows in�nite behaviors that satisfy formula

ABFairness .

It's a good idea to verify that TLC is performing the liveness checking you

expect. Have it check a liveness property that the speci�cation does not satisfy

and make sure that TLC reports an error.

14.4 The TLC Module

The standard TLC module, in Figure 14.5 on the next page, de�nes operators

that are handy when using TLC. The module on which you run TLC usually

extends the TLC module, which is overridden by its Java implementation. Module overriding

is explained above

in Section 14.2.5.
Module TLC begins with the statement

local instance Naturals

As explained on page 169, this is like an extends statement, except that the

de�nitions included from the Naturals module are not obtained by any other

module that extends or instantiates module TLC . Similarly, the next statement

locally instantiates the Sequences module.
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module TLC

local instance Naturals The keyword local means that de�nitions from the instantiated

module are not obtained by a module that extends TLC .
local instance Sequences

OPERATORS FOR DEBUGGING

Print(out ; val)
�
= val Causes TLC to print the values out and val .

Assert(val ; out)
�
= if val = true then true

else choose v : true

Causes TLC to report an error

and print out if val is not true.

JavaTime
�
= choose n : n 2 Nat Causes TLC to print the current time, in milliseconds elapsed

since 00:00 on 1 Jan 1970 UT, modulo 231.

OPERATORS FOR REPRESENTING FUNCTIONS AND SETS OF PERMUTATIONS

d :> e
�
= [x 2 fdg 7! e]

f @@ g
�
= [x 2 (domain f ) [ (domain g) 7!

if x 2 domain f then f [x ] else g [x ]]

The function f with domain fd1; : : : ; dng

such that f [d i ] = ei , for i = 1; : : : ;n can be

written:

d1 :> e1 @@ : : : @@ dn :> en

Permutations(S )
�
= ff 2 [S ! S ] : 8w 2 S : 9 v 2 S : f [v ] = wg The set of permutations of S .

AN OPERATOR FOR SORTING

SortSeq(s ; � )
�
= The result of sorting sequence s according to the ordering �.

let Perm
�
= choose p 2 Permutations(1 : : Len(s)) :

8 i ; j 2 1 : : Len(s) : (i < j ) ) (s [p[i ]] � s [p[j ]]) _ (s [p[i ]] = s [p[j ]])

in [i 2 1 : : Len(s) 7! s [Perm[i ]]]

Figure 14.5: The standard module TLC.

Module TLC next de�nes three operators Print , Assert , and JavaTime.

They are of no use except in running TLC, when they can help you track down

problems.

The operator Print is de�ned so that Print(out ; val) equals val . But, when

TLC evaluates this expression, it prints the values of out and val . You can add

Print expressions to a speci�cation to help locate an error. For example, if your

speci�cation contains

^ Print(\a"; true)
^ P

^ Print(\b"; true)

and TLC prints the "a" but not the "b" before reporting an error, then the

error happened while TLC was evaluating P . If you know where the error is but
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don't know why it's occurring, you can add Print expressions to give you more

information about what values TLC has computed.

To understand what gets printed when, you must know how TLC evaluates

expressions, which is explained above in Sections 14.2 and 14.3. TLC usually

evaluates an expression many times, so inserting a Print expression in the spec-

i�cation can produce a lot of output. One way to limit the amount of output is

to put the Print expression inside an if/then expression, so it is executed only

in interesting cases.

The TLC module next de�nes the operator Assert so Assert(val ; out) equals

true if val equals true. If val does not equal true, evaluating Assert(val ; out)

causes TLC to print the value of out and to halt. (In this case, the value of

Assert(val ; out) is irrelevant.)

Next, the operator JavaTime is de�ned to equal an arbitrary natural number.

However, TLC does not obey the de�nition of JavaTime when evaluating it.

Instead, evaluating JavaTime yields the time at which the evaluation takes place,

measured in milliseconds elapsed since 00:00 Universal Time on 1 January 1970,

modulo 231. If TLC is generating states slowly, using the JavaTime operator

in conjunction with Print expressions can help you understand why. If TLC

is spending too much time evaluating an operator, you may be able to replace

the operator's de�nition with an equivalent one that TLC can evaluate more

e�ciently. (See Section 14.2.3 on page 230.)

The TLC module next de�nes the operators :> and @@ so that the expression

d1 :> e1 @@ : : : @@ dn :> en

is the function f with domain fd1; : : : ; dng such that f [d i ] = ei , for i = 1; : : : ;n.

For example, the sequence h\ab"; \cd"i, which is a function with domain f1; 2g,
can be written as

1 :> "ab" @@ 2 :> "cd"

TLC uses these operators to represent function values that it prints when evalu-

ating a Print expression or reporting an error. However, it usually prints values

the way they appear in the speci�cation, so it usually prints a sequence as a

sequence, not in terms of the :> and @@ operators.

Next comes the de�nition of Permutations(S ) to be the set of all permu-

tations of S , if S is a �nite set. The Permutations operator can be used to

specify a set of permutations for the SYMMETRY statement described in Sec-

tion 14.3.4 above. More complicated symmetries can be expressed by de�ning a

set f�1; : : : ; �ng of permutations, where each �i is written as an explicit func-

tion using the :> and @@ operators. For example, consider a speci�cation of

a memory system in which each address is in some way associated with a pro-

cessor. The speci�cation would be symmetric under two kinds of permutations:

ones that permuted addresses associated with the same processor, and ones that

permuted the processors along with their associated addresses. Suppose we tell
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TLC to use two processors and four addresses, where addresses a11 and a12

are associated with processor p1 and addresses a21 and a22 are associated with

processor p2. We can get TLC to take advantage of the symmetries by giving

it the following set of permutations as the symmetry set.

Permutations(fa11; a12g) [ fp1 :> p2 @@ p2 :> p1

@@ a11 :> a21 @@ a21 :> a11

@@ a12 :> a22 @@ a22 :> a12g

The permutation p1 :> p2 @@ : : : @@ a22 :> a12 interchanges the processors and

their associated addresses. The permutation that just interchanges a21 and a22

need not be speci�ed explicitly because it is obtained by interchanging the pro-

cessors, interchanging a11 and a12, and interchanging the processors again.

The TLC module ends by de�ning the operator SortSeq , which can be used

to replace operator de�nitions with ones that TLC can evaluate more e�ciently.

If s is a �nite sequence and � is a total ordering relation on its elements, then

SortSeq(s ;�) is the sequence obtained from s by sorting its elements according to

�. For example, SortSeq(h3; 1; 3; 8i; >) equals h8; 3; 3; 1i. The Java implemen-
tation of SortSeq allows TLC to evaluate it more e�ciently than a user-de�ned

sorting operator. For example, we use SortSeq to de�ne the following operator

FastSort , which can serve as a replacement for the Sort operator de�ned on

page 231.

FastSort(S )
�
=

let MakeSeq [SS 2 subset S ] �
=

if SS = fg then h i
else let ss

�
= choose ss 2 SS : true

in Append(MakeSeq [SS n fssg]; ss)
in SortSeq(MakeSeq [S ]; <)

14.5 How to Use TLC

14.5.1 Running TLC

Exactly how you run TLC depends upon what operating system you are using

and how it is con�gured. You will probably type a command of the following

form

program name options spec �le

where:

program name is speci�c to your system. It might be java tlatk.TLC.
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spec �le is the name of the �le containing the TLA+ speci�cation. Each TLA+

module named M that appears in the speci�cation must be in a separate

�le named M .tla. The extension .tla may be omitted from spec �le.

options is a sequence consisting of zero or more of the following options:

-deadlock

Tells TLC not to check for deadlock. Unless this option is speci�ed,

TLC will stop if it �nds a deadlock|that is, a reachable state with

no successor state.

-simulate

Tells TLC to run in simulation mode, generating randomly chosen be-

haviors, instead of generating all reachable states. (See Section 14.3.2

above.)

-depth num

This option causes TLC to generate behaviors of length at most num

in simulation mode. Without this option, TLC will generate runs of

length at most 100. This option is meaningful only when the simulate

option is used.

-seed num

In simulation mode, the behaviors generated by TLC are determined

by the initial seed given to a pseudorandom number generator. Nor-

mally, the seed is generated randomly. This option causes TLC to

let the seed be num, which must be an integer from �263 to 263 � 1.

Running TLC twice in simulation mode with the same seed and aril

(see the aril option below) will produce identical results. This option

is meaningful only when using the simulate option.

-aril num

This option causes TLC to use num as the aril in simulation mode.

The aril is a modi�er of the initial seed. When TLC �nds an error

in simulation mode, it prints out both the initial seed and an aril

number. Using this initial seed and aril will cause the �rst trace gen-

erated to be that error trace. Adding Print expressions will usually

not change the order in which TLC generates traces. So, if the trace

doesn't tell you what went wrong, you can try running TLC again on

just that trace to print out additional information.

-coverage num

This option causes TLC to print \coverage" information every num

minutes and at the end of its execution. For every action conjunct

that \assigns a value" to a variable, TLC prints the number of times

that conjunct has actually been used in constructing a new state. The

values it prints may not be accurate, but their magnitude can provide

useful information. In particular, a value of 0 indicates part of the
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next-state action that was never \executed". This might indicate an

error in the speci�cation, or it might mean that the model TLC is

checking is too small to exercise that part of the action.

-recover run id

This option causes TLC to start executing the speci�cation not from

the beginning, but from where it left o� at the last checkpoint. When

TLC takes a checkpoint, it prints the run identi�er. (That iden-

ti�er is the same throughout an execution of TLC.) The value of

run id should be that run identi�er. In Version 1, checkpointing

does not save the information needed for ImpliedTemporal checking

(see Section 14.3). So, this option has no e�ect if you are checking an

ImpliedTemporal property. If you want TLC to resume from where

it left o�, you must remove all ImpliedTemporal conjuncts from the

properties to be checked.

-cleanup

TLC creates a number of �les when it runs. When it completes, it

erases all of them. If TLC �nds an error, or if you stop it before it

�nishes, TLC can leave some large �les around. The cleanup option

causes TLC to delete all �les created by previous runs. Do not use

this option if you are currently running another copy of TLC in the

same directory; if you do, it can cause the other copy to fail.

-difftrace num

When TLC �nds an error, it prints an error trace. Normally, that

trace is printed as a sequence of complete states, where a state lists

the values of all declared variables. The di�trace option causes TLC

to print an abridged version of each state, listing only the variables

whose values are di�erent than in the preceding state. This makes it

easier to see what is happening in each step, but harder to �nd the

complete state.

-terse

Normally, TLC completely expands values that appear in error mes-

sages or in the output from evaluating Print expressions. The terse

option causes TLC instead to print partially evaluated, shorter ver-

sions of these values.

-workers num

Steps 3(b){(d) of the TLC execution algorithm described on pages

237{238 can be speeded up on a multiprocessor computer by the

use of multiple threads. This option causes TLC to use num threads

when �nding reachable states. There is no reason to use more threads

than there are actual processors on your computer. If the option is

omitted, TLC uses a single thread.
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-config con�g �le

Speci�es that the con�guration �le is named con�g �le, which must

be a �le with extension .cfg. The extension .cfg may be omitted

from con�g �le. If this option is omitted, the con�guration �le is

assumed to have the same name as spec �le, except with the extension

.cfg.

-calldepth num

If you write the silly de�nition

f [n 2 Nat ] �
= (n + 1) � f [n + 1]

then evaluating f [1] requires an evaluation sequence of in�nite depth,

since it requires evaluating f [2], which requires evaluating f [3], and so

on. To catch this kind of problem, TLC reports an error if evaluating

an expression requires an evaluation sequence of depth greater than

100,000. In the unlikely case that a correct speci�cation requires a

greater evaluation depth, you can use this option to tell TLC to allow

evaluation sequences of depth up to num.

14.5.2 Debugging a Speci�cation

When you write a speci�cation, it usually contains errors. The purpose of run-

ning TLC is to �nd as many of those errors as possible. Hopefully, an error

in the speci�cation causes TLC to report an error. The challenge of debugging

is to �nd the error in the speci�cation that caused the error reported by TLC.

Before addressing this challenge, let's �rst examine TLC's output when it �nds

no error.

TLC's Normal Output

When you run TLC, the �rst thing it prints is the version number and creation

date: TLC's messages

may di�er slightly

in format from

the ones described

here.

TLC Version 1.0 of 26 May 1999

Always include this information when reporting any problems with TLC. Next,

TLC describes the mode in which it's being run. The possibilities are

Model-checking

in which it is exhaustively checking all reachable states, or

Running Random Simulation with seed 1901803014088851111.

in which it is running in simulation mode, using the indicated seed. (Seeds are

described on page 247.) Let's suppose it's running in model-checking mode.

TLC next prints something like:
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Finished computing initial states:

4 states generated, with 2 of them distinct.

This indicates that, when evaluating the initial predicate, TLC generated 4

states, among which there were 2 distinct ones. TLC then prints one or more

messages such as.

Progress(9): 2846 states generated, 984 distinct states

found. 856 states left on queue.

This message indicates that TLC has thus far constructed a state graph G of G and U are de-

scribed in Sec-

tion 14.3.1 on

page 237.

diameter2 9, that it has generated and examined 2846 states, �nding 984 distinct

ones, and that the queue U of unexplored states contains 856 states. After

running for a while, TLC generates these progress reports about once every �ve

minutes. For most speci�cations, the number of states on the queue increases

monotonically at the beginning of the execution and decreases monotonically

at the end. The progress reports therefore provide a useful guide to how much

longer the execution is likely to take.

When TLC successfully completes, it prints

Model checking completed. No error has been found.

It then prints something like:

Estimates of the probability that TLC did not check all reachable

states because two distinct states had the same fingerprint:

calculated (optimistic): .000003

based on the actual fingerprints: .00007

As explained on page 240, these are TLC's two estimates of the probability of a

�ngerprint collision. Finally, TLC prints a message like

2846 states generated, 984 distinct states found,

0 states left on queue.

The state graph has diameter 15.

with the total number of states and the diameter of the state graph.

While TLC is running, it may also print a message such as

-- Checkpointing run states/99-05-20-15-47-55 completed

This indicates that it has written a checkpoint that you can use to restart TLC

in the event of a computer failure. (As explained in Section 14.5.3 on pages

255{256, checkpoints have other uses as well.) The run identi�er

2The diameter of G is the smallest number d such that every state in G can be reached from

an initial state by a path containing at most d states. It is the depth TLC has reached in its

breadth-�rst exploration of the set of states. When using multiple threads (speci�ed with the

workers option), the diameter TLC reports may not be quite correct.
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states/99-05-20-15-47-55

is used with the recover option to restart TLC from where the checkpoint was

taken. If only part of this message was printed|for example, because your

computer crashed while TLC was taking the checkpoint|there is a slight chance

that all the checkpoints are corrupted and you must start TLC again from the

beginning.

Error Reports

The �rst problems you �nd in your speci�cation will probably be syntax errors.

TLC reports them with

ParseException in parseSpec:

followed by the error message generated by the parser. Chapter 12 explains

how to interpret the parser's error messages. (TLC Version 1.0 does not use

the parser's full error detection mechanism; you should check your speci�cation

with the parser before running TLC on it.)

As explained in Section 14.3.1 above, TLC executes three basic phases. In

the �rst phase, it checks assumptions; in the second, it computes the initial

states; and in the third, it generates the successor states of states on the queue

U of unexplored states. You can tell if it has entered the third phase by whether

or not it has printed the \initial states computed" message.

TLC's most straightforward error report occurs when it �nds that one of the

properties it is checking does not hold. Suppose we introduce an error into our

alternating bit speci�cation (Figure 14.1 on pages 219 and 220) by replacing the

�rst conjunct of the invariant ABTypeInv with

^ msgQ 2 Seq(Data)

TLC quickly �nds the error and prints

Invariant ABTypeInv is violated

It next prints a minimal-length3 behavior that leads to the state not satisfying

the invariant:
Note that TLC in-

dicates which part

of the next-state

relation allows the

step that produces

each state.

The behavior up to this point is:

STATE 1: <Initial predicate>

/\ rBit = 0

/\ sBit = 0

/\ ackQ = << >>

/\ rcvd = d1

3When using multiple threads, it is possible, though unlikely, for there to be a shorter

behavior that also violates the invariant.
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/\ sent = d1

/\ sAck = 0

/\ msgQ = << >>

STATE 2: <Action at line 68 in AlternatingBit>

/\ rBit = 0

/\ sBit = 1

/\ ackQ = << >>

/\ rcvd = d1

/\ sent = d1

/\ sAck = 0

/\ msgQ = << << 1, d1 >> >>

TLC prints each state as a TLA+ predicate that determines the state. When

printing a state, TLC describes functions using the operators :> and @@ de�ned

in the TLC module. (See Section 14.4 on page 243.)

The hardest errors to locate are usually the ones detected when TLC is forced

to evaluate an expression that it can't handle, or one that is \silly" because its

value is not speci�ed by the semantics of TLA+. As an example, let's introduce

a typical \o�-by-one" error into the alternating bit protocol by replacing the

second conjunct in the de�nition of Lose with

9 i 2 1 : : Len(q) :
q 0 = [j 2 1 : : (Len(q)� 1) 7! if j < i then q [j � 1]

else q [j ]]

If q has length greater than 1, then this de�nes Lose(q)[1] to equal q [0], which

is a nonsensical value if q is a sequence. (The domain of a sequence q is the

set 1 : : :Len(q), which does not contain 0.) Running TLC produces the error

message:

Error: Applying tuple

<< << 1, d1 >>, << 1, d1 >> >>

to integer 0 which is out of domain.

It then prints a behavior leading to the error. TLC �nds the error when eval-

uating the next-state action to compute the successor states for some state s ,

and s is the last state in that behavior. Had the error occurred when evaluating

the invariant or the implied-action, TLC would have been evaluating it on the

last state or step of the behavior.

Finally, TLC prints the location of the error:

The error occurred when TLC was evaluating the nested

expressions at the following positions:

0. Line 59, column 7 to line 61, column 57 in AlternatingBit

1. Line 60, column 52 to line 60, column 57 in AlternatingBit
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The �rst position identi�es the second conjunct of the de�nition of Lose; the

second identi�es the expression q [j � 1]. This tells you that the error occurred

while TLC was evaluating q [j � 1], which it was doing as part of the evaluation

of the second conjunct of the de�nition of Lose. You must infer from the printed

trace that it was evaluating the de�nition of Lose while evaluating the action

LoseMsg . In general, TLC prints a tree of nested expressions|higher-level ones

�rst. It seldom locates the error as precisely as you would like; often it just

narrows it down to a conjunct or disjunct of a formula. You may need to insert

Print expressions to locate the problem. See the discussion on pages 254{255

for further advice on locating errors.

14.5.3 Hints on Using TLC E�ectively

Start small

The constraint and the assignment of values to the constant parameters de�ne

a model of the speci�cation. How long it takes TLC to check a speci�cation

depends on the speci�cation and the size of the model. Running on a 600MHz

work station, TLC �nds about 700 distinct reachable states per second for the

alternating bit protocol speci�cation. For some speci�cations, the time it takes

TLC to generate a state grows with the size of the model; it can also increase

as the generated states become more complicated. For some speci�cations run

on larger models, TLC �nds fewer than one reachable state per second.

You should always begin testing a speci�cation with a tiny model, which

TLC can check quickly. Let sets of processes and of data values have only one

element; let queues be of length one. A speci�cation that has not been tested

probably has lots of errors. A small model will quickly catch most of the simple

ones. When a very small model reveals no more errors, you can then run TLC

with larger models to try to catch more subtle errors.

One way to �gure out how large a model TLC can handle is to estimate

the approximate number of reachable states as a function of the parameters.

However, this can be hard. If you can't do it, increase the model size very

gradually. The number of reachable states is typically an exponential function

of the model's parameters; and the value of ab grows very fast with increasing

values of b.

Many systems have errors that will show up only on models too large for TLC

to check exhaustively. After having TLC exhaustively check your speci�cation

on as large a model as your patience allows, you can run it in simulation mode

on larger models. Random simulation is not an e�ective way to catch subtle

errors, but it's worth trying; you might get lucky.
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Be suspicious of success

Section 14.3.5 on page 242 explains why you should be suspicious if TLC does

not �nd a violation of a liveness property; the �nite model may mask errors.

You should also be suspicious if TLC �nds no error when checking safety prop-

erties. It's very easy to satisfy a safety property by simply doing nothing. For

example, suppose we forgot to include the SndNewValue action in the alternat-

ing bit protocol speci�cation's next-state action. The sender would then never

try to send any values. But the resulting speci�cation would still satisfy the

protocol's correctness condition, formula ABCSpec of module ABCorrectness .

(The speci�cation doesn't require that values must be sent.)

The coverage option described on page 247 provides one way to catch such

problems. Another way is to make sure that TLC �nds errors in properties

that should be violated. For example, if the alternating bit protocol is sending

messages, then the value of sent should change. You can verify that it does

change by checking that TLC reports a violation of the property

8 d 2 Data : (sent = d)) 2(sent = d)

A good sanity check is to verify that TLC �nds states that are reached only

by performing a number of operations. For example, the caching memory speci�-

cation of Section 5.6 should have reachable states in which a particular processor

has both a read and two write operations in the memQ queue. Reaching such

a state requires a processor to perform two writes followed by a read to an un-

cached address. We can verify that such a state is reachable by having TLC �nd

a violation of an invariant declaring that there aren't a read and two writes for

the same processor in memQ . (Of course, this requires a model in which memQ

can be large enough.) Another way to check that certain states are reached is by

using the Print operator inside an if/then expression in an invariant to print

a message when a suitable state is reached.

Let TLC help you �gure out what went wrong

When TLC reports that an invariant is violated, it may not be obvious what

part of the invariant is false. If you give separate names to the conjuncts of

your invariant and list them separately in the con�guration �le's INVARIANT

statement, TLC will tell you which conjunct is false. However, it may be hard

to see why even an individual conjunct is false. Instead of spending a lot of time

trying to �gure it out by yourself, it's easier to add Print expressions and let

TLC tell you what's going wrong.

If you rerun TLC from the beginning with a lot of Print expressions, it will

print output for every state it checks. Instead, you should start TLC from the

state in which the invariant is false. De�ne a predicate, say ErrorState, that

describes this state, and modify the con�guration �le to use ErrorState as the
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init predicate. Writing the de�nition of ErrorState is easy|just copy the last

state in TLC's error trace.4

You can use the same trick if any safety property is violated, or if TLC reports

an error when evaluating the next-state action. For an error in a property of

the form 2[A]v , rerun TLC using the next-to-last state in the error trace as the

initial predicate, and using the last state in the trace, with the variable names

primed, as the next-state action. To �nd an error that occurs when evaluating

the next-state action, use the last state in the error trace as the initial predicate.

(In this case, TLC may �nd several successor states before reporting the error.)

If you have introduced model values in the con�guration �le, they will un-

doubtedly appear in the states printed by TLC. So, if you are to copy those

states into the module, you will have to declare the model values as constant

parameters, and then assign to each of these parameters the model value of

the same name. For example, the con�guration �le we used for the alternating

bit protocol introduces model values d1 and d2. So, we would add to module

MCAlternatingBit the declaration

constants d1; d2

and add to the CONSTANT statement of the con�guration �le the assignments

d1 = d1 d2 = d2

which assign to the constant parameters d1 and d2 the model values d1 and d2,

respectively.

Don't start over after every error

After you've eliminated the errors that are easy to �nd, TLC may have to run

for a long time before �nding an error. Very often, it takes more than one try

to �x an error properly. If you start TLC from the beginning after correcting an

error, it may run for a long time only to report that you made a silly mistake

in the correction. If the error was discovered when taking a step from a correct

state, then it's a good idea to check your correction by starting TLC from that

state. As explained above, you do this by de�ning a new initial predicate that

equals the state printed by TLC.

Another way to avoid starting from scratch after an error is by using check-

points. A checkpoint saves the current state graph G and queue U of unexplored

states. It does not save any other information about the speci�cation. You can

restart TLC from a checkpoint even if you have changed the speci�cation, as

long as the speci�cation's variables and the values that they can assume haven't

changed. More precisely, you can restart from a checkpoint i� the view of any The view and

symmetry set are

de�ned in Sections

14.3.3 and 14.3.4,

respectively.

state computed before the checkpoint has not changed, and the symmetry set

4De�ning ErrorState is not so easy if you use the di�trace option, which is a reason for not

using that option.
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is the same. When you correct an error that TLC found after running for a

long time, you may want to use the recover option (page 248) to continue TLC

from the last checkpoint instead of having it recheck all the states it has already

checked.5

Check everything you can

Verify that your speci�cation satis�es all the properties you think it should.

For example, you shouldn't be content to check that the alternating bit pro-

tocol speci�cation satis�es the higher-level speci�cation ABCSpec of module

ABCorrectness . You should also check lower-level properties that you expect it

to satisfy. One such property, revealed by studying the algorithm, is that there

should never be more than two di�erent messages in the msgQ queue. So, we

can check that the following predicate is an invariant.

Cardinality( fmsgQ [i ] : i 2 1 : : Len(msgQ) g ) � 2

(We must add the de�nition of Cardinality to module MCAlternatingBit by

adding FiniteSets to its extends statement.)

It's a good idea to check as many invariance properties as you can. If you

think that some state predicate should be an invariant, let TLC test if it is.

Discovering that the predicate isn't an invariant may not reveal an error, but it

will probably teach you something about your speci�cation.

Be creative

Even if a speci�cation seems to lie outside the realm of what it can handle, TLC

may be able to help check it. For example, suppose a speci�cation's next-state

action has the form 9n 2 Nat : A(n). TLC cannot evaluate quanti�cation over

an in�nite set, so it apparently can't deal with this speci�cation. However, we

can enable TLC to evaluate the quanti�ed formula by using the con�guration

�le's CONSTANT statement to replace Nat with the �nite set 0 : : n, for some n. Replacement is

explained in Sec-

tion 14.2.3.
This replacement profoundly changes the speci�cation's meaning. However, it

might nonetheless allow TLC to reveal errors in the speci�cation. Never forget

that your objective in using TLC is not to verify that a speci�cation is correct;

it's to �nd errors.

14.6 What TLC Doesn't Do

We would like TLC to generate all the behaviors that satisfy a speci�cation. But

no program can do this for an arbitrary speci�cation. I have already mentioned

5Some states in the graph G may not be saved by a checkpoint; they will be rechecked when

restarting from the checkpoint.
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some limitations of TLC. There are other limitations that you may stumble on.

One of them is that the Java classes that override the Naturals and Integers

modules handle only numbers in the interval �231 : : (231 � 1); TLC reports an

error if any computation generates a value outside this interval.

TLC can't generate all behaviors satisfying an arbitrary speci�cation, but it

might achieve the easier goal of ensuring that every behavior it does generate

satis�es the speci�cation. However, for reasons of e�ciency, TLC doesn't always

meet this goal. It deviates from the semantics of TLA+ in two ways.

The �rst deviation is that TLC doesn't preserve the precise semantics of

choose. As explained in Section 16.1, if S equals T , then choose x 2 S :P

should equal choose x 2 T :P . However, TLC guarantees this only if S and T

are syntactically the same. For example, TLC might compute di�erent values

for the two expressions

choose x 2 f1; 2; 3g : x < 3 choose x 2 f3; 2; 1g : x < 3

A similar violation of the semantics of TLA+exists with case expressions, whose

semantics are de�ned (in Section 16.1.4) in terms of choose.

The second part of the semantics of TLA+ that TLC does not preserve is

the representation of strings. In TLA+, the string \abc" is a three-element

sequence|that is, a function with domain f1; 2; 3g. TLC treats strings as

primitive values, not as functions. It thus considers the legal TLA+ expression

\abc"[2] to be an error.

TLC Version 1 has the following additional limitations, most of which should

be �xed in version 2. (Telling us which ones you �nd to be a nuisance will help

ensure that they really are �xed in Version 2.)

� TLC doesn't handle speci�cations that use the instance statement.

� TLC doesn't properly handle Cartesian products of more than two sets.

Thus, instead of writing S � T �U , you have to write

fhs ; t ; u i : s 2 S ; t 2 T ; u 2 U g

� You cannot put in�x, pre�x, or post�x operators in the CONSTANT state-

ment of the con�guration �le. Hence, neither of the following replacements

may appear in the con�guration �le:

++ <- Foo Bar <- &

� You cannot use an in�x, pre�x, or post�x operator as the argument of

a higher-order operator. For example, if IsPartialOrder is the operator

described on page 71, you cannot write IsPartialOrder(<; Nat). To get

around this problem, you can de�ne

LessThan(a; b)
�
= a < b

and then write IsPartialOrder(LessThan; Nat).
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� The Java class that overrides the standard Bags module does not imple-

ment the SubBag operator.

� You cannot use the following in�x operators.

< : � � � 

The following operators can be used only when de�ned in the standard

modules.

pre�x � � 	
Moreover, � and 	 must be typed as (+) and (-), respectively. You

cannot use the following:

=< <= >= \circ

However, you can use their equivalent forms:

\leq \geq \o

� TLC does not check that a symbol is de�ned before it is used. This means

that it will accept illegal recursive operator de�nitions like

Silly(foo)
�
= Silly(foo + 1)

� TLC doesn't implement the � (action composition) operator.

� The only strings TLC handles are ones containing letters, numbers, spaces,

and the following ASCII characters:

< > ? , . / : ; [ ] { } | ~ ! @ # $ % ^ & * ( ) _ - + =

� TLC allows you to replace constants by nonconstant operators. Doing so Replacement is

explained in Sec-

tion 14.2.3.
may cause it to produce incorrect results. (Version 1 also allows noncon-

stants to be replaced; this might not be allowed in Version 2.)

14.7 Future Plans

The following additions and improvements to future versions of TLC are being

considered. It is unlikely that they will all be implemented; recommendations

of which ones are most important would be useful.

� Handle the type of compositional speci�cations, described in Section 10.2,

that have conjuncts of the form 2IsFcnOn(f ; S ), and the next-state action

speci�es only the values of f [s ] for s 2 S .

� Have the progress reports contain separate counts of generated states that

do and don't satisfy the constraint.



14.8. THE FINE PRINT 259

� Introduce subclasses of model values, where a model value is comparable

only with model values in its own subclass. (This probably won't be

implemented, because; among its problems is that it requires also adding

some way of handling the construct choose x : x =2 S .)
� Improve debugging information as follows:

{ Print out the context at the point of the error|including variable

values, and the values of bound variables.

{ More precisely identify the place within the speci�cation where an

error occurs.

{ When an invariant is found to be false, have TLC print out why it is

false|that is, which conjunct or conjuncts are false.

� Add a debugging mode in which TLC won't stop for an error, but will just

keep going.

14.8 The Fine Print

This section describes in detail two aspects of TLC that were sketched above:

the grammar of the con�guration �le, and the precise de�nition of TLC values.

14.8.1 The Grammar of the Con�guration File

The grammar of TLC's con�guration �le is described in the TLA+ module

Con�gFileGrammar in Figure 14.6 on the next page. More precisely, the set

of sentences Grammar :File, where Grammar is de�ned in the module, describes

all syntactically correct con�guration �les from which comments have been re-

moved. The Con�gFileGrammar module extends the BNFGrammars module,

which is explained above in Section 11.1.4 (page 177).

Here are some additional restrictions on the con�guration �le that are not

speci�ed by module Con�gFileGrammar . There can be at most one INIT and

one NEXT statement. There can be one SPECIFICATION statement, but only

if there is no INIT or NEXT statement. (See page 238 in Section 14.3.1 for

conditions on when these statements must appear.) There can be at most one

VIEW statement and at most one SYMMETRY statement. Multiple instances of

other statements are allowed. For example, the two statements

INVARIANT Inv1

INVARIANT Inv2 Inv3

specify that TLC is to check the three invariants Inv1, Inv2, and Inv3. These

statements are equivalent to the single statement

INVARIANT Inv1 Inv2 Inv3
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module Con�gFileGrammar

extends BNFGrammars

LEXEMES

Letter
�
= OneOf (\abcdefghijklmnopqrstuvwxyz_ABCDEFGHIJKLMNOPQRSTUVWXYZ")

Num
�
= OneOf (\0123456789")

LetterOrNum
�
= Letter [ Num

AnyChar
�
= LetterOrNum [ OneOf (\� ! @# \ $% ^& ��+= j ( ) f g [ ] , : ; ` '<> . ? / ")

SingularKW
�
= f\SPECIFICATION"; \INIT"; \NEXT"; \VIEW"; \SYMMETRY"g

PluralKW
�
=

f\CONSTRAINT"; \CONSTRAINTS"; \ACTION-CONSTRAINT"; \ACTION-CONSTRAINTS";
\INVARIANT"; \INVARIANTS"; \PROPERTY"; \PROPERTIES"g

Keyword
�
= SingularKW [ PluralKW [ f\CONSTANT"; \CONSTANTS"g

AnyIdent
�
= LetterOrNum� & Letter & LetterOrNum�

Ident
�
= AnyIdent nKeyword

Grammar
�
= THE BNF GRAMMAR

let P(G)
�
=

^ G :File ::= G :Statement+

^ G :Statement ::= Tok(SingularKW ) & Tok(Ident)

j Tok(PluralKW ) & Tok(Ident)�

j Tok(f\CONSTANT"; \CONSTANTS"g)
& (G :Replacement j G :Assignment)�

^ G :Replacement ::= Tok(Ident) & tok(\<�") & Tok(AnyIdent)

^ G :Assignment ::= Tok(Ident) & tok(\=") & G :IdentValue

^ G :IdentValue ::= Tok(AnyIdent) j G :Number j G :String
j tok(\f")
& (Nil j G :IdentValue &(tok(\,") & G :IdentValue)�)

& tok(\g")
^ G :Number ::= (Nil j tok(\�")) & Tok(Num+)

^ G :String ::= tok(\" ") & Tok(AnyChar�) & tok(\" ")

in LeastGrammar(P)

Figure 14.6: The BNF grammar of the con�guration �le.
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14.8.2 Comparable TLC Values

Section 14.2.1 (page 226) describes TLC values. That description is incomplete

because it does not de�ne exactly when values are comparable. The precise

de�nition is that two TLC values are comparable i� the following rules imply

that they are:

1. Two primitive values are comparable i� they have the same value type.

This rule implies that \abc" and \123" are comparable, but \abc" and 123
are not.

2. A model value is comparable with any value. (It is equal only to itself.)

3. Two sets are comparable if they have di�erent numbers of elements, or if

they have the same numbers of elements and all the elements in one set

are comparable with all the elements in the other.

This rule implies that f1g and f\a"; \b"g are comparable and that f1; 2g
and f2; 3g are comparable. However, f1; 2g and f\a"; \b"g are not com-
parable.

4. Two functions f and g are comparable i� (i) their domains are comparable

and (ii) if their domains are equal, then f [x ] and g [x ] are comparable for

every element x in their domain.

This rule implies that h1; 2i and h\a"; \b"; \c"i are comparable, and that

h1; \a"i and h2; \bc"i are comparable. However, h1; 2i and h\a"; \b"i are
not comparable.
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This part of the book describes TLA+ in detail. Chapter 15 explains the

syntax; Chapters 16 and 17 explain the semantics; and Chapter 18 contains

the standard modules. Almost all of the TLA+ language has already been

described|mainly through examples. In fact, most of the language was de-

scribed in Chapters 1{6. Here, we give a complete speci�cation of the language.

A completely formal speci�cation of TLA+ would consist of a formal de�-

nition of the set of legal (syntactically well-formed) modules, and a precisely-

de�ned meaning operator that assigns to every legal moduleM its mathematical

meaning [[M ]]. Such a speci�cation would be quite long and of limited interest.

Instead, I have tried to provide a fairly informal speci�cation that is detailed

enough to show mathematically sophisticated readers how they could write a

completely formal one.

These chapters are heavy going, and only a few sophisticated readers will

want to read them completely. However, I hope they can serve as a reference

manual for anyone who reads or writes TLA+ speci�cations. If you have a

question about the �ner details of the syntax or the meaning of some part of the

language, you should be able to �nd the answer here.

Tables 1{8 on the next page through page 271 provide a tiny reference man-

ual. Tables 1{4 very briey describe all the built-in operators of TLA+. Table 5

lists all the user-de�nable operator symbols, and indicates which ones are al-

ready used by the standard modules. It's is a good place to look when choosing

notation for your speci�cation. Table 6 gives the precedence of the operators; it

is explained in Section 15.2.1. Table 7 lists all operators de�ned by the standard

modules. Finally, Table 8 shows how to type any symbol that doesn't have an

obvious ascii equivalent.
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Logic

^ _ : ) �
true false boolean [the set ftrue; falseg]

8 x : p 9 x : p 8 x 2 S : p (1) 9 x 2 S : p (1)

choose x : p [An x satisfying p] choose x 2 S : p [An x in S satisfying p]

Sets

= 6= 2 =2 [ \ � n [set di�erence]

fe1; : : : ; eng [Set consisting of elements e i ]

fx 2 S : pg (2) [Set of elements x in S satisfying p]

fe : x 2 Sg (1) [Set of elements e such that x in S ]

subset S [Set of subsets of S ]

union S [Union of all elements of S ]

Functions

f [e] [Function application]

domain f [Domain of function f ]

[x 2 S 7! e] (1) [Function f such that f [x ] = e for x 2 S ]

[S ! T ] [Set of functions f with f [x ] 2 T for x 2 S ]

[f except ! [e1] = e2]
(3) [Function bf equal to f except bf [e1] = e2]

Records

e:h [The h-component of record e]

[h1 7! e1; : : : ; hn 7! en ] [The record whose h i component is e i ]

[h1 : S 1; : : : ; hn : Sn ] [Set of all records with h i component in S i ]

[r except ! :h = e] (3) [Record br equal to r except br :h = e]

Tuples

e[i ] [The ith component of tuple e]

he1; : : : ; en i [The n-tuple whose i
th component is e i ]

S 1 � : : :� Sn [The set of all n-tuples with i
th component in S i ]

Strings and Numbers

\c1 . . . cn" [A literal string of n characters]

String [The set of all strings]

d1 : : : dn d1 : : : dn : dn+1 : : : dm [Numbers (where the d i are digits)]

(1) x 2 S may be replaced by a comma-separated list of items v 2 S , where v is either a

comma-separated list or a tuple of identi�ers.

(2) x may be an identi�er or tuple of identi�ers.

(3) ![e1] or ! :h may be replaced by a comma separated list of items !a1 � � � an , where each

ai is [ei ] or :hi .

Table 1: The constant operators.
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if p then e1 else e2 [e1 if p true, else e2]

case p1 ! e1 2 : : : 2 pn ! en [Some e i such that pi true]

case p1 ! e1 2 : : : 2 pn ! en 2 other! e [Some e i such that pi true,

or e if all pi are false]

let d1
�
= e1 : : : dn

�
= en in e [e in the context of the de�nitions]

^ p1
...

^ pn

[the conjunction p1 ^ : : : ^ pn ] _ p1
...

_ pn

[the disjunction p1 _ : : : _ pn ]

Table 2: Miscellaneous constructs.

e 0 [The value of e in the �nal state of a step]

[A]e [A _ (e 0 = e)]

hAie [A ^ (e 0 6= e)]

enabled A [An A step is possible]

unchanged e [e 0 = e]

A � B [Composition of actions]

Table 3: Action operators.

2F [F is always true]

3F [F is eventually true]

WFe(A) [Weak fairness for action A]

SFe(A) [Strong fairness for action A]

F ; G [F leads to G]

F
+�. G [F guarantees G]

999999 x : F [Temporal existential quanti�cation (hiding).]

888888x : F [Temporal universal quanti�cation.]

Table 4: Temporal operators.
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In�x Operators

+ (1) � (1) � (1) = (2) � (3) ++

� (1) % (1) ^ (1,4) : : (1) : : : ��

� (5) 	 (5) 
 � � ��
< (1) > (1) � (1) � (1) u ==

� � � � t ^^

� � < : :>(6) & &&

< = v (5) w j jj
� � � ? %%

` a j= =j � ##

� ' � �= $ $$

:= ::= � :
= ?? ! !

/ o ]  @@ (6)

Post�x Operators (7)

^+ ^� ^#

Pre�x Operator

� (8)

(1) De�ned by the Naturals, Integers, and Reals modules.

(2) De�ned by the Reals module.

(3) De�ned by the Sequences module.

(4) x^y is printed as xy .

(5) De�ned by the Bags module.

(6) De�ned by the TLC module.

(7) e^+ is printed as e+, and similarly for ^� and ^#.

(8) De�ned by the Integers and Reals modules.

Table 5: User-de�nable operator symbols.
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Pre�x Operators

: 4{4

enabled 4{15

unchanged 4{15

2 4{15

3 4{15

subset 8{8

union 8{8

domain 9{9

� 12{12

In�x Operators

) 1{1
+�. 2{2

� 2{2

; 2{2

^ 3{3 (a)

_ 3{3 (a)

6= 5{5

a 5{5

::= 5{5

:= 5{5

< 5{5

= 5{5

=j 5{5

> 5{5

� 5{5

� 5{5
�= 5{5
:
= 5{5

� 5{5

� 5{5

2 5{5

=2 5{5

� 5{5

� 5{5

� 5{5

� 5{5

/ 5{5

� 5{5

' 5{5

< 5{5

v 5{5

= 5{5

w 5{5

� 5{5

� 5{5

� 5{5

� 5{5

� 5{5

� 5{5

` 5{5

j= 5{5

�(1) 5{14 (a)

@@ 6{6 (a)

:> 7{7

< : 7{7

n 8{8

\ 8{8 (a)

[ 8{8 (a)

: : 9{9

: : : 9{9

! ! 9{13

## 9{13 (a)

$ 9{13 (a)

$$ 9{13 (a)

?? 9{13 (a)

u 9{13 (a)

t 9{13 (a)

] 9{13 (a)

o 9{14

� 10{10 (a)

+ 10{10 (a)

++ 10{10 (a)

% 10{11

%% 10{11 (a)

j 10{11 (a)

jj 10{11 (a)

	 11{11 (a)

� 11{11 (a)

�� 11{11 (a)

& 13{13 (a)

&& 13{13 (a)

� 13{13 (a)

� 13{13


 13{13 (a)

� 13{13 (a)

�� 13{13 (a)

= 13{13

== 13{13

 13{13 (a)

� 13{13 (a)

� 13{13

� 13{13 (a)

? 13{13 (a)

^ 14{14

^^ 14{14

.(2) 17{17 (a)

Post�x Operators

^+ 15{15 ^* 15{15 ^# 15{15 0 15{15

(1) Action composition (\cdot).

(2) Record component (period).

Table 6: The precedence ranges of operators. The relative precedence of two

operators is unspeci�ed if their ranges overlap. Left-associative operators are

indicated by (a).
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Modules Naturals , Integers , Reals

+ � (1) � = (2) ^ (3) : : In�nity (2)

� % � � < >

(1) Only in�x � is de�ned in Naturals.

(2) De�ned only in Reals module.

(3) Exponentiation.

Module Sequences

� Head SelectSeq SubSeq

Append Len Seq Tail

Module FiniteSets

IsFiniteSet Cardinality

Module Bags

� BagIn CopiesIn SubBag

	 BagOfAll EmptyBag

v BagToSet IsABag

BagCardinality BagUnion SetToBag

Module RealTime

RTBound RTnow now (declared to be a variable)

Module TLC

:> @@ Print Assert JavaTime Permutations

SortSeq

Table 7: Operators de�ned in the standard modules.
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^ /\ or \land

: ~ or \lnot or \neg

2 \in

h <<

< <

� \leq or =< or <=

� \ll

� \prec

� \preceq

� \subseteq

� \subset

< \sqsubset

v \sqsubseteq

` |-

j= |=

! ->

\ \cap or \intersect

u \sqcap

� (+) or \oplus

	 (-) or \ominus

� (.) or \odot


 (\X) or \otimes

� (/) or \oslash

9 \E
999999 \EE

_ \/ or \lor

� <=> or \equiv

=2 \notin

i >>

> >

� \geq or >=

� \gg

� \succ

� \succeq

� \supseteq

� \supset

= \sqsupset

w \sqsupseteq

a -|

=j =|

 <-

[ \cup or \union

t \sqcup

] \uplus

� \X or \times

o \wr

/ \propto

\s" "s" (1)

8 \A
888888 \AA

) =>
�
= ==

6= # or /=

2 []

3 <>

; ~>
+�. -+->

7! |->

� \div

� \cdot

� \o or \circ

� \bullet

? \star

 \bigcirc

� \sim

' \simeq

� \asymp

� \approx
�= \cong
:
= \doteq

x y x^y (2)

x+ x^+ (2)

x� x^* (2)

x# x^# (2)

0 '

-------- (3) -------- (3)

-------- (3) ======== (3)

(1) s is a sequence of characters. See Section 16.1.10 on page 305.

(2) x and y are any expressions.

(3) a sequence of four or more - or = characters.

Table 8: The ascii representations of typeset symbols.
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Chapter 15

The Syntax of TLA+

The term syntax has two di�erent usages, which I will somewhat arbitrarily at-

tribute to mathematicians and computer scientists. A computer scientist would

say that ha; a i is a syntactically correct TLA+ expression. A mathematician

would say that the expression is syntactically correct i� it appears in a context in

which a is de�ned or declared. A computer scientist would call this requirement

a semantic rather than a syntactic condition. A mathematician would say that

ha; a i is meaningless if a isn't de�ned or declared, and one can't talk about

the semantics of a meaningless expression. This chapter describes the syntax of

TLA+, in the computer scientist's sense of syntax. The \semantic" part of the

syntax is speci�ed in Chapters 16 and 17. Finally,

Table 5 on page 268 lists all the user-de�nable in�x, post�x, and pre�x

operator symbols of TLA+. It also indicates which of them are de�ned by the

standard modules. This is a good place to look when choosing notation for your

speci�cation.

TLA+ is designed to be easy for humans to read and write. In particu-

lar, its syntax for expressions tries to capture some of the richness of ordinary

mathematical notation. This makes a precise speci�cation of the syntax rather

complicated. Such a speci�cation has been written in TLA+, but it is quite

detailed and you probably don't want to look at it unless you are writing a

parser for the language. This chapter gives a less formal description of the syn-

tax that should answer any questions likely to arise in practice. Section 15.1

speci�es precisely a simple grammar that ignores some aspects of the syntax

such as operator precedence, indentation rules for ^ and _ lists, and comments.

These other aspects are explained informally in Section 15.2. Sections 15.1 and

15.2 describe the grammar of a TLA+module viewed as a sequence of lexemes,

where a lexeme is a sequence of characters such as |-> that forms an atomic

unit of the grammar. Section 15.3 describes how the sequence of characters that

you actually type are turned into a sequence of lexemes. It includes the precise

273
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syntax for comments.

This chapter describes the ascii syntax for TLA+ speci�cations. Typeset

versions of speci�cations appear in this book. For example, the in�x operator

typeset as � is represented in ascii as \prec. Table 8 on page 271 gives the

correspondence between the ascii and typeset versions of all TLA+ symbols for

which the correspondence may not be obvious.

15.1 The Simple Grammar

The simple grammar of TLA+ is described in BNF. More precisely, it is speci�ed

below in the TLA+ module TLAPlusGrammar . This module uses the opera-

tors for representing BNF grammars de�ned in the BNFGrammars module of

Section 11.1.4 (page 177). Module TLAPlusGrammar contains comments de-

scribing how to read the speci�cation as an ordinary BNF grammar. So, if you

are familiar with BNF grammars and just want to learn the syntax of TLA+,

you don't have to understand how the TLA+ operators for writing grammars

are de�ned. Otherwise, you should read Section 11.1.4 before trying to read the

following module.

module TLAPlusGrammar

extends Naturals, Sequences, BNFGrammars

This module de�nes a simple grammar for TLA+ that ignores many aspects of the language,

such as operator precedence and indentation rules. I use the term sentence to mean a se-

quence of lexemes, where a lexeme is just a string. The BNFGrammars module de�nes the

following standard conventions for writing sets of sentences: L j M means an L or an M ,

L� means the concatenation of zero or more Ls, and L+ means the concatenation of one or

more Ls. The concatenation of an L and an M is denoted by L & M rather than the cus-

tomary juxtaposition LM . Nil is the null sentence, so Nil & L equals L for any L.

A token is a one-lexeme sentence. There are two operators for de�ning sets of tokens: if s is

a lexeme, then tok(s) is the set containing the single token hs i; and if S is a set of lexemes,

then Tok(S) is the set containing all tokens hs i for s 2 S . In comments, I will not distin-

guish between the token hs i and the string s.

We begin by de�ning two useful operators. First, a CommaList(L) is de�ned to be an L or a

sequence of Ls separated by commas.

CommaList(L)
�
= L &(tok(\,") & L)�

Next, if c is a character, then we de�ne AtLeast4(\c") to be the set of tokens consisting of 4

or more c's.

AtLeast4(s)
�
= Tok(fs � s � sg & fsg+)

We now de�ne some sets of lexemes. First is ReservedWord , the set of words that can't be

used as identi�ers. (Note that boolean, true, false, and string are identi�ers that are

prede�ned.)
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ReservedWord
�
=

f\ASSUME"; \ELSE"; \LOCAL"; \UNION";
\ASSUMPTION"; \ENABLED"; \MODULE"; \VARIABLE";
\AXIOM"; \EXCEPT"; \OTHER"; \VARIABLES";
\CASE"; \EXTENDS"; \SF_"; \WF_";
\CHOOSE"; \IF"; \SUBSET"; \WITH";
\CONSTANT"; \IN"; \THEN";
\CONSTANTS"; \INSTANCE"; \THEOREM";

\DOMAIN"; \LET"; \UNCHANGED" g
Next are three sets of characters|more precisely, sets of 1-character lexemes. They are the

sets of letters, numbers, and characters that can appear in an identi�er.

Letter
�
=

OneOf (\abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ")

Numeral
�
= OneOf (\0123456789")

NameChar
�
= Letter [ Numeral [ f\_"g

We now de�ne some sets of tokens. A Name is a token composed of letters, numbers, and _

characters that contains at least one letter, but does not begin with \WF_" or \SF_" (see

pages ?{? for an explanation of this restriction). It can be used as the name of a record

component or a module. An Identi�er is a Name that isn't a reserved word.

Name
�
= Tok( (NameChar� & Letter & NameChar�)

n (f\WF_"; \SF_"g & NameChar+) )

Identi�er
�
= Name nTok(ReservedWord)

An Identi�erOrTuple is either an identi�er or a tuple of identi�ers. Note that h i is typed as

<< >>.

Identi�erOrTuple
�
=

Identi�er j tok(\<<") & CommaList(Identi�er) & tok(\>>")

A Number is a token representing a number. You can write the integer 63 in the following

ways: 63, 63.00, \b111111 or \B111111 (binary), \o77 or \O77 (octal), or \h3f, \H3f, \h3F,

or \H3F (hexadecimal).

NumberLexeme
�
= Numeral+

j (Numeral� & f\."g & Numeral+)

j f\\b"; \\B"g & OneOf (\01")+

j f\\o"; \\O"g & OneOf (\01234567")+

j f\\h"; \\H"g & OneOf (\0123456789abcdefABCDEF")+

Number
�
= Tok(NumberLexeme)

A String token represents a literal string. See Section 16.1.10 on page 305 to �nd out how

special characters are typed in a string.

String
�
= Tok( f\ " "g & string & f\" "g )

We next de�ne the sets of tokens that represent pre�x operators (like 2), in�x operators

(like +), and post�x operators (like prime (0)). See Table 8 on page 271 to �nd out what

symbols these ascii strings represent.
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Pre�xOp
�
= Tok(f \-", \~", \\lnot", \\neg", \[]", \<>", \DOMAIN";

\ENABLED"; \SUBSET"; \UNCHANGED"; \UNION"g)
In�xOp

�
=

Tok( f \!!", \#", \##", \$", \$$", \%", \%%",

\&", \&&", \(+)", \(-)", \(.)", \(/)", \(\X)",

\*", \**", \+", \++", \-", \-+->", \--",

\-|", \..", \...", \/", \//", \/=", \/\",

\::=", \:=", \:>", \<", \<:", \<=>", \=",

\=<", \=>", \=|", \>", \>=", \?", \??",

\@@", \\", \\/", \^", \^^", \|", \|-",

\|=", \||", \~>", \.",

\\approx", \\geq", \\oslash", \\sqsupseteq",
\\asymp", \\gg", \\otimes", \\star",
\\bigcirc", \\in", \\prec", \\subset",
\\bullet", \\intersect", \\preceq", \\subseteq",
\\cap", \\land", \\propto", \\succ",
\\cdot", \\leq", \\sim", \\succeq",
\\circ", \\ll", \\simeq", \\supset",
\\cong", \\lor", \\sqcap", \\supseteq",
\\cup", \\o", \\sqcup", \\union",
\\div", \\odot", \\sqsubset", \\uplus",
\\doteq", \\ominus", \\sqsubseteq", \\wr",
\\equiv", \\oplus", \\sqsupset" g )

Post�xOp
�
= Tok(f\^+", \^*", \^#", \'"g)

Formally, the grammar TLAPlusGrammar of TLA+ is the smallest grammar satisfying the

BNF productions below.

TLAPlusGrammar
�
=

let P(G)
�
=

Here is the BNF grammar. Terms that begin with \G:", like G:Module, represent nontermi-

nals. The terminals are sets of tokens, either de�ned above or described with the operators

tok and Tok . The operators AtLeast4 and CommaList are de�ned above.

^ G :Module ::= AtLeast4(\-") & tok(\MODULE") & Name & AtLeast4(\-")

& (Nil j (tok(\EXTENDS") & CommaList(Name)))

& (G :Unit)�

& AtLeast4(\=")
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^ G :Unit ::= G :VariableDeclaration

j G :ConstantDeclaration

j (Nil j tok(\LOCAL")) & G :OperatorDe�nition

j (Nil j tok(\LOCAL")) & G :FunctionDe�nition

j (Nil j tok(\LOCAL")) & G :Instance

j (Nil j tok(\LOCAL")) & G :ModuleDe�nition

j G :Assumption

j G :Theorem

j G :Module

j AtLeast4(\-")

^ G :VariableDeclaration ::=

Tok(f\VARIABLE"; \VARIABLES"g) & CommaList(Identi�er)

^ G :ConstantDeclaration ::=

Tok(f\CONSTANT"; \CONSTANTS"g) & CommaList(G :OpDecl)

^ G :OpDecl ::= Identi�er

j Identi�er & tok(\(") & CommaList( tok(\_") ) & tok(\)")
j Pre�xOp & tok(\_")

j tok(\_") & In�xOp & tok(\_")

j tok(\_") & Post�xOp

^ G :OperatorDe�nition ::= ( G :NonFixLHS

j Pre�xOp & Identi�er

j Identi�er & In�xOp & Identi�er

j Identi�er & Post�xOp )

& tok(\==")

& G :Expression

^ G :NonFixLHS ::=

Identi�er

& ( Nil

j tok(\(") & CommaList( Identi�er j G :OpDecl ) & tok(\)") )

^ G :FunctionDe�nition ::=

Identi�er

& tok(\[") & CommaList(G :Quanti�erBound) & tok(\]")

& tok(\==")

& G :Expression
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^ G :Quanti�erBound ::= ( Identi�erOrTuple j CommaList(Identi�er) )
& tok(\\in")
& G :Expression

^ G :Instance ::= tok(\INSTANCE")
& Name

& (Nil j tok(\WITH") & CommaList(G :Substitution) )

^ G :Substitution ::= ( Identi�er j Pre�xOp j In�xOp j Post�xOp )
& tok(\<-")

& G :Argument

^ G :Argument ::= G :Expression

j G :GeneralPre�xOp

j G :GeneralIn�xOp

j G :GeneralPost�xOp

^ G :InstancePre�x ::=

( Identi�er

& ( Nil

j tok(\(") & CommaList(G :Expression) & tok(\)") )
& tok(\!") )�

^ G :GeneralIdenti�er ::= G :InstancePre�x & Identi�er

^ G :GeneralPre�xOp ::= G :InstancePre�x & Pre�xOp

^ G :GeneralIn�xOp ::= G :InstancePre�x & In�xOp

^ G :GeneralPost�xOp ::= G :InstancePre�x & Post�xOp

^ G :ModuleDe�nition ::= G :NonFixLHS & tok(\==") & G :Instance

^ G :Assumption ::=

Tok(f\ASSUME"; \ASSUMPTION"; \AXIOM"g) & G :Expression

^ G :Theorem ::= tok(\THEOREM") & G :Expression

The comments give examples of each of the di�erent types of expression.

^ G :Expression ::=

G :GeneralIdenti�er A(x + 7)!B !Id

j G :GeneralIdenti�er & tok(\(")
& CommaList(G :Argument) & tok(\)")

A!Op(x + 1; y)

j G :GeneralPre�xOp & G :Expression subset S :foo
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j G :Expression & G :GeneralIn�xOp & G :Expression a + b

j G :Expression & G :GeneralPost�xOp x [1]0

j tok(\(") & G :Expression & tok(\)") (x + 1)

j Tok(f\\A"; \\E"g) & CommaList(G :Quanti�erBound)

& tok(\:") & G :Expression

8 x 2 S ; hy; z i 2 T : F (x ; y; z)

j Tok(f\\A"; \\E"; \\AA"; \\EE"g) & CommaList(Identi�er)

& tok(\:") & G :Expression

9 x ; y : x + y > 0

j tok(\CHOOSE")
& Identi�erOrTuple

& (Nil j tok(\\in") & G :Expression)

& tok(\:")

& G :Expression

choose hx ; y i 2 S : F (x ; y)

j tok(\f") & (Nil j CommaList(G :Expression)) & tok(\g") f1; 2; 2 + 2g

j tok(\f")
& Identi�erOrTuple & tok(\\in") & G :Expression

& tok(\:")

& G :Expression

& tok(\g")

fx 2 Nat : x > 0g

j tok(\f")
& G :Expression

& tok(\:")

& CommaList(G :Quanti�erBound)

& tok(\g")

fF (x ; y; z) : x ; y 2 S ; z 2 Tg

j G :Expression & tok(\[") & CommaList(G :Expression) & tok(\]") f [i + 1; j ]

j tok(\[")

& CommaList(G :Quanti�erBound)

& tok(\|->")

& G :Expression

& tok(\]")

[i; j 2 S ; hp; q i 2 T 7! F (i; j ; p; q)]

j tok(\[") & G :Expression & tok(\->") & G :Expression & tok(\]") [(S [ T )! U ]

j tok(\[") & CommaList(Name & tok(\|->") & G :Expression )

& tok(\]")

[a 7! x + 1; b 7! y]
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j tok(\[") & CommaList(Name & tok(\:") & G :Expression )

& tok(\]")

[a :Nat ; b : S ]

j tok(\[") [f except ! [1; x ]:r = 4; ![h2; y i] = e]

& G :Expression

& tok(\EXCEPT")
& CommaList( tok(\!")

& ( tok(\.") & Name

j tok(\[") & CommaList(G :Expression) & tok(\]") )+

& tok(\=") & G :Expression )

& tok(\]")

j tok(\<<") & CommaList(G :Expression) & tok(\>>") h1; 2; 3i

j G :Expression &(Tok(f\\X"; \\times"g) & G :Expression)+ Nat � Nat �Real

j tok(\[") & G :Expression & tok(\]_") & G :Expression [Next ]hx ;y i

j tok(\<<") & G :Expression & tok(\>>_") & G :Expression hSend ivars

j Tok(f\WF_"; \SF_"g) & G :Expression

& tok(\(") & G :Expression & tok(\)")
WFvars(Next)

j tok(\IF") & G :Expression & tok(\THEN")
& G :Expression & tok(\ELSE") & G :Expression

if p then A else B

j tok(\CASE") case p1 ! e1

2 p2 ! e2

2 other ! e3
& ( let CaseArm

�
=

G :Expression & tok(\->") & G :Expression

in CaseArm &(tok(\[ ]") & CaseArm)� )

& ( Nil

j ( tok(\[]") & tok(\OTHER") & tok(\->") & G :Expression) )

j tok(\LET")
& ( G :OperatorDe�nition

j G :FunctionDe�nition

j G :ModuleDe�nition )+

& tok(\IN")
& G :Expression

let x
�
= y + 1

f [t 2 Nat]
�
= t

2

in x + f [y]

j (tok(\/\") & G :Expression)+ ^ x = 1

^ y = 2

j (tok(\\/") & G :Expression)+ _ x = 1

_ y = 2
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j Number 09001

j String \foo"

j tok(\@") @ (Can be used only in an except expression.)

in LeastGrammar(P)

15.2 The Complete Grammar

We now complete our explanation of the syntax of TLA+ by giving the de-

tails that are not described by the BNF grammar in the previous section. Sec-

tion 15.2.1 gives the precedence rules, Section 15.2.2 gives the alignment rules

for conjunction and disjunction lists, and Section 15.2.3 describes comments.

Section 15.2.4 briey discusses the syntax of temporal formulas. Finally, for

completeness, Section 15.2.5 explains the handling of two anomalous cases that

you're unlikely ever to encounter.

15.2.1 Precedence and Associativity

The expression a+ b � c is interpreted as a+(b � c) rather than (a+ b)� c. This
convention is described by saying that the operator � has higher precedence than
the operator +. In general, operators with higher precedence are applied before

operators of lower precedence. This applies to pre�x operators (like subset )

and post�x operators (like 0) as well as to in�x operators like + and �. Thus,

a + b0 is interpreted as a + (b0), rather than as (a + b)0, because 0 has higher

precedence than +. Application order can also be determined by associativity.

The expression a�b�c is interpreted as (a�b)�c because � is a left-associative

in�x operator.

In TLA+, the precedence of an operator is a range of numbers, like 9{13. The

operator $ has higher precedence than the operator :> because the precedence of

$ is 9{13, and this entire range is greater than the precedence range of :>, which

is 7{7. An expression is illegal (not syntactically well-formed) if the order of

application of two operators is not determined because their precedence ranges

overlap and they are not two instances of an associative in�x operator. For

example, the expression a + b � c0 % d is illegal for the following reason. The

precedence range of 0 is higher than that of �, and the precedence range of � is
higher than that of + and%, so this expression is interpreted as a+(b�(c0)) % d .

However, the precedences of + (10{10) and % (10{11) overlap, so the expression

is illegal.

TLA+ embodies the philosophy that it's better to require parentheses than
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to allow expressions that could be easily be misinterpreted. Thus, � and = have

overlapping precedence, making an expression like a=b � c illegal. (This also

makes a � b=c illegal, even though (a � b)=c and a � (b=c) happen to be equal

when � and = have their usual de�nitions.) Unconventional operators like $ have
wide precedence ranges for safety. But, even when the precedence rules imply

that parentheses aren't needed, it's often a good idea to use them anyway if you

think there's any chance that a reader might not understand how an expression

is parsed.

Table 6 on page 269 gives the precedence ranges of all operators and tells

which in�x operators are left associative. (No TLA+ operators are right asso-

ciative.) Note that the symbols 2, =, and \." are used both as �xed parts of

constructs and as in�x operators. They are not in�x operators in the following

two expressions:

fx 2 S : p(x )g [f except ! :a = e]

so the precedence of the corresponding in�x operators plays no role in parsing

these expressions. Below are some additional precedence rules not covered by

the operator precedence ranges.

Function Application

Function application is treated like an operator with precedence range 16{16,

giving it higher precedence than any operator except period (\."), the record-

component operator. Thus, a + b:c[d ]0 is interpreted as a + (((b:c)[d ])0).

Cartesian Products

In the Cartesian product construct, � (typed as \X or \times) acts somewhat

like an associative in�x operator with precedence range 10{13. Thus, A�B � C

is interpreted as (A � B) � C , rather than as A � (B � C ). However, � is

part of a special construct, not an in�x operator. For example, the three sets

A� B � C , (A� B)� C , and A� (B � C ) are all di�erent:

A� B � C = fha; b; c i : a 2 A; b 2 B ; c 2 Cg
(A� B)� C = fhha; b i; c i : a 2 A; b 2 B ; c 2 Cg
A� (B � C ) = fha; hb; c ii : a 2 A; b 2 B ; c 2 Cg

The �rst is a set of triples; the last two are sets of pairs.

Undelimited Constructs

TLA+ has several expression-making constructs with no explicit right-hand ter-

minator. They are: choose, if/then/else, case, let/in, and quanti�er con-

structs. These constructs are treated as pre�x operators with the lowest possible

precedence, so an expression made with one of them extends as far as possible.

More precisely, the expression is ended only by one of the following:
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� The beginning of the next module unit. (Module units are produced by

the Unit nonterminal in the BNF grammar of Section 11.1.4; they include

de�nition and declaration statements.)

� A right delimiter whose matching left delimiter occurs before the beginning

of the construct. Delimiter pairs are ( ), [ ], f g, and h i.

� Any of the following lexemes, if they are not part of a subexpression: then,

else, in, comma (,), colon (:), and !. For example, the subexpression

8 x :P is ended by the then in the expression:

if 8 x :P then 0 else 1

� The case separator 2 (not the pre�x temporal operator that is typed the

same) ends all of these constructs except a case statement without an

other clause. That is, the 2 acts as a delimiter except when it can be

part of a case statement.

� Any symbol not to the right of the ^ or _ pre�xing a conjunction or dis-

junction list element containing the construct. (See Section 15.2.2 below.)

Here is how some expressions are interpreted under this rule:

if x > 0 then y + 1

else y � 1

+ 2

means
if x > 0 then y + 1

else (y � 1 + 2)

8 x 2 S : P(x )

_ Q
means 8 x 2 S : (P(x ) _Q)

As these examples show, indentation is ignored|except in conjunction and dis-

junction lists, discussed below. The absence of a terminating lexeme (an end) for

an if/then/else or case construct usually makes an expression less cluttered,

but sometimes it does require you to add parentheses.

Subscripts

TLA uses subscript notation in the following constructs: [A]e , hAie , WFe(A),

and SFe(A). In TLA+, these are written with a \_" character, as in <<A>>_e.

This notation is, in principle, problematic. The expression <<A>>_x /\ B, which

we expect to mean (hAix ) ^ B , could conceivably be interpreted as hAi(x^B).

The precise rule for parsing these constructs isn't important; you should put

parentheses around the subscript except in the following two cases.

� The subscript is a GeneralIdenti�er in the BNF grammar.

� The subscript is an expression enclosed by one of the following matching

delimiter pairs: ( ), [ ], h i, or f g|for example, hx ; y i or (x + y).
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Although [A]_f[x] is interpreted correctly as [A]f [x ], it will be easier to read in

the ascii text if you write it as [A]_(f[x]).

15.2.2 Alignment

The most novel aspect of TLA+ syntax is the aligned conjunction and disjunction

lists. If you write such a list in a straightforward manner, then it will mean what

you expect it to. However, you might wind up doing something weird through

a typing error. So, it's a good idea to know what the exact syntax rules are for

these lists. I give the rules here for conjunction lists; the rules for disjunction

lists are analogous.

A conjunction list is an expression that begins with ^, which is typed as /\.

Let c be the column in which the / occurs. The conjunction list consists of a

sequence of conjuncts, each beginning with a ^. A conjunct is ended by any one

of the following that occurs after the /\:

1. Another /\ whose / character is in column c and is the �rst nonspace

character on the line.

2. Any nonspace character in column c or a column to the left of column c.

3. A right delimiter whose matching left delimiter occurs before the beginning

of the conjunction list. Delimiter pairs are ( ), [ ], f g, and h i.

4. The beginning of the next module unit. (Module units are produced by

the Unit nonterminal in the BNF grammar; they include de�nition and

declaration statements.)

In case 1, the /\ begins the next conjunct in the same conjunction list. In the

other three cases, the end of the conjunct is the end of the entire conjunction list.

In all cases, the character ending the conjunct does not belong to the conjunct.

With these rules, indentation properly delimits expressions in a conjunction

list|for example:

/\ IF e THEN P

ELSE Q

/\ R

means

^ (if e then P

else Q)

^ R

It's best to indent each conjunction completely to the right of its ^ symbol.

These examples illustrate precisely what happens if you don't:

/\ x'

= y

/\ y'=x

means
^ x 0 = y

^ y 0 = x

/\ x'

= y

/\ y'=x

means

(^ x 0)

= (y

^ (y 0 = x ))
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In the second example, ^ x 0 is interpreted as a conjunction list containing only

one conjunct, and the second /\ is interpreted as an in�x operator.

You can't use parentheses to circumvent the indentation rules. For example,

this is illegal:

/\ (x'

= y)

/\ y'=x

The rules imply that the �rst /\ begins a conjunction list that is ended before

the =. That conjunction list is therefore ^ (x 0, which has an unmatched left

parenthesis.

The conjunction/disjunction list notation is quite robust. Even if you mess

up the alignment by typing one space too few or too many|something that's

easy to do when the conjuncts are long|the formula is still likely to mean what

you intended. Here's an example of what happens if you misalign a conjunct:

/\ A

/\ B

/\ C

means

( (^ A) The bulleted list ^A of one conjunct; it equals A.

^ B) This ^ is interpreted as an in�x operator.

^ C This ^ is interpreted as an in�x operator.

While not interpreted the way you expected, this formula is equivalent to A ^
B ^ C , which is what you meant in the �rst place.

Most keyboards contain one key that is the source of a lot of trouble: the tab

key (sometimes marked on the keyboard with a right arrow). On my computer

screen, I can produce

A ==

/\ x' = 1

/\ y' = 2

by beginning the second line with eight space characters and the third with one

tab character. In this case, it is unspeci�ed whether or not the two / characters

occur in the same column. Tab characters are an anachronism left over from

the days of typewriters and of computers with memory capacity measured in

kilobytes. I strongly advise you never to use them. But, if you insist on using

them, here are the rules:

� A tab character is considered to be equivalent to one or more space char-

acters, so it occupies one or more columns.

� Identical sequences of space and tab characters that occur at the beginning

of a line occupy the same number of columns.

There are no other guarantees if you use tab characters.
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15.2.3 Comments

Comments are described in Section 3.5 on page 32. A comment may appear

between any two lexemes in a speci�cation. There are two types of comments:

� A delimited comment is a string of the form \ (� " � s � \ �) ", where s is

any string in which occurrences of \ (� " and \ �) " are properly matched.

More precisely, a delimited comment is de�ned inductively to be a string

of the form \ (� "�s �\�) ", where s is either (i) a string containing neither
the substring \ (� " nor the substring \ �) ", or (ii) a sequence of delimited
comments.

� An end-of-line comment is a string of the form \ \� " � s � \hlfi", where s
is any string not containing an end-of-line character hlfi.

I like to write comments as shown here:

BufRcv == /\ InChan!Rcv (********************************)

/\ q' = Append(q, in.val) (* Receive message from channel *)

/\ out (* in and append to tail of q. *)

(********************************)

Grammatically, this piece of speci�cation has four distinct comments, the �rst

and last consisting of the same string (*** � � �***). But a person reading it

would regard them as a single comment, spread over four lines. This kind of

commenting convention is not part of the TLA+ language, but it is supported

by the TLATEX typesetting program, as described in Section 13.4 on page 210.

15.2.4 Temporal Formulas

The BNF grammar treats 2 and 3 simply as pre�x operators. However, as

explained in Section 8.1 (page 88), the syntax of temporal formulas places re-

strictions on their use. For example, 2(x 0 = x+1) is not a legal formula. It's not

hard to write a BNF grammar that speci�es legal temporal formulas made from

the temporal operators and ordinary Boolean operators like : and ^. However,
such a BNF grammar won't tell you which of these two expressions is legal:

let F (P ;Q)
�
= P ^ 2Q

in F (x = 1; x = y + 1)

let F (P ;Q)
�
= P ^ 2Q

in F (x = 1; x 0 = y + 1)

The �rst is legal; the second isn't because it represents the illegal formula

(x = 1) ^ 2(x 0 = y + 1) This formula is illegal.

The precise rules for determining if a temporal formula is syntactically well-

formed involve �rst replacing all de�ned operators by their de�nitions, using the

procedure described in Section 17.4 below. I won't bother specifying these rules.
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In practice, temporal operators are not used very much in TLA+ speci�ca-

tions, and one rarely writes de�nitions of new ones such as

F (P ;Q)
�
= P ^ 2Q

The syntactic rules for expressions involving such operators are of academic

interest only.

15.2.5 Two Anomalies

There are two sources of potential ambiguity in the grammar of TLA+ that you

are unlikely to encounter and that have ad hoc resolutions. The �rst of these

arises from the use of � as both an in�x operator (as in 2 � 2) and a pre�x

operator (as in 2 +�2). This poses no problem when � is used in an ordinary

expression. However, there are two places in which an operator can appear by

itself:

� As the argument of a higher-order operator, as in HOp(+; �).

� In an instance substitution, such as

instance M with Plus  + ; Minus  �

In both these cases, the symbol - is interpreted as the in�x operator. You must

type -. to denote the pre�x operator. You also have to type -. if you should

ever want to de�ne the pre�x � operator, as in:

�: a �
= UMinus(a)

Remember that, in ordinary expressions, you just type - as usual for both op-

erators.

The second source of ambiguity in the TLA+ syntax is an unlikely expression

of the form fx 2 S : y 2 Tg, which might be taken to mean either of the

following:

let p(x )
�
= y 2 T in fx 2 S : p(x )g This is a subset of S .

let p(y)
�
= x 2 S in fp(y) : y 2 Tg This is a subset of boolean (the set ftrue; falseg).

It is interpreted as the �rst formula.

15.3 The Lexemes of TLA+

So far, this chapter has described the sequences of lexemes that form syntac-

tically correct TLA+ modules. More precisely, because of the alignment rules,

syntactic correctness depends not just on the sequence of lexemes, but also on
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the position of each lexeme|that is, on the row and columns in which the char-

acters of the lexeme appear. To complete the de�nition of the syntax of TLA+,

this section explains how a sequence of characters is turned into a sequence of

lexemes.

All characters that precede the beginning of the module are ignored. Ignoring

a character does not change the row or column of any other character in the

sequence. The module begins with a sequence of four or more dashes (\-"

characters), followed by zero or more space characters, followed by the six-

character string \MODULE". (This sequence of characters yields the �rst two

lexemes of the module.) The remaining sequence of characters is then converted

to a sequence of lexemes by iteratively applying the following rule until the

module-ending == � � �== token is found:

The next lexeme begins at the next text character that is not part of a

comment, and consists of the largest sequence of consecutive characters

that form a legal TLA+ lexeme. (It is an error if no such lexeme exists.)

Space, tab, and the end-of-line character are not text characters. It is unde�ned

whether characters such as form-feed are considered text characters. (You should

not use such characters outside comments.)

In the BNF grammar, a Name is a lexeme that can be used as the name of

a record component. The semantics of TLA+, in which r :c is an abbreviation

for r [\c"], would allow any string to be a Name. However, some restriction is

needed|for example, allowing a string like \a+b" to be a Name would make

it impossible in practice to decide if r.a+b meant r [\a+b"] or r [\a"] + b. The

one unusual restriction in the de�nition of Name on page 275 is the exclusion

of strings beginning with (but not consisting entirely of) \WF_" and \SF_".
With this restriction, such strings are not legal TLA+ lexemes. Hence, the input

WF_x(A) is broken into the �ve lexemes \WF_", \x", \(", \A", and \)", and it

is interpreted as the expression WFx (A).



Chapter 16

The Operators of TLA+

This chapter describes the built-in operators of TLA+. Most of these opera-

tors have been described in Part I. Here, you can �nd brief explanations of

the operators, along with references to the longer descriptions in Part I. The

explanations cover some subtle points that are not mentioned elsewhere. The

chapter can serve as a reference manual for readers who have �nished Part I or

who are already familiar enough with the mathematical concepts that the brief

explanations are all they need.

The chapter includes a formal semantics of the operators. The rigorous

description of TLA+ that a formal semantics provides is usually needed only by

people building TLA+ tools. If you're not building a tool and don't have a special

fondness for formalism, you will probably want to skip all the subsections titled

Formal Semantics. However, you may some day encounter an obscure question

about the meaning of a TLA+ operator that is answered only by the formal

semantics.

This chapter also de�nes some of the \semantic" conditions on the syntax

of TLA+ that are omitted from the grammar of Chapter 15. For example, it

tells you that [a :Nat ; a : boolean] is an illegal expression. Other semantic

conditions on expressions arise from a combination of the de�nitions in this

chapter and the conditions stated in Chapter 17. For example, this chapter

de�nes 9 x ; x : p to equal 9 x : (9 x : p), and Chapter 17 tells you that the latter

expression is illegal.

16.1 Constant Operators

We �rst de�ne the constant operators of TLA+. These are the operators of

ordinary mathematics, having nothing to do with TLA or temporal logic. All

the constant operators of TLA+ are listed in Table 1 on page 266 and Table 2

289
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on page 267.

An operator combines one or more expressions into a \larger" expression.

For example, the set union operator [ combines two expressions e1 and e2 into

the expression e1 [ e2. Some operators don't have such simple names as [. For
example, there's no simple name for the operator that combines the n expressions

e1, . . . , en to form the expression fe1; : : : ; eng. We could name it f ; : : : ; g or
f ; : : : ; g, but that would be awkward. Instead of explicitly mentioning the

operator, I'll refer to the construct fe1; : : : ; eng. The distinction between an

operator like [ and the nameless one used in the construct fe1; : : : ; eng is purely
syntactic, with no mathematical signi�cance. In Chapter 17, I will abstract away

from this syntactic di�erence and treat all operators uniformly. For now, I'll stay

closer to the syntax.

Formal Semantics

A formal semantics for a language is a translation from that language into some

form of mathematics. We assign a mathematical expression [[e]], called the mean-

ing of e, to certain terms e in the language. Since we presumably understand

the mathematics, we know what [[e]] means, and that tells us what e means.

Meaning is generally de�ned inductively. For example, the meaning [[e1[e2]]
of the expression e1 [ e2 would be de�ned in terms of the meanings [[e1]] and

[[e2]] of its subexpressions. This de�nition is said to de�ne the semantics of the

operator [.
Because much of TLA+ is a language for expressing ordinary mathematics,

much of its semantics is trivial. For example, the semantics of [ can be de�ned by

[[e1 [ e2]] �
= [[e1]] [ [[e2]]

In this de�nition, the [ to the left of the
�
= is the TLA+ symbol, while the one

to the right is the set-union operator of ordinary mathematics. I could make the

distinction between the two uses of the symbol [ more obvious by writing

[[e1 \cup e2]]
�
= [[e1]] [ [[e2]]

But, that wouldn't make the de�nition any less trivial.

Instead of trying to maintain a distinction between the TLA+ operator [
and the operator of set theory that's written the same, I simply use TLA+ as

the language of mathematics in which to de�ne the semantics of TLA+. That

is, I take as primitive certain TLA+ operators that, like [, correspond to well-

known mathematical operators. I describe the formal semantics of the constant

operators of TLA+ by de�ning them in terms of these primitive operators. I also

describe the semantics of some of the primitive operators by stating the axioms

that they satisfy.
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16.1.1 Boolean Operators

The truth values of logic are written in TLA+ as true and false. The built-in

constant boolean is the set consisting of those two values:

boolean
�
= ftrue; falseg

TLA+ provides the usual operators1 of propositional logic:

^ _ : ) (implication) � true false

They are explained in Section 1.1. Conjunctions and disjunctions can be written

as aligned lists:

^ p1
...

^ pn

�
= p1 ^ : : : ^ pn

_ p1
...

_ pn

�
= p1 _ : : : _ pn

The standard quanti�ed formulas of predicate logic are written in TLA+ as:

8 x : P 9 x : P

I call these the unbounded quanti�er constructions. The bounded versions are

written as:

8 x 2 S : p 9 x 2 S : p

The meanings of these expressions are described in Section 1.3. TLA+ allows

some common abbreviations|for example:

8 x ; y : p
�
= 8 x : (8 y : p)

9 x ; y 2 S ; z 2 T : p
�
= 9 x 2 S : (9 y 2 S : (9 z 2 T : p))

TLA+ also allows bounded quanti�cation over tuples, such as

8 hx ; y i 2 S : p

This formula is true i�, for any pair ha; b i in S , the formula obtained from p by

substituting a for x and b for y is true.

Formal Semantics

Propositional and predicate logic, along with set theory, form the foundation

of ordinary mathematics. In de�ning the semantics of TLA+, we therefore take

as primitives the operators of propositional logic and the simple unbounded

quanti�er constructs 9 x : p and 8 x : p, where x is an identi�er. Among the

1
true and false are operators that take no arguments.
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Boolean operators described above, this leaves only the general forms of the

quanti�ers, given by the BNF grammar of Chapter 15, whose meanings must

be de�ned. This is done by de�ning those general forms in terms of the simple

forms.

The unbounded operators have the general forms:

8 x 1; : : : ; xn : p 9 x 1; : : : ; xn : p

where each x i is an identi�er. They are de�ned in terms of quanti�cation over

a single variable by:

8 x 1; : : : ; xn : p
�
= 8 x 1 : (8 x 2 : (: : :8 xn : p) : : :)

and similarly for 9 . The bounded operators have the general forms:

8y1 2 S 1; : : : ;yn 2 Sn : p 9y1 2 S 1; : : : ;yn 2 Sn : p

where each yi has the form x 1; : : : ; x k or hx 1; : : : ; x k i, and each x j is an identi-

�er. The general forms of 8 are de�ned inductively by

8 x 1; : : : ; x k 2 S : p
�
= 8 x 1; : : : ; x k : (x 1 2 S ) ^ : : : ^ (x k 2 S )) p

8y1 2 S 1; : : : ; yn 2 Sn : p
�
= 8y1 2 S 1 : : : : 8yn 2 Sn : p

8 hx 1; : : : ; x k i 2 S : p
�
= 8 x 1; : : : ; x k : (hx 1; : : : ; x k i 2 S )) p

where the yi are as before. In these expressions, S and the S i lie outside the

scope of the quanti�er's bound identi�ers. The de�nitions for 9 are similar. In

particular:

9 hx 1; : : : ; x k i 2 S : p
�
= 9 x 1; : : : ; x k : (hx 1; : : : ; x k i 2 S ) ^ p

See Section 16.1.9 for further details about tuples.

16.1.2 The Choose Operator

A simple unbounded choose expression has the form

choose x : p

As explained in Section 6.6, the value of this expression is some arbitrary value

v such that p is true if v is substituted for x , if such a v exists. If no such v

exists, then the expression has a completely arbitrary value.

The bounded form of the choose expression is:

choose x 2 S : p

It is de�ned in terms of the unbounded form by

choose x 2 S : p
�
= choose x : (x 2 S ) ^ p(16.1)
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It is equal to some arbitrary value v in S such that p, with v substituted for

x , is true|if such a v exists. If no such v exists, the choose expression has a

completely arbitrary value.

A choose expression can also be used to choose a tuple. For example

choose hx ; y i 2 S : p

equals some pair hv ;w i in S such that p, with v substituted for x and w sub-

stituted for y , is true|if such a pair exists. If no such pair exists, it has an

arbitrary value, which need not be a pair.

The unbounded choose operator satis�es the following two rules:

(9 x : P(x )) � P(choose x : P(x ))

(8 x : P(x ) = Q(x ))) ((choose x : P(x )) = (choose x : Q(x )))

(16.2)

for any operators P and Q . We know nothing about the value chosen by choose

except what we can deduce from these rules.

The second rule allows us to deduce the equality of certain choose expres-

sions that we might expect to be di�erent. In particular, for any operator P , if

there exists no x satisfying P(x ), then choose x :P(x ) equals the unique value

choose x : false. For example, the Reals module de�nes division by

a=b
�
= choose c 2 Real : a = b � c

For any nonzero number a, there exists no number c such that a = 0�c. Hence,
a=0 equals choose c : false, for any nonzero a. We can therefore deduce that

1=0 equals 2=0.

We would expect to be unable to deduce anything about the nonsensical

expression 1=0. It's a bit disquieting to prove that it equals 2=0. If this upsets

you, here's a way to de�ne division that will make you happier. First de�ne an

operator Choice so that Choice(v ; P) equals choose x : P(x ) if there exists an

x satisfying P(x ), and otherwise equals some arbitrary value that depends on

v . There are many ways to de�ne Choice; here's one:

Choice(v ; P( ))
�
= if 9 x : P(x ) then choose x : P(x )

else (choose x : x :a = v):b

You can then de�ne division by

a=b
�
= let P(c)

�
= (c 2 Real) ^ (a = b � c)

in Choice(a; P)

This de�nition makes it impossible to deduce any relation between 1=0 and 2=0.

You can use Choice instead of choose whenever this kind of problem arises|if

you consider 1=0 equaling 2=0 to be a problem. But there is seldom any practical

reason for worrying about it.
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Formal Semantics

We take the construct choose x : p, where x is an identi�er, to be primitive.

This form of the choose operator is known to mathematicians as Hilbert's ". Its

meaning is de�ned mathematically by the rules (16.2). Leisenring [5] presents a

detailed mathematical exposition of Hilbert's ".

An unbounded choose of a tuple is de�ned in terms of the simple unbounded

choose construct by

choose hx 1; : : : ; xn i : p �
= choose y : (9 x 1; : : : ; xn : (y = hx 1; : : : ; xn i) ^ p)

where y is an identi�er that is di�erent from the x i and does not occur in p.

The bounded choose construct is de�ned in terms of unbounded choose by

(16.1), where x can be either an identi�er or a tuple.

16.1.3 The Three Interpretations of Boolean Operators

The meaning of a Boolean operator when applied to Boolean values is a standard

part of traditional mathematics. Everyone agrees that true ^ false equals

false. However, because TLA+ is untyped, an expression like 2 ^ h5i is legal.
We must therefore decide what it means. There are three ways of doing this,

which I call the conservative, moderate, and liberal interpretations.

In the conservative interpretation, the value of an expression like 2 ^ h5i is
completely unspeci�ed. It could equal

p
2. It need not equal h5i ^ 2. Hence,

the ordinary laws of logic, such as the commutativity of ^, are valid only for

Boolean values.

In the liberal interpretation, the value of 2 ^ h5i is speci�ed to be a Boolean.
It is not speci�ed whether it equals true or false. However, all the ordinary

laws of logic, such as the commutativity of ^, are valid. Hence, 2 ^ h5i equals
h5i ^ 2. More precisely, any tautology of propositional or predicate logic, such

as

(8 x : p) � :(9 x : :p)

is valid, even if p is not necessarily a Boolean for all values of x .2 It is easy

to show that the liberal approach is sound.3 For example, one way of de�ning

operators that satisfy the liberal interpretation is to consider any nonBoolean

value to be equivalent to false.

The conservative and liberal interpretations are equivalent for most speci-

�cations, except for ones that use Boolean-valued functions. In practice, the

2Equality (=) is not an operator of propositional or predicate logic; this tautology need not

be valid for nonBoolean values if � is replaced by =.
3A sound logic is one in which false is not provable.
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conservative interpretation doesn't permit you to use f [x ] as a Boolean expres-

sion even if f is de�ned to be a Boolean-valued function. For example, suppose

we de�ne the function tnat by

tnat
�
= [n 2 Nat 7! true]

so tnat [n] equals true for all n in Nat . The formula

8n 2 Nat : tnat [n](16.3)

equals true in the liberal interpretation, but not in the conservative interpre-

tation. Formula (16.3) is equivalent to

8n : (n 2 Nat)) tnat [n]

which asserts that (n 2 Nat)) tnat [n] is true for all n, including, for example,

n = 1=2. For (16.3) to equal true, the formula (1=2 2 Nat) ) tnat [1=2],

which equals false) tnat [1=2], must equal true. But the value of tnat [1=2] is

not speci�ed; it might equal
p
2. The formula false)

p
2 equals true in the

liberal interpretation; its value is unspeci�ed in the conservative interpretation.

Hence, the value of (16.3) is unspeci�ed in the conservative interpretation. If we

are using the conservative interpretation, instead of (16.3), we should write

8n 2 Nat : (tnat [n] = true)

This formula equals true in both interpretations.

The conservative interpretation is philosophically more satisfying, since it

makes no assumptions about a silly expression like 2 ^ h5i. However, as we

have just seen, it would be nice if the not-so-silly formula false)
p
2 equaled

true. We therefore introduce the moderate interpretation, which lies between

the conservative and liberal interpretations. It assumes only that expressions

involving false and true have their expected values|for example, false)
p
2

equals true, and false ^ 2 equals false. In the moderate interpretation, (16.3)
equals true, but the value of h5i ^ 2 is still completely unspeci�ed.

The laws of logic still do not hold unconditionally in the moderate interpre-

tation. The formulas p ^ q and q ^ p are equivalent only if p and q are both

Booleans, or if one of them equals false. When using the moderate interpre-

tation, we still have to check that all the relevant values are Booleans before

applying any of the ordinary rules of logic in a proof. This can be burdensome

in practice.

The semantics of TLA+ asserts that the rules of the moderate interpreta-

tion are valid. The liberal interpretation is neither required nor forbidden. You

should write speci�cations that make sense under the moderate interpretation.

However, you (and the implementer of a tool) are free to use the liberal inter-

pretation if you wish.
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16.1.4 Conditional Constructs

TLA+ provides two conditional constructs for forming expressions that are in-

spired by constructs from programming languages: if/then/else and case.

The if/then/else construct was introduced on page 16 of Section 2.2. Its

general form is:

if p then e1 else e2

It equals e1 if p is true, and e2 if p is false.

An expression can sometimes be simpli�ed by using a case construct instead

of nested if/then/else constructs. The case construct has two general forms:

case p1 ! e1 2 : : : 2 pn ! en

case p1 ! e1 2 : : : 2 pn ! en 2 other! e

(16.4)

If some pi is true, then the value of these expressions is some ei such that pi is

true. For example, the expression

case n � 0! e1 2 n � 0! e2

equals e1 if n > 0 is true, equals e2 if n < 0 is true, and equals either e1 or e2 if

n = 0 is true. In the latter case, the semantics of TLA+does not specify whether

the expression equals e1 or e2. The case expressions (16.4) are generally used

when the pi are mutually disjoint, so at most one pi can be true.

The two expressions (16.4) di�er when pi is false for all i . In that case, the

value of the �rst is unspeci�ed, while the value of the second is e, the other

expression. If you use a case expression without an other clause, the value of

the expression should matter only when 9 i 2 1 : : n : pi is true.

Formal Semantics

The if/then/else and case constructs are de�ned as follows in terms of

choose:

if p then e1 else e2
�
= choose v : (p ) v = e1) ^ (:p ) v = e2)

case p1 ! e12 : : : 2 pn ! en
�
=

choose v : (p1 ^ (v = e1)) _ : : : _ (pn ^ (v = en ))

case p1 ! e12 : : : 2 pn ! en 2other! e
�
=

case p1 ! e12 : : : 2 pn ! en 2:(p1 _ : : : _ pn )! e

16.1.5 LET

The let/in construct was introduced on page 60 of Section 5.6. The expression

let d
�
= f in e
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equals e in the context of the de�nition d
�
= f . For example

let sq(i)
�
= i � i in sq(1) + sq(2) + sq(3)

equals 1 � 1+2 � 2+3 � 3, which equals 14. The general form of the construct is:

let �1 : : : �n in e

where each �i has the syntactic form of any TLA+ de�nition. Its value is e in

the context of the de�nitions �i . More precisely, it equals

let �1 in (let �2 in ( : : : �n in e ) : : : )

Hence, the symbol de�ned in �1 can be used in the de�nitions �2, . . . , �n .

Formal Semantics

The formal semantics of the let construct is de�ned in Section 17.4 (page 324)

below.

16.1.6 The Operators of Set Theory

TLA+ provides the following operators on sets:

2 =2 [ \ � n union subset

and the following set constructors:

fe1; : : : ; eng fx 2 S : pg fe : x 2 Sg

They are all described in Section 1.2 (page 11) and Section 6.1 (page 65). Equal-

ity is also an operator of set theory, since it formally means equality of sets.

TLA+ provides the usual operators = and 6=.
The set construct fx 2 S : pg can also be used with x a tuple of identi�ers.

For example,

fha; b i 2 Nat �Nat : a > bg

is the set of all pairs of natural numbers whose �rst component is greater than

its second|pairs such as h3; 1i. In the set construct fe : x 2 Sg, the clause

x 2 S can be generalized in exactly the same way as in a bounded quanti�er

such as 8 x 2 S : p. For example,

fha; b; c i : a; b 2 Nat ; c 2 Realg

is the set of all triples whose �rst two components are natural numbers and

whose third component is a real number.
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Formal Semantics

TLA+ is based on Zermelo-Fr�ankel set theory, in which every value is a set. In

set theory, 2 is taken as a primitive, unde�ned operator. We could de�ne all

the other operators of set theory in terms of 2, using predicate logic and the

choose operator. For example, set union could be de�ned by

S [ T �
= choose U : 8 x : (x 2 U ) � (x 2 S ) _ (x 2 T )

(To reason about [, we would need axioms from which we can deduce the

existence of the chosen set U .) Another approach we could take is to let certain

of the operators be primitives, and de�ne the rest in terms of them. For example,

[ can be de�ned in terms of union and the construct fe1; : : : ; eng by:
S [ T �

= union fS ; Tg
I do not try to distinguish a small set of primitive operators, and I treat [ and

union as equally primitive. Operators that I take to be primitive are de�ned

mathematically in terms of the rules that they satisfy. For example, S [ T is

de�ned by:

8 x : (x 2 (S [ T )) � (x 2 S ) _ (x 2 T )
However, there is no such de�ning rule for the primitive operator 2. I take only
the simple forms of the constructs fx 2 S : pg and fe : x 2 Sg as primitive, and
I de�ne the more general forms in terms of them.

S = T
�
= 8 x : (x 2 S ) � (x 2 T ).

e1 6= e2
�
= :(e1 = e2).

e =2 S
�
= :(e 2 S ).

S [ T is de�ned by 8 x : (x 2 (S [ T )) � (x 2 S ) _ (x 2 T ).

S \ T is de�ned by 8 x : (x 2 (S \ T )) � (x 2 S ) ^ (x 2 T ).

S � T
�
= 8 x : (x 2 S )) (x 2 T ).

S nT is de�ned by 8 x : (x 2 (S nT )) � (x 2 S ) ^ (x =2 T ).

subset S is de�ned by 8T : (T 2 subset S ) � (T � S ).

union S is de�ned by 8 x : (x 2 union S ) � (9T 2 S : x 2 T ).

fe1; : : : ; eng �
= fe1g [ : : : [ feng,

where feg is de�ned by:

8 x : (x 2 feg) � (x = e)

For n = 0, this construct is the empty set fg, de�ned by:

8 x : x =2 fg
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fx 2 S : pg
where x is a bound identi�er or a tuple of bound identi�ers. The

expression S is outside the scope of the bound identi�er(s). For x an

identi�er, this is a primitive expression that is de�ned mathemati-

cally by

8 y : (y 2 fx 2 S : pg) � (y 2 S ) ^ bp
where the identi�er y does not occur in S or p, and bp is p with y

substituted for x . For x a tuple, the expression is de�ned by

fhx 1; : : : ; xn i 2 S : pg �
=

fy 2 S : (9 x 1; : : : ; xn : (y = hx 1; : : : ; xn i) ^ p)g
where y is an identi�er di�erent from the x i that does not occur in

S or p. See Section 16.1.9 for further details about tuples.

fe : y1 2 S1; : : : ;yn 2 Sng
where each yi has the form x 1; : : : ; x k or hx 1; : : : ; x k i, and each

x j is an identi�er that is bound in the expression. The expressions

S i lie outside the scope of the bound identi�ers. The simple form

fe : x 2 Sg, for x an identi�er, is taken to be primitive and is

de�ned by:

8 y : (y 2 fe : x 2 Sg) � (9 x 2 S : e = y)

The general form is de�ned inductively in terms of the simple form

by:

fe : y1 2 S 1; : : : ;yn 2 Sng �
=

union f fe : y1 2 S 1; : : : ;yn�1 2 Sn�1g : yn 2 Sn g

fe : x 1; : : : ; xn 2 Sg �
= fe : x 1 2 S ; : : : ; xn 2 Sg

fe : hx 1; : : : ; xn i 2 Sg �
=

f(let z
�
= choose hx 1; : : : ; xn i : y = hx 1; : : : ; xn i

x 1
�
= z [1]
...

xn
�
= z [n] in e) : y 2 Sg

where the x i are identi�ers, and y and z are identi�ers distinct from

the x i that do not occur in e or S . See section 16.1.9 for further

details about tuples.

16.1.7 Functions

Functions are described in Section 5.2 (page 48); the di�erence between functions

and operators is discussed in Section 6.4 (page 69). In TLA+, we write f [v ] for



300 CHAPTER 16. THE OPERATORS OF TLA+

the value of the function f applied to v . A function f has a domain domain f ,

and the value of f [v ] is speci�ed only if v is an element of domain f . We let

[S ! T ] denote the set of all functions f such that domain f = S and f [v ] 2 T
for all v 2 S .

Functions can be described explicitly with the construct

[x 2 S 7! e](16.5)

This is the function f with domain S such that f [v ] equals the value obtained

by substituting v for x in e, for any v 2 S . For example,
[n 2 Nat 7! 1=n + 1]

is the function f with domain Nat such that f [0] = 1, f [1] = 1=2, f [2] = 1=3,

etc. We can de�ne an identi�er fcn to equal the function (16.5) by writing

fcn[x 2 S ] �
= e(16.6)

The identi�er fcn can appear in the expression e, in which case this is a recursive

function de�nition. Recursive function de�nitions were introduced in Section 5.5

(page 54) and discussed in Section 6.3 (page 67).

The except construct describes a function that is \almost the same as"

another function. For example,

[f except ! [u] = a; ! [v ] = b](16.7)

is the function bf that is the same as f , except that bf [u] = a and bf [v ] = b. More

precisely, (16.7) equals

[x 2 domain f 7! if x = v then b

else if x = u then a else f [x ]]

Hence, if neither u nor v is in the domain of f , then (16.7) equals f . If u = v ,

then (16.7) equals [f except ! [v ] = b].

An exception clause can have the general form ![v1] � � � [vn ] = e. For exam-

ple,

[f except ! [u][v ] = a](16.8)

is the function ef that is the same as f , except that ef [u][v ] equals a. That is, ef
is the same as f , except that ef [u] is the function that is the same as f [u], except

that ef [u][v ] = a. The symbol @ occurring in an exception clause stands for the

\original value". For example, an @ in the expression a of (16.8) denotes f [u][v ].

In TLA+, a function of multiple arguments is one whose domain is a set

of tuples; and f [v1; : : : ; vn ] is an abbreviation for f [hv1; : : : ; vn i]. The x 2 S

clause (16.5) and (16.6) can be generalized in the same way as in a bounded

quanti�er|for example here are two di�erent ways of writing the same function:

[m;n 2 Nat ; r 2 Real 7! e] [hm;n; r i 2 Nat �Nat �Real 7! e]



16.1. CONSTANT OPERATORS 301

This is a function whose domain is a set of triples. It is not the same as the

function

[hm;n i 2 Nat �Nat ; r 2 Real 7! e]

whose domain is the set (Nat � Nat) � Real of pairs like hh1; 3i; 1=3i, whose
�rst element is a pair.

Formal Semantics

Mathematicians traditionally de�ne a function to be a set of pairs. In TLA+,

pairs (and all tuples) are functions. We take as primitives the constructs:

f [e] domain f [S ! T ] [x 2 S 7! e]

where x is an identi�er. These constructs are de�ned mathematically by the

rules they satisfy. The other constructs, and the general forms of the construct

[x 2 S 7! e], are de�ned in terms of them. These de�nitions use the operator

IsAFcn, which is de�ned as follows so that IsAFcn(f ) is true i� f is a function:

IsAFcn(f )
�
= f = [x 2 domain f 7! f [x ]]

The �rst rule, which is not naturally associated with any one construct, is that

two functions are equal i� they have the same domain and assign the same value

to each element in their domain:

8 f ; g : IsAFcn(f ) ^ IsAFcn(g) )
((f = g) � ^ domain f = domain g

^ 8 x 2 domain f : f [x ] = g [x ] )

The rest of the semantics of functions is given below. There is no separate

de�ning rule for the domain operator.

f [e1; : : : ; en ]

where the ei are expressions. For n = 1, this is a primitive expression.

For n > 1, it is de�ned by

f [e1; : : : ; en ] = f [he1; : : : ; en i]
The tuple he1; : : : ; en i is de�ned in Section 16.1.9.

[y1 2 S1; : : : ;yn 2 Sn 7! e]

where each yi has the form x 1; : : : ; x k or hx 1; : : : ; x k i, and each x j is an
identi�er that is bound in the expression. The expressions S i lie outside

the scope of the bound identi�ers. The simple form [x 2 S 7! e], for x

an identi�er, is primitive and is de�ned by two rules:

(domain [x 2 S 7! e]) = S

8 y 2 S : [x 2 S 7! e][y ] = let x
�
= y in e
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where y is an identi�er di�erent from x that does not occur in S or e.

The general form of the construct is de�ned inductively in terms of the

simple form by:

[x 1 2 S 1; : : : ; xn 2 Sn 7! e]
�
= [ hx 1; : : : ; xn i 2 S 1 � : : :� Sn 7! e]

[ : : : ; x 1; : : : ; x k 2 S i ; : : : 7! e]
�
= [ : : : ; x 1 2 S i ; : : : ; x k 2 S i ; : : : 7! e]

[ : : : ; hx 1; : : : ; x k i 2 S i ; : : : 7! e]
�
=

[ : : : ; y 2 S i ; : : : 7! let z
�
= choose hx 1; : : : ; x k i : y = hx 1; : : : ; x k i

x 1
�
= z [1]
...

x k
�
= z [k ] in e]

where y and z are identi�ers that do not appear anywhere in the original

expression. See Section 16.1.9 for details about tuples.

[S ! T ] is de�ned by

8 f : f 2 [S ! T ] �
IsAFcn(f ) ^ (S = domain f ) ^ (8 x 2 S : f [x ] 2 T )

where x and f do not occur in S or T , and IsAFcn is de�ned above.

[f except !a1 = e1; : : : ; !an = en ]

where each ai has the form [d1] : : : [dk ] and each d j is an expression. For

the simple case when n = 1 and a1 is [d ], this is de�ned by4

[f except ! [d ] = e]
�
=

[y 2 domain f 7! if y = d then let @
�
= f [d ] in e

else f [y ] ]

where y does not occur in f , d , or e. The general form is de�ned induc-

tively in terms of this simple case by:

[f except !a1 = e1; : : : ; !an = en ]
�
=

[ [f except !a1 = e1; : : : ; !an�1 = en�1] except !an = en ]

[f except ! [d1] : : : [dk ] = e]
�
=

[f except ! [d1] = [@ except ! [d2] : : : [dk ] = e] ]

f [y1 2 S1; : : : ;yn 2 Sn ] �
= e is de�ned to be an abbreviation for:

f
�
= choose f : f = [y1 2 S 1; : : : ;yn 2 Sn 7! e]

4Since @ is not actually an identi�er, let @
�
= : : : isn't legal TLA+ syntax. However, its

meaning should be clear.
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16.1.8 Records

TLA+ borrows from programming languages the concept of a record. Records

were introduced in Section 3.2 (page 28) and further explained in Section 5.2

(page 48). As in programming languages, r :h is the h component of record r .

Records can be written explicitly as

[h1 7! e1; : : : ; hn 7! en ]

which equals the record with n components, whose hi component equals ei , for

i = 1; : : : ;n. The expression

[h1 : S 1; : : : ; hn : Sn ]

is the set of all such records with ei 2 S i , for i = 1; : : : ;n. These expressions

are legal only if the hi are all di�erent. For example, [a : S ; a :T ] is illegal.

The except construct, explained in Section 16.1.7 above, can be used for

records as well as functions. For example,

[r except ! :a = e]

is the record br that is the same as r , except that br :a = e. An exception clause

can mix function application and record components. For example,

[f except ! [v ]:a = e]

is the function bf that is the same as f , except that bf [v ]:a = e.

In TLA+, a record is a function whose domain is a �nite set of strings, where

r :h means r [\h"], for a record component h. Thus, the following two expressions

describe the same record:

[fo 7! 7; ba 7! 8] [x 2 f\fo"; \ba"g 7! if x = \fo" then 7 else 8]

The name of a record component is syntactically an identi�er. In the ascii

version, it is a string of letters, digits, and the underscore character (_) that

contains at least one letter. Strings are described below in Section 16.1.10.

Formal Semantics

The record constructs are de�ned in terms of function constructs.

e:h
�
= e[\h"]

[h1 7! e1; : : : ; hn 7! en ]
�
= [y 2 f\h1"; : : : ; \hn"g 7!

case (y = \h1")! e12 : : : 2 (y = \hn")! en ]

where y does not occur in any of the expressions ei . The hi must all be

distinct.



304 CHAPTER 16. THE OPERATORS OF TLA+

[h1 : S1; : : : ; hn : Sn ]
�
= f[h1 7! y1; : : : ; hn 7! yn ] : y1 2 S 1; : : : ; yn 2 Sng

where the y i do not occur in any of the expressions S j . The hi must all

be distinct.

[r except !a1 = e1; : : : ; !an = en ]

where ai has the form b1 : : : bk and each bj is either (i) [d ], where d is

an expression, or (ii) :h, where h is a record component. It is de�ned to

equal the corresponding function except construct in which each :h is

replaced by [\h"].

16.1.9 Tuples

An n-tuple is written in TLA+ as he1; : : : ; en i. As explained in Section 5.4, an

n-tuple is de�ned to be a function whose domain is the set f1; : : : ;ng, where
he1; : : : ; en i[i ] = ei , for 1 � i � n. The Cartesian product S 1 � � � � � Sn is the

set of all n-tuples he1; : : : ; en i such that ei 2 S i , for 1 � i � n.

In TLA+, � is not an associative operator. For example,

h1; 2; 3i 2 Nat �Nat �Nat

hh1; 2i; 3i 2 (Nat �Nat)�Nat

h1; h2; 3ii 2 Nat � (Nat �Nat)

and the tuples h1; 2; 3i, hh1; 2i; 3i, and h1; h2; 3ii are not equal. More precisely,

the triple h1; 2; 3i is unequal to either of the pairs hh1; 2i; 3i or h1; h2; 3ii because
a triple and a pair have unequal domains. The semantics of TLA+ does not

specify if h1; 2i equals 1 or if 3 equals h2; 3i, so we don't know whether or not

hh1; 2i; 3i and h1; h2; 3ii are equal.
The 1-tuple he i is di�erent from e. That is, the semantics does not specify

whether or not they are equal. There is no special notation for writing a set

of 1-tuples. The easiest way to denote the set of all 1-tuples he i with e 2 S is

fhe i : e 2 Sg.
In the standard Sequences module, described in Section 18.1 (page 337), an

n-element sequence is represented as an n-tuple. The module de�nes several

useful operators on sequences/tuples.

Formal Semantics

Tuples and Cartesian products are de�ned in terms of functions (de�ned in

Section 16.1.7) and the set Nat of natural numbers (de�ned in Section 16.1.11).

he1; : : : ; eni �
= [i 2 fj 2 Nat : (0 < j ) ^ (j � n)g 7! ei ]

where i does not occur in any of the expressions ej .

S1 � � � � � Sn
�
= fhy1; : : : ; yn i : y1 2 S 1; : : : ; yn 2 Sng

where the identi�ers y i do not occur in any of the expressions S j .
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16.1.10 Strings

TLA+ de�nes a string to be a tuple of characters. (Tuples are de�ned in Sec-

tion 16.1.9 above.) Thus, \abc" equals

h\abc"[1]; \abc"[2]; \abc"[3]i
The semantics of TLA+ does not specify what a character is. However, it does

specify that di�erent characters (those having di�erent computer representa-

tions) are di�erent. Thus \a"[1], \b"[1], and \A"[1] (the characters a, b, and

A) are all di�erent. The built-in operator string is de�ned to be the set of all

strings.

Although TLA+ doesn't specify what a character is, it's easy to de�ne oper-

ators that assign values to characters. For example, here's the de�nition of an

operator Ascii that assigns to every lower-case letter its ascii representation.5

Ascii(char)
�
= 96 + choose i 2 1 : : 26 :

\abcdefghijklmnopqrstuvwxyz"[i ] = char

This de�nes Ascii(\a"[1]) to equal 97, the ascii code for the letter a, and

Ascii(\z"[1]) to equal 122, the ascii code for z . Section 11.1.4 on page 177

illustrates how a speci�cation can make use of the fact that strings are tuples.

Exactly what characters may appear in a string is system-dependent. A

Japanese version of TLA+might not allow the character a. The standard ascii

version contains the following characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

~ @ # $ % ^ & � � + = ( ) f g [ ] < > j = n ; : ? : ; ` ' "

hhti (tab) hlfi (line feed) hffi (form feed) hcri (carriage return)
plus the space character. Since strings are delimited by a double-quote ("),

some convention is needed for typing a string that contains a double-quote.

Conventions are also needed to type characters like hlfi within a string. In

the ascii version of TLA+, the following pairs of characters, beginning with a \

character, are used to represent these special characters:

\" " \t hhti \f hffi
\\ \ \n hlfi \r hcri

With this convention, "a\\\"b\"" represents the string consisting of the fol-

lowing �ve characters: a n " b ". In the ascii version of TLA+, a \ character

can appear in a string expression only as the �rst character of one of these six

two-character sequences.

5This clever way of using choose to map from characters to numbers was pointed out to

me by Georges Gonthier.
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Formal Semantics

We assume a set Char of characters, which may depend on the version of TLA+.

(The identi�er Char is not a pre-de�ned symbol of TLA+.)

string
�
= Seq(Char)

where Seq is the operator de�ned in the Sequences module of Section 18.1

so that Seq(S ) is the set of all �nite sequences of elements of S .

\c1 : : : cn"
�
= hc1; : : : ; cn i

where each ci is the (system-dependent) representation of a character in

Char .

16.1.11 Numbers

TLA+ de�nes a sequence of digits like 63 to be the usual natural number|that

is, 63 equals 6 � 10 + 3. TLA+ also allows the binary representation \b111111,

the octal representation \o77, and the hexadecimal representation \h3F of that

number. (Case is ignored in the pre�xes and in the hexadecimal representation,

so \H3F and \h3f are equivalent to \h3F.) Decimal numbers are also pre-de�ned

in TLA+; for example, 3.14159 equals 314159=105.

Numbers are pre-de�ned in TLA+, so 63 is de�ned even in a module that

does not extend or instantiate one of the standard numbers modules. However,

sets of numbers like Nat and arithmetic operators like + are not. You can write

a module that de�nes + any way you want, in which case 40+23 need not equal

63. Of course, 40 + 23 does equal 63 for + de�ned by the standard numbers

modules Naturals , Integers , and Reals , which are described in Section 18.4.

Formal Semantics

The set Nat of natural numbers, along with its zero element Zero and successor

function Succ, is de�ned in module Peano on page 343. The meaning of a

representation of a natural number is de�ned in the usual manner:

0
�
= Zero 1

�
= Succ[Zero] 2

�
= Succ[Succ[Zero]] : : :

The module ProtoReals module on pages 344{345 de�nes the set Real of real

numbers to be a superset of the set Nat , and de�nes the usual arithmetic oper-

ators on real numbers. The meaning of a decimal number is de�ned in terms of

these operators by:

c1 � � � cm : d1 � � � dn �
= c1 � � � cm d1 � � � dn=10n
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16.2 Nonconstant Operators

The nonconstant operators are what distinguish TLA+ from ordinary mathe-

matics. There are two classes of nonconstant operators: action operators, listed

in Table 3 on page 267, and temporal operators, listed in Table 4 on page 267.

Section 16.1 above talks about the meanings of the built-in constant opera-

tors of TLA+, without considering their arguments. We can do that for constant

operators, since the meaning of � in the expression e1 � e2 doesn't depend on

whether or not the expressions e1 and e2 contain variables or primes. To under-

stand the nonconstant operators, we need to consider their arguments. Thus,

we can no longer talk about the meanings of the operators in isolation; we must

describe the meanings of expressions built from those operators.

A basic expression is one that contains built-in TLA+ operators, declared

constants, and declared variables. We now describe the meaning of all basic

TLA+ expressions, including ones that contain nonconstant built-in operators.

We start by considering basic constant expressions, ones containing only the

constant operators we have already studied and declared constants.

16.2.1 The Meaning of a Basic Constant Expression

Section 16.1 above de�nes the meanings of the constant operators. This in turn

de�nes the meaning of any expression built from these operators and declared

constants. For example, if S and T are declared by

constants S ; T ( )

then 9 x : S � T (x ) is a formula that equals true if there is some value v such

that every element of S is an element of T (v), and otherwise equals false.

Whether 9 x : S � T (x ) equals true or false depends on what actual values

we assign to S and to T (v), for all v ; so that's as far as we can go in assigning

a meaning to the expression.

There are some basic constant expressions that are true regardless of the

values we assign to their declared constants|for example, the expression

(S � T ) � (S \ T = S )

Such an expression is said to be valid.

Formal Semantics

Section 16.1 de�nes all the built-in constant operators in terms of a subset of

them called the primitive operators. These de�nitions can be formulated as an

inductive set of rules that de�ne the meaning [[c]] of any basic constant expression

c. For example, from the de�nition

e =2 S �
= :(e 2 S )
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we get the rule

[[e =2 S ]] = :([[e]] 2 [[S ]])

These rules de�ne the meaning of a basic constant expression to be an expression

containing only primitive constant operators and declared constants.

If S and T are constants declared as above, then the meaning [[9 x : S � T (x )]]

of the expression 9 x : S � T (x ) is the expression itself. Logicians usually carry

things further, assigning some meanings [[S ]] and [[T ]] to declared constants and

de�ning [[9 x : S � T (x )]] to equal 9 x : [[S ]] � [[T ]](x ). For simplicity, I have short-

circuited that extra level of meaning.

I am taking as given the meaning of an expression containing only primitive

constant operators and declared constants. In particular, I take as primitive

the notion of validity for such expressions. Section 16.1 de�nes the meaning of

any basic constant expression in terms of these expressions, so it de�nes what

it means for a basic constant expression to be valid.

16.2.2 The Meaning of a State Function

A state is an assignment of values to variables. (In ZF set theory, on which the

semantics of TLA+ is based, value is just another term for set.) States were

discussed in Sections 2.1 and 2.3.

A state function is an expression that is built from declared variables, de-

clared constants, and constant operators. (State functions can also contain

enabled expressions, which are described below.) State functions are discussed

on page 25 of Section 3.1. A state function assigns a constant expression to

every state. If state function e assigns to state s the constant v , then we say

that v is the value of e in state s . For example, if x is a declared variable, T

is a declared constant, and s is a state that assigns to x the value 42; then the

value of x 2 T in state s is the constant expression 42 2 T . A state function is

valid i� it has the value true in every state.

Formal Semantics

A state is an assignment of values to variables. Formally, a state s is a function

whose domain is the set of all variable names, where s [\x"] is the value that s
assigns to variable x . We write s [[x ]] instead of s [\x"].

A basic state function is an expression that is built from declared variables,

declared constants, constant operators, and enabled expressions, which are

expressions of the form enabled e. An enabled-free basic state function is,

obviously, one with no enabled expressions. The meaning of a basic state

function is a mapping from states to values. We let s [[e]] be the value that state

function e assigns to a state s . Since a variable is a state function, we thus say

both that state s assigns s [[x ]] to variable x , and that the state function x assigns
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s [[x ]] to state s . A basic state function e is de�ned to be valid i� s [[e]] is valid

for all states s .

Using the meanings assigned to the constant operators in Section 16.1 above,

we inductively de�ne s [[e]] for any enabled-free state function e to be an ex-

pression built from the primitive TLA+ constant operators, declared constants,

and the values assigned by s to each variable. For example, if x is a variable

and S is a constant, then

s [[x =2 S ]] = :(s [[x ]] 2 S )
It is easy to see that s [[c]] equals [[c]], for any constant expression c. (This

expresses formally that a constant has the same value in all states.)

To de�ne the meaning of all basic state function, not just enabled-free ones,

we must de�ne the meaning of an enabled expression. This is done below.

I described the meaning of a state function as a \mapping" on states. This

mapping cannot be a function, because there is no set of all states. Since for

any set S there is a state that assigns the value S to each variable, there are too

many states to form a set. (See the discussion of Russell's paradox on page 66.)

To be strictly formal, I should explain what I'm doing as follows. I de�ne an

operator M such that, if s is a state and e is a syntactically correct basic state

function, then M (s ; e), which I write s [[e]], is the basic constant expression that

is the meaning of e in state s .

Actually, this description of the semantics isn't right either. A state is a

mapping from variables to values (sets), not to constant expressions. Since

there are an uncountable number of sets and only a countable number of �nite

sequences of strings, there are values that can't be described by any expression.

Suppose � is such a value, and let s be a state that assigns the value � to the

variable x . Then s [[x = fg]] equals � = fg, which isn't a constant expression

because � isn't an expression. So, to be really formal, I would have to de�ne a

semantic constant expression to be one made from primitive constant operators,

declared constants, and arbitrary values. The meaning of a basic state function

is a mapping from states to semantic constant expressions.

I won't bother with these details, which are needed for a really formal de�-

nition of the semantics. I will instead de�ne a semi-formal semantics for basic

expressions that I hope is easier to understand. Mathematically sophisticated

readers who understand the less formal exposition should be able to �ll in the

missing formal details.

16.2.3 Action Operators

A transition function is an expression built from state functions using the prim-

ing operator (0) and the other action operators of TLA+ listed in Table 3 on

page 267. A transition function assigns a value to every step, where a step is

a pair of states. In a transition function, an unprimed occurrence of a variable
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x represents the value of x in the �rst (old) state, and a primed occurrence of

x represents its value in the second (new) state. For example, if state s assigns

the value 4 to x and state t assigns the value 5 to x , then transition function

x 0 � x assigns to the step s ! t the value 5� 4, which of course equals 1.

An action is a Boolean-valued transition function, such as x 0 > x . We say

that action A is true on step s ! t , or that s ! t is an A step, i� A assigns the

value true to s ! t . An action is said to be valid i� it is true on any step.

The action operators of TLA+ other than 0 have the following meanings,

where A and B are actions.

[A]e equals A _ (e 0 = e).

hAie equals A ^ (e 0 6= e).

enabledA is the state function that is true in state s i� there is some state

t such that s ! t is an A step.

unchanged e equals e 0 = e, for any state function e.

A � B is the action that is true on step s ! t i� there is a state u such that

s ! u is an A step and u ! t is a B step.

Priming and the construct [A]v are introduced in Section 2.2 (page 15); the

unchanged operator is introduced on page 26 of Section 3.1; enabled is in-

troduced on page 97 of Section 8.4; the construct hAiv is de�ned on page 91 of

Section 8.1; and the action-composition operator \�" is introduced in Section 7.3
(page 76).

Formal Semantics

A basic transition function is a basic expression that does not contain any tem-

poral operators. The meaning of a basic transition function e is an assignment

of a basic constant expression hs ; t i[[e]] to any pair of states hs ; t i. (I use here
the more conventional notation hs ; t i instead of s ! t .) A transition function

is valid i� hs ; t i[[e]] is valid, for all states s and t .

If e is a basic state function, then we interpret e as a basic transition function

by de�ning hs ; t i[[e]] to equal s [[e]]. As indicated above, unchanged and the

constructs [A]e and hAie are de�ned in terms of priming. To de�ne the meanings
of the remaining action operators, we �rst de�ne existential quanti�cation over

all states. Let IsAState be an operator such that IsAState(s) is true i� s is a

state|that is, a function whose domain is the set of all variable names. (It's easy

to de�ne IsAState using the operator IsAFcn, de�ned on page 301.) Existential

quanti�cation over all states is then de�ned by

9 state s : p
�
= 9 s : IsAState(s) ^ p
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for any formula p. The meanings of all transition functions and all state functions

(including enabled expressions) is then de�ned inductively by the de�nitions

already given and the following de�nitions of the remaining action operators:

e 0 is the transition function de�ned by hs ; t i[[e 0]] �
= t [[e]] for any state

function e.

enabledA is the state function de�ned by

s [[enabledA]]
�
= 9 state t : hs ; t i[[A]]

for any transition function A.

A � B is the transition function de�ned by

hs ; t i[[A � B ]] �
= 9 state u : hs ; u i[[A]] ^ hu; t i[[B ]]

for any transition functions A and B .

The formal semantics talks about transition functions, not actions. Since TLA+

is typeless, there is no formal distinction between an action and an arbitrary

transition function. We could de�ne an action A to be a transition function such

that hs ; t i[[A]] is a Boolean for all states s and t . However, what we usually mean
by an action is a transition function A such that hs ; t i[[A]] is a Boolean whenever
s and t are reachable states of some speci�cation. For example, a speci�cation

with a variable b of type boolean might contain an \action" b ^ (y 0 = y). We Types are ex-

plained on

page 25.
can calculate the meaning of enabled (b ^ (y 0 = y)) as follows:

s [[enabled (b ^ (y 0 = y))]]

= 9 state t : hs ; t i[[b ^ (y 0 = y)]] By de�nition of enabled.

= 9 state t : hs ; t i[[b]] ^ (hs ; t i[[y 0]] = hs ; t i[[y ]]) By de�nition of ^ and =.

= 9 state t : s [[b]] ^ (t [[y ]] = s [[y ]]) By de�nition of 0, since hs; t i[[e]] = s[[e]],

for any state function e.

If s [[b]] is a Boolean, we can now continue the calculation as follows.

9 state t : s [[b]] ^ (t [[y ]] = s [[y ]])

= s [[b]] ^ 9 state t : (t [[y ]] = s [[y ]]) By predicate logic, since t does not occur in s[[b]].

= s [[b]] The existence of t is obvious|for example, let it equal s.

Hence, s [[enabled (b ^ (y 0 = y))]] equals s [[b]], if s [[b]] is a Boolean. However, if

s is a state that assigns the value 2 to the variable b and the value �7 to the

variable y , then

s [[enabled (b ^ (y 0 = y))]] = 9 state t : 2 ^ (t [[y ]] = �7)
The last expression may or may not equal 2. (See Section 16.1.3 on page 294.)

If the speci�cation we are writing makes sense, it can depend on the meaning

of enabled (b ^ (y 0 = y)) only for states in which the value of b is a Boolean.

We don't care about its value in a state that assigns to b the value 2, just as we

don't care about the value of 3=x in a state that assigns the value \abc" to x .

See the discussion of silly expressions in Section 6.2 (page 67).
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16.2.4 Temporal Operators

As explained in Section 8.1, a temporal formula F is true or false for a behavior,

where a behavior is a sequence of states. The syntax of temporal formulas is

de�ned inductively to be all formulas having one of the forms shown in Table 4 on

page 267, where e is a state function, A is an action, and F and G are temporal

formulas. All these temporal operators are explained in Chapter 8|except for
+�., which is explained in Section 10.7 (page 154).

The formula 2F is true for a behavior � i� the temporal formula F is true

for � and all su�xes of �. To de�ne the constructs 2[A]e and 3hAie , we regard
an action B to be a temporal formula that is true of a behavior � i� the �rst

two states of � form a B step. Thus, 2[A]e is true of � i� every successive pair

of states of � is a [A]e step. All the other temporal operators of TLA+, except
999999 , 888888 , and +�., are de�ned as follows in terms of 2:

3F
�
= :2:F

WFe(A)
�
= 23:(enabled hAie) _23hAie

SFe(A)
�
= 32:(enabled hAie) _23hAie

F ; G
�
= 2(F ) 3G)

The temporal existential quanti�er 999999 is a hiding operator, 999999 x :F meaning

formula F with the variable x hidden. To de�ne this more precisely, we �rst

de�ne \� to be the (possibly �nite) sequence of states obtained by removing

from � all stuttering steps|that is, by removing any state that is the same as

the previous one. We then de�ne ��x � to be true i� \� and \� are the same

except for the values that their states assign to the variable x . Thus, ��x �
is true i� � can be obtained from � (or vice-versa) by adding and/or removing

stuttering steps and changing the values assigned to x by its states. Finally,
999999 x :F is de�ned to be true for a behavior � i� F is true for some behavior �

such that ��x � .
The temporal universal quanti�er 888888 is de�ned in terms of 999999 by

888888 x : F
�
= :(999999 x : :F )

The formula F
+�. G asserts that G does not become false before F does.

More precisely, we de�ne a formula H to be true for a �nite pre�x � of a behavior

� i� H is true for some (in�nite) behavior that extends �. (In particular, H is

true of the empty pre�x i� H satis�es some behavior.) Then F
+�. G is de�ned

to be true for a behavior � i� (i) F ) G is true for � and (ii) for every �nite

pre�x � of �, if F is true for � then G is true for the pre�x of � that is one state

longer than �.
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Formal Semantics

Formally, a behavior is a function from the set Nat of natural numbers to states.

(We think of a behavior � as the sequence �[0], �[1], . . . of states.) The meaning Instead of writing

�i as in Chap-

ter 8, I use the

standard func-

tional nota-

tion �[i].

of a temporal formula is a predicate on behaviors|that is, a mapping from

behaviors to Booleans. We write � j= F for the value that the meaning of F

assigns to the behavior �. The temporal formula F is valid i� � j= F is valid,

for all behaviors �.

Above, we have de�ned all the other temporal operators in terms of 2, 999999 ,
and

+�.. Formally, since an action is not a temporal formula, the construct 2[A]e
is not an instance of the temporal operator 2, so its meaning should be de�ned

separately. The construct 3hAie , which is similarly not an instance of 3, is

then de�ned to equal :2[:A]e .
To de�ne the meaning of 2, we �rst de�ne �+n to be the behavior obtained

by deleting the �rst n states of �:

�+n
�
= [i 2 Nat 7! �[i + n] ]

We then de�ne the meaning of 2 as follows, for any temporal formula F , tran-

sition function A and state function e:

� j= 2F �
= 8n 2 Nat : �+n j= F

� j= 2[A]e �
= 8n 2 Nat : h�[n]; �[n + 1]i[[[A]e ]]

To formalize the de�nition of 999999 given above, we �rst de�ne \ by:

\�
�
= let f [n 2 Nat ]

�
= if n = 0

then 0

else if �[n] = �[n � 1] then f [n � 1]

else f [n � 1] + 1

S
�
= ff [n] : n 2 Natg

in [n 2 S 7! �[choose i 2 Nat : f [i ] = n] ]

Next, let sx v be the state that is the same as state s except that it assigns to

the variable x the value v . We then de�ne �x by:

��x � �
= \� = [n 2 domain \� 7! �x �[n][[x ]]]

We next de�ne existential quanti�cation over behaviors. This is done much as

we de�ned quanti�cation over states on pages 310{311 above; we �rst de�ne

IsABehavior so that IsABehavior(�) is true i� � is a behavior, and we then

de�ne:

9 behavior � : F
�
= 9� : IsABehavior(�) ^ F

We can now de�ne the meaning of 999999 by:

� j= 999999 x : F
�
= 9 behavior � : (��x �) ^ (� j= F )
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Finally, we de�ne the meaning of
+�. as follows:

� j= F
+�. G �

=

let Pre�xSat(n;H )
�
= 9 behavior � : ^ 8 i 2 0 : : (n � 1) : � [i ] = �[i ]

^ � j= H

in ^ � j= F ) G

^ 8n 2 Nat : Pre�xSat(n;F )) Pre�xSat(n + 1;G)



Chapter 17

The Meaning of a Module

Chapter 16 de�nes the meaning of the built-in TLA+ operators. In doing so, it

de�nes the meaning of a basic expression|that is, of an expression containing

only built-in operators, declared constants, and declared variables. We now

de�ne the meaning of a module in terms of basic expressions. Since a TLA+

speci�cation consists of a collection of modules, this de�nes the semantics of

TLA+.

We also complete the de�nition of the syntax of TLA+ by giving the remain-

ing context-dependent syntactic conditions not described in Chapter 15. Here's

a list of some illegal expressions that satisfy the grammar of Chapter 15, and

where in this chapter you can �nd the conditions that make them illegal.

� F (x ), if F is de�ned by F (x ; y)
�
= x + y (Section 17.1)

� (x 0 + 1)0 (Section 17.2)

� x + 1, if x is not de�ned or declared (Section 17.3)

� F
�
= 0, if F is already de�ned (Section 17.5)

This chapter is meant to be read in its entirety. To try to make it as readable

as possible, I have made the exposition somewhat informal. Wherever I could,

I have used examples in place of formal de�nitions. The examples assume that

you understand the approximate meanings of the TLA+ constructs, as explained

in Part I. I hope that mathematically sophisticated readers will see how to �ll

in the missing formalism.

17.1 Operators and Expressions

Because it uses conventional mathematical notation, TLA+ has a rather rich

syntax, with several di�erent ways of expressing the same basic type of math-

315



316 CHAPTER 17. THE MEANING OF A MODULE

ematical operation. For example, the following expressions are all formed by

applying an operator to a single argument e:

Len(e) � e feg e 0

This section develops a uniform way of writing all these expressions, as well as

more general kinds of expressions.

17.1.1 The Order and Arity of an Operator

An operator has an arity and an order. An operator's arity describes the number

and order of its arguments. It's the arity of the Len operator that tells us Len is de�ned in

the Sequences

module on

page 339.

that Len(s) is a legal expression, while Len(s ; t) and Len(+) are not. All the

operators of TLA+, whether built-in or de�ned, fall into three classes: 0th-,

1st-, and 2nd-order operators.1 Here is how these classes, and their arities, are

de�ned:

0. E
�
= x 0 + y de�nes E to be the 0th-order operator x 0 + y . A 0th-order

operator takes no arguments, so it is an ordinary expression. We represent

the arity of such an operator by the symbol (underscore).

1. F (x ; y)
�
= x [fz ; yg de�nes F to be a 1st-order operator. For any expres-

sions e1 and e2, it de�nes F (e1; e2) to be an expression. We represent the

arity of F by h ; i.
In general, a 1st-order operator takes expressions as arguments. Its arity

is the tuple h ; : : : ; i, with one for each argument.

2. G(f ( ; ); x ; y)
�
= f (x ; fx ; yg) de�nes G to be a 2nd-order operator. The

operator G takes three arguments: its �rst argument is a 1st-order op-

erator that takes two arguments; its last two arguments are expressions.

For any operator Op of arity h ; i, and any expressions e1 and e2,

this de�nes G(Op; e1; e2) to be an expression. We say that G has arity

h h ; i; ; i.
In general, the arguments of a 2nd-order operator may be expressions

or 1st-order operators. A 2nd-order operator has an arity of the form

ha1; : : : ; an i, where each ai is either or h ; : : : ; i. (We can consider

a 1st-order operator to be a degenerate case of a 2nd-order operator.)

It would be easy enough to de�ne 3rd- and higher-order operators. TLA+ does

not permit them because they are of little use and would make it harder to check

level-correctness, which is discussed in Section 17.2 below.

1Even though it allows 2nd-order operators, TLA+ is still what logicians call a �rst-order

logic because it permits quanti�cation only over 0th-order operators. A higher-order logic

would allow us to write the formula 9 x( ) : exp.
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17.1.2 � Expressions

When we de�ne a 0th-order operator E by E
�
= exp, we can write what the

operator E equals|it equals the expression exp. We can explain the meaning

of this de�nition by saying that it assigns the value exp to the symbol E . To

explain the meaning of an arbitrary TLA+de�nition, we need to be able to write

what a 1st- or 2nd-order operator equals|for example, the operator F de�ned

by:

F (x ; y)
�
= x [ fz ; yg

TLA+ provides no way to write an expression that equals the operator F . (A

TLA+ expression can equal only a 0th-order operator.) We therefore generalize

expressions to � expressions, and we write the operator that F equals as the �

expression:

� x ; y : x [ fz ; yg
The symbols x and y in this � expression are called � parameters. We use �

expressions only to explain the meaning of TLA+ speci�cations; we can't write

a � expression in TLA+.

We also allow 2nd-order � expressions, where the operator G de�ned by

G(f ( ; ); x ; y)
�
= f (y ; fx ; zg)

is equal to the � expression

� f ( ; ); x ; y : f (y ; fx ; zg)(17.1)

The general form of a � expression is � p1; : : : ; pn : exp, where exp is a

� expression, each parameter pi is either an identi�er id i or has the form

id i ( ; : : : ; ), and the id i are all distinct. We call id i the identi�er of the

� parameter pi . We consider the n = 0 case, the � expression � : exp with no

parameters, to be the expression exp. This makes a � expression a generalization

of an ordinary expression.

A � parameter identi�er is a bound identi�er, just like the identi�er x in

8 x :F . As with any bound identi�ers, renaming the � parameter identi�ers in a

� expression doesn't change the meaning of the expression. For example, (17.1)

is equivalent to

� abc( ; ); qq ; m : abc(m; fqq ; zg)
For obscure historical reasons, this kind of renaming is called � conversion.

If Op is the � expression � p1; : : : ; pn : exp, then Op(e1; : : : ; en ) equals the

result of replacing the identi�er of the � parameter pi in exp with ei , for all i

in 1 : : n. For example,

(� x ; y : x [ fz ; yg) (TT ;w + z ) = TT [ fz ; (w + z )g
This procedure for evaluating the application of a � expression is called � re-

duction.
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17.1.3 Simplifying Operator Application

To simplify the exposition, I assume that every operator application is written in

the form Op(e1; : : : ; en ). TLA
+ provides a number of di�erent syntactic forms

for operator application, so I have to explain how they are translated into this

simple form. Here are all the di�erent forms of operator application and their

translations.

� Simple constructs with a �xed number of arguments, including in�x oper-

ators like +, pre�x operators like enabled , and constructs like WF, func-

tion application, and if/then/else. These operators and constructs pose

no problem. We can write +(a; b) instead of a + b, IfThenElse(p; e1 ; e2)

instead of

if p then e1 else e2

and Apply(f ; e) instead of f [e]. An expression like a + b + c is an abbre-

viation for (a + b) + c, so it can be written +(+(a; b); c).

� Simple constructs with a variable number of arguments|for example,

fe1; : : : ; eng and [h1 7! e1; : : : ; hn 7! en ]. We can consider each of these

constructs to be repeated application of simpler operators with a �xed

number of arguments. For example,

fe1; : : : ; eng = fe1g [ : : : [ feng
[h1 7! e1; : : : ; hn 7! en ] = [h1 7! e1] @@ : : : @@[hn 7! en ]

where @@ is de�ned in the TLC module, on page 244. Of course, feg
can be written Singleton(e) and [h 7! e] can be written Record(\h"; e).

Note that an arbitrary case expression can be written in terms of case

expressions of the form

case p ! e 2 q ! f

using the relation:

case p1 ! e1 2 : : : 2 pn ! en =

case p1 ! e1 2 (p2 _ : : : _ pn )! (case p2 ! e22 : : : 2 pn ! en )

� Constructs that introduce bound variables|for example,

9 x 2 S : x + z > y

We can rewrite this expression as

ExistsIn(S ; � x : x + z > y)

where ExistsIn is a 2nd-order operator of arity h ; h i i. All the variants
of the 9 construct can be represented as expressions using either 9 x 2 S : e

or 9 x : e . (Section 16.1.1 shows how these variants can be translated into

expressions using only 9 x : e , but those translations don't maintain the
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scoping rules|for example, rewriting 9 x 2 S : e as 9 x : (x 2 S ) ^ e moves
S inside the scope of the bound variable x .)

All the other constructs that introduce bound variables, such as fx 2 S : expg,
can similarly be expressed in the form Op(e1; : : : ; en ) using � expressions

and 2nd-order operators Op. (Chapter 16 explains how to express con-

structs like fhx ; yi 2 S : expg, that have a tuple of bound identi�ers, in

terms of constructs with ordinary bound identi�ers.)

� Operator applications such asM (x )!Op(y ; z ) that arise from instantiation.

We write this as M !Op(x ; y ; z ).

� let expressions. The meaning of a let expression is explained in Sec-

tion 17.4 below. For now, we consider only let-free � expressions|ones

that contain no let expressions.

For uniformity, I will call an operator symbol an identi�er, even if it is a symbol

like + that isn't an identi�er according to the syntax of Chapter 15.

17.1.4 Expressions

We can now inductively de�ne an expression to be either a 0th-order operator, or

to have the form Op(e1; : : : ; en ) where Op is an operator and each ei is either

an expression or a 1st-order operator. The expression must be arity-correct,

meaning that Op must have arity ha1; : : : ; an i, where each ai is the arity of ei .

In other words, ei must be an expression if ai equals , otherwise it must be

a 1st-order operator with arity ai . We require that Op not be a � expression.

(If it is, we can use � reduction to evaluate Op(e1; : : : ; en ) and eliminate the �

expression Op.) Hence, a � expression can appear in an expression only as an

argument of a 2nd-order operator. This implies that only 1st-order � expressions

can appear in an expression.

We have eliminated all bound identi�ers except the ones in � expressions. We

maintain the TLA+ requirement that an identi�er that already has a meaning

cannot be used as a bound identi�er. Thus, in any � expression � p1; : : : ; pn : exp,

the identi�ers of the parameters pi cannot appear as parameter identi�ers in any

� expression that occurs in exp.

Remember that � expressions are used only to explain the semantics of TLA+.

They are not part of the language, and they can't be used in a TLA+ speci�ca-

tion.

17.2 Levels

TLA+ has a class of syntactic restrictions that come from the underlying logic

TLA and have no counterpart in ordinary mathematics. The simplest of these is
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that \double-priming" is prohibited. For example, (x 0 + y)0 is not syntactically

well-formed, and is therefore meaningless, because the operator 0 (priming) can

be applied only to a state function, not to a transition function like x 0+ y . This

class of restriction is expressed in terms of levels.

In TLA, an expression has one of four basic levels, which are numbered 0,

1, 2, and 3. These levels are described below, using examples that assume x , y ,

and c are declared by

variables x ; y constant c

and symbols like + have their usual meanings.

0. A constant-level expression is a constant; it contains only constants and

constant operators. Example: c + 3.

1. A state-level expression is a state function; it may contain constants, con-

stant operators, and unprimed variables. Example: x + 2 � c.

2. A transition-level expression is a transition function; it may contain any-

thing except temporal operators. Example: x 0 + y > c.

3. A temporal -level expression is a temporal formula; it may contain any TLA

operator. Example: 2[x 0 > y + c]hx ; y i.

Chapter 16 assigns meanings to all basic expressions|ones containing only the

built-in operators of TLA+ and declared constants and variables. The meaning

assigned to an expression depends as follows on its level.

0. The meaning of a constant-level basic expression is a constant-level basic

expression containing only primitive operators.

1. The meaning of a state-level basic expression is an assignment of a constant

expression s [[e]] to any state s .

2. The meaning of a transition-level basic expression e is an assignment of a

constant expression hs ; t i[[e]] to any transition s ! t .

3. The meaning of a temporal-level basic expression F is an assignment of a

constant expression � j= F to any behavior �.

An expression of any level can be considered to be an expression of a higher level,

except that a transition-level expression is not a temporal-level expression.2 For

example, if x is a declared variable, then the state-level expression x > 2 is the

2More precisely, a transition-level expression that is not a state-level expression is not a

temporal-level expression.
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temporal-level formula such that � j= x is the value of x > 2 in the �rst state of

�, for any behavior �.3

A set of simple rules inductively de�nes whether a basic expression is level-

correct and, if so, what its level is. Here are some of the rules:

� A declared constant is a level-correct expression of level 0.

� A declared variable is a level-correct expression of level 1.

� If Op is declared to be a 1st-order constant operator, then the expression

Op(e1; : : : ; en) is level-correct i� each ei is level correct, in which case its

level is the maximum of the levels of the ei .

� e1 2 e2 is level correct i� e1 and e2 are, in which case its level is the

maximum of the levels of e1 and e2.

� e 0 is level-correct, and has level 2, i� e is level-correct and has level at

most 1.4

� enabled e is level-correct, and has level 1, i� e is level-correct and has

level at most 2.

� 9 x : e is level-correct, and has level l , i� e is level-correct and has level l ,

when x is considered to be a declared constant.

� 999999 x : e is level-correct, and has level 3, i� e is level-correct and has any

level other than 2, when x is considered to be a declared variable.

There are additional rules for the other TLA+ operators. They should be obvi-

ous.

A useful consequence of the rules is that level-correctness of a basic expression

does not depend on the levels of the declared identi�ers. In other words, an

expression e is level-correct when c is declared to be a constant i� it is level-

correct when c is declared to be a variable. Of course, the level of e may depend

on the level of c.

We can abstract these rules by generalizing the concept of a level. So far, I

have de�ned the level only of an expression. I now de�ne the level of a 1st- or

2nd-order operatorOp to be a rule for determining the level-correctness and level

of an expression Op(e1; : : : ; en ) as a function of the levels of the arguments ei .

The level of a 1st-order operator is a rule, so the level of a 2nd-order operatorOp

is a rule that depends in part on rules|namely, on the levels of the arguments

3The expression x + 2 can be considered to be a temporal-level expression that, like the

temporal-level expression 2(x + 2), is silly. (See the discussion of silliness in Section 6.2 on

page 67.)
4If e is a constant expression, then e0 equals e, so we could consider e0 to have level 0. For

simplicity, we consider e0 to have level 2 even if e is a constant.
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that are operators. This makes a rigorous general de�nition of levels for 2nd-

order operators rather complicated. Fortunately, there's a simpler, less general

de�nition that handles all the operators of TLA+. Even more fortunately, you

don't have to know it, so I won't bother writing it down. All you need to know

is that there exists a way of assigning a level to every built-in operator of TLA+.

The level-correctness and level of any basic expression is then determined by

those levels and the levels of the declared identi�ers that occur in the expression.

One important class of operator levels are the constant levels. Any expression

built from constant-level operators and declared constants has constant level.

The built-in constant operators of TLA+, listed in Tables 1 and 2 (pages 266 and

267) all have constant level. Any operator de�ned solely in terms of constant-

level operators and declared constants has constant level.

We now extend the de�nition of level-correctness from expressions to � ex-

pressions. We de�ne the � expression �p1; : : : ; pn : exp to be level-correct i� exp

is level-correct when the � parameter identi�ers are declared to be constants

of the appropriate arity. For example, �p; q( ) : exp is level-correct i� exp is

level-correct with the additional declaration:

constants p; q( )

This inductively de�nes level-correctness for � expressions. The de�nition is

reasonable because, as observed a couple of paragraphs ago, the level-correctness

of exp doesn't depend on whether we assign level 0 or 1 to the � parameters.

One can also de�ne the level of an arbitrary � expression, but that would require

the general de�nition of the level of an operator, whose complexity we want to

avoid.

17.3 Contexts

Syntactic correctness of a basic expression depends on the arities of the declared

identi�ers. The expression Foo = fg is syntactically correct if Foo is declared to

be a variable, and hence of arity , but not if it's declared to be a (1st-order)

constant of arity h i. The meaning of a basic expression also depends on the

levels of the declared identi�ers. We can't determine those arities and levels just

by looking at the expression itself; they are implied by the context in which the

expression appears. A nonbasic expression contains de�ned as well as declared

operators. Its syntactic correctness and meaning depend on the de�nitions of

those operators, which also depend on the context. This section de�nes a precise

notion of a context.

For uniformity, built-in operators are treated the same as de�ned and de-

clared operators. Just as the context might tell us that the identi�er x is a

declared variable, it tells us that 2 is declared to be a constant-level operator

of arity h ; i and that =2 is de�ned to equal �a; b ::(2 (a; b)). I assume a

standard context that speci�es all the built-in operators of TLA+.
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To de�ne contexts, let's �rst de�ne declarations and de�nitions. A declara-

tion assigns an arity and level to an operator name. A de�nition assigns a let-

free � expression to an operator name. A module de�nition assigns the meaning

of a module to a module name, where the meaning of a module is de�ned in

Section 17.5 below.5 A context consists of a set of declarations, de�nitions, and

module de�nitions such that:

C1. An operator name is declared or de�ned at most once by the context.

(This means that it can't be both declared and de�ned.)

C2. No operator de�ned or declared by the context appears as the identi�er of

a � parameter in any de�nition's expression.

C3. Every operator name that appears in a de�nition's expression is either a

� parameter's identi�er or is declared (not de�ned) by the context.

C4. No module name is assigned meanings by two di�erent module de�nitions.

Module and operator names are handled separately. The same string may be

both a module name that is de�ned by a module de�nition and an operator

name that is either declared or de�ned by an ordinary de�nition.

Here is an example of a context that declares the symbols [, a, b, and 2,
de�nes the symbols c and foo, and de�nes the module Naturals :

f [ : h ; i; a : ; b : ; 2 : h ; i; c
�
= [(a; b);

foo
�
= �p; q( ) : 2 (p;[(q(b); a)); Naturals

m

= : : : g
(17.2)

I have not shown the levels assigned to the operators [, a, b, and 2, or the
meaning assigned to Naturals .

If C is a context, a C-basic � expression is de�ned to be a � expression that

contains only symbols declared in C (in addition to � parameters). For example,

�x : 2(x ; [(a; b)) is a C-basic � expression if C is the context (17.2). However,
neither \(a; b) nor �x : c(x ; b) is a C-basic � expression because neither \ nor

c is declared in C. (The symbol c is de�ned, not declared, in C.) A C-basic �
expression is syntactically correct if it is arity- and level-correct with the arities

and levels assigned by C to the expression's operators. Condition C3 states that

if Op
�
= exp is a de�nition in context C, then exp is a C-basic � expression. We

add to C3 the requirement that it be syntactically correct.

We also allow a context to contain a special de�nition of the form Op
�
=?

that assigns to the name Op an \illegal" value ? that is not a � expression. This

de�nition indicates that, in the context, it is illegal to use the operator name Op.

5The meaning of a module is de�ned in terms of contexts, so these de�nitions appear to

be circular. In fact, the de�nitions of context and of the meaning of a module together form

a single inductive de�nition.
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17.4 The Meaning of a � Expression

I now de�ne the meaning C[[e]] of a � expression e in a context C to be a C-basic
� expression. If e is an ordinary (nonbasic) expression, and C is the context that
speci�es the built-in TLA+ operators and declares the constants and variables

that occur in e, then C[[e]] is a basic expression. Since Chapter 16 de�nes the

meaning of basic expressions, this de�nes the meaning of an arbitrary expression.

The expression e may contain let constructs, so this de�nes the meaning of let,

the one operator whose meaning is not de�ned in Chapter 16.

Basically, C[[e]] is obtained from e by replacing all de�ned operator names

with their de�nitions, and then applying � reduction whenever possible. Recall

that � reduction replaces

(� p1; : : : ; pn : exp) (e1; : : : ; en )

with the expression obtained from exp by replacing the identi�er of pi with ei ,

for each i . The de�nition of C[[e]] does not depend on the levels assigned by the

declarations of C. So, we ignore levels in the de�nition. The inductive de�nition
of C[[e]] consists of the following rules:
� If e is an operator symbol, then C[[e]] equals (i) e if e is declared in C, or
(ii) the � expression of e's de�nition in C if e is de�ned in C.
� If e is Op(e1; : : : ; en ), where Op is declared in C, then C[[e]] equals the
expression Op(C[[e1]]; : : : ; C[[en ]]).
� If e is Op(e1; : : : ; en ), where Op is de�ned in C to equal the � expression

d , then C[[e]] equals the � reduction of d(C[[e1]]; : : : ; C[[en ]]), where d is

obtained from d by � conversion (replacement of � parameters) so that no

� parameter's identi�er appears in both d and some C[[ei ]].
� If e is �p1; : : : ; pn : exp, then C[[e]] equals �p1; : : : ; pn :D[[exp]], where D
is the context obtained by adding to C the declarations that, for each i

in 1 : : n, assign to the i th � parameter's identi�er the arity determined

by pi .

� If e is let Op
�
= d in exp, where d is a � expression and exp an expression,

then C[[e]] equals D[[exp]], where D is the context obtained by adding to C
the de�nition that assigns C[[d ]] to Op.

� If e is

let Op(p1; : : : ; pn )
�
= instance : : : in exp

then C[[e]] equals D[[exp]], where D is the new current context obtained by

\evaluating" the statement

Op(p1; : : : ; pn )
�
= instance : : :

in the current context C, as described in Section 17.5.5 below.
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The last two conditions de�ne the meaning of any let construct, because:

� The operator de�nition Op(p1; : : : ; pn )
�
= d in a let means:

Op
�
= �p1; : : : ; pn : d

� A function de�nition Op[x 2 S ] �
= d in a let means:

Op
�
= choose Op : Op = [x 2 S 7! d ]

� The expression let Op1
�
= d1 : : : Opn

�
= dn in exp is de�ned to equal

let Op1
�
= d1 in (let : : : in (let Opn

�
= dn in exp) : : :)

The � expression e is de�ned to be legal (syntactically well-formed) in the con-

text C i� these rules de�ne C[[e]] to be a legal C-basic expression.

17.5 The Meaning of a Module

The meaning of a module depends on a context. For an external module, which

is not a submodule of another module, the context consists of declarations and

de�nitions of all the built-in operators of TLA+, together with de�nitions of

some other modules. Section 17.7 below discusses where the de�nitions of those

other modules come from.

The meaning of a module in a context C consists of six sets:

Dcl A set of declarations. They come from constant and variable dec-

larations and declarations in extended modules (modules appearing

in an extends statement).

GDef A set of global de�nitions. They come from ordinary (non-local)

de�nitions and global de�nitions in extended and instantiated mod-

ules.

LDef A set of local de�nitions. They come from local de�nitions and

local instantiations of modules. (Local de�nitions are not obtained

by other modules that extend or instantiate the module.)

MDef A set of module de�nitions. They come from submodules of the mod-

ule and of extended modules.

Ass A set of assumptions. They come from assume statements and from

extended modules.

Thm A set of theorems. They come from theorem statements, from the-

orems in extended modules, and from the assumptions and theorems

of instantiated modules, as explained in Section 17.5.5 below.
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The � expressions of de�nitions in GDef and LDef , as well as the expressions

in Ass and Thm, are (C [ Dcl)-basic � expressions. In other words, the only

operator symbols they contain (other than � parameter identi�ers) are ones

declared in C or in Dcl .

The meaning of a module in a context C is de�ned by an algorithm for

computing these six sets. The algorithm processes each statement in the module

in turn, from beginning to end. The meaning of the module is the value of those

sets when the end of the module is reached.

Initially, all six sets are empty. The rules for handling each possible type of

statement are given below. In these rules, the current context CC is de�ned to

be the union of C, Dcl , GDef , LDef , and MDef .

When the algorithm adds elements to the context CC, it uses � conver-

sion to ensure that no de�ned or declared operator name appears as a � pa-

rameter's identi�er in any � expression in CC. For example, if the de�nition

foo
�
= �x : x + 1 is in LDef , then adding a declaration of x to Dcl requires �

conversion of this de�nition to rename the � parameter identi�er x . This �

conversion is not explicitly mentioned.

17.5.1 Extends

An extends statement has the form

extends M 1; : : : ;M n

where each M i is a module name. This statement must be the �rst one a

the module. The statement sets the values of Dcl , GDef , MDef , Ass , and Thm

equal to the union of the corresponding values for the module meanings assigned

by C to the module names M i .

This statement is legal i� the module names M i are all de�ned in C, and
the resulting current context CC does not assign more than one meaning to any

symbol. More precisely, if the same symbol is de�ned or declared by two or more

of the M i , then those duplicate de�nitions or declarations must all have been

obtained through a (possibly empty) chain of extends statements from the

same de�nition or declaration. For example, suppose M 1 extends the Naturals

module, and M 2 extends M 1. Then the three modules Naturals , M 1, and M 2

all de�ne the operator +. The statement

extends Naturals ;M 1;M 2

can still be legal, because all three de�nitions are obtained by chain of extends

statements (of lengths 0, 1, and 2, respectively) from the de�nition of + in the

Naturals module.

When decomposing a large speci�cation into modules, we often want a mod-

ule M to extend modules M 1, . . . , M n , where the M i have declared constants
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and/or variables in common. In this case, we put the common declarations in a

module P that is extended by all the M i .

17.5.2 Declarations

A declaration statement has one of the forms

constant c1; : : : ; cn variable v1; : : : ; vn

where each v i is an identi�er and each ci is either an identi�er or has the form

Op( ; : : : ; ) for some identi�er Op. This statement adds to the set Dcl the

obvious declarations. It is legal i� none of the declared identi�ers is de�ned or

declared in CC.

17.5.3 Operator De�nitions

A global operator de�nition6 has one of the two forms

Op
�
= exp Op(p1; : : : ; pn )

�
= exp

where Op is an identi�er, exp is an expression, and each pi is either an identi�er

or has the form P( ; : : : ; ), where P is an identi�er. We consider the �rst

form an instance of the second with n = 0.

This statement is legal i� Op is not declared or de�ned in CC and the �

expression �p1; : : : ; pn : exp is legal in context CC. In particular, no � parameter

in this � expression can be de�ned or declared in CC. The statement adds to

GDef the de�nition that assigns to Op the � expression CC[[�p1; : : : ; pn : exp]].
A local operator de�nition has one of the two forms

local Op
�
= exp local Op(p1; : : : ; pn )

�
= exp

It is the same as a global de�nition, except that it adds the de�nition to LDef

instead of GDef .

17.5.4 Function De�nitions

A global function de�nition has the form

Op[fcnargs ]
�
= exp

6An operator de�nition statement should not be confused with a de�nition clause in a let

expression. The meaning of a let expression is described in Section 17.4.
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where fcnargs is a comma-separated list of elements, each having the form

Id1; : : : ; Idn 2 S or hId1; : : : ; Idn i 2 S . It is equivalent to the global operator

de�nition

Op
�
= choose Op : Op = [fcnargs 7! exp]

A local function de�nition, which has the form

local Op[fcnargs ]
�
= exp

is equivalent to the analogous local operator de�nition.

17.5.5 Instantiation

We consider �rst a global instantiation of the form:

I (p1; : : : ; pm)
�
= instance N with q1  e1; : : : ; qn  en(17.3)

For this to be legal, N must be a module name de�ned in CC. Let NDcl , NDef ,
NAss , and NThm be the sets Dcl , GDef , Ass , and Thm in the meaning assigned

to N by CC. The q i must be distinct identi�ers declared by NDcl . We add a

with clause of the form Op  Op for any identi�er Op that is declared in NDcl

but is not one of the q i , so the q i constitute all the identi�ers declared in NDcl .

Neither I nor any of the identi�ers of the de�nition parameters pi may be

de�ned or declared in CC. Let D be the context obtained by adding to CC the
obvious constant-level declaration for each pi . Then ei must be syntactically

well-formed in the context D, and D[[ei ]] must have the same arity as q i , for

each i 2 1 : : n.
The instantiation must also satisfy the following level-correctness condition.

De�ne module N to be a constant module i� every declaration in NDcl has

constant level, and every operator appearing in every de�nition in NDef has

constant level. If N is not a constant module, then for each i in 1 : : n:

� If q i is declared in NDcl to be a constant operator, then D[[ei ]] has constant
level.

� If q i is declared in NDcl to be a variable (a 0th-order operator of level 1),

then D[[ei ]] has level 0 or 1.

The reason for this condition is explained in Section 17.8 below.

For each de�nition Op
�
= �r1; : : : ; rp : e in NDef , the de�nition

I !Op
�
= � p1; : : : ; pm ; r1; : : : ; rp : e(17.4)

is added to GDef , where e is the expression obtained from e by substituting ei
for q i , for all i 2 1 : : n. Before doing this substitution, � conversion must be
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applied to ensure that CC is a correct context after the de�nition of I !Op is added
to GDef . The precise de�nition of e is a bit subtle; it is given in Section 17.8

below. We require that the � expression in (17.4) must be level-correct. (If N

is a nonconstant module, then level-correctness of this � expression is implied

by the level condition on parameter instantiation described in the preceding

paragraph.) Legality of the de�nition of Op in module N and of the with

substitutions imply that the � expression is arity-correct in the current context.

Remember that I !Op(c1; : : : ; cm ; d1; : : : ; dn) is actually written in TLA+ as

I (c1; : : : ; cm)!Op(d1; : : : ; dn ).

Also added to GDef is the special de�nition I
�
= ?. This prevents I from

later being de�ned or declared as an operator name.

If NAss equals the set fA1; : : : ;Akg of assumptions, then for each theorem

T in NThm, we add to Thm the theorem

A1 ^ : : : ^Ak ) T

(As above, T and the Aj are obtained from T and the Aj by substituting ei for

q i , for each i in 1 : : k .)

A global instance statement can also have the two forms:

I
�
= instance N with q1  e1; : : : ; qn  en

instance N with q1  e1; : : : ; qn  en

The �rst is just the m = 0 case of (17.3); the second is similar to the �rst, except

the de�nitions added to GDef do not have I ! prepended to the operator names.

The second form also has the legality condition that none of the de�ned symbols

in N may be de�ned or declared in the current context. In all three forms of

the statement, omitting the with clause is equivalent to the case n = 0 of these

statements. (Remember that all the declared identi�ers of module N are either

explicitly or implicitly instantiated.)

A local instance statement consists of the keyword local followed by an

instance statement of the form described above. It is handled in a similar

fashion to a global instance statement, except that all de�nitions are added to

LDef instead of GDef .

The de�nitions introduced by an instance statement are considered to be

new de�nitions, di�erent from the de�nitions in the instantiated module. For

example, if a module M contains the statement

instance Naturals

then neither M nor any module that extends M may extend the Naturals mod-

ule, since doing so would introduce two separate de�nitions of every operator

de�ned in Naturals . If, instead, M contains the statement

local instance Naturals

then another module may extend both M and the Naturals module. (However,

M itself still may not extend Naturals .)
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17.5.6 Theorems and Assumptions

A theorem has one of the forms

theorem exp theorem Op
�
= exp

where exp is an expression, which must be legal in the current context CC.
The �rst form adds the theorem CC[[exp]] to the set Thm. The second form is

equivalent to the two statements:

Op
�
= exp

theorem Op

An assumption has one of the forms

assume exp assume Op
�
= exp

The expression exp must have constant level. An assumption is similar to a

theorem except that CC[[exp]] is added to the set Ass .

17.5.7 Submodules

A module can contain a submodule, which is a complete module that begins

with

module N

for some module name N , and ends with

This is legal i� the module name N is not de�ned in CC and the module is legal

in the context CC. In this case, the module de�nition that assigns to N the

meaning of the submodule in context CC is added to MDef .

A submodule can be used in an instance statement that appears later in

the current module, or within a module that extends the current module.

17.6 Correctness of a Module

Section 17.5 above de�nes the meaning of a module to consist of the six sets Dcl ,

GDef , LDef , MDef , Ass , and Thm. Mathematically, we can view the meaning

of a module to be the assertion that all the theorems in Thm are consequences

of the assumptions in Ass . More precisely, let A be the conjunction of all the
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assumptions in Ass . The module asserts that, for every theorem T in Thm, the

formula A) T is valid.7

An assumption or theorem of the module is a (C [Dcl)-basic expression. For
an outermost module (not a submodule), C declares only the built-in operators

of TLA+, and Dcl declares the declared constants and variables of the module.

Therefore, each formula A) T asserted by the module is a basic expression. We

say that the module is semantically correct if each of these formulas A ) T is

valid in the context Dcl . Chapter 16 de�nes what it means for a basic expression

to be valid.

By de�ning the meaning of a theorem, we have de�ned the meaning of a

TLA+ speci�cation. Any mathematically meaningful question we can ask about

a speci�cation can be framed as the question of whether a certain formula is a

valid theorem.

17.7 Finding Modules

For a module M to have a meaning in a context C, every module N extended or

instantiated byM must have its meaning de�ned in C|unless N is a submodule

of M or of a module extended by M . In principle, module M is interpreted in

a context containing declarations and de�nitions of the built-in TLA+ operator

names and module de�nitions of all modules needed to interpret M . In practice,

a tool (or a person) begins interpreting M in a context C0 initially containing

only declarations and de�nitions of the built-in TLA+ operator names. When

the tool encounters an extends or instance statement that mentions a module

named N not de�ned in the current context CC of M , the tool �nds the module

named N , interprets it in the context C0, and then adds the module de�nition

for N to C0 and to CC.
The de�nition of the TLA+ language does not specify how a tool �nds a

module named N . A tool will most likely look for the module in a �le whose

name is derived in some standard way from N .

The meaning of a module depends on the meanings of the modules that it

extends or instantiates. The meaning of each of those modules in turn may

depend on the meanings of other modules, and so on. Thus, the meaning of

a module depends on the meanings of some set of modules. A module M is

syntactically incorrect if this set of modules includes M itself.

7In a temporal logic like TLA, the formula F ) G is not in general equivalent to the

assertion that G is a consequence of assumption F . However, the two are equivalent if F is a

constant formula, and TLA+ allows only constant assumptions.
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17.8 The Semantics of Instantiation

Section 17.5.5 above de�nes the meaning of an instance statement in terms

of substitution. I now de�ne precisely how that substitution is performed and

explain the level-correctness rule for instantiating nonconstant modules.

Suppose module M contains the statement

I
�
= instance N with q1  e1; : : : ; qn  en

where the q i are all the declared identi�ers of module N , and that N contains

the de�nition

F
�
= e

where no � parameter identi�er in e is de�ned or declared in the current context

of M . The instance statement then adds to the current context of M the

de�nition

I !F
�
= e

where e is obtained from e by substituting ei for q i , for all i in 1 : : n.

A fundamental principle of mathematics is that substitution preserves valid-

ity; substituting in a valid formula yields a valid formula. So, we want to de�ne

e so that, if F is a valid formula in N , then I !F is a valid formula in M .

A simple example shows that the level rule for instantiating nonconstant

modules is necessary to preserve the validity of F . Suppose F is de�ned to

equal 2[c0 = c]c , where c is declared in N to be a constant. Then F is a tem-

poral formula asserting that no step changes c. It is valid because a constant

has the same value in every state of a behavior. If we allowed an instantiation

that substitutes a variable x for the constant c, then I !F would be the formula

2[x 0 = x ]x . This is not a valid formula because it is false for any behavior in

which the value of x changes. Since x is a variable, such a behavior obviously

exists. Preserving validity requires that we not allow substitution of a noncon-

stant for a declared constant when instantiating a nonconstant module. (Since

2 and 0 are nonconstant operators, this de�nition of F can appear only in a

nonconstant module.)

In ordinary mathematics, there is one tricky problem in making substitution

preserve validity. Consider the formula

(n 2 Nat)) (9m 2 Nat : m � n)(17.5)

This formula is valid because it is true for any value of n. Now, suppose we

substitute m + 1 for n. A naive substitution that simply replaces n by m + 1

would yield the formula

(m + 1 2 Nat)) (9m 2 Nat : m � m + 1)(17.6)
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Since the formula 9m 2 Nat :m � m + 1 is equivalent to false, (17.6) is obvi-

ously not valid. Mathematicians call this problem variable capture; m is \cap-

tured" by the quanti�er 9m. Mathematicians avoid it by the rule that, when

substituting for an identi�er in a formula, one does not substitute for bound

occurrences of the identi�er. This rule requires that m be removed from (17.5)

by � conversion before m + 1 is substituted for n.

Section 17.5.5 de�nes the meaning of the instance statement in a way that

avoids variable capture. Indeed, formula (17.6) is illegal in TLA+ because the

subexpression m + 1 2 Nat is allowed only in a context in which m is de�ned or

declared, in which case m cannot be used as a bound identi�er, so the subex-

pression 9m : : : is illegal. The � conversion necessary to produce a syntactically

well-formed expression makes this kind of variable capture impossible.

The problem of variable capture occurs in a more subtle form in certain

nonconstant operators of TLA+, where it is not prevented by the syntactic rules.

Most notable of these operators is enabled. Suppose x and y are declared

variables of module N , and F is de�ned by

F
�
= enabled (x 0 = 0 ^ y 0 = 1)

Then F is equivalent to true, so it is valid in module N . (For any state s , there

exists a state t in which x = 0 and y = 1.) Now suppose z is a declared variable

of module M , and let the instantiation be

I
�
= instance N with x  z ; y  z

With naive substitution, I !F would equal

enabled (z 0 = 0 ^ z 0 = 1)

which is equivalent to false. (For any state s , there is no state t in which z = 0

and z = 1 are both true.) Hence, I !F would not be a theorem, so instantiation

would not preserve validity.

Naive substitution in a formula of the form enabled A does not preserve

validity because the primed variables in A are really bound identi�ers. The

formula enabledA asserts that there exist values of the primed variables such

that A is true. Substituting z 0 for x 0 and y 0 in the enabled formula is really

substitution for a bound identi�er. It isn't ruled out by the syntactic rules of

TLA+ because the quanti�cation is implicit.

To preserve validity, we must de�ne e so it avoids capture of identi�ers

implicitly bound in enabled expressions. Before performing the substitution,

we �rst replace the primed occurrences of variables in enabled expressions

with new variable symbols. That is, for each subexpression of e of the form

enabled A and each declared variable q of module N , we replace every primed

occurrence of q in A with a new symbol, which I will write $q , that does not

appear in A. This new symbol is considered to be bound by the enabled

operator. For example, the module
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module N

variable u

G(v ;A)
�
= enabled (A _ (fu; vg0 = fu; vg))

H
�
= (u 0 = u) ^G(u; u 0 6= u)

has as its global de�nitions the set:

fG �
= �v ; A : enabled (A _ (fu; vg0 = fu; vg));

H
�
= (u 0 = u) ^ enabled ((u 0 6= u) _ (fu; ug0 = fu; ug)) g

The statement

I
�
= instance N with u  x

adds the following de�nitions to the current module:

I !G
�
= �v ;A : enabled (A _ (f$u; vg0 = fu; vg))

I !H
�
= (x 0 = x ) ^ enabled (($u 0 6= x ) _ (f$u; $ug0 = fx ; xg))

Observe that I !H does not equal (x 0 = x ) ^ I !G(x ; x 0 6= x ), even though H

equals (u 0 = u) ^G(u; u 0 6= u) in module N and the instantiation substitutes x

for u.

As another example, consider the module

module N

variables u; v

A
�
= (u 0 = u) ^ (v 0 6= v)

B(d)
�
= enabled d

C
�
= B(A)

The instantiation

I
�
= instance N with u  x ; v  x

adds the following de�nitions to the current module

I !A
�
= (x 0 = x ) ^ (x 0 6= x )

I !B
�
= �d : enabled d

I !C
�
= enabled (($u 0 = x ) ^ ($v 0 6= x ))

Observe that I !C is not equivalent to I !B(I !A). In fact, I !C � true and

I !B(I !A) � false.



17.8. THE SEMANTICS OF INSTANTIATION 335

We say that instantiation distributes over an operator Op if

Op(e1; : : : ; en ) = Op(e1; : : : ; en )

for any expressions ei , where the overlining operator ( ) denotes some arbitrary

instantiation. Instantiation distributes over all constant operators|for exam-

ple, +, �, and 9 .8 Instantiation also distributes over most of the nonconstant

operators of TLA+, like priming (0) and 2.

If an operator Op implicitly binds some identi�ers in its arguments, then

instantiation would not preserve validity if it distributed over Op. Our rules

for instantiating in an enabled expression imply that instantiation does not

distribute over enabled. It also does not distribute over any operator de�ned

in terms of enabled|in particular, the built-in operators WF and SF.

There are two other TLA+ operators that implicitly bind identi�ers: the

action composition operator \�", de�ned in Section 16.2.3, and the temporal

operator
+�., introduced in Section 10.7. The rule for instantiating an expression

A �B is similar to that for enabled A|namely, bound occurrences of variables

are replaced by a new symbol. In the expression A � B , primed occurrences of

variables in A and unprimed occurrences in B are bound. We handle a formula

of the form F
+�. G by replacing it with an equivalent formula in which the

quanti�cation is made explicit.9 Most readers won't care, but here's how that

equivalent formula is constructed. Let x be the tuple hx 1; : : : ; xn i of all declared
variables; let b, cx 1, . . . , cxn be symbols distinct from the x i and from any bound

identi�ers in F or G ; and let be be the expression obtained from an expression e

by substituting the variablescx i for the corresponding variables x i . Then F +�. G
is equivalent to

888888 b : ( ^ (b = true) ^ 2[b0 = false]b

^ 999999cx 1; : : : ;cxn : bF ^ 2(b ) (x = bx)) )
) 999999cx 1; : : : ;cxn : bG ^ (x = bx) ^ 2[b ) (x0 = bx0)]

hb;x;bxi
(17.7)

Here's a complete statement of the rules for computing e :

1. Remove all
+�. operators by replacing each subformula of the form F

+�. G
with the equivalent formula (17.7).

2. Recursively perform the following replacements, starting from the inner-

most subexpressions of e, for each declared variable x of N .

8Recall the explanation on pages 318{319 of how we consider 9 to be a second-order

operator. Instantiation distributes over 9 because TLA+ does not permit variable capture

when substituting in � expressions.
9Replacing enabled and \�" expressions by equivalent formulas with explicit quanti�ers

before substituting would result in some surprising instantiations. For example, if N con-

tains the de�nition E(A)
�
= enabledA, then I

�
= instance N would e�ectively obtain the

de�nition I !E(A)
�
= A.
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� For each subexpression of the form enabledA, replace each primed

occurrence of x in A by a new symbol $x that is di�erent from any

identi�er and from any other symbol that occurs in A.

� For each subexpression of the form B �C , replace each primed occur-

rence of x in B and each unprimed occurrence of x in C by a new

symbol $x that is di�erent from any identi�er and from any other

symbol that occurs in B or C .

For example, applying these rules to the inner enabled expression and to

the \�" expression converts

enabled (enabled (x 0 = x )0 ^ ((y 0 = x ) � (x 0 = y)))

to

enabled (enabled ($x 0 = x )0 ^ (($y 0 = x ) � (x 0 = $y)))

and applying them again to the outer enabled expression yields

enabled (enabled ($x 0 = $xx )0 ^ (($y 0 = x ) � ($xx 0 = $y)))

where $xx is some new symbol di�erent from x , $x , and $y .

3. Replace each occurrence of q i with ei , for all i in 1 : : n.



Chapter 18

The Standard Modules

We provide several standard modules for use in TLA+ speci�cations. Some of

the de�nitions they contain are subtle|for example, the de�nitions of the set

of real numbers and its operators. Others, such as the de�nition of 1 : : n, are

obvious. There are two reasons to use standard modules. First, speci�cations

are easier to read when they use basic operators that we're already familiar

with. Second, tools can have built-in knowledge of standard operators. For

example, the TLC model checker (Chapter 14) has e�cient implementations of

some standard modules; and a theorem-prover might implement special decision

procedures for some standard operators. The standard modules of TLA+ are

described here, except for the RealTime module, which appears in Chapter 9.

18.1 Module Sequences

The Sequences module was introduced in Section 4.1 on page 35. Most of the

operators it de�nes have already been explained. The exceptions are:

SubSeq(s ; m; n) The subsequence hs [m]; s [m + 1]; : : : ; s [n]i consisting of

the mth through nth elements of s . It is unde�ned if m < 1

or n > Len(s), except that it equals the empty sequence

if m > n.

SelectSeq(s ; Test) The subsequence of s consisting of the elements s [i ] such

that Test(s [i ]) equals true. For example:

PosSubSeq(s)
�
= let IsPos(n)

�
= n > 0

in SelectSeq(s ; IsPos)

de�nes PosSubSeq(h0; 3; �2; 5i) to equal h3; 5i.
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The Sequences module uses operators on natural numbers, so we might expect

it to extend the Naturals module. However, this would mean that any module

that extends Sequences would then also extend Naturals . Just in case someone

wants to use sequences without extending the Naturals module, the Sequences

module contains the statement:

local instance Naturals

This statement introduces the de�nitions from the Naturals module, just as an

ordinary instance statement would, but it does not export those de�nitions to

another module that extends or instantiates the Sequences module. The local

modi�er can also precede an ordinary de�nition; it has the e�ect of making

that de�nition usable within the current module, but not in a module that

extends or instantiates it. (The local modi�er cannot be used with parameter

declarations.)

Everything else that appears in the Sequences module should be familiar.

The module is in Figure 18.1 on the next page.

18.2 Module FiniteSets

As described in Section 6.1 on page 66, the FiniteSets module de�nes the two

operators IsFiniteSet and Cardinality . The de�nition of Cardinality is discussed

on pages 70{71. The module itself is in Figure 18.2 on the next page.

18.3 Module Bags

A bag, also called a multiset, is a set that can contain multiple copies of the same

element. A bag can have in�nitely many elements, but only �nitely many copies

of any single element. Bags are sometimes useful for representing data structures.

For example, the state of a network in which messages can be delivered in any

order may be represented as a bag of messages in transit. Multiple copies of an

element in the bag represent multiple copies of the same message in transit.

The Bags module de�nes a bag to be a function whose range is a subset of

the positive integers. An element e belongs to bag B i� e is in the domain of B ,

in which case bag B contains B [e] copies of e. The module de�nes the following

operators. In our customary style, we leave unspeci�ed the value obtained by

applying an operator on bags to something other than a bag.

IsABag(B) True i� B is a bag.

BagToSet(B) The set of elements at least one copy of which are in the

bag B .
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module Sequences

De�nes operators on �nite sequences, where a sequence of length n is represented as a function whose domain is

the set 1 : : n (the set f1; 2; : : : ;ng). This is also how TLA+ de�nes an n-tuple, so tuples are sequences.

local instance Naturals Imports the de�nitions from Naturals, but doesn't export them.

Seq(S )
�
= union f[1 : : n ! S ] : n 2 Natg The set of all �nite sequences of elements in S .

The length of sequence s.Len(s)
�
= choose n 2 Nat : domain s = 1 : : n

s � t �
= The sequence obtained by concatenating sequences s and t .

[i 2 1 : : (Len(s) + Len(t)) 7! if i � Len(s) then s [i ]

else t [i � Len(s)]]

Append(s ; e)
�
= s � he i The sequence obtained by appending element e to the end of sequence s.

Head(s)
�
= s [1]

Tail(s)
�
= [i 2 1 : : (Len(s)� 1) 7! s [i + 1]]

The usual head (�rst)

and tail (rest) operators.

SubSeq(s ;m;n)
�
= [i 2 1 : : (1 + n �m) 7! s [i +m � 1]] The sequence hs[m]; s[m + 1]; : : : ; s[n]i.

SelectSeq(s ; test( ))
�
= The subsequence of s consisting of all elements s[i] such that test(s[i]) is true.

let F [i 2 0 : : Len(s)] �
= F [i] equals SelectSeq(SubSeq(s; 1; i); test).

if i = 0 then h i
else if test(s [i ]) then Append(F [i � 1]; s [i ])

else F [i � 1]

in F [Len(s)]

Figure 18.1: The standard Sequences module.

module FiniteSets

local instance Naturals Imports the de�nitions from Naturals and Sequences, but doesn't

export them.
local instance Sequences

IsFiniteSet(S )
�
= A set is �nite i� there is a �nite sequence containing all its elements.

9 seq 2 Seq(S ) : 8 s 2 S : 9n 2 1 : : Len(seq) : seq [n] = s

Cardinality(S )
�
= Cardinality is de�ned only for �nite sets.

let CS [T 2 subset S ] �
= if T = fg then 0

else 1 + CS [T n fchoose x : x 2 Tg]
in CS [S ]

Figure 18.2: The standard FiniteSets module.
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SetToBag(S ) The bag that contains one copy of every element in the

set S .

BagIn(e;B) True i� bag B contains at least one copy of e. BagIn is

the 2 operator for bags.

EmptyBag The bag containing no elements.

CopiesIn(e;B) The number of copies of e in bag B . If BagIn(e;B) is

false, then CopiesIn(e;B) = 0.

B1� B2 The union of bags B1 and B2. The operator � satis�es

CopiesIn(e;B1 � B2) = CopiesIn(e;B1) + CopiesIn(e;B2)

for any e and any bags B1 and B2.

B1	 B2 The bag B1 with the elements of B2 removed|that is,

with one copy of an element removed from B1 for each

copy of the same element in B2. If B2 has at least as

many copies of e as B1, then B1	B2 has no copies of e.

BagUnion(S ) The bag union of all elements of the set S of bags. For

example, BagUnion(fB1;B2;B3g) equals B1�B2�B3.

B1 v B2 True i�, for all e, bag B2 has at least as many copies of

e as bag B1 does. Thus, v is the analog for bags of �.

SubBag(B) The set of all subbags of bag B . SubBag is the bag analog

of the subset operator.

BagOfAll(F ; B) The bag analog of the construct fF (x ) : x 2 Bg. It is
the bag that contains, for each element e of bag B , one

copy of F (e) for every copy of e in B . This de�nes a bag

i�, for any value v , the set of e in B such that F (e) = v

is �nite.

BagCardinality(B) If B is a �nite bag (one such that BagToSet(B) is a

�nite set), then this is its cardinality|the total number

of copies of elements in B . Its value is unspeci�ed if B

is not a �nite bag.

The module appears in Figure 18.3 on the next page. Note the local de�nition of

Sum, which makes Sum de�ned within the Bags module but not in any module

that extends or instantiates it.
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module Bags

local instance Naturals Import de�nitions from Naturals, but don't export them.

IsABag(B)
�
= B 2 [domain B ! fn 2 Nat : n > 0g] True i� B is a bag.

BagToSet(B)
�
= domain B The set of elements at least one copy of which is in B .

SetToBag(S )
�
= [e 2 S 7! 1] The bag that contains one copy of every element of the set S .

BagIn(e;B)
�
= e 2 BagToSet(B) The 2 operator for bags.

EmptyBag
�
= SetToBag(fg)

CopiesIn(e;B)
�
= if BagIn(e;B) then B [e] else 0 The number of copies of e in B .

B1� B2
�
= The union of bags B1 and B2.

[e 2 (domain B1) [ (domain B2) 7! CopiesIn(e;B1) + CopiesIn(e;B2)]

B1	 B2
�
= The bag B1 with the elements of B2 removed.

let B
�
= [e 2 domain B1 7! CopiesIn(e;B1) � CopiesIn(e;B2)]

in [e 2 fd 2 domain B : B [d ] > 0g 7! B [e]]

local Sum(f )
�
= The sum of f [x] for all x in domain f .

let DSum[S 2 subset domain f ] �
= let elt

�
= choose e 2 S : true

in if S = fg then 0

else f [elt ] +DSum[S n feltg]
in DSum[domain f ]

BagUnion(S )
�
= The bag union of all elements of the set S of bags.

[e 2 union fBagToSet(B) : B 2 Sg 7! Sum([B 2 S 7! CopiesIn(e;B)])]

B1 v B2
�
= ^ (domain B1) � (domain B2)

^ 8 e 2 domainB1 : B1[e] � B2[e]

The subset operator for bags.

SubBag(B)
�
= The set of all subbags of bag B .

let AllBagsOfSubset
�
= The set of bags SB such that BagToSet(SB) � BagToSet(B).

union f[SB ! fn 2 Nat : n > 0g] : SB 2 subset BagToSet(B)g
in fSB 2 AllBagsOfSubset : 8 e 2 domain SB : SB [e] � B [e]g

BagOfAll(F ( );B)
�
= The bag analog of the set fF (x) : x 2 Bg for a set B .

[e 2 fF (d) : d 2 BagToSet(B)g 7!
Sum([d 2 BagToSet(B) 7! if F (d) = e then B [d ] else 0])]

BagCardinality(B)
�
= Sum(B) The total number of copies of elements in bag B .

Figure 18.3: The standard Bags module.
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18.4 The Numbers Modules

The usual sets of numbers and operators on them are de�ned in the three mod-

ules Naturals , Integers , and Reals . These modules are tricky because their

de�nitions must be consistent. A module M might extend both the Naturals

module and another module that extends the Reals module. The module M

thereby obtains two de�nitions of an operator such as +, one from Naturals and

one from Reals . These two de�nitions of + must be the same. To make them the

same, we have them both come from the de�nition of + in a module ProtoReals ,

which is locally instantiated by both Naturals and Reals .

The Naturals module de�nes the following operators:

+ � < � Nat � integer division

� binary minus ^ exponentiation > � : : % modulus

Except for �, these operators are all either standard or explained in Chapter 2.

Integer division (�) and modulus (%) are de�ned so that the following two

conditions hold, for any integer a and positive integer b:

a % b 2 0 : : (b � 1) a = b � (a � b) + (a % b)

The Integers module extends the Naturals module and also de�nes the set Int

of integers and unary minus (�). The Reals module extends Integers and intro-

duces the set Real of real numbers and ordinary division (=). In mathematics,

(unlike programming languages), integers are real numbers. Hence, Nat is a

subset of Int , which is a subset of Real .

The Reals module also de�nes the special value In�nity . In�nity , which

represents a mathematical 1, satis�es the following two properties:

8 r 2 Real : �In�nity < r < In�nity � (�In�nity) = In�nity

The precise details of the number modules are of no practical importance.

When writing speci�cations, you can just assume that the operators they de�ne

have their usual meanings. If you want to prove something about a speci�cation,

you can reason about numbers however you want. Tools like model checkers

and theorem provers that care about these operators will have their own ways of

handling them. The modules are given here mainly for completeness. They can

also serve as models if you want to de�ne other basic mathematical structures.

However, such de�nitions are rarely necessary for engineering speci�cations.

The set Nat of natural numbers, with its zero element and successor function

is de�ned in the Peano module, which appears in Figure 18.4 on the next page. It

simply de�nes the naturals to be a set satisfying Peano's axioms. This de�nition Peano's axioms

are discussed in

many books on

the foundations of

mathematics.

is separated into its own module for the following reason. As explained in

Section 16.1.9 (page 304) and Section 16.1.10 (page 305), the meanings of tuples

and strings are de�ned in terms of the natural numbers. The Peano module,
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module Peano

This module de�nes Nat to be an arbitrary set satisfying Peano's axioms with zero element Zero and successor

function Succ. It does not use strings or tuples, which in TLA+ are de�ned in terms of natural numbers.

PeanoAxioms(N ;Z ;Sc)
�
= Asserts that N satis�es Peano's axioms with zero element Z and

successor function Sc.^ Z 2 N
^ Sc 2 [N ! N ]

^ 8n 2 N : (9m 2 N : n = Sc[m]) � (n 6= Z )

^ 8S 2 subset N : (Z 2 S ) ^ (8n 2 S : Sc[n] 2 S )) (S = N )

assume 9N ;Z ;Sc : PeanoAxioms(N ;Z ;Sc) Asserts the existence of a set satisfying Peano's axioms.

Succ
�
= choose Sc : 9N ;Z : PeanoAxioms(N ;Z ;Sc)

Nat
�
= domain Succ

Zero
�
= choose Z : PeanoAxioms(Nat ;Z ;Succ)

Figure 18.4: The Peano module.

which de�nes the natural numbers, does not use tuples or strings. Hence, there

is no circularity.

As explained in Section 16.1.11 on page 306, numbers like 42 are de�ned in

TLA+ so that 0 equals Zero and 1 equals Succ[Zero], where Zero and Succ are

de�ned in the Peano module. I could therefore have replaced Zero by 0 and

Succ[Zero] by 1 in the ProtoReals module. But doing so would have obscured

how the de�nition of the reals depends on the de�nition of the natural numbers

in the Peano module.

Most of the de�nitions in modules Naturals , Integers , and Reals come from

module ProtoReals in Figure 18.4 on the following two pages. The de�nition of

the real numbers in module ProtoReals uses the well-known mathematical result

that the reals are uniquely de�ned, up to isomorphism, as an ordered �eld in

which every subset bounded from above has a least upper bound. The details

will be of interest only to mathematically sophisticated readers who are curious

about the formalization of ordinary mathematics. I hope that those readers will

be as impressed as I am by how easy this formalization is|once you understand

the mathematics.

Given the ProtoReals module, the rest is simple. The Naturals , Integers ,

and Reals modules appear in Figures 18.6{18.8 on page 346. Perhaps the most

striking thing about them is the ugliness of an operator like R !+, which is

the version of + obtained by instantiating ProtoReals under the name R. It

demonstrates that you should not de�ne in�x operators in a module that may

be used with a named instantiation.
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module ProtoReals

This module provides the basic de�nitions for the Naturals, Integers, and Reals module. It does this by de�ning

the real numbers to be a complete ordered �eld containing the naturals.

extends Peano

IsModelOfReals(R; Plus ; Times ; Leq)
�
=

Asserts that R satis�es the properties of the reals with a + b = Plus[a; b], a � b = Times[a; b], and (a �

b) = (ha; b i 2 Leq). (We will have to quantify over the arguments, so they must be values, not operators.)

let IsAbelianGroup(G ; Id ; + )
�
= Asserts that G is an Abelian group with identity Id and

group operation +.^ Id 2 G

^ 8 a; b 2 G : a + b 2 G
^ 8 a 2 G : Id + a = a

^ 8 a; b; c 2 G : (a + b) + c = a + (b + c)

^ 8 a 2 G : 9minusa 2 G : a +minusa = Id

^ 8 a; b 2 G : a + b = b + a

a + b
�
= Plus [a; b]

a � b �
= Times [a; b]

a � b
�
= ha; b i 2 Leq

in ^ Nat � R

^ 8n 2 Nat : Succ[n] = n + Succ[Zero]

^ IsAbelianGroup(R;Zero;+)

^ IsAbelianGroup(R n fZerog;Succ[Zero]; �)
^ 8 a; b; c 2 R : a � (b + c) = (a � b) + (a � c)
^ 8 a; b 2 R : ^ (a � b) _ (b � a)

^ (a � b) ^ (b � a) � (a = b)

^ 8 a; b; c 2 R : ^ (a � b) ^ (b � c)) (a � c)

^ (a � b)) ^ (a + c) � (b + c)

^ (Zero � c)) (a � c) � (b � c)
^ 8S 2 subset R :

let SBound(a)
�
= 8 s 2 S : s � a

in (9 a 2 R : SBound(a)) )
(9 sup 2 R : ^ SBound(sup)

^ 8 a 2 R : SBound(a) ) (sup � a))

The �rst two conjuncts assert that Nat

is embedded in R.

The next three conjuncts assert that R

is a �eld.

The next two conjuncts assert that R is

an ordered �eld.

The last conjunct asserts that every

subset S of R bounded from above has

a least upper bound sup.

theorem 9R; Plus ; Times ; Leq : IsModelOfReals(R; Plus ; Times ; Leq)

RM
�
= choose RM : IsModelOfReals(RM :R; RM :Plus ; RM :Times ; RM :Leq)

Real
�
= RM :R

Figure 18.5a: The ProtoReals module (beginning).
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We de�ne In�nity, �, and � so �In�nity � r � In�nity, for any r 2 Real , and �(�In�nity) = In�nity.

In�nity
�
= choose x : x =2 Real

MinusIn�nity
�
= choose x : x =2 Real [ fIn�nityg

In�nity and MinusIn�nity (which will equal

�In�nity) are chosen to be arbitrary values not

in Real .

a + b
�
= RM :Plus [a; b]

a � b �
= RM :Times [a; b]

a � b
�
= case (a 2 Real) ^ (b 2 Real) ! ha; b i 2 RM :Leq

2 (a = In�nity) ^ (b 2 Real [ fMinusIn�nityg) ! false

2 (a 2 Real [ fMinusIn�nityg) ^ (b = In�nity) ! true

2 a = b ! true

a � b
�
= case (a 2 Real) ^ (b 2 Real) ! choose c 2 Real : c + b = a

2 (a 2 Real) ^ (b = In�nity) ! MinusIn�nity

2 (a 2 Real) ^ (b =MinusIn�nity) ! In�nity

a=b
�
= choose c 2 Real : a = b � c

Int
�
= Nat [ fZero � n : n 2 Natg

We de�ne ab (exponentiation) for a > 0, or b > 0, or a 6= 0 and b 2 Int, by the four axioms:

a1 = a am+n = am � an if a 6= 0 and m;n 2 Int 0b = 0 if b > 0 ab�c = (ab )c if a > 0

plus the continuity condition that 0 < a and 0 < b � c imply ab � ac .

ab
�
= let RPos

�
= fr 2 Real n fZerog : Zero � rg

exp
�
= choose f 2 [(RPos �Real) [ (Real �RPos)

[ ((Real n fZerog)� Int)! Real ] :

^ 8 r 2 Real : ^ f [r ;Succ[Zero]] = r

^ 8m;n 2 Int : (r 6= Zero))
(f [r ;m + n] = f [r ;m] � f [r ;n])

^ 8 r 2 RPos : ^ f [Zero; r ] = Zero

^ 8 s ; t 2 Real : f [r ; s � t ] = f [f [r ; s ]; t ]

^ 8 s ; t 2 RPos : (s � t)) (f [r ; s ] � f [r ; t ])

in exp[a; b]

Figure 18.5b: The ProtoReals module (end).
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module Naturals

local R
�
= instance ProtoReals

Nat
�
= R !Nat

a + b
�
= a R !+ b R!+ is the operator + de�ned in module ProtoReals.

a � b
�
= a R !� b

a � b �
= a R !� b

ab
�
= a R !^ b ab is written in ascii as a^b.

a � b
�
= a R !� b

a � b
�
= b � a

a < b
�
= (a � b) ^ (a 6= b)

a > b
�
= b < a

a : : b
�
= fi 2 R !Int : (a � i) ^ (i � b)g

a � b
�
= choose n 2 R !Int : 9 r 2 0 : : (b � 1) : a = b � n + r We de�ne � and % so that

a = b � (a � b) + (a % b)

for all integers a and b with b > 0.
a % b

�
= a � b � (a � b)

Figure 18.6: The standard Naturals module.

module Integers

extends Naturals The Naturals module already de�nes operators like + to work on all real numbers.

local R
�
= instance ProtoReals

Int
�
= R !Int

�: a �
= 0� a Unary � is written �: when being de�ned or used as an operator argument.

Figure 18.7: The standard Integers module.

module Reals

extends Integers The Integers module already de�nes operators like + to work on all real numbers.

local R
�
= instance ProtoReals

Real
�
= R !Real

a=b
�
= a R != b R!= is the operator = de�ned in module ProtoReals.

In�nity
�
= R !In�nity

Figure 18.8: The standard Reals module.
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Appendix A

The ASCII Speci�cations

A.1 The Asynchronous Interface

------------------ MODULE AsynchInterface --------------------

EXTENDS Naturals

CONSTANT Data

VARIABLES val, rdy, ack

TypeInvariant == /\ val \in Data

/\ rdy \in {0, 1}

/\ ack \in {0, 1}

--------------------------------------------------------------

Init == /\ val \in Data

/\ rdy \in {0, 1}

/\ ack = rdy

Send == /\ rdy = ack

/\ val' \in Data

/\ rdy' = 1 - rdy

/\ UNCHANGED ack

Rcv == /\ rdy # ack

/\ ack' = 1 - ack

/\ UNCHANGED <<val, rdy>>

Next == Send \/ Rcv

Spec == Init /\ [][Next]_<<val, rdy, ack>>

--------------------------------------------------------------

349
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THEOREM Spec => []TypeInvariant

==============================================================

---------------------- MODULE Channel ------------------------

EXTENDS Naturals

CONSTANT Data

VARIABLE chan

TypeInvariant ==

chan \in [val : Data, rdy : {0, 1}, ack : {0, 1}]

--------------------------------------------------------------

Init == /\ TypeInvariant

/\ chan.ack = chan.rdy

Send(d) == /\ chan.rdy = chan.ack

/\ chan' = [chan EXCEPT !.val = d, !.rdy = 1 - @]

Rcv == /\ chan.rdy # chan.ack

/\ chan' = [chan EXCEPT !.ack = 1 - @]

Next == (\E d \in Data : Send(d)) \/ Rcv

Spec == Init /\ [][Next]_chan

--------------------------------------------------------------

THEOREM Spec => []TypeInvariant

==============================================================

A.2 A FIFO

--------------------- MODULE InnerFIFO -----------------------

EXTENDS Naturals, Sequences

CONSTANT Message

VARIABLES in, out, q

InChan == INSTANCE Channel WITH Data <- Message, chan <- in

OutChan == INSTANCE Channel WITH Data <- Message, chan <- out

-------------------------------------------------------------

Init == /\ InChan!Init

/\ OutChan!Init

/\ q = << >>

TypeInvariant == /\ InChan!TypeInvariant
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/\ OutChan!TypeInvariant

/\ q \in Seq(Message)

SSend(msg) == /\ InChan!Send(msg)

/\ UNCHANGED <<out, q>>

BufRcv == /\ InChan!Rcv

/\ q' = Append(q, in.val)

/\ UNCHANGED out

BufSend == /\ q # << >>

/\ OutChan!Send(Head(q))

/\ q' = Tail(q)

/\ UNCHANGED in

RRcv == /\ OutChan!Rcv

/\ UNCHANGED <<in, q>>

Next == \/ \E msg \in Message : SSend(msg)

\/ BufRcv

\/ BufSend

\/ RRcv

Spec == Init /\ [][Next]_<<in, out, q>>

--------------------------------------------------------------

THEOREM Spec => []TypeInvariant

==============================================================

------------------------ MODULE FIFO -------------------------

CONSTANT Message

VARIABLES in, out

Inner(q) == INSTANCE InnerFIFO

Spec == \EE q : Inner(q)!Spec

==============================================================

A.3 A Caching Memory

------------------ MODULE MemoryInterface --------------------

VARIABLE memInt

CONSTANTS Send(_, _, _, _),

Reply(_, _, _, _),
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InitMemInt,

Proc,

Adr,

Val

ASSUME \A p, d, miOld, miNew :

/\ Send(p,d,miOld,miNew) \in BOOLEAN

/\ Reply(p,d,miOld,miNew) \in BOOLEAN

--------------------------------------------------------------

MReq == [op : {"Rd"}, adr: Adr]

\cup [op : {"Wr"}, adr: Adr, val : Val]

NoVal == CHOOSE v : v \notin Val

==============================================================

------------------ MODULE InternalMemory ---------------------

EXTENDS MemoryInterface

VARIABLES mem, ctl, buf

--------------------------------------------------------------

IInit == /\ mem \in [Adr->Val]

/\ ctl = [p \in Proc |-> "rdy"]

/\ buf = [p \in Proc |-> NoVal]

/\ memInt \in InitMemInt

TypeInvariant ==

/\ mem \in [Adr->Val]

/\ ctl \in [Proc -> {"rdy", "busy","done"}]

/\ buf \in [Proc -> MReq \cup Val \cup {NoVal}]
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Req(p) == /\ ctl[p] = "rdy"

/\ \E req \in MReq :

/\ Send(p, req, memInt, memInt')

/\ buf' = [buf EXCEPT ![p] = req]

/\ ctl' = [ctl EXCEPT ![p] = "busy"]

/\ UNCHANGED mem

Do(p) ==

/\ ctl[p] = "busy"

/\ mem' = IF buf[p].op = "Wr"

THEN [mem EXCEPT ![buf[p].adr] = buf[p].val]

ELSE mem

/\ buf' = [buf EXCEPT ![p] = IF buf[p].op = "Wr"

THEN NoVal

ELSE mem[buf[p].adr]]

/\ ctl' = [ctl EXCEPT ![p] = "done"]

/\ UNCHANGED memInt

Rsp(p) == /\ ctl[p] = "done"

/\ Reply(p, buf[p], memInt, memInt')

/\ ctl' = [ctl EXCEPT ![p]= "rdy"]

/\ UNCHANGED <<mem, buf>>

INext == \E p \in Proc: Req(p) \/ Do(p) \/ Rsp(p)

ISpec == IInit /\ [][INext]_<<memInt, mem, ctl, buf>>

--------------------------------------------------------------

THEOREM ISpec => []TypeInvariant

==============================================================

----------------------- MODULE Memory ------------------------

EXTENDS MemoryInterface

Inner(mem, ctl, buf) == INSTANCE InternalMemory

Spec == \EE mem, ctl, buf : Inner(mem, ctl, buf)!ISpec

==============================================================
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------------------ MODULE WriteThroughCache ------------------

EXTENDS Naturals, Sequences, MemoryInterface

VARIABLES mem, ctl, buf, cache, memQ

CONSTANT QLen

ASSUME (QLen \in Nat) /\ (QLen > 0)

M == INSTANCE InternalMemory

--------------------------------------------------------------

Init == /\ M!IInit

/\ cache = [p \in Proc |-> [a \in Adr |-> NoVal] ]

/\ memQ = << >>

TypeInvariant ==

/\ mem \in [Adr -> Val]

/\ ctl \in [Proc -> {"rdy", "busy", "waiting", "done"}]

/\ buf \in [Proc -> MReq \cup Val \cup {NoVal}]

/\ cache \in [Proc -> [Adr -> Val \cup {NoVal}]]

/\ memQ \in Seq(Proc \X MReq)

Coherence == \A p, q \in Proc, a \in Adr :

(NoVal \notin {cache[p][a], cache[q][a]})

=> (cache[p][a]=cache[q][a])

--------------------------------------------------------------

Req(p) == M!Req(p) /\ UNCHANGED <<cache, memQ>>

Rsp(p) == M!Rsp(p) /\ UNCHANGED <<cache, memQ>>

RdMiss(p) == /\ (ctl[p] = "busy") /\ (buf[p].op = "Rd")

/\ cache[p][buf[p].adr] # NoVal

/\ Len(memQ) < QLen

/\ memQ' = Append(memQ, <<p, buf[p]>>)

/\ ctl' = [ctl EXCEPT ![p] = "waiting"]

/\ UNCHANGED <<memInt, mem, buf, cache>>

DoRd(p) ==

/\ ctl[p] \in {"busy","waiting"}

/\ buf[p].op = "Rd"

/\ cache[p][buf[p].adr] # NoVal

/\ buf' = [buf EXCEPT ![p] = cache[p][buf[p].adr]]

/\ ctl' = [ctl EXCEPT ![p] = "done"]

/\ UNCHANGED <<memInt, mem, cache, memQ>>

DoWr(p) ==

LET r == buf[p]

IN /\ (ctl[p] = "busy") /\ (r.op = "Wr")
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/\ Len(memQ) < QLen

/\ cache' = [q \in Proc |->

IF (p=q) \/ (cache[q][r.adr]#NoVal)

THEN [cache[q] EXCEPT ![r.adr] = r.val]

ELSE cache[q] ]

/\ memQ' = Append(memQ, <<p, r>>)

/\ buf' = [buf EXCEPT ![p] = NoVal]

/\ ctl' = [ctl EXCEPT ![p] = "done"]

/\ UNCHANGED <<memInt, mem>>

vmem ==

LET f[i \in 0 .. Len(memQ)] ==

IF i=0 THEN mem

ELSE IF memQ[i][2].op = "Rd"

THEN f[i-1]

ELSE [f[i-1] EXCEPT ![memQ[i][2].adr] =

memQ[i][2].val]

IN f[Len(memQ)]

MemQWr == LET r == Head(memQ)[2]

IN /\ (memQ # << >>) /\ (r.op = "Wr")

/\ mem' = [mem EXCEPT ![r.adr] = r.val]

/\ memQ' = Tail(memQ)

/\ UNCHANGED <<memInt, buf, ctl, cache>>

MemQRd ==

LET p == Head(memQ)[1]

r == Head(memQ)[2]

IN /\ (memQ # << >> ) /\ (r.op = "Rd")

/\ memQ' = Tail(memQ)

/\ cache' = [cache EXCEPT ![p][r.adr] = vmem[r.adr]]

/\ UNCHANGED <<memInt, mem, buf, ctl>>

Evict(p,a) == /\ (ctl[p] = "waiting") => (buf[p].adr # a)

/\ cache' = [cache EXCEPT ![p][a] = NoVal]

/\ UNCHANGED <<memInt, mem, buf, ctl, memQ>>

Next == \/ \E p\in Proc : \/ Req(p) \/ Rsp(p)

\/ RdMiss(p) \/ DoRd(p) \/ DoWr(p)

\/ \E a \in Adr : Evict(p, a)

\/ MemQWr \/ MemQRd

Spec ==
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Init /\ [][Next]_<<memInt, mem, buf, ctl, cache, memQ>>

--------------------------------------------------------------

THEOREM Spec => [](TypeInvariant /\ Coherence)

--------------------------------------------------------------

LM == INSTANCE Memory

THEOREM Spec => LM!Spec

==============================================================

A.4 The Alternating Bit Protocol

------------------- MODULE AlternatingBit -------------------

EXTENDS Naturals, Sequences

CONSTANTS Data

VARIABLES msgQ, ackQ, sBit, sAck, rBit, sent, rcvd

ABInit == /\ msgQ = << >>

/\ ackQ = << >>

/\ sBit \in {0, 1}

/\ sAck = sBit

/\ rBit = sBit

/\ sent \in Data

/\ rcvd \in Data

ABTypeInv == /\ msgQ \in Seq({0,1} \X Data)

/\ ackQ \in Seq({0,1})

/\ sBit \in {0, 1}

/\ sAck \in {0, 1}

/\ rBit \in {0, 1}

/\ sent \in Data

/\ rcvd \in Data

SndNewValue(d) == /\ sAck = sBit

/\ sent' = d

/\ sBit' = 1 - sBit

/\ msgQ' = Append(msgQ, <<sBit', d>>)

/\ UNCHANGED <<ackQ, sAck, rBit, rcvd>>

ReSndMsg ==

/\ sAck # sBit

/\ msgQ' = Append(msgQ, <<sBit, sent>>)

/\ UNCHANGED <<ackQ, sBit, sAck, rBit, sent, rcvd>>
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RcvMsg ==

/\ msgQ # <<>>

/\ msgQ' = Tail(msgQ)

/\ rBit' = Head(msgQ)[1]

/\ rcvd' = Head(msgQ)[2]

/\ UNCHANGED <<ackQ, sBit, sAck, sent>>

SndAck ==

/\ ackQ' = Append(ackQ, rBit)

/\ UNCHANGED <<msgQ, sBit, sAck, rBit, sent, rcvd>>

RcvAck ==

/\ ackQ # << >>

/\ ackQ' = Tail(ackQ)

/\ sAck' = Head(ackQ)

/\ UNCHANGED <<msgQ, sBit, rBit, sent, rcvd>>

Lose(q) ==

/\ q # << >>

/\ \E i \in 1..Len(q) :

q' = [j \in 1..(Len(q)-1) |-> IF j < i THEN q[j]

ELSE q[j+1] ]

/\ UNCHANGED <<sBit, sAck, rBit, sent, rcvd>>

LoseMsg == Lose(msgQ) /\ UNCHANGED ackQ

LoseAck == Lose(ackQ) /\ UNCHANGED msgQ

ABNext == \/ \E d \in Data : SndNewValue(d)

\/ ReSndMsg \/ RcvMsg \/ SndAck \/ RcvAck

\/ LoseMsg \/ LoseAck

abvars == << msgQ, ackQ, sBit, sAck, rBit, sent, rcvd>>

ABFairness == /\ WF_abvars(ReSndMsg) /\ SF_abvars(RcvAck)

/\ WF_abvars(SndAck) /\ SF_abvars(RcvMsg)

-------------------------------------------------------------

ABSpec == ABInit /\ [][ABNext]_abvars /\ ABFairness

-------------------------------------------------------------

THEOREM ABSpec => []ABTypeInv

=============================================================
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------------------ MODULE MCAlternatingBit ------------------

EXTENDS AlternatingBit, ABCorrectness

CONSTANTS msgQLen, ackQLen

ASSUME /\ msgQLen \in Nat

/\ ackQLen \in Nat

SeqConstraint == /\ Len(msgQ) \leq msgQLen

/\ Len(ackQ) \leq ackQLen

SentLeadsToRcvd == \A d \in Data : (sent = d) ~> (rcvd = d)

ImpliedAction == [ABCNext]_cvars

=============================================================

------------------- MODULE ABCorrectness --------------------

EXTENDS Naturals, Sequences

CONSTANTS Data

VARIABLES sBit, sAck, rBit, sent, rcvd

-------------------------------------------------------------

ABCInit == /\ sBit \in {0, 1}

/\ sAck = sBit

/\ rBit = sBit

/\ sent \in Data

/\ rcvd \in Data

STypeInv == /\ sBit \in {0, 1}

/\ sAck \in {0, 1}

/\ rBit \in {0, 1}

/\ sent \in Data

/\ rcvd \in Data

CSndNewValue(d) == /\ sAck = sBit

/\ sent' = d

/\ sBit' = 1 - sBit

/\ UNCHANGED <<sAck, rBit, rcvd>>

CRcvMsg == /\ rBit # sBit

/\ rBit' = sBit

/\ rcvd' = sent

/\ UNCHANGED <<sBit, sAck, sent>>
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CRcvAck == /\ rBit # sAck

/\ sAck' = rBit

/\ UNCHANGED <<sBit, rBit, sent, rcvd>>

ABCNext == \/ \E d \in Data : CSndNewValue(d)

\/ CRcvMsg \/ CRcvAck

-------------------------------------------------------------

cvars == <<sBit, sAck, rBit, sent, rcvd>>

ABCFairness == WF_cvars(CRcvMsg) /\ WF_cvars(CRcvAck)

ABCSpec == ABCInit /\ [][ABCNext]_cvars /\ ABCFairness

--------------------------------------------------------------

THEOREM ABCSpec => []STypeInv

==============================================================
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